Powered by Deep Web Technologies
Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dixie Valley Geothermal Field | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley Geothermal Field Citation Online Nevada Encyclopedia. Dixie...

2

Rectifier cabinet static breaker  

Science Conference Proceedings (OSTI)

A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload. 7 figs.

Costantino, R.A. Jr; Gliebe, R.J.

1992-09-01T23:59:59.000Z

3

Rectifier cabinet static breaker  

DOE Patents (OSTI)

A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

Costantino, Jr, Roger A. (Mifflin, PA); Gliebe, Ronald J. (Library, PA)

1992-09-01T23:59:59.000Z

4

Edison Phase II Compute Cabinets Arrive  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC June 27, 2013 by Zhengji Zhao (1 Comments) The compute cabinets were shiped to...

5

Direct-Current Resistivity At Dixie Valley Geothermal Field Area...  

Open Energy Info (EERE)

Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field...

6

Multispectral Imaging At Dixie Meadows Area (Martin, Et Al.,...  

Open Energy Info (EERE)

Multispectral Imaging At Dixie Meadows Area (Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Dixie...

7

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

In Dixie Valley, Nevada Retrieved from "http:en.openei.orgwindex.php?titleGroundGravitySurveyAtDixieValleyGeothermalFieldArea(Blackwell,EtAl.,2009)&oldid38834...

8

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

9

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

10

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie...  

Open Energy Info (EERE)

over a new exploration target in Dixie Valley, Nevada, U. S. A. Related research at the Energy & Geoscience Institute is currently focused on mineralogy mapping at the outcrop...

12

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

13

Biological Safety Cabinet Operating Instructions  

E-Print Network (OSTI)

readings or by using a tissue. Disinfect work surfaces with appropriate disinfectant. Place essential with an appropriate disinfectant. 4. Contact Facilities Services at ext. 23582. Certification Your cabinet must

14

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

15

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Wisian & Blackwell, 2004)...

16

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

of a tracer test at Dixie Valley, Nevada, Proc. 22 ndand footwall faulting at Dixie Valley, Nevada, Geothermalthe shallow thermal regime at Dixie Valley geothermal field,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

17

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

18

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

19

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

January 2010 Venting Flammable Liquid Storage Cabinets  

E-Print Network (OSTI)

Unless You Have To According to NFPA 30, Flammable and Combustible Liquids Code Handbook, venting exhaust system using rigid metal piping equivalent or better than that used in construction of the cabinet. Cabinets shall NOT be vented directly into the fume hood, through the fume hood work surface. Piping must

Kolner, Brian H.

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation, search...

22

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

23

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

24

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd...

25

Regional hydrology of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

Counc, 1999 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary...

26

Exploration and Development at Dixie Valley, Nevada- Summary...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies...

27

Integrated dense array and transect MT surveying at dixie valley...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal...

28

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...  

Open Energy Info (EERE)

1995 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,...

29

Egs Exploration Methodology Project Using the Dixie Valley Geothermal...  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

30

An investigation of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using...

31

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are...

32

Dixie Escalante R E A, Inc (Arizona) | Open Energy Information  

Open Energy Info (EERE)

References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleDixieEscalanteREA,Inc(Arizona)&oldid412524...

33

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details...

34

Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

35

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

36

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...  

Open Energy Info (EERE)

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL...

37

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

38

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

39

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search...

40

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009)...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

42

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration...

43

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution...

44

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Dixie Valley Geothermal Prospect Churchill County, Nevada  

DOE Green Energy (OSTI)

Attempts were made to cause well Dixie Federal 45-14 to flow by reducing the wellbore pressure opposing possible producing formation. Such pressure reduction was accomplished by using a Magcobar air compressor to lift the water column out of the wellbore. Three series of efforts using this method were performed. The conclusions from these last attempts to flow Dixie Federal 45-14 were: (1) the massive water entry at 5820-5870 feet was shut off; (2) the compressor, with some help from the mud pumps, was able to virtually clear the wellbore of water above the point of air injection; (3) despite evacuating water from the wellbore to as deep as 7500 feet, the Dixie Federal 45-14 had insufficient permeability to commence flowing on its own as of 7-8-79. The possible benefits of temperature equilibration or other time adjustments within the prospective interval below 8000 feet may include eventual capacity to flow. This potential will be evaluated with future flow attempts; and (4) there is some small liquid entry somewhere between 6290 and 9022 feet which caused the air compressor to go through very long (3-4 hour) cycles of unloading and slowly re-filling the wellbore.

none

1979-07-01T23:59:59.000Z

47

Edison Phase II Compute Cabinets Arrive  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC Edison Phase II Compute Cabinets Arrive at NERSC June 27, 2013 by Zhengji Zhao (1 Comments) The compute cabinets were shiped to NERSC between June 24 and 25, 2013.They have been installed on the machine room floor in Oakland. The 28 canbinets that comprise the Phase II system were powered up on June 27, 2013. Post your comment You cannot post comments until you have logged in. Login Here. Comments I re-compiled my program on Edison with Intel compiler. Once submitted the job, the waiting time in the regular queue was very short compared to Hopper. The run on Edison was smooth and with no problems. Comparing the CPU time for the run, I found that the job run almost twice as faster as in Hopper (using PGI compilers). (In Edison it took 111 seconds and in Hopper/PGI 203

48

An investigation of the Dixie Valley geothermal field, Nevada, using  

Open Energy Info (EERE)

investigation of the Dixie Valley geothermal field, Nevada, using investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Citation Marshall J. Reed. 2007. An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests. In:

49

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley  

Open Energy Info (EERE)

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Abstract A new generation MT array measurement system was applied in a contiguous bipole deployment at the Dixie Valley thermal area. Basic goals of the survey area are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single range front fault versus shallower, stepped pediment; 2) delineate fault zones which have experienced fluid flux as

50

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

51

Dixie Electric Cooperative - Residential Heat Pump Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dixie Electric Cooperative - Residential Heat Pump Loan Program Dixie Electric Cooperative - Residential Heat Pump Loan Program Dixie Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Home Weatherization Windows, Doors, & Skylights Maximum Rebate $5,000 Program Info State Alabama Program Type Utility Loan Program Rebate Amount up to $5,000 Provider Dixie Electric Cooperative Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a maximum loan of $5,000 at a 5% interest rate. Funds can be used for improvements, upgrades, gas to electric conversions, or installation of a heat pump system. The payments

52

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley  

Open Energy Info (EERE)

Of Faulting And Neotechtonic Framework In The Dixie Valley Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Details Activities (6) Areas (3) Regions (0) Abstract: We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal

53

Regional hydrology of the Dixie Valley geothermal field, Nevada-  

Open Energy Info (EERE)

hydrology of the Dixie Valley geothermal field, Nevada- hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Authors Gregory Nimz, Cathy Janik, Fraser Goff, Charles Dunlap, Mark Huebner, Dale Counce and Stuart D. Johnson Published Journal Trans Geotherm Resour Counc, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Citation Gregory Nimz,Cathy Janik,Fraser Goff,Charles Dunlap,Mark Huebner,Dale

54

Compound and Elemental Analysis At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Dixie Valley Compound and Elemental Analysis At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

55

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

56

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Et Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes Geologic mapping from air photos in some places clearly located the structures in the valley and hence is very site specific. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388817

57

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Abstract A 2D reactive transport model of the Dixie Valley,Nevada, geothermal area was developed to assessfluid flow pathways and fluid rock interactionprocesses. Setting up the model includedspecification of the mineralogy of the different rockunits, the formulation of the corresponding mineraldissolution and precipitation reactions, the explicitdefinition of two major normal faults and thespecification of a dual continuum domain

58

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

59

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Abstract A series of four tracer tests was recently conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These tests have resulted in the first successful use of the compounds amino G and pyrenetetrasulfonate as tracers in a geothermal reservoir. The tracer candidates were subjected to simulated hydrothermal conditions in laboratory reactors at temperatures as high as 300°C in order to determine

60

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Using a simple one-dimensional steady-state fluid flow model, the helium content and isotopic composition imply vertical fluid flow rates from the mantle of _7 mm/yr. This is a strict lower limit to the fluid flow rate: the one-dimensional model does not consider diffusive re-distribution of helium or mixing with water containing only a crustal helium component and

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

62

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Abstract Extended logging and surface-to-borehole electromagnetic induction measurements were performed at the Dixie Valley Geothermal Field as part of an ongoing effort to employ electromagnetic induction logging to geothermal reservoir characterization. The principal goal of this effort is to discern subsurface features useful in geothermal production, such as larger scale mapping of geothermal reservoirs and smaller scale mapping of producing

63

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

64

Recency of Faulting and Neotectonic Framework in the Dixie Valley  

Open Energy Info (EERE)

of Faulting and Neotectonic Framework in the Dixie Valley of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Recency of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Abstract We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The

65

Development of an injection augmentation program at the Dixie Valley,  

Open Energy Info (EERE)

an injection augmentation program at the Dixie Valley, an injection augmentation program at the Dixie Valley, Nevada geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of an injection augmentation program at the Dixie Valley, Nevada geothermal field Abstract Evaporative cooling at geothermal power plants generally reduces reservoir pressures even if all available geothermal liquids are reinjected. Controlled programs of injecting non geothermal waters directly into reservoirs have been tested or implemented at only four fields, three of them being vapor dominated. At the liquid-dominated Dixie Valley geothermal field an unsuccessful search for a large volume source of warm,chemically desirable fluid for augmentation was conducted.After determining water

66

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

67

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Aeromagnetic Survey At Dixie Valley Geothermal Field Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution aeromagnetic survey was conducted over a 940 km2 area extending from Dixie Meadows northeastward to the Sou Hills, and from the eastern front of the Stillwater Range to the western edge of the Clan Alpine Range (Grauch, 2002). The resulting aeromagnetic map is described and discussed by Smith et al. (2002). Many of the shallow faults revealed by the aeromagnetic data (Figure 3) coincide with faults mapped based on surface expression on aerial photographs (Smith et al., 2001). However, in

68

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley,  

Open Energy Info (EERE)

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Abstract A collaborative effort among U. S. Department of Energy sponsored remote sensing specialists and industry recently culminated in the acquisition of hyperspectral data over a new exploration target in Dixie Valley, Nevada, U. S. A. Related research at the Energy & Geoscience Institute is currently focused on mineralogy mapping at the outcrop level. This will be extended to piedmont and valley fill soils to detect soil mineral anomalies that may be related to buried structures and sinters. Spectral mineral end-members

69

Seismicity related to geothermal development in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

Ryall, A.S.; Vetter, U.R.

1982-07-08T23:59:59.000Z

70

BIOSAFETY CABINET USE AND SAFETY INTRODUCTION  

E-Print Network (OSTI)

.g. vortex mixers, tabletop centrifuges) toward the rear of the cabinet. · The workflow should be from "clean, compromising protection of both the worker and the work. Numerous factors affect the activity of the germicidal activity. · Causes excessive heat buildup, may damage HEPA filters or melt the adhesive holding the filter

Ford, James

71

Dixie Meadows Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dixie Meadows Geothermal Project Project Location Information Coordinates 39.966944444444°, -117.85527777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966944444444,"lon":-117.85527777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

Dixie Valley, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley, Nevada: Energy Resources Dixie Valley, Nevada: Energy Resources Jump to: navigation, search Name Dixie Valley, Nevada Equivalent URI DBpedia GeoNames ID 5503050 Coordinates 39.6876953°, -118.0806866° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6876953,"lon":-118.0806866,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

Egs Exploration Methodology Project Using the Dixie Valley Geothermal  

Open Energy Info (EERE)

Egs Exploration Methodology Project Using the Dixie Valley Geothermal Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Authors Joe Iovenitti, Jon Sainsbury, Ileana Tibuleac, Robert Karlin, Philip Wannamaker, Virginia Maris, David Blackwell, Mahesh Thakur, Fletcher H. Ibser, Jennifer Lewicki, B. Mack. Kennedy and Michael Swyer Conference Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University; Stanford, California; 2013 Published Publisher Not Provided, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Egs Exploration Methodology Project Using the

74

Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada | Open  

Open Energy Info (EERE)

Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada Abstract Precise definition of geometric relationships between individual basins and ranges may help to reveal the mechanical processes of Basin and Range Cenozoic extensional faulting at depth. Previous studies have attempted to identify simple horsts and grabens, tilted crustal blocks with planar faulting, or tilted crustal blocks with listric faulting in the shallow crust. Normal faults defining these crustal blocks may root (1) individually in the ductile lower crust, (2) in regional or local low-angle detachment faults, or (3) in igneous intrusions or decoupling surfaces

75

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The high resolution aeromagnetic technique was very successful along the east side of the valley, but less along the geothermally important west side. Detailed correlation will be investigated when the high resolution data are available. The magnetic results will also vary from area to area depending on the local rock types more than in the other techniques. Nonetheless important information on the style of the faulting is contained in the data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

76

Exploration ofr geothermal resources in Dixie Valley, Nevada  

Science Conference Proceedings (OSTI)

A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

Parchman, W.L.; Knox, J.W.

1981-06-01T23:59:59.000Z

77

Evaluation of Peak Heat Release Rates in Electrical Cabinet Fires  

Science Conference Proceedings (OSTI)

The purpose of this report is to reanalyze the peak heat release rates (HRRs) from fires occurring in electrical cabinets of nuclear power plants.

2012-02-23T23:59:59.000Z

78

Dixie Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Hot Springs Geothermal Area Dixie Hot Springs Geothermal Area (Redirected from Dixie Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7977,"lon":-118.0673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley  

Open Energy Info (EERE)

Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Abstract N/A Author V. J. S. Grauch Published U.S. Geological Survey, 2002 Report Number 02-384 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Citation V. J. S. Grauch. 2002. High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada. (!) : U.S. Geological Survey. Report No.: 02-384. Retrieved from "http://en.openei.org/w/index.php?title=High-Resolution_Aeromagnetic_Survey_to_Image_Shallow_Faults,_Dixie_Valley_Geothermal_Field,_Nevada&oldid=682601"

80

A model for the shallow thermal regime at Dixie Valley geothermal field |  

Open Energy Info (EERE)

A model for the shallow thermal regime at Dixie Valley geothermal field A model for the shallow thermal regime at Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A model for the shallow thermal regime at Dixie Valley geothermal field Authors R. G. Allis, Stuart D. Johnson, Gregory D. Nash and Dick Benoit Published Journal TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A model for the shallow thermal regime at Dixie Valley geothermal field Citation R. G. Allis,Stuart D. Johnson,Gregory D. Nash,Dick Benoit. 1999. A model for the shallow thermal regime at Dixie Valley geothermal field. TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL. 23:493-498. Retrieved from "http://en.openei.org/w/index.php?title=A_model_for_the_shallow_thermal_regime_at_Dixie_Valley_geothermal_field&oldid=682587"

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Dixie Valley Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity;

82

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Abstract The goal of this study is to map and characterize Quaternary faults in southern Dixie Valley for the Department of the Navy Geothermal Program Office's NAS Fallon Geothermal Exploration Project. We will use this information to better characterize the regional structure and geothermal resource potential of the area,with a focus on determining the structural

83

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the

84

Multispectral Imaging At Dixie Meadows Area (Pickles, Et Al., 2003) | Open  

Open Energy Info (EERE)

Dixie Meadows Area (Pickles, Et Al., 2003) Dixie Meadows Area (Pickles, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Dixie Meadows Area (Pickles, Et Al., 2003) Exploration Activity Details Location Dixie Meadows Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown References W. L. Pickles, G. D. Nash, W. M. Calvin, B. A. Martini, P. A. Cocks, T. Kenedy-Bowdoin, R. B. Mac Knight, E. A. Silver, D. C. Potts, W. Foxall, P. Kasamayer, A. F. Waibel (2003) Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource Locations In The Us Basin And Range With A Focus On Dixie Meadows, Nv Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Dixie_Meadows_Area_(Pickles,_Et_Al.,_2003)&oldid=511005"

85

Dissolution of FB-Line Cabinet Sweepings  

DOE Green Energy (OSTI)

Three FB-Line samples were received by the Savannah River National Laboratory (SRNL) for characterization and evaluation for suitability for HB-Line dissolution. These samples are part of a larger sampling/evaluation program in support of FB-Line deinventory efforts. The samples studied were identified as MC04-147- HBL, MC04-148-HBL, and FBL-SWP-04-016-HBL (N). The first sample, MC04-147-HBL, is a portion of FB-Line Packaging and Stabilization (P&S) materials. The second sample, MC04-148-HBL, is a sweeping from Cabinet 6-8, which is not representative of the mechanical line. The third sample, FBL-SWP-04-016-HBL (N), is an FB-Line North cabinet sweeping. The samples were described by FB-Line personnel as containing plutonium oxide (PuO{sub 2}) which had not been high-fired. This description was generally confirmed by solids analysis and off gas measurements. All three samples were dissolved in 8 M HNO{sub 3}/0.1 M KF at 90-100 C leaving minor amounts of solid residue. During dissolution, sample MC04-147 did not generate hydrogen gas. Sample MC04-148 generated modest amounts of gas, which contained 4.0 to 4.7 volume percent (vol %) hydrogen (H{sub 2}) at a ratio of up to 8.4 x 10{sup -5} mol H{sub 2}/g sample. Sample FBL-SWP-04-016-HBL (N) was nearly completely soluble in 8 M HNO{sub 3}and produced a very small amount of gas. Apparently, the CaF{sub 2} in that sample dissolves and provides sufficient fluoride to support the dissolution of other components.

Crowder, Mark L.

2005-06-14T23:59:59.000Z

86

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Steven Wesnousky, S. John Caskey, John W. Bell (2003) Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Wesnousky,_Et_Al.,_2003)&oldid=510736" Categories: Exploration Activities DOE Funded Activities What links here

87

Dixie Valley Six Well Flow Test | Open Energy Information  

Open Energy Info (EERE)

Six Well Flow Test Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted during 1986 at the Dixie Valley geothermal field. Flow duration lasted from 40 to 74 days with a maximum rate of 5.9 million pounds/hour. During the test, downhole pressures were monitored in eight surrounding wells. Downhole pressure and temperature surveys were run in each of the flowing wells,usually in conjunction with productivity tests. Results from the flow test and earlier interference tests indicate that six wells are capable of providing in excess of the 4.5 million pounds/hour required for a 62 mw (gross) power plant. Author William L. Desormier Published Journal Geothermal Resources Council, TRANSACTIONS, 1987

88

Geothermal chemistry/exploration investigations at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Dixie Valley geothermal field has continuously produced electric power since 1988. At the request of Oxbow Geothermal Corp. and the US Department of Energy, the authors have organized an inter-agency team of investigators to examine several topics of concern regarding management and behavior of the resource. These topics include scaling of the injection system, recharge of the reservoir, geochemical monitoring of the reservoir, and development of increased fumarolic activity north of the power plant.

Goff, F.; Bergfeld, D.; Counce, D. [Los Alamos National Lab., NM (United States); Janik, C.J. [Geological Survey (United States); Bruton, C.J.; Nimz, G. [Lawrence Livermore National Lab., CA (United States)

1998-12-01T23:59:59.000Z

89

Covered Product Category: Hot Food Holding Cabinets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Food Holding Cabinets Hot Food Holding Cabinets Covered Product Category: Hot Food Holding Cabinets October 7, 2013 - 11:08am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including hot food holding cabinets, which are covered by the ENERGY STAR® program. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Manufacturers display the ENERGY STAR label on complying models. For a model not displaying the label, check the qualified products lists maintained on the ENERGY STAR website. This product category overview covers the following: Meeting Energy Efficiency Requirements

90

Detailed CFD modelling of open refrigerated display cabinets  

Science Conference Proceedings (OSTI)

A comprehensive and detailed computational fluid dynamics (CFDs) modelling of air flow and heat transfer in an open refrigerated display cabinet (ORDC) is performed in this study. The physical-mathematical model considers the flow through the internal ...

Pedro Dinis Gaspar; L. C. Carrilho Gonalves; R. A. Pitarma

2012-01-01T23:59:59.000Z

91

Seeing the Light: LED Under-Cabinet and Recessed Downlights ...  

NLE Websites -- All DOE Office Websites (Extended Search)

operating at their optimum energy efficiency. I'm definitely drawn to the light-emitting diode (LED) under-cabinet and recessed downlights-just two of the many LED products....

92

Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet  

SciTech Connect

This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation.

NORMAN, E.C.

2000-10-23T23:59:59.000Z

93

Dixie Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Hot Springs Geothermal Area Dixie Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7977,"lon":-118.0673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are not as site specific as the seismic, but put the major parts of the structure in their proper location and places vital constraints on the possible interpretations of the seismic data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388459

95

Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies  

Open Energy Info (EERE)

at Dixie Valley, Nevada- Summary of Doe Studies at Dixie Valley, Nevada- Summary of Doe Studies Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir Engineering; Stanford University, Stanford, California; 39083 Published Thirty-Second Workshop on Geothermal Reservoir Engineering;, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies Citation David D. Blackwell,Richard P. Smith,Maria C. Richards. 2007. Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies. In:

96

Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney,  

Open Energy Info (EERE)

2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

97

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area (Kennedy & Van Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Dixie Valley study suggests that helium isotopes may provide a new tool for mapping zones of deep permeability and therefore the potential for high fluid temperatures. The permeable zones are identified by local enrichments in 3He relative to a regional helium isotope trend. More work needs to be done, but it appears that helium isotopes may provide the best and perhaps

98

Dixie Valley - Geothermal Development in the Basin and Range | Open Energy  

Open Energy Info (EERE)

- Geothermal Development in the Basin and Range - Geothermal Development in the Basin and Range Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Dixie Valley - Geothermal Development in the Basin and Range Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie Valley - Geothermal Development in the Basin and Range [Internet]. [updated 2013/01/01;cited 2013/01/01]. Available from: http://www.geothermex.com/projects-dixie-valley.php Retrieved from "http://en.openei.org/w/index.php?title=Dixie_Valley_-_Geothermal_Development_in_the_Basin_and_Range&oldid=682561" Categories: References Geothermal References Uncited

99

Some design considerations for the proposed Dixie Valley tracer test  

DOE Green Energy (OSTI)

A tracer test for the Dixie Valley, Nevada, geothermal resource is planned for the summer of 1988, in order to study the fluid flow paths that will develop under typical operating conditions. During the test six production wells will provide the power plant with steam sufficient for generation of 60 MWe, requiring fluid production at a rate of approximately 600 kg/sec. Up to 75% by mass of the extracted fluid will be reinjected into the reservoir, using four injection wells. Tracer will be added to the injected fluid for a twenty-minute period, and subsequently the produced fluid will be monitored for the tracer. 5 refs., 9 figs., 5 tabs.

Doughty, C.; Bodvarsson, G.S.

1988-06-01T23:59:59.000Z

100

Residential Forced Air System Cabinet Leakage and Blower Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Forced Air System Cabinet Leakage and Blower Performance Residential Forced Air System Cabinet Leakage and Blower Performance Title Residential Forced Air System Cabinet Leakage and Blower Performance Publication Type Report LBNL Report Number LBNL-3383E Year of Publication 2010 Authors Walker, Iain S., Darryl J. Dickerhoff, and William W. Delp Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords air flow measurement, air leakage, blower power measurement, blowers, energy performance of buildings group, forced air systems, furnaces, indoor environment department, other, public interest energy research (pier) program, residential hvac Abstract This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit - indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called "ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823 "Performance Standard for air handlers in residential space conditioning systems".

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

102

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest,  

Open Energy Info (EERE)

Van Soest, Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow

103

Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley  

Open Energy Info (EERE)

Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999) Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999) Abstract This report tabulates an extensive geochemical database on waters, gases, scales,rocks, and hot-spring deposits from the Dixie Valley region, Nevada. The samples fromwhich the data were obtained were collected and analyzed during 1996 to 1999. Thesedata provide useful information for ongoing and future investigations on geothermalenergy, volcanism, ore deposits, environmental issues, and groundwater quality in thisregion. Authors Los Alamos National Laboratory and NM Published

104

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Abstract Extended magnetotelluric (MT) profiling results over the Dixie Valley-Central Nevada Seismic Belt area were recently completed to explore the hypothesis that fluid circulation to depths of 10 km or more is generating well temperatures in the field >280 C.This transect has revealed families of resistivity structures commonly dominated by high-angle

105

Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Dixie Valley Geothermal Field Area Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

106

A Case History of Injection Through 1991 at Dixie Valley, Nevada | Open  

Open Energy Info (EERE)

Case History of Injection Through 1991 at Dixie Valley, Nevada Case History of Injection Through 1991 at Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Case History of Injection Through 1991 at Dixie Valley, Nevada Abstract The Dixie Valley injection system has been operational for 3 1/4 years and disperses injectate into the reservoir through three distinct geological environments. Short term step-rate injection tests underestimated the long term injectivity of some of the injectors requiring additional injectors to be drilled. Liberal use of surface discharge over three years allowed orderly development of an eight-well injection system that provides pressure support for nine production wells but has not yet resulted in any cooling problems. Tracer testing identified a single flow path while long

107

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir associated with the Stillwater fault zone in Dixie Valley, Nevada, were used to investigate the relationship between reservoir permeability and the contemporary in situ stress field. Data from wells drilled into productive and nonproductive segments of the Stillwater fault zone indicate that permeability in all wells is dominated by a relatively

108

Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada |  

Open Energy Info (EERE)

of Basin-Range Structure Dixie Valley Region, Nevada of Basin-Range Structure Dixie Valley Region, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada Abstract The study aims to determine the subsurface structure and origin ofa tectonically active part of the Basin and Range province, which hasstructural similarities to the ocean ridge system and to continental blockfaultstructure such_;s the Rift Valleys of East Africa. A variety oftechniques was utilized, including seismic refraction, gravity measurements,magnetic measurements, photogeologic mapping, strain analysis of existinggeodetic data, and elevation measurements on shorelines of ancient lakes.Dixie Valley contains more than 10,000 feet of Cenozoic deposits andis underlain by a complex fault trough concealed within the

109

Tracer Testing at Dixie Valley, Nevada, Using 2-Naphthalene Sulfonate and  

Open Energy Info (EERE)

Tracer Testing at Dixie Valley, Nevada, Using 2-Naphthalene Sulfonate and Tracer Testing at Dixie Valley, Nevada, Using 2-Naphthalene Sulfonate and 2,7-Naphthalene Disulfonate Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Tracer Testing at Dixie Valley, Nevada, Using 2-Naphthalene Sulfonate and 2,7-Naphthalene Disulfonate Abstract The decay kinetics of the candidate tracers 2-naphthalene sulfonate and 2,7-naphthalenedisulfonate was studied under laboratory conditionsthat simulate a hydrothermal environment, withneither compound exhibiting any decay after oneweek at 330�C. These data indicate that thesecompounds are more thermally stable than any of thepreviously studied polyaromatic sulfonates. Both ofthe tracer candidates were successfully tested in afield study at the Dixie Valley, Nevada, geothermalreservoir. In addition to

110

Gravity survey of Dixie Valley, west-central Nevada | Open Energy...  

Open Energy Info (EERE)

Number 82-111 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Gravity survey of Dixie Valley, west-central Nevada Citation Donald H....

111

Terra-Gen Power closes US$286m lease financing for Dixie Valley...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Terra-Gen Power closes US286m lease financing for Dixie Valley Citation...

112

Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) |  

Open Energy Info (EERE)

Et Al., 2001) Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Richard P. Smith, Kenneth W. Wisianz, David D. BlackweIl (2001) Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Smith,_Et_Al.,_2001)&oldid=510735" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

113

High Efficancy Integrated Under-Cabinet Phosphorescent OLED  

SciTech Connect

In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been further realized. We have found that under-cabinet lighting is an ideal first entry product opportunity to launch OLED lighting for residential applications. From the studies that we have performed, our PHOLED under-cabinet lighting system performance is very similar to many of the current commercially available LED under-cabinet luminaires. We also found that the projected cost of PHOLED luminaire should be comparable to the LED luminaire by 2015. With the additional benefits of PHOLED lighting, no glare, better uniformity and low operating temperature, it can be easily seen how the PHOLED under-cabinet luminaire could be preferred over the LED competition. Although the metrics we set for this program were extremely aggressive, the performance we achieved and reported, represents a very significant advancement in the OLED lighting industry.

Michael Hack

2001-10-31T23:59:59.000Z

114

Administration  

E-Print Network (OSTI)

This document has been funded by the United States Environmental Protection Agency under Contract 68-W6-0014. It has been subject to administrative review by all agencies participating in the Federal Remediation Technologies Roundtable, and has been approved for publication. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. TABLE OF CONTENTS

Technologies Roundtable

1998-01-01T23:59:59.000Z

115

InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique InSAR Activity Date Usefulness useful DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is

116

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie  

Open Energy Info (EERE)

Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie Valley Geothermal Area, Nevada, Inferred from 3d Magnetotelluric Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Intersecting Fault Trends and Crustal-Scale Fluid Pathways Below the Dixie Valley Geothermal Area, Nevada, Inferred from 3d Magnetotelluric Surveying Abstract Geothermal systems may occur in zones of structural dilatency which create the crustal plumbing that al-lows concentration of high-temperature fluids from surrounding volumes. While structural orientations of the U.S. Great Basin are dominated visually by the NNE-oriented horst-graben morphology, other alignments are apparent, perhaps principally a NNW-trending grain

117

Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) | Open  

Open Energy Info (EERE)

Hot Springs Area (Combs 2006) Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) Exploration Activity Details Location Dixie Hot Springs Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes "MT, EM sounding, SP?; SP data and reservoir model may be proprietary" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Time-Domain_Electromagnetics_At_Dixie_Hot_Springs_Area_(Combs_2006)&oldid=388997" Category: Exploration

118

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes "The gravity data are described by (Blackwell et al., 1999; 2002). On a basin-wide scale the gravity low in Dixie Valley is strongly asymmetrical from east to west. The west side is relatively well-defined by rapid horizontal changes in the gravity anomaly value, whereas along the east side horizontal changes are more subdued and often consist of several steps. The horizontal gradient of the gravity field has proved most useful

119

Gravity survey of Dixie Valley, west-central Nevada  

DOE Green Energy (OSTI)

Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits, as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milliGals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. 17 refs., 4 figs., 2 tabs.

Schaefer, D.H.

1983-01-01T23:59:59.000Z

120

Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field to map the subsurface resistivity in the geothermal field and the surrounding area. The EM survey, consisting of 19 frequency-domain depth soundings made with the LBL EM-60 system, was undertaken to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 km. Lithologic and well log resistivity information from well 66-21 show that for EM interpretation the section can be reduced to a three-layer model consisting of moderately resistive alluvial sediments, low resistivity lacustrine sediments, and high resistivity Tertiary volcanics and older rocks. This three layer model was used as a starting point in interpreting EM sounding data. Variations in resistivity and thickness provided structural information and clues to the accumulation of geothermal fluids. The interpreted soundings reveal a 1 to 1.5-km-deep low-resistivity zone spatially associated with the geothermal field. The shallow depth suggests that the zone detected is either fluid leakage or hydrothermal alteration, rather than high-temperature reservoir fluids. The position of the low-resistivity zone also conforms to changes in depth to the high resistivity basal layer, suggesting that faulting is a control on the location of productive intervals. 10 refs., 7 figs.

Wilt, M.J.; Goldstein, N.E.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electromagnetic soundings over a geothermal reservoir in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field with the purpose of mapping the subsurface resistivity in the geothermal field and its surroundings. The EM survey consisted of 19 frequency-domain depth soundings made with the EM-60 system using three separate horizontal-loop transmitters, and was designed to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 k. Most sounding curves could be fitted to three-layer resistivity models. The surface layer is moderately conductive (10 to 15 ohm-m), has a maximum thickness of 500 m, and consists mainly of alluvial fan and lake sediments. More conductive zones are associated with hydrothermally altered rocks; a resistivity high may be associated with siliceous hot spring deposits. The conductive second layer (2 to 5 ohm-m) varies in thickness from 400 to 800 m and thickens toward the center of the valley. This layer probably consists of lacustrine sediments saturated with saline waters. Local resistivity lows observed in the second layer may be related to elevated subsurface temperatures. This layer may act as a cap rock for the geothermal system. Resistivities of the third layer are high (50 to 100 ohm-m) except in a narrow 5-km band paralleling the range front. This low-resistivity zone, within volcanic rocks, correlates well in depth and location with reported zones of geothermal fluid production. It also seems to correlate with the western margin of a concealed graben structure previously inferred from other geophysical data.

Wilt, M.J.; Goldstein, N.E.

1983-04-01T23:59:59.000Z

122

Interconnection arrangement of routers of processor boards in array of cabinets supporting secure physical partition  

DOE Patents (OSTI)

A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure includes routers in service or compute processor boards distributed in an array of cabinets connected in series on each board and to respective routers in neighboring row cabinet boards with the routers in series connection coupled to routers in series connection in respective neighboring column cabinet boards. The array can include disconnect cabinets or respective routers in all boards in each cabinet connected in a toroid. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

Tomkins, James L. (Albuquerque, NM); Camp, William J. (Albuquerque, NM)

2007-07-17T23:59:59.000Z

123

Residential Forced Air System Cabinet Leakage and Blower Performance  

SciTech Connect

This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

2010-03-01T23:59:59.000Z

124

Geothermal Prospecting using Hyperspectral Imaging and Field Observations, Dixie Meadows, NV  

DOE Green Energy (OSTI)

In an ongoing project to relate surface hydrothermal alteration to structurally controlled geothermal aquifers, we mapped a 16 km swath of the eastern front of the Stillwater Range using Hyperspectral fault and mineral mapping techniques. The Dixie Valley Fault system produces a large fractured aquifer heating Pleistocene aged groundwater to a temperature of 285 C at 5-6 km. Periodically over the last several thousand years, seismic events have pushed these heated fluids to the surface, leaving a rich history of hydrothermal alteration in the Stillwater Mountains. At Dixie Hot Springs, the potentiometric surface of the aquifer intersects the surface, and 75 C waters flow into the valley. We find a high concentration of alunite, kaolinite, and dickite on the exposed fault surface directly adjacent to a series of active fumaroles on the range front fault. This assemblage of minerals implies interaction with water in excess of 200 C. Field spectra support the location of the high temperature mineralization. Fault mapping using a Digital Elevation Model in combination with mineral lineation and field studies shows that complex fault interactions in this region are improving permeability in the region leading to unconfined fluid flow to the surface. Seismic studies conducted 10 km to the south of Dixie Meadows show that the range front fault dips 25-30 to the southeast (Abbott et al., 2001). At Dixie Meadows, the fault dips 35 to the southeast, demonstrating that this region is part of the low angle normal fault system that produced the Dixie Valley Earthquake in 1954 (M=6.8). We conclude that this unusually low angle faulting may have been accommodated by the presence of heated fluids, increasing pore pressure within the fault zone. We also find that younger synthetic faulting is occurring at more typical high angles. In an effort to present these findings visually, we created a cross-section, illustrating our interpretation of the subsurface structure and the hypothesized locations of increased permeability. The success of these methods at Dixie Meadows will greatly improve our understanding of other Basin and Range geothermal systems.

Kennedy-Bowdoin, T; Silver, E; Martini, B; Pickles, W

2004-04-26T23:59:59.000Z

125

Microsoft Word - CX-DixieSubstationUpgradesFY11_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEP-4 KEP-4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: Upgrade of secondary containment facilities at Dixie Substation Budget Information: Work Order: 00004952 Categorical Exclusion Applied (Appendix B to Subpart D, 10 C.F.R. Part 1021): B4.6: Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area including, but not limited to, switchyard rock grounding upgrades, secondary containment projects, paving projects, seismic upgrading, tower modifications, changing insulators, and replacement of poles, circuit breakers, conductors, transformers, and crossarms. Location: PLS T1S R8E S1 Dixie Substation in Elmore County, Idaho.

126

Hydrothermal Alteration Mineral Mapping Using Hyperspectral Imagery in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Hyperspectral (HyMap) data was used to map the location of outcrops of high temperature, hydrothermally alterated minerals (including alunite, pyrophyllite, and hematite) along a 15 km swath of the eastern front of the Stillwater Mountain Range in Dixie Valley, Nevada. Analysis of this data set reveals that several outcrops of these altered minerals exist in the area, and that one outcrop, roughly 1 square kilometer in area, shows abundant high temperature alteration. Structural analysis of the altered region using a Digital Elevation Model (DEM) suggests that this outcrop is bounded on all sides by a set of cross-cutting faults. This fault set lies within the Dixie Valley Fault system (Caskey et al. 1996). Both the intense alteration in this area and the presence of cross-cutting faults indicate a high probability of recent hot fluid escape.

Kennedy-Bowdoin, T; Martini, B A; Silver, E A; Pickles, W L

2004-04-02T23:59:59.000Z

127

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes The seismic reflection data are very useful and can be site specific when a profile is in the right place, but are sparse, very difficult to interpret correctly, and expensive to collect. The velocity values used are uncertain even though there are several sonic logs for the wells. A VSP, Vertical Seismic Profile, survey would significantly improve the precision of the interpretation References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada

128

Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada. Part I. Petrochemistry  

Science Conference Proceedings (OSTI)

Numerous thermal springs present in northern Dixie Valley, Nevada, are the surface expression of a deep-seated geothermal system. The structural setting, a complex asymmetric graben possibly bifurcating to the north, controls the location of surface springs and migration of thermal fluids to the surface. A large-scale surface soil geochemical survey for mercury and arsenic and petrochemical analysis for selected trace elements in subsurface samples from two deep exploratory wells allowed for identification of steam and hot water entries and delineation of associated geochemical zonations. Data thus far indicate the Dixie Valley geothermal system is dynamic, with temperatures greater than 200/sup 0/C at depths of 2500 m to 3000 m and access to thermal fluids controlled by structural and temporal parameters.

Bell, E.J. (Mackay School of Mines, Reno, NV); Juncal, R.W.

1981-10-01T23:59:59.000Z

129

Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

1997-06-27T23:59:59.000Z

130

Pollution prevention assessment for a manufacturer of wooden cabinets  

SciTech Connect

The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual (EPA/625/7-88/003, July 1988). That document has been superseded by the Facility Pollution Prevention Guide (EPA/600/R-92/088, May 1992). The WMAC team at Colorado state University performed an assessment at a plant that manufacturers wooden kitchen and bathroom cabinets. Components purchased from vendors are prepared for production through cutting, sanding, and routing operations. Stain, sealer, and top-coat are applied in separate spray booths. After the final coating, the components are dried and assembled. The assessment team`s report, detailing findings and recommendations, indicated that paint sludge from the spray booth water curtains is generated in a large amount and that significant cost savings could be achieved by dewatering the sludge before it is shipped offsite for disposal and reusing the water. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

Edwards, H.W.; Kostrzewa, M.F. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering; Looby, G.P. [University City Science Center, Philadelphia, PA (United States)

1995-09-01T23:59:59.000Z

131

Timing of late Quaternary faulting in the 1954 Dixie Valley earthquake area, central Nevada  

Science Conference Proceedings (OSTI)

The 1954 Dixie Valley earthquake (M 6.9) in central Nevada produced about 3 m of total vertical displacement distributed across two principal fault zones along the east flank of the Stillwater Range. Most of the 1954 displacement was along the range-front fault with minor amounts on the piedmont fault zone, in contrast to an earlier Holocene displacement that was restricted to the piedmont fault. Detailed chronostratigraphic, exploratory drilling, and trenching studies indicate that faulting events have migrated back and forth between the range-front and piedmont fault zones in the late Quaternary. Prior to the 1954 earthquake, the range-front fault last ruptured in the late Pleistocene, during a large-magnitude event here called the IXL event. The northern half of the piedmont fault zone last ruptured between 1.5 and 6.8 ka during a large-magnitude event here called the Bend event. On the basis of 6 m total slip since the deposition of shoreline gravels at {approximately} 12 ka, the estimated Holocene vertical-slip rate is 0.5 mm/yr for the Dixie Valley rupture zone. Overlapping and migratory patterns of late Quaternary faulting indicate that the Dixie Valley zone does not fit a simple segmentation model.

Bell, J.W. (Univ. of Nevada, Reno (USA)); Katzer, T. (Las Vegas Valley Water District, NV (USA))

1990-07-01T23:59:59.000Z

132

Seeing the Light: LED Under-Cabinet and Recessed Downlights | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeing the Light: LED Under-Cabinet and Recessed Downlights Seeing the Light: LED Under-Cabinet and Recessed Downlights Seeing the Light: LED Under-Cabinet and Recessed Downlights August 2, 2010 - 10:42am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory I moved into my apartment about four years ago. Little by little, I've continued to make improvements that help me save money on my energy bills. I've: Applied weatherstripping to seal air leaks around windows Insulated my crawl space Installed storm windows to reduce air movement into and out of existing windows (I live in a historic district and can't replace my windows) Installed window shades to help with insulation Replaced my incandescent lighting fixtures with compact fluorescent lamps (CFLs) (I even purchased outdoor solar lights for my dad for Fathers Day.)

133

Geochemical Data on Waters, gases, scales, and rocks from the Dixie Valley Region, Nevada (1996-1999)  

DOE Green Energy (OSTI)

This report tabulates an extensive geochemical database on waters, gases, scales, rocks, and hot-spring deposits from the Dixie Valley region, Nevada. The samples from which the data were obtained were collected and analyzed during 1996 to 1999. These data provide useful information for ongoing and future investigations on geothermal energy, volcanism, ore deposits, environmental issues, and groundwater quality in this region.

Goff, Fraser; Bergfeld, Deborah; Janik, C.J.; et al

2002-08-01T23:59:59.000Z

134

Hydrologic properties of the Dixie Valley, Nevada, geothermal reservoir from well-test analyses  

DOE Green Energy (OSTI)

Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in methodologies was used to decouple interrelated terms. The methods were (1) step-drawdown, variable-discharge test; (2) recovery analysis; (3) damped-oscillation response; and (4) injection test. To date, TPS logs from five wells have been examined and results fall into two distinct categories. Productive, economically viable wells have permeability-thickness values on the order of 10{sup 5} millidarcy-meter (mD-m) and storativities of about 10{sup {minus}3}. Low-productivity wells, sometimes located only a few kilometers from their permeable counterparts, are artesian and display a sharp reduction in permeability-thickness to about 10 mD-m with storativities on the order of 10{sup {minus}4}. These results demonstrate that the hydrologic characteristics of this liquid-dominated geothermal system exhibit a significant spatial variability along the range-bounding normal fault that forms the predominant aquifer. A large-scale, coherent model of the Dixie Valley Geothermal Reservoir will require an understanding of the nature of this heterogeneity and the parameters that control it.

Morin, R.H. [Geological Survey, Denver, CO (United States); Hickman, S.H. [Geological Survey, Menlo Park, CA (United States); Barton, C.A. [Stanford Univ., CA (United States). Dept. of Geophysics; Shapiro, A.M. [Geological Survey, Reston, VA (United States); Benoit, W.R. [Oxbow Geothermal Corp., Reno, NV (United States); Sass, J.H. [Geological Survey, Flagstaff, AZ (United States)

1998-08-01T23:59:59.000Z

135

Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada. Part II. Soil geochemistry  

Science Conference Proceedings (OSTI)

Numerous thermal springs present in northern Dixie Valley, Nevada, are the surface expression of a deep-seated geothermal system. The structural setting, a complex asymmetric graben controls the location of surface springs and migration of thermal fluids to the surface. The distribution of arsenic and mercury in the soils of the valley correlates well with the occurrence of structures which may be in communication with the underlying geothermal system. Generally anomalous arsenic values occur along structures near the playa where fine-grained sediments and a high water table occur. Mercury values are uniformly low near the playa but are typically anomalous along structures in the coarser fan deposits. The complementary geochemical signatures of arsenic and mercury which arise from basic differences in elemental chemical behavior have been useful in delineating the structural trends of the valley. The structural model indicated by the geochemistry and results of drilling suggest future targets should be selected east of the Dixie Meadows fault, within the inner graben.

Juncal, R.W. (Geothermal Development Associates, Reno, NV); Bell, E.J.

1981-10-01T23:59:59.000Z

136

North Carolina Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Dixie Pipeline transports propane from Texas, ... 2012 Civilian Labor Force ... United States Department of Health and Human Services ...

137

Obama Administration's Rural Tour Stops in Western Alaska | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration's Rural Tour Stops in Western Alaska Administration's Rural Tour Stops in Western Alaska Obama Administration's Rural Tour Stops in Western Alaska August 13, 2009 - 12:00am Addthis WASHINGTON D.C. - Four Cabinet Secretaries brought the Obama Administration's Rural Tour to rural Alaska today, with stops in Bethel and Hooper Bay, representing the largest Cabinet-level delegation to visit the state. Energy Secretary Steven Chu, Housing and Urban Development Secretary Shaun Donovan, Education Secretary Arne Duncan, and Agriculture Secretary Tom Vilsack held a public forum and indivdual stakeholder meetings in Bethel. The Secretaries toured a school, a housing development and wind turbines in Hooper Bay, a coastal fishing village. President Obama announced the launch of his Administration's Rural Tour in

138

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "The seismic reflection profiles of the range front structures are difficult to interpret because of he steep dips and 3-d fault zone geometry, in the-classical paper by Okaya and Thompson (1985) the range-bounding fault is not imaged as they proposed. The reflection seismic studies are the most useful of the geophysical techniques also the most expensive. The reflection data are two-dimensional making structural interpretation complicated for the three-dimensional geometry of the basin so that the other structural studied have been critical in correctly interpreting the seismic profiles. There are many

139

Thermodynamic calculations of calcium carbonate scaling in geothermal wells, Dixie Valley geothermal field, U. S. A  

Science Conference Proceedings (OSTI)

Wells in the Dixie Valley geothermal field of central Nevada intercept a fracture-dominated hydrothermal system at depths of 2.5 to 3 km. The reservoir water is a dilute sodium-bicarbonate-chloride type of solution thought to be in equilibrium with quartz, calcite, chlorite, and albite. Fluid sampling and chemical analysis of production during an early flow test gave remarkably low calcium concentrations. Thermodynamic calculations of mineral stability in the presence of the reservoir water indicate that five times the amount of calcium measured in fluid reaching the surface is actually in solution in the reservoir fluid. Approximately 80 percent of the calcium is lost as calcium carbonate scale on the well casing before the fluid reaches the surface. The results of thermodynamic calculations compare well with the scale-volume measurements of Benoit.

Reed, M.J. (Geothermal Technology Div., U.S. Dept. of Energy, Washington, DC (US))

1989-01-01T23:59:59.000Z

140

A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada  

Science Conference Proceedings (OSTI)

Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field  

Science Conference Proceedings (OSTI)

Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

Barton, C.A.; Zoback, M.D. [Stanford Univ., CA (United States). Dept. of Geophysics; Hickman, S. [Geological Survey, Menlo Park, CA (United States); Morin, R. [Geological Survey, Denver, CO (United States); Benoit, D. [Oxbow Geothermal Corp., Reno, NV (United States)

1998-08-01T23:59:59.000Z

142

Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data  

Science Conference Proceedings (OSTI)

Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

1999-08-16T23:59:59.000Z

143

Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data  

SciTech Connect

Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (<20 ka) to recent (<50a). Valley groundwater is older than water from perennial springs and artesian wells in adjacent ranges, with Clan Alpine range (east) much younger (most <50a) than Stillwater range (west; most >1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

1999-08-16T23:59:59.000Z

144

Dixie Valley, Nevada: A promising geothermal area under development by industry  

Science Conference Proceedings (OSTI)

Selected subsurface reservoirs located in the Western United States may contain significant geothermal energy, and if development continues, this energy source may provide substantial electrical power or related energy by the year 2,000. Utility management must be convinced of the reliability and cost attractiveness of this energy source. A number of exploration programs are in progress to evaluate the potential of geothermal energy in the United States. For example, numerous exploration methods have been employed in Dixie Valley, Nevada, since 1967 with mixed results. However, with DOE support, additional data have recently become available. The authors have revised earlier structural models of the basin and have made recommendations for additional investigations that should assist in clarifying the geologic relationships within the reservoir. The principal geologic characteristics of the reservoir that may place limits on project economics appear to be the depth and trend area of producing zones, fluid quality and the amenability of the upper zones to accept large volumes of spent fluids. However, reservoir temperature, flow rates, recharge characteristics, and other factors appear to be acceptable either for electrical power production of more than 1,000 MWe, or for direct applications such as on-site agricultural processing.

Campbell, M.D.

1983-08-01T23:59:59.000Z

145

CO{sub 2} flux measurements across portions of the Dixie Valley geothermal system, Nevada  

DOE Green Energy (OSTI)

A map of the CO{sub 2} flux across a newly formed area of plant kill in the NW part of the Dixie Valley geothermal system was constructed to monitor potential growth of a fumarole field. Flux measurements were recorded using a LI-COR infrared analyzer. Sample locations were restricted to areas within and near the dead zone. The data delineate two areas of high CO{sub 2} flux in different topographic settings. Older fumaroles along the Stillwater range front produce large volumes of CO{sub 2} at high temperatures. High CO{sub 2} flux values were also recorded at sites along a series of recently formed ground fractures at the base of the dead zone. The two areas are connected by a zone of partial plant kill and moderate flux on an alluvial fan. Results from this study indicate a close association between the range front fumaroles and the dead zone fractures. The goals of this study are to characterize recharge to the geothermal system, provide geochemical monitoring of reservoir fluids and to examine the temporal and spatial distribution of the CO{sub 2} flux in the dead zone. This paper reports the results of the initial CO{sub 2} flux measurements taken in October, 1997.

Bergfeld, D.; Goff, F. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Janik, C.J. [Geological Survey, Menlo Park, CA (United States); Johnson, S.D. [Oxbow Power Services, Reno, NV (United States)

1998-12-31T23:59:59.000Z

146

Application of advanced seismic reflection imaging techniques to mapping permeable zones at Dixie Valley, Nevada. Final technical report  

DOE Green Energy (OSTI)

Multifold seismic reflection data from the Dixie Valley geothermal field in Nevada were reprocessed using a nonlinear optimization scheme called simulated annealing to model subsurface acoustic velocities, followed by a pre-stack Kirchhoff migration to produce accurate and detailed depth-migrated images of subsurface structure. In contrast to conventional processing techniques, these methods account for significant lateral variations in velocity and thus have the potential ability to image steeply-dipping faults and fractures that may affect permeability within geothermal fields. The optimization scheme develops two-dimensional velocity models to within 6% of velocities obtained from well and surface geologic data. Only the seismic data (i.e., first arrival times of P waves) are used to construct the velocity models and pre-stack migration images, and no other a priori assumptions are invoked. Velocities obtained by processing individual seismic tracks were integrated to develop a block diagram of velocities to 2.3 km depth within the Dixie Valley geothermal field. Details of the tectonic and stratigraphic structure allowed three dimensional extension of the interpretations of two dimensional data. Interpretations of the processed seismic data are compared with well data, surface mapping, and other geophysical data. The Dixie Valley fault along the southeastern Stillwater Range Piedmont is associated with a pronounced lateral velocity gradient that is interpreted to represent the juxtaposition of relatively low velocity basin-fill strata in the hanging wall against higher velocity crystalline rocks in the footwall. The down-dip geometry of the fault was evaluated by inverting arrival times from a negative move-out event, which we associate with the dipping fault plane, on individual shot gathers for seismic line SRC-3 for the location and depth of the associated reflection points on the fault.

NONE

1998-02-18T23:59:59.000Z

147

Structural controls, alteration, permeability and thermal regime of Dixie Valley from new-generation MT/galvanic array profiling  

DOE Green Energy (OSTI)

State-of-the-art MT array measurements in contiguous bipole deployments across the Dixie Valley thermal area have been integrated with regional MT transect data and other evidence to address several basic geothermal goals. These include 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), infer ultimate heat and fluid sources for the thermal area; and 4), from a generic technique standpoint, investigate the capability of well-sampled electrical data for resolving subsurface structure. Three dense lines cross the Senator Fumaroles area, the Cottonwood Creek and main producing area, and the low-permeability region through the section 10-15 area, and have stand-alone MT soundings appended at one or both ends for local background control. Regularized 2-D inversion implies that shallow pediment basement rocks extend for a considerable distance (1-2 km) southeastward from the topographic scarp of the Stillwater Range under all three dense profiles, but especially for the Senator Fumaroles line. This result is similar to gravity interpretations in the area, but with the intrinsic depth resolution possible from EM wave propagation. Low resistivity zones flank the interpreted main offsetting fault especially toward the north end of the field which may be due to alteration from geothermal fluid outflow and upflow. The appended MT soundings help to substantiate a deep, subvertical conductor intersecting the base of Dixie Valley from the middle crust, which appears to be a hydrothermal conduit feeding from deep crustal magmatic underplating. This may supply at least part of the high temperature fluids and explain enhanced He-3 levels in those fluids.

Philip E. Wannamaker

2007-11-30T23:59:59.000Z

148

Paleomagnetic and structural evidence for middle Tertiary counterclockwise block rotation in the Dixie Valley region, west-central Nevada  

Science Conference Proceedings (OSTI)

Paleomagnetic data from late Oligocene to early Miocene ash-flow tuffs at four localities in the northern Dixie Valley region, west-central Nevada, indicate that parts of the crust have rotated counterclockwise by at least 25/sup 0/ and perhaps significantly more in late Cenozoic time. Field relations in White Rock Canyon, Stillwater Range, suggest that rotation (1) was accommodated by right-lateral slip on northwest-trending faults, (2) spanned ash-flow tuff emplacement, and (3) probably ceased before eruption of overlying middle Miocene basalts. Accurate estimates of Cenozoic extension, as well as evaluation of earlier Mesozoic structures, must include the strain partitioned into rotation in the area.

Hudson, M.R.; Geissman, J.W.

1987-07-01T23:59:59.000Z

149

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

State energy information, ... New Mexico New York North Carolina North Dakota: Ohio Oklahoma ... The Dixie Pipeline transports propane from Texas, ...

150

Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir  

DOE Green Energy (OSTI)

We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

M. D. Zoback

1999-03-08T23:59:59.000Z

151

Administrator - Energy Information Administration  

U.S. Energy Information Administration (EIA)

www.eia.gov Adam Sieminski Administrator Biography Adam Sieminski was sworn in on June 4, 2012, as the eighth administrator of the U.S. Energy Information ...

152

Reinvestigation of fault trace complexity and slip distribution for the 16 December 1954 Fairview Peak (Ms = 7. 2) and Dixie Valley (Ms = 6. 8) earthquakes, Central Nevada  

Science Conference Proceedings (OSTI)

With the use of 1:12K scale low-sun angle photography, the authors have traversed and mapped details of the surface trace and slip distribution of the 1954 Fairview Peak (FVP) earthquake ruptures. The FVP earthquake produced a complex pattern of surface faulting along a 50 km long, 6 km wide, north striking zone and was followed 4 minutes later by the Dixie Valley event. Surface ruptures of the Dixie Valley event extend northward for 45 km along the west side of Dixie Valley and are separated from the FVP ruptures by a 6 km step in the mapped trace of the surface ruptures. Prior measurements of fault offsets (Slemmons, 1957) are few and available maps are relatively small scale. The initial purpose of the effort is therefore to document the sense, amount, and distribution of surface offsets along both fault systems. The results will form the basis to construct a 3-dimensional model of the fault system and to examine the static stress field changes along the Dixie Valley fault induced by the preceding FVP earthquake.

Caskey, S.J.; Wesnousky, S.G. (Univ. of Nevada, Reno, NV (United States). Center for Neotectonic Studies); Zhang, P. (State Seismological Bureau, Beijing (China). Inst. of Geology); Slemmons, D.B.

1993-04-01T23:59:59.000Z

153

Chapter 50 Division for Air Quality: General Administrative Procedures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Department for Environmental Protection Chapter 50 of the Division of Air Quality section within Energy and Environment Cabinet Department For Environmental Protection outlines the general administrative procedures for maintaining air quality standards. These procedures are created in adherence to 42 USC 7410 which requires the

154

Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for frictional failure in the current stress field.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Zoback, M. [Stanford Univ., CA (United States). Dept. of Geophysics

1998-08-01T23:59:59.000Z

155

Inversion of synthetic aperture radar interferograms for sourcesof production-related subsidence at the Dixie Valley geothermalfield  

Science Conference Proceedings (OSTI)

We used synthetic aperture radar interferograms to imageground subsidence that occurred over the Dixie Valley geothermal fieldduring different time intervals between 1992 and 1997. Linear elasticinversion of the subsidence that occurred between April, 1996 and March,1997 revealed that the dominant sources of deformation during this timeperiod were large changes in fluid volumes at shallow depths within thevalley fill above the reservoir. The distributions of subsidence andsubsurface volume change support a model in which reduction in pressureand volume of hot water discharging into the valley fill from localizedupflow along the Stillwater range frontal fault is caused by drawdownwithin the upflow zone resulting from geothermal production. Our resultsalso suggest that an additional source of fluid volume reduction in theshallow valley fill might be similar drawdown within piedmont faultzones. Shallow groundwater flow in the vicinity of the field appears tobe controlled on the NW by a mapped fault and to the SW by a lineament ofas yet unknown origin.

Foxall, B.; Vasco, D.W.

2006-07-01T23:59:59.000Z

156

Kokanee Stock Status and Contribution Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1988 Annual Progress Report.  

DOE Green Energy (OSTI)

The kokanee Oncorhynchus nerka rehabilitation program for Lake Pend Oreille continued to show progress during 1988. Estimated kokanee abundance in early September was 10.2 million fish. This estimate is 70% higher than 1987 and 140% higher than the populations's low point in 1986. Increased population size over the past two years is the result of two consecutive strong year classes produced from high recruitment of hatchery and wild fry. High recruitment of wild fry in 1988 resulted from good parental escapement (strong year class) in 1987 and relatively high fry survival. Hatchery fry made up 51% of total fry recruitment (73% of total fry biomass), which is the largest contribution since hatchery supplementation began in the 1970s. High hatchery fry abundance resulted from a large release (13 million fry) from Cabinet Gorge Hatchery and excellent fry survival (29%) during their first summer in Lake Pend Oreille. Improved fry release strategies enhanced survival, which doubled from 1987 to 1988 and was ten times higher than survival in 1986. Our research goal is to maintain 30% survival so we are very optimistic, but need to replicate additional years to address annual variability. 27 refs., 24 figs., 3 tabs.

Bowles, Edward C.

1989-02-01T23:59:59.000Z

157

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, Final Report.  

DOE Green Energy (OSTI)

Lake Pend Oreille once provided the most popular kokanee Oncorhynchus nerka fishery in northern Idaho. A dramatic decline in the population occurred from the mid-1960s to 1970s. Restoration efforts included construction of the Cabinet Gorge Fish Hatchery to supplement the wild population and restore the fishery. In this study, hatchery-reared age 0 kokanee were stocked into Lake Pend Oreille from 1986 through 1992. Seven experimental stocking strategies for kokanee were tested using five locations and two time periods (early May through early June or late July). In 1985, the age 3 and older kokanee totaled about 0.35 million, but rose to 0.78 million in 1986, was stable, was then followed by a decline in 1990 to 0.53 million, then improved to 1.75 million in 1992. Much of the annual variation in total numbers of kokanee, ranging from 4.5 million to 10.2 million, was due to hatchery stockings of age 0 fish. Standing stocks of kokanee remained stable and ranged from 8 to 10 kg/hectare de spite dramatic changes in density due to age 0 fish. Prior to this study (1985), standing stocks were substantially higher (mean = 13.6 kg/hectare), indicating that the population may be operating below carrying capacity. The authors found survival of age 0 hatchery kokanee by each release season to range from 3% in 1986 to 39% in 1992, while the mean from 1987 through 1992 was 23%. They found significant (P=0.05) differences in survival between years, but they could not detect differences between stocking locations (P>0.71). Their analysis of survival between time (early vs late) and location was weak and inconclusive because after 1989 they had fewer fish to stock and could not repeat testing of some release strategies. They believe some of the variation in survival between release groups each year was due to the length of time between release in the lake and trawling.

Paragamian, Vaugh L.

1994-07-01T23:59:59.000Z

158

Inversion of Synthetic Aperture Radar Interferograms for Sources of Production-Related Subsidence at the Dixie Valley Geothermal Field  

DOE Green Energy (OSTI)

We used synthetic aperture radar interferograms to image ground subsidence that occurred over the Dixie Valley geothermal field during different time intervals between 1992 and 1997. Linear elastic inversion of the subsidence that occurred between April, 1996 and March, 1997 revealed that the dominant sources of deformation during this time period were large changes in fluid volumes at shallow depths within the valley fill above the reservoir. The distributions of subsidence and subsurface volume change support a model in which reduction in pressure and volume of hot water discharging into the valley fill from localized upflow along the Stillwater range frontal fault is caused by drawdown within the upflow zone resulting from geothermal production. Our results also suggest that an additional source of fluid volume reduction in the shallow valley fill might be similar drawdown within piedmont fault zones. Shallow groundwater flow in the vicinity of the field appears to be controlled on the NW by a mapped fault and to the SW by a lineament of as yet unknown origin.

Foxall, W; Vasco, D

2003-02-07T23:59:59.000Z

159

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1989 Annual Progress Report.  

DOE Green Energy (OSTI)

The kokanee Oncorhynchus nerka rehabilitation program for Lake Pend Oreille continued to show progress during 1989. Estimated kokanee abundance in late August was 7.71 million fish. Decreased population size is the result of lower hatchery and wild fry recruitment and low age 1+ survival. Lower recruitment of wild fry in 1989 resulted from a smaller parental escapement in 1988 and lower wild fry survival. Six fry release strategies were evaluated in 1989. Two groups were released in Clark Fork River to help improve a spawning run to Cabinet Gorge Hatchery. Survival from the mid-summer release, which was barged down Clark Fork River to avoid low flow problems, was not significantly different from the early release. The final assessment of these release strategies will be evaluated when adults return to Cabinet gorge Hatchery in 1992 and 1993. Fry released to support the Sullivan Springs Creek spawning run also survived will in 1989. Two open-water releases were made during early and mid-summer. 30 refs., 26 figs., 2 tabs.

Hoelscher, Brian

1990-04-01T23:59:59.000Z

160

Evaluation of a Distributed Fiber-Optic Temperature Sensor for Logging Wellbore Temperature at the Beowawe and Dixie Valley Geothermal Fields  

DOE Green Energy (OSTI)

A distributed temperature sensor (DTS) system, utilizing Raman backscattering to measure temperatures of optical fiber, has recently been installed in production wells at the Beowawe and Dixie Valley, NV, geothermal fields. The system has the potential to reduce the cost and complexity of acquiring temperature logs. However, the optical transmission of the initial fibers installed at Beawawe degraded over several months, resulting in temperature errors. Optical transmission spectra of the failed fibers indicate hydroxide contamination via hydrogen diffusion as a possible failure mechanism. Additional fibers with coatings designed to resist hydrogen diffusion were installed and have maintained their optical transmission over several months in the 340-360 F Beowawe wells. The same fibers installed in a 470 F Dixie Valley well rapidly failed. Possible methods to prevent fiber degradation include encasing the fiber in metallic buffer layer that resists hydrogen diffusion. Additional methods to correct temperature errors include using additional optical sources to measure fiber losses at the operating wavelengths. Although the DTS system is expected to have one degree F accuracy, we have observed an average accuracy of five degrees. The fiber connections appear to be the uncertainty source. Using connectors with greater stability should restore accuracy.

Smithpeter, Colin; Norman, Randy; Krumhansl, James; Benoit, Dick; Thompson, Steve

1999-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wildlife and Wildlife Habitat Mitigation Plan for the Noxon Rapids and Cabinet Gorge Hydroelectric Projects, Final Report.  

DOE Green Energy (OSTI)

Mitigation projects for wildlife species impacted by the Noxon Rapids and Cabinet Gorge hydroelectric projects are recommended. First priority projects encompass the development of long-term wildlife management plans for WWP lands adjacent to the two reservoirs. General objectives for all WWP lands include alternatives designed to protect or enhance existing wildlife habitat. It is also suggested that WWP evaluate the current status of beaver and river otter populations occupying the reservoirs and implement indicated management. Second priority projects include the protection/enhancement of wildlife habitat on state owned or privately owned lands. Long-term wildlife management agreements would be developed with Montana School Trust lands and may involve reimbursement of revenues lost to the state. Third priority projects include the enhancement of big game winter ranges located on Kootenai National Forest lands. 1 ref., 1 fig., 7 tabs.

Bissell, Gael

1985-04-01T23:59:59.000Z

162

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1987 Annual Progress Report.  

DOE Green Energy (OSTI)

Estimated kokanee Oncorhynchus nerka abundance in Lake Pend Oreille was 6.01 million during late summer 1987. This estimate is 40% higher than the 1986 estimate and is the second largest population estimate since 1977. Higher abundance is predominantly a result of enhanced fry survival and recruitment. Hatchery-reared fry contribution was 22% of total fry recruitment in 1987, compared to 8% in 1986, and resulted from a fivefold increase in survival. Much of this improvement can be attributed to the large (52 mm) fry produced at Cabinet Gorge Hatchery in 1987 and represents the first measurable contribution of the new hatchery to the kokanee rehabilitation program. Survival of hatchery-reared fry released into Clark Fork River was nearly one-half that of fry released into Sullivan Springs due to poor flow conditions and potentially high predation during migration from Cabinet Gorge Hatchery to Lake Pend Oreille. Wild fry survival was enhanced by early availability of forage (cladocern zooplankton) during fry emergence in late spring. Cladoceran production began three weeks earlier in 1987 than 1986, which resulted from reduced Mysis abundance and earlier thermal stratification of Lake Pend Oreille, which helped segregate cladocerans from mysid predation. Kokanee dry otolith coding was evaluated to provide a reliable long-term mark. Analysis of daily growth increments on otoliths was used successfully in 1987 to differentiate fry from various release sites. The technique will be refined during 1988 to include coding fry otoliths with water temperature fluctuations during hatchery residence. 23 refs., 20 figs., 2 tabs.

Bowles, Edward C.

1988-05-01T23:59:59.000Z

163

Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV  

DOE Green Energy (OSTI)

This paper presents an overview of the work our collaboration is doing to increase the detailed mapped resource base for geothermal exploration in the Western US. We are imaging several large areas in the western US with high resolution airborne hyperspectral and satellite multispectral sensors. We have now entered the phase where the remote sensing techniques and tools we are developing are mature enough to be combined with other geothermal exploration techniques such as aeromagnetic, seismic, well logging and coring data. The imaging sensors and analysis techniques we have developed have the ability to map visible faults, surface effluents, altered minerals, subtle hidden faults. Large regions are being imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping hidden faults, high temperature altered mineralization, clays, hot and cold springs and CO2 effluents the Long Valley Caldera and Mammoth Mountain in California. The areas that have been imaged include Mammoth Mountain and the Long Valley Caldera, Dixie Meadows NV, Fish Lake Valley NV, and Brady Hot Springs. Areas that are being imaged in the summer of 2003 are the south moat of the Long Valley Caldera, Mammoth Mountain western Pickles, Nash, Kasameyer, Foxall, Martini, Cocks, Kennedy-Bowdoin, McKnight, Silver, Potts, flanks, Mono Inyo chain north of Mammoth Mountain in CA, and the Humboldt Block in NV. This paper focuses on presenting the overview of the high-resolution airborne hyperspectral image acquisition that was done at Dixie Meadows NV in August 2002. This new imagery is currently being analyzed and combined with other field data by all of the authors on this paper. Results of their work up until the time of the conference will be presented in papers in the remote sensing session.

Pickles, W. L.; Nash, G. D.; Calvin, W. M.; Martini, B. A.; Cocks, P. A.; Kenedy-Bowdoin, T.; Mac Knight, R. B.; Silver, E. A.; Potts, D. C.; Foxall, W.; Kasameyer, P.; Waibel, A. F.

2003-01-01T23:59:59.000Z

164

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1986 Annual Progress Report.  

DOE Green Energy (OSTI)

Estimated kokanee (Oncorhynchus nerka) abundance in Lake Pend Oreille was 4.3 million during September 1986. This estimate was similar to 1985 and indicates continued suppression of the kokanee population since initial decline in the late 1960s. Atypically high survival of wild fry resulted in similar fry recruitment in 1986 as 1985, whereas hatchery-reared fry contributed only 8% to total fry recruitment as a result of low post-release survival (3%). Fry released into the Clark Fork River from Cabinet Gorge Hatchery had very low survival during emigration to Lake Pend Oreille, resulting from poor flow conditions and potentially high predation. Fry survival during emigration was twice as high during nighttime flows of 16,000 cfs than 7,800 cfs. Emigration also was faster during higher flows. Several marks were tested to differentially mark fry release groups to help determine impacts of flow and other factors on fry survival. Survival of fry marked with tetracycline and fluorescent dye was high (>99%) during the 10-week study. In contrast, survival of fry marked with fluorescent grit marks ranged from 5 to 93%, depending on application pressure and distance from the fry. Retention was high (>96%) for tetracycline and grit marks during the study, whereas dye marks were discernible (100%) for only one week. 23 refs., 20 figs., 10 tabs.

Bowles, Edward C.

1987-02-01T23:59:59.000Z

165

Kokanee Stock Status and Contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, 1990 Annual Progress Report.  

DOE Green Energy (OSTI)

Rehabilitation of kokanee Oncorhynchus nerka in Lake Pend Oreille met with some success in 1990, but unexpected results have raised new questions. Estimated kokanee abundance during late August of 1990 was about 6.9 million fish. This is a decline of 19% from 1989, a continued decrease since 1988. The decreased population was attributed to low stocking of hatchery fry (7.3 million), lower wild fry survival in 1990 (1.5%), and exceptionally poor survival of fish ages 3+ and 4+. Average survival of the older fish was only 11% in 1990 compared to 72% in prior years. Compensatory survival was noted for kokanee ages 1+ and 2+, with an average of 81% in 1990 compared to 44% in 1989. Hatchery fry comprised 47% of the total kokanee fry recruitment in 1990 (80% of fry biomass). This contribution ranked third behind 1988 and 1989 since hatchery supplementation began in the 1970s. Survival of hatchery fry was 20%, the second highest since this investigation began. Findings of 1990 indicate a more comprehensive approach to managing kokanee must take into account predator stockings and predator/prey interaction. An unexpected low adult escapement was responsible for an egg-take of only 5.6 million eggs in 1990, 58% of the previous year, which will limit experimental stocking in 1991. Modification of the fish ladder at the Cabinet Gorge Fish Hatchery to improve adult escapement is strongly recommended to increase egg-take. 27 refs., 28 figs., 6 tabs.

Paragamian, Vaughn L.

1991-03-01T23:59:59.000Z

166

Masco Retail Cabinet Group  

Science Conference Proceedings (OSTI)

... We believe we are the world's largest manufacturer of DIY architectural coatings including paints, specialty paint products, stains, varnishes and ...

2009-10-20T23:59:59.000Z

167

Recency of Faulting and Neotechtonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range  

DOE Green Energy (OSTI)

We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The approach developed here during our pilot study provides an inexpensive approach to (1) better define the best locations to site geothermal wells within known geothermal fields and (2) to define the location of yet discovered geothermal fields which are not manifest at the surface by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable conditions for hydrothermal activity in two ways. We conclude that an understanding of the spatial distribution of active faults and the past history of earthquakes on those faults be incorporated as a standard tool in geothermal exploration and in the siting of future boreholes in existing geothermal fields.

Steven Wesnousky; S. John Caskey; John W. Bell

2003-02-20T23:59:59.000Z

168

ADMINISTRATIVE RECORDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: 3: PROCUREMENT, SUPPLY, AND GRANT RECORDS July 2008 Revision 2 Procurement and supply records document the acquisition of goods and non-personal services, controlling the volume of stock on hand, reporting procurement needs, and related supply matters which are part of daily procurement operations. The basic procurement files reflect a considerable range of procedure, from simple, small purchases to complicated prime contractor and subcontractor operations. Any records created prior to 1895 must first be offered to the National Archives and Records Administration (NARA) for appraisal before applying the disposal instructions. Frequently copies of procurement papers become integral parts of other files, such as project files of various types or general subject files pertaining to program operations;

169

Management and Administration | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Management and Administration | National Nuclear Security Administration Management and Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Management and Administration Home > About Us > Our Programs > Powering the Nuclear Navy > Management and Administration Management and Administration NNSA's Naval Reactors is committed to excellence and dedicated to meeting

170

TECHNOLOGY ADMINISTRATION  

E-Print Network (OSTI)

This report originated in the authors participation in a multi-country study of national innovation systems and their impact on new technology development, sponsored by the Organization for Economic Cooperation and Development (OECD). Our task was to look at the U.S. national innovation systems impact on the commercial development of Proton Exchange Membrane (PEM) fuel cells for residential power applications. Early drivers of PEM fuel cell innovation were the aerospace and defense programs, in particular the National Aeronautics and Space Administration (NASA), which used fuel cells on its spacecraft. In the early 1990s, deregulation hit the electric utility industry, which made utilities and entrepreneurs see the potential in generating electricity from distributed power. Throughout the 1990s, the Department of Energy funded a significant portion of civilian fuel cell research, while the Department of Defense and NASA funded more esoteric military and space applications. In 1998, the Department of Commerces Advanced Technology Program (ATP) awarded the first of 25 fuel cell projects, as prospects for adoption and commercialization of fuel cell technologies improved.

John M. Nail; Gary Anderson; Gerald Ceasar; Christopher J. Hansen; John M. Nail; Gerald Ceasar; Christopher J. Hansen; Carlos M. Gutierrez; Hratch G. Samerjian; Acting Director; Marc G. Stanley; Director Abstract

2005-01-01T23:59:59.000Z

171

Photon Sciences | User Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration Postal Address User Administration Office Brookhaven National Laboratory 75 Brookhaven Avenue, Bldg. 725B Upton, NY 11973-5000 USA Office Hours Monday through...

172

ADMINISTRATIVE RECORDS SCHEDULE 16:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 ADMINISTRATIVE RECORDS SCHEDULE 16: ADMINISTRATIVE MANAGEMENT RECORDS June 2007 Revision 1 This schedule covers those administrative management activities not covered by other Administrative Schedules. Included are disposable records created in the course of organizational planning, development, and simplification of procedures; records management activities; and administration of management improvement programs. See ADM 1 (items 12 and 13) for the disposition of case files on individuals involved in incentive award and similar types of management improvement programs. The organizational locations and titles of administrative management units vary. They may be scattered at numerous levels or locations, or may be centralized. For the purposes

173

Administrative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Employee Services » Administrative Services » Employee Services » Administrative Administrative The Office of Management provides many of the administrative services that keep the Department of Energy operational. These functions are primarily provided by the Office of Administration, MA-40, the Office of Administrative Management and Support, MA-42. Administrative Management Services Conferencing and Special Events Copier Services Document Imaging Graphics Mail and Distribution Photography Printing For a listing of office contacts please use the About Us menu, the Contact Us section, available directly through this link. We welcome your comments or questions regarding these services. Please feel free to provide feedback to the Office of Administration's Customer Mailbox at: MA-40Customervoice@hq.doe.gov.

174

Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... storage, imports and exports, production, prices, sales.

175

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

176

Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration ... (e.g., water vapor, carbon dioxide, helium, hydrogen sulfide, and nitrogen) ... Storage Withdrawals: ...

177

CSRC - Systems Administration  

Science Conference Proceedings (OSTI)

... The intended audience is composed of Windows 2000 Systems Administrators and technical Windows 2000 Professional users working in ...

178

Administrative Committee Members  

Science Conference Proceedings (OSTI)

Volunteer Training Module. March 2013. 1. Your Professional Partner for Career Advancement. Administrative Committee. Members. Online Training Module.

179

Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration 137 Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates Glossary Affiliated ...

180

Southwestern Power Administration One West...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the United States Department of Energy Southwestern Power Administration Strategic Plan March 2013 Administrator's Message The Southwestern Power Administration powers the...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Efficiency Program Administration Powerpoint Presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Administration Powerpoint Presentation Energy Efficiency Program Administration Powerpoint Presentation Energy Efficiency Program Administration Powerpoint Presentation...

182

Chemistry Department Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration Administration A. Harris, Chair (631) 344-4301 alexh@bnl.gov G. Hall, Deputy Chair (631) 344-4376 gehall@bnl.gov S. McAlary, Deputy BES Manager (631) 344-4305 mcalary2@bnl.gov J. Petterson, Senior Administrative Assistant (631) 344-4302 jpetter@bnl.gov Administrative Support Includes budgeting, procurement activities, foreign/domestic travel, seminars and general administrative concerns. Guest Appointments and Personnel matters should be referred to the Department's Senior Administrative Assistant. L. Sallustio (631) 344-4303 lsallust@bnl.gov Building and Stockroom Maintain the Chemistry Department stockroom and provide technical and building support to the staff. Information on the BNL Chemical Management Inventory system is available through the stockroom. Click here to view

183

National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration National Nuclear Security Administration Ofice of Secure Transportation mKlK= Box RQMM= ^luquerqueI= kj= UTNUR= ;JAN 03 213 MEMORANDUM FOR GREGORY eK= WOODS GENERAL COUNSEL DEPARTMENT OF ENERGY FROM: SUBJECT: JEFFREY P. HARREL ASSIST ANT DEPU FOR SECURE 2013 ANNUAL PLANNING SUMMARY In response to your memorandum of December TI= 2012, the following information is provided for the National Nuclear Security Administration Ofice of Secure

184

Articles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

163 U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 Articles Feature articles on energy-related subjects are ...

185

Energy Information Administration  

U.S. Energy Information Administration (EIA)

Presented at the 2012 International Field Directors and Technologies Conference in Orlando, FL as The Effect of Reporting Mode on Administrative Records: Are We ...

186

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

7 ANNUAL REPORT 7 ANNUAL REPORT Southwestern Power Administration Letter to the Secretary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 About Southwestern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

187

Abbreviations - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Bcf Billion cubic feet DOE U.S. Department of Energy EIA Energy Information Administration, U.S. Department of Energy FERC

188

Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum prices, supply and demand information from the Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government

189

Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

that are tariff based and corporately aligned with companies that own distribution facilities are also ... U.S. Energy Information Administration ...

190

Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 167 Glossary Anthracite: ... the electric department at tariff or other specified rates

191

Energy Information Administration  

U.S. Energy Information Administration (EIA)

2010 EIA-64A Annual Report of the Origin of Natural Gas Liquids Production 1 U.S. DEPARTMENT OF ENERGY Energy Information Administration Washington, DC 20585

192

valdez - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Sources: Petroleum supply data were derived from the Energy Information Administration, Weekly Petroleum Reporting System; crude oil and motor gasoline spot price ...

193

Section Administration and Resources  

Science Conference Proceedings (OSTI)

Section Information, Membership, Newsletters and Awards Section Administration and Resources Awards Program aocs award Awards baldwin fats global inform job listings member membership network oils ...

194

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

FOIAPrivacy Act Submit a FOIA Request DOE FOIA Requester Service Center Electronic Reading Room FOIA Links Power Marketing Administrations' FOIA Links Bonneville Power...

195

Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Report of the Origin of Natural Gas Liquids Production 1 U.S. DEPARTMENT OF ENERGY Energy Information Administration Washington, DC 20585 Form Approved OMB Number:...

196

Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

An order form is enclosed for your convenience. Send order form and payment to: ... U.S. Department of Energy Energy Information Administration

197

RFS - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Technical Conference September 28, 2004 Elizabeth Campbell Energy Information Administration (EIA) Elizabeth.Campbell@eia.doe.gov. www.eia.gov ...

198

Energy Information Administration  

U.S. Energy Information Administration (EIA)

This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of ...

199

EIA - Energy Information Administration  

U.S. Energy Information Administration (EIA)

EIA Energy Information Administration Office of Oil and Gas November 17, 1997 http://www.eia.doe.gov NYM EX Future Prices vs Henry Hub Spot Prices

200

Modular authorization and administration  

Science Conference Proceedings (OSTI)

In large organizations the administration of access privileges (such as the assignment of access rights to a user in a particular role) is handled cooperatively through distributed administrators in various different capacities. A quorum may be necessary, ... Keywords: Modularity, Petri-Nets, composability, work-flow

Horst F. Wedde; Mario Lischka

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ADMINISTRATIVE RECORDS SCHEDULE 23:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADMINISTRATIVE RECORDS SCHEDULE 23: ADMINISTRATIVE RECORDS SCHEDULE 23: RECORDS COMMON TO MOST OFFICES June 2007 Revision 1 This schedule provides for the disposal of certain records common to most offices. It covers administrative subject files; facilitative records such as suspense files, tracking and control records, calendars, and indexes; and documents of transitory value. This schedule does not apply to any materials determined to be non-record or to materials such as calendars or work schedules claimed as personal. Office Administrative Files described under item 1 are records retained by an originating office as its record of initiation of an action, request, or response to requests for information. This item may be applied only to separate administrative files containing such records as copies of

202

ADMINISTRATIVE RECORDS SCHEDULE 11:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADMINISTRATIVE RECORDS SCHEDULE 11: ADMINISTRATIVE RECORDS SCHEDULE 11: SPACE AND MAINTENANCE RECORDS June 2007 Revision 1 This schedule provides for the disposal of all copies, wherever located in the Department, of records relating to space and maintenance, except as indicated below. Records documenting these functions pertain to the acquisition, allocation, utilization, and release of space and include related correspondence and reports submitted to the General Services Administration (or equivalent agency with similar Government-wide responsibilities) as directed by law and regulation (41 CFR 101-17); correspondence and forms relating to the compilation of directory service listings; identification credentials and related accountable records; requests for building and equipment services;

203

EIA Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

as of August 15, with Consuming East region storage facilities holding 1,217 Bcf. The Energy Information Administration has revised downward its estimate of working gas in storage...

204

EIA Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

East to 1,443 Bcf - 9 Bcf more than last year at this time according to AGA data. The Energy Information Administration (EIA) estimates that the working gas level at the end of...

205

EIA Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

by almost 20 Bcf the weekly average of about 74.1 Bcf during May last year, using the Energy Information Administration&20;s (EIA) reported total net injections in May 1996 of 328...

206

Adam Sieminski Administrator Biography  

Gasoline and Diesel Fuel Update (EIA)

Adam Sieminski Adam Sieminski Administrator Biography Adam Sieminski was sworn in on June 4, 2012, as the eighth administrator of the U.S. Energy Information Administration (EIA). From March 2012 to May 2012, while awaiting confirmation as EIA administrator, Mr. Siemin- ski served as senior director for energy and environment on the staff of the National Security Council. From 2005 until March 2012, he was the chief energy economist for Deutsche Bank, working with the Bank's global research and trading units. Drawing on extensive industry, government, and academic sources, Mr. Sieminski forecasted energy market trends and wrote on a variety of topics involving energy economics, climate change, geopoli- tics, and commodity prices. From 1998 to 2005, he served as the director and energy strategist for

207

Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Report of the Origin of Natural Gas Liquids Production 1 U.S. DEPARTMENT OF ENERGY Energy Information Administration Washington, DC 20585 Form Approved XXXX XXXX OMB No....

208

Table - Energy Information Administration  

U.S. Energy Information Administration (EIA)

September 2013 U.S. Energy Information 9/27/2013 9:52:45 AM Administration | Natural Gas Monthly 9 Created on: Table 4. U.S. natural gas imports ...

209

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us U.S. Department of Energy Southwestern Power Administration Gore Maintenance Office Mailing Address: P.O. Box 728 Gore, OK 74435-0728 Delivery Address: 14165 East 143rd...

210

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration FY 2011 - FY 2015 Budget Outlook Managing the NNSA 4.0% Science, Technology & Engineering 14.5% Stockpile Support 17.9% Preventing the Spread of...

211

Gina Pearson Assistant Administrator  

Gasoline and Diesel Fuel Update (EIA)

Gina Pearson Gina Pearson Assistant Administrator for Communications Duties Gina Pearson is the Assistant Administrator (AA) for Communications, and in this capacity provides leadership and direction to conduct the U.S. Energy Information Administration's comprehensive communications program for diverse external customer groups and agency employees. The AA for Communications is responsible for Agency communications policies and standards, the www.eia.gov website, press and media rela- tions, marketing and outreach services, energy education and literacy efforts, and the Agency's employee intranet site. Biography Since 2006, Gina Pearson has played a leadership role in the U.S. Energy Information Administration's (EIA) strategy and operations for commu- nicating information and data to Federal, State and local agencies; the

212

ADMINISTRATIVE RECORDS SCHEDULE 2: PAYROLL AND PAY ADMINISTRATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 2: PAYROLL AND PAY ADMINISTRATION RECORDS-Revision 2 Financial Management Handbook Handbook on Overseas Assignments...

213

Human factoring administrative procedures  

Science Conference Proceedings (OSTI)

In nonnuclear business, administrative procedures bring to mind such mundane topics as filing correspondence and scheduling vacation time. In the nuclear industry, on the other hand, administrative procedures play a vital role in assuring the safe operation of a facility. For some time now, industry focus has been on improving technical procedures. Significant efforts are under way to produce technical procedure requires that a validated technical, regulatory, and administrative basis be developed and that the technical process be established for each procedure. Producing usable technical procedures requires that procedure presentation be engineered to the same human factors principles used in control room design. The vital safety role of administrative procedures requires that they be just as sound, just a rigorously formulated, and documented as technical procedures. Procedure programs at the Tennessee Valley Authority and at Boston Edison's Pilgrim Station demonstrate that human factors engineering techniques can be applied effectively to technical procedures. With a few modifications, those same techniques can be used to produce more effective administrative procedures. Efforts are under way at the US Department of Energy Nuclear Weapons Complex and at some utilities (Boston Edison, for instance) to apply human factors engineering to administrative procedures: The techniques being adapted include the following.

Grider, D.A.; Sturdivant, M.H.

1991-11-01T23:59:59.000Z

214

National Nuclear Security Administration Overview | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Administration Overview National Nuclear Security Administration Overview National Nuclear Security Administration Overview More Documents & Publications National...

215

National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration Finding of No Significant Impact for the Construction and Operation of a New Office Building and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area Office 528 35th Street Los Alamos, N M 8 7 5 4 4 DEPARTMENT OF ENERGY. NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT INIPACT Construction and Operation of a New Office Building and Related Structures withinTA-3 at Los Alarnos National Laboratory, Los Alamos. New Mexico FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for Construction and Operation of a New Office Building and Related Structures within TA-3 at L os Alamos National Laboratory, Los Alamos, New Mexico (DOE/EA- 7 375)

216

Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Marks 25th Anniversary of 1973 Oil Embargo Marks 25th Anniversary of 1973 Oil Embargo Jay Hakes, Administrator, Energy Information Administration (EIA) September 3, 1998 Click here to start Table of Contents Energy Information Administration Some Views of 1973 Major Disruptions of World Oil Supply Imported Oil as a Percent of Total U. S. Consumption Percent of OPEC and Persian Gulf World Oil Production U. S. Retail Price of Gasoline U. S. Total Petroleum Consumption U. S. Per Capita Use of Petroleum U. S. Government Owned Crude Oil Stocks Cost of Finding Oil and Gas Reserves U. S. MPG Ratings for New Vehicles U. S. Average Horsepower of a New Vehicle Share of U. S. Electricity Generated By Petroleum Futures And Options Markets Changed Energy Marketing U. S. Total Energy Consumption U. S. Per Capita Use of Energy

217

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

218

SMALL BUSINESS ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22 Federal Register 22 Federal Register / Vol. 76, No. 29 / Friday, February 11, 2011 / Rules and Regulations SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121 and 124 RIN 3245-AF53 Small Business Size Regulations; 8(a) Business Development/Small Disadvantaged Business Status Determinations AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: This rule makes changes to the regulations governing the section 8(a) Business Development (8(a) BD) program, the U.S. Small Business Administration's (SBA or Agency) size regulations, and the regulations affecting Small Disadvantaged Businesses (SDBs). It is the first comprehensive revision to the 8(a) BD program in more than ten years. Some of the changes involve technical issues such as changing the term ''SIC code'' to

219

National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AI~W~~l AI~W~~l 11Vl'~~4 National Nuclear Security Administration Department of Energy National Nuclear Security Administration Nevada Site Office P.O. Box 98518 Las Vegas, NV 89193-8518 JAN! 8 2013 Gregory H. Woods, General Counsel, DOE/HQ (GC-1) FORS NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE (NNSA/NSO) NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) ANNUAL SUMMARY In accordance with DOE Order 451.1B, National Environmental Policy Act Compliance Program, NNSA/NSO is submitting the enclosed Annual NEP A Planning Summary. The document provides a brief description of ongoing and planned NEP A actions for calendar year 2013. This summary provides information for completion of the Site- Wide Environmental Impact Statement for the Nevada National Security Site and Off-Site Locations in the State of Nevada.

220

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Du Update Du Jour Department Of Energy Transportation External Coordination Working Group Meeting Albuquerque, New Mexico April 21-23, 2004 Presented by Kevin R. Blackwell Radioactive Materials Program Manager Federal Railroad Administration Federal Railroad Administration Dedicated Train Study- Report to Congress FRA' s Research & Development Office (as lead on the study) received a draft final report from the Volpe National Transportation Systems Center (VNTSC) in late November, 2003. Editorial corrections were made and a final draft dated February, 2004 was provided to FRA. Final Draft Report FRA has been reviewed and been sent to FRA Administrator for clearance and forwarding to DOT OST. FRA has already "Officially Coordinated" and briefed DOT OST and

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

U.S. Department of Energy National Nuclear Security Administration Federal Equal Opportunity Recruitment Program Plan Certification - Fiscal Year 2009 Please type or print clearly and return this sheet with original signature to: Ms. Carmen Andujar, Manager Recruiting, Examining and Assessment Group Center for Talent and Capacity Policy Strategic Human Resources Policy Attn: FY 2009 FEORP Report U.S. Office of Personnel Management 1900 E Street, NW, Room 6547 Washington, D.C. 20415-9800 A. Name and Address of Agency National Nuclear Security Administration Office of Diversity and Outreach 1000 Independence Avenue, SW Washington, DC 20585 B. Name and Title of Designated FEORP Official (include address, if different from above,

222

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

i. i. Message from the Administrator President Obama has reshaped our national security priorities making enterprise infrastructure modernization with integrated Information Technology (IT) capabilities a key strategic initiative. Our IT infrastructure must ensure that our workforce can access appropriate information in a secure, reliable, and cost-effective manner. Effective information sharing throughout the government enhances the national security of the United States (US). For the National Nuclear Security Administration (NNSA), effective information sharing helps strengthen our nuclear security mission; builds collaborative networks within NNSA as well as with the Department of Energy (DOE), Department of Defense (DoD), and other national security

223

Dear Secretary/ Administrator:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management and Budget Dear Secretary/ Administrator: Executive Office of the President Council on Environmental Quality Consistent with the President's focus on sound stewardship of our natural resources, we are committed to improving environmental governance through constructive and timely approaches to addressing challenges that arise over the use, conservation, and restoration of the environment, natural resources, and public lands. To achieve better governance, the Administration calls for department and agency commitment to the goals identified in the Memorandum on Environmental Collaboration and Conflict Resolution, and the goals identified in related policy guidance. This approach supports other transparency and good government initiatives including the Memorandum on Transparency and Open Government (January 21,

224

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE TRANSPORTATION EXTERNAL WORKING GROUP MEETING Pueblo, CO. September 20, 2005 Presented by Kevin R. Blackwell Radioactive Materials/Hazardous Materials Specialist Federal Railroad Administration - HQ Hazmat Division, Washington, DC. Federal Railroad Administration Dedicated Train Study - Report to Congress November 2003 - FRA' s Ofc. Of Research & Development (RDV), as lead on the Dedicated Train Study (DTS), received draft final report from the Volpe National Transportation Systems Center (VNTSC), the contractor conducting the study. February, 2004 - FRA completed review of DFR and submitted editorial corrections back to VNTSC. Final draft of the DTS with editorial corrections received from VNTSC in February, 2004. March to September 2004 -

225

ADMINISTRATIVE RECORDS SCHEDULE 22:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADMINISTRATIVE RECORDS SCHEDULE 22: ADMINISTRATIVE RECORDS SCHEDULE 22: AUDIT/INVESTIGATIVE RECORDS June 2007 Revision 1 Section I of this schedule covers records associated with investigations other than those performed by the Office of the Inspector General (OIG). Types of investigations may include: routine and significant internal program investigations, specific purpose investigations, audits, inspections, appraisals, and management reviews. Investigations may be described or referred to as audits, appraisals, surveillance, self-assessments, management assessments, or evaluations. Investigations may be conducted by DOE or by its contractors. Section II covers records created by the Department's OIG investigations. OIG investigations serve to prevent or reduce waste and fraud in Departmental programs,

226

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

U.S. Department of Energy National Nuclear Security Administration Federal Equal Opportunity Recruitment Program Plan Certification - Fiscal Year 2011 Please type or print clearly and return this sheet with original signature to: Ms. Carmen Andujar, Manager Recruiting, Examining and Assessment Group Center for Talent and Capacity Policy Strategic Human Resources Policy Attn: FY 2011 FEORP Report U.S. Office of Personnel Management 1900 E Street, NW, Room 6547 Washington, D.C. 20415-9800 A. Name and Address of Agency National Nuclear Security Administration 1000 Independence Avenue, SW Washington, DC 20585 B. Name and Title of Designated FEORP Official (include address, if different from above,

227

Computer hardware fault administration  

DOE Patents (OSTI)

Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

Archer, Charles J. (Rochester, MN); Megerian, Mark G. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

2010-09-14T23:59:59.000Z

228

Data Administration Area: Date Issued  

E-Print Network (OSTI)

Policy Data Administration Policy Area: Date Issued: April, 1994 Title: Data Administration Last. INTRODUCTION The President established the Committee on Data Administration (CODA) in May, 1992, to advise him on policies in the area of data administration (attached as references Policy ADC 011 and TOR for CODA

Brownstone, Rob

229

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

230

Alternative Fuels - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Transportation Energy Consumption Survey(RTECS), Transporation Channel of Alternative Fuels

231

ADMINISTRATIVE AND RESOURCE MANAGEMENT  

E-Print Network (OSTI)

development of risk management- relatedITservicesthatbenefittheentireUCsystem. The systems developed at UC and maintenance have diminished so dramatically. #12;7 ADMINISTRATIVE AND RESOURCE MANAGEMENT AnnuAl RepoRt 2010, are collaborating to implement a new asset management, work management, and integrated planning system

Hammock, Bruce D.

232

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Publications News & Publications Annual Performance Plan Annual Report Newsletters Strategic Plan SWPA - Overview Video System Map Press Releases 2012 Skip Navigation Links Turner Named Southwestern Administrator 2009 Skip Navigation Links New Deputy Administrator Selected for Liaison Office Ice Storm Damage Update - March 24, 2009 Ice Storm Damage Update - March 12, 2009 Ice Storm Damage Update - March 10, 2009 Ice Storm Damage Update - March 05, 2009 Ice Storm Damage Update - March 04, 2009 Ice Storm Damage Update - March 02, 2009 Ice Storm Damage Update - February 23, 2009 Ice Storm Damage Update - February 17, 2009 Ice Storm Damage Update - February 13, 2009 Ice Storm Damage Update - February 12, 2009 Ice Storm Damage Update - February 11, 2009 Ice Storm Damage Update - February 10, 2009

233

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Wnchington, DC 20585 Wnchington, DC 20585 July 13, 2010 OFFICE O F THE ADMINISTRATOR 'l'he Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, D.C. 20004 [>ear Mr. Chairman: By the direction of the Secretary of Energy, the enclosed is the Department's Implementation Plan (Plan) for Defense Nuclear Facilities Safety Board (Board) Recommendation 2009-2, Los Alamos Nutional Luhorutory Plutoniu?lt Fucilitj. Sr i s m ic Sufety. The Plan provides the Department's approach for implementing near-term actions to reduce the consequences of seismically-induced events at the Los Alamos National Laboratory Plutonium Facility, and longer-tcrm actions to ensure continued safe operation of the facility. Mr. James .I. McConnell. Assistant Deputy Administrator for Nuclear Safety and

234

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

News Items News Items Skip Navigation Links December 7, 2012 Southwestern Helps Restore Power After Hurricane Sandy September 27, 2012 New Administrator April 27, 2012 Table Rock Visitor Center April 24, 2012 WFEC Earth Day Publications Skip Navigation Links Annual Performance Plan Annual Report Newsletters Press Releases Strategic Plan SWPA - Overview Video System Map December 7, 2012 Southwestern Helps Restore Power After Hurricane Sandy Southwestern Aids Sandy Recovery Line crews from Southwestern repair distribution lines in Tom's River, New Jersey, following Hurricane Sandy. In the aftermath of Hurricane Sandy in early November 2012, Southwestern Power Administration sent several line, substation, and right-of-way brush crews and 30 pieces of heavy equipment to help restore the electrical grid

235

SOUTHWESTERN POWER ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9/01 9/01 SOUTHWESTERN POWER ADMINISTRATION CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION: Hydroelectric Power Rate Increase for the Integrated System of Hydropower Projects. PROPOSED BY: Southwestern Power Administration. NUMBER AND TITLE OF THE CATEGORICAL EXCLUSION BEING APPLIED: ( 10 CFR 1021, Appendix B to Subpart D, 1-1-03 Edition, Part B4.3 - Electric power marketing rate changes. REGULATORY REQUIREMENTS IN 10 CFR 1021.410(B): (1) The proposed action fits within a class of actions that is listed in Appendix, A or B to Subpart D. (2) There are no extraordinary circumstances related to the proposal that may affect the Significance of the environmental effects of the proposal; and (3) The proposal is not "connected" to other actions with potentially significant impacts, is not related to

236

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation Links Skip Navigation Links Annual Performance Plan Annual Report Mission Organization Strategic Plan SWPA - Overview Video System Map About the Agency Southwestern Power Administration was established in 1943 by the Secretary of the Interior as a Federal Agency that today operates within the Department of Energy under the authority of Section 5 of the Flood Control Act of 1944. As one of four Power Marketing Administrations in the United States, Southwestern markets hydroelectric power in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas from 24 U.S. Army Corps of Engineers multipurpose dams. By law, Southwestern's power is marketed and delivered primarily to public bodies such as rural electric cooperatives and municipal utilities. Southwestern has over one hundred such "preference" customers, and these

237

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Occupational Occupational Safety & Health Administration Safety The safety and well-being of all Southwestern Power Administration employees are the firm and continuing responsibilities of every member of management. Each employee, in turn, shares with management the responsibility for his or her own safety by performing his or her duties in a safe and conscientious manner, complying with all safety rules and regulations, and observing the provisions of Executive Order 12196, "Occupational Safety and Health Programs for Federal Employees." Southwestern's Recordable Accident Frequency Rate (RAFR) for Calendar Year 2011 (Jan - Dec 2011) was 1.28, and for Fiscal Year 2011 (Oct 2010 - Sep 2011) the RAFR was 0.64. Additionally, 2011 marked the nineteenth consecutive

238

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites

National Nuclear Security Administration National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Learn More NNSA DOE removes all remaining HEU from Hungary Learn More DOE removes all remaining HEU from Hungary Tiffany A. Blanchard-Case receives 2013 Linton Brooks Medal

239

SOUTHWESTERN POWER ADMINISTRATION  

NLE Websites -- All DOE Office Websites (Extended Search)

01 01 SOUTHWESTERN POWER ADMINISTRATION CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION: Hydroelectric Power Rate Increase for the Integrated System of Hydropower Projects. PROPOSED BY: Southwestern Power Administration. NUMBER AND TITLE OF THE CATEGORICAL EXCLUSION BEING APPLIED: ( 10 CFR 1021, Appendix B to Subpart D, 1-1-03 Edition, Part B4.3 - Electric power marketing rate changes. REGULATORY REQUIREMENTS IN 10 CFR 1021.410(B): (1) The proposed action fits within a class of actions that is listed in Appendix, A or B to Subpart D. (2) There are no extraordinary circumstances related to the proposal that may affect the Significance of the environmental effects of the proposal; and (3) The proposal is not "connected" to other actions with potentially significant impacts, is not related to

240

ADMINISTRATIVE RECORDS SCHEDULE 21:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADMINISTRATIVE RECORDS SCHEDULE 21: AUDIOVISUAL RECORDS June 2007 Revision 1 This schedule covers audiovisual and related records created by or for Department and those acquired in the normal course of business. For audiovisual records that are not described in this schedule, an SF 115, Request for Records Disposition Authority, must be submitted to the National Archives and Records Administration (NARA). Audiovisual records include still and motion picture photography, graphic materials, and sound and video recordings. Related documentation includes (1) production files or other files documenting the creation, justification, ownership, and rights to the records and (2) finding aids used to identify or access the records. This schedule does not cover: (1) cartographic records, (2) remote sensing imagery

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Bonneville Power Administration (BPA)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Staff version which still requires senior executive review Staff version which still requires senior executive review Office of Office of Human Capita Human Capital Management Management Bonneville Power Administration Risk Informed Human Capital - Workforce Plan 2007-2009 September 15, 2006 2007 BPA Risk Informed Human Capital - Workforce Plan Table of Contents INTRODUCTION............................................................................................................. 5 Impact of the 2006 Workforce Plan ..............................................................................................6 BPA Strategic Objectives as drivers of the WP .......................................................................... 6 I. CONTEXT ................................................................................................................... 6

242

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003  

E-Print Network (OSTI)

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003 MCSA © 2011 Microsoft Corporation. All rights reserved MCPDMCPD WINDOWS DEVELOPERWEB DEVELOPER Job Role/Achievement Certification Recommended Coursework Student TECHNICIAN: WINDOWS 7 MCITPMCITP SUPPORT TECHNICIAN: WINDOWS VISTA SERVER ADMINISTRATOR: WINDOWS SERVER 2003

Atkinson, Katie

243

Georgia Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... Sustainability Division; Georgia Energy Data; Southeastern Power Administration; Alternative Fuels and Advanced Vehicle Data Center - Federal and State Incentives ...

244

FOIA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

245

Pollux | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollux | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

246

Testimonials | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Testimonials | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

247

Training | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

248

Appendix E - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1996: Issues and Trends 149 Appendix E Analysis of Capacity Release Trading: Results and Methodology

249

TMS Administrative and Policy Manual  

Science Conference Proceedings (OSTI)

TMS Administrative and Policy Manual. Last updated: June 2013. I. INTRODUCTION II. ARTICLES OF INCORPORATION III. SOCIETY BYLAWS. IV.

250

Counterterrorism | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

251

Vocabulary | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

252

Pantex | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

253

Awards | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

254

Policy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

255

Supercomputers | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

256

Engineering | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

257

Contacts | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

258

Accomplishments | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

259

Preparedness | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

260

Public | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Recovery | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

262

Nonproliferation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

263

Overview | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

264

Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

265

Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

266

Conferences | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

267

Planning | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

268

Alaska Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum Administration for Defense District (PADD): 5; Other Websites. Alaska Energy Authority; Alaska Oil and Gas Conservation Commission;

269

Data Sources - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production Forecast: Energy Information Administration, Short-Term Integrated Forecasting System, December 2000; and Model GASCAP94 C102500.

270

Compensation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

271

Convert | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

272

Protect | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

273

Leave | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

274

International | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

275

Remove | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

276

Interdiction | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

277

Features | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

278

Administrative supervision and information relationships  

Science Conference Proceedings (OSTI)

In many countries, administrative supervision has grown dramatically in recent years. Administrative supervision is a form of interaction between policy makers and policy executors, aimed at improving political accountability. In this paper, the role ... Keywords: administrative supervision, information relationships, supervisory authorities

Victor Bekkers; Vincent Homburg

2002-08-01T23:59:59.000Z

279

ADMINISTRATIVE RECORDS SCHEDULE 20:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20: 20: ELECTRONIC RECORDS April 2008 Revision 2 This schedule authorizes the disposition of specified electronic records and hard-copy or microform records and are integrally related to them. The electronic records may either be created or received. Included are records created by computer operators, programmers, analysts, systems administrators, and all personnel with access to a computer. Disposition authority is provided for certain master files, including some tables that are components of data base management systems, and certain files created from master files for specific purposes. In addition, this schedule covers certain disposable electronic records produced by end users in office automation applications. These disposition authorities apply to the

280

General Services Administration  

SciTech Connect

The Federal Energy Management Improvement Act of 1988 requires all federal agencies, including the General Services Administration (GSA), to reduce building energy usage by 10 percent from 1985 levels by 1995. While GSA has been actively pursuing energy conservation, it faces a formidable challenge in achieving the required 10-percent building energy reduction by 1995, and it is too early to tell whether GSA's efforts will be successful. Because GSA has developed a comprehensive strategy to reduce building energy usage, has begun funding a variety of specific energy conservation initiatives, and is actively exploring other energy-saving opportunities, this paper makes no recommendations to GSA.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

User Research Administration | Stanford Synchrotron Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Administration LCLS and SSRL User Research Administration Cathy Knotts User Research Administration Manager Tel: (650) 926-3191 Fax: (650) 926-3600 LCLS and SSRL User...

282

ADMINISTRATIVE RECORDS SCHEDULE 14:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 ADMINISTRATIVE RECORDS SCHEDULE 14: INFORMATIONAL SERVICES RECORDS June 2007 Revision 1 This schedule covers certain records pertaining to informational services performed by the Department in their day-to-day affairs and in their relations with the public, including records created in administering Freedom of Information Act (FOIA) and Privacy Act ) programs. Except as otherwise specified in individual items, it applies to copies of these records wherever located. Item 4 applies only to files maintained in office responsible for the operation of the information activities. Items 11 through 15 describe the files accumulated in carrying out the provisions of the FOIA, and items 21 through 26 describe the files created in administering the provisions of the Privacy Act. Items 31

283

Energy Information Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internal PMA Scorecard for Human Capital Management (HCM) - FY 2006, Quarter 4 Internal PMA Scorecard for Human Capital Management (HCM) - FY 2006, Quarter 4 Office: Energy Information Administration Progress Score: Status Score: Requirements for HCM Plan 4th QTR REQUIREMENTS FY 06, Q4 Comments Integrate HCM Plan into decision-making processes - Plan linked to DOE mission, strategy, and goals - designates accountable officials Link performance appraisal plans and awards to DOE mission & goals for SES, managers, and more than 60% of workforce (HQ and Field); discuss difference between various levels of performance, discuss consequences based on performance HCM is linked to EIA's mission, strategy, and goals. Employee performance plans have at least one critical element with corresponding tasks supporting

284

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Disability Employment Disability Employment Duty Locations Equal Employment New Employee Orientation Reasonable Accommodation Student Employment Opportunities Pathways Skip Navigation Links USAJOBS Veteran Employment Opportunities Feds Hire Vets Current Vacancy Announcements There are currently no employment vacancies. Please check here regularly for career opportunities at Southwestern Power Administration. Apply At USAJOBS USAJobs is the official job site of the US Federal Government. Please visit this site to see all job vacancies within Southwestern, the Department of Energy, and the Federal Government. Please pay close attention to the closing date in the "Open Period" section as well as the information in the "Who May Be Considered" section on the first page of each announcement to determine if you are

285

and Acting NOAA Administrator  

NLE Websites -- All DOE Office Websites (Extended Search)

30 30 th 9:00-9:30 Welcome * Dr. Kathryn Sullivan, Acting Under Secretary of Commerce for Oceans and Atmosphere and Acting NOAA Administrator 9:30-10:30 What does Open Data Look Like? This session will provide some case studies of the use of open data to illustrate some of the issues associated with presentation of the data in a way which optimises its usefulness for end-users. It will consider different types of data, guiding principles, and different uses of data, including both research data and national agricultural data-sets. Moderator: * Tim Benton, Champion, UK Global Food Security Programme, UK Speakers: * Johannes Keizer, Team Leader, FAO United Nations, Italy * Dr. Sander Janssen, Wageningen, Netherlands * Dr. Rajeev Varshney, Director, Center of Excellence in Genomics (CEG), ICRISAT, Hyderabad,

286

Security Administration Production Office,  

NLE Websites -- All DOE Office Websites (Extended Search)

JUNE/JULY 2013 JUNE/JULY 2013 inside this issue ... Reaching the summit - Big hitters talk economic development Page 3 Saving yesterday's knowledge today Page 5 What's a fellow to do? Page 6 ... and other Y-12 news On June 3 newly appointed Secretary of Energy Ernest Moniz (right) made Oak Ridge the site of his first official visit since being sworn in as head of the U.S. Department of Energy. Secretary Moniz met earlier in the day with national lab directors at Oak Ridge National Laboratory, then came to Y-12 for tours and a meeting with the National Nuclear Security Administration Production Office, B&W Y-12 and ORNL employees. He was joined by Rep. Chuck Fleischmann. The Secretary described Oak Ridge as a place where DOE's chief missions of nuclear security, environmental

287

Federal Railroad Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Transportation Federal Railroad Administration Overview of Proposed Rail Safety & Security Rulemakings Kevin R. Blackwell FRA Hazmat Division Washington, DC Federal Authority DOT Authority to regulate safety and security of hazardous materials transportation Hazardous Materials Transportation Law (49 U.S.C. 5101 et.seq.) Federal Railroad Safety Act (49 U.S.C. 20101 et.seq.) TSA Authority to regulate security of hazardous material transportation Aviation Transportation Security Act (Pub. L. 107-71, 115 Stat. 597) Routing as a Part of the Transportation Cycle Routing decisions are continually made as a part of the transportation cycle for a variety of reasons. E c o n o m i c s Security S a f e t y Routing Decision Pyramid DOT NPRM HM-232E NPRM published on December 21, 2006.

288

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Employment Opportunities Student Employment Opportunities There are currently no student employment vacancies. Please check here regularly for career opportunities at Southwestern Power Administration. Learn more about the type of work engineers perform at Southwestern: Electric Power Marketing Engineering and Planning Reliability Compliance and Transmission Policy Resources and Rates Apply At USAJOBS USAJobs is the official job site of the US Federal Government. Please visit this site to see all job vacancies within Southwestern, the Department of Energy, and the Federal Government. Please pay close attention to the closing date in the "Open Period" section as well as the information in the "Who May Be Considered" section on the first page of each announcement to determine if you are

289

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

About this site About this site This Web site is the official Web site of the Southwestern Power Administration. It is part of a Federal computer system used to accomplish Federal functions and is monitored for security purposes to ensure it remains available to all users and to protect information in the system. By accessing this Web site, you are expressly consenting to these monitoring activities. Accessibility Southwestern is committed to providing the most up-to-date, relevant information to its stakeholders and to members of the general public, including those with disabilities and/or limited English proficiency. If you are unable to access information about Southwestern due to the presentation of information in this Web site, or if you have any questions, concerns, or comments you would like to share with us, please contact

290

NATIONAL NUCLEAR SECURITY ADMINISTRATION  

National Nuclear Security Administration (NNSA)

NNSA Policy Letter: NAP-5 NNSA Policy Letter: NAP-5 (DOE P 450.3) Date: October 16, 2002 TITLE: Policy Letter for Standards Management I. OBJECTIVE: Establish NNSA expectations for Standards Management Programs used to select and maintain applicable standards for work performed at NNSA Headquarters and field sites. II. APPLICABILITY: NNSA federal staff and NNSA management and operating contractors, and other prime contractors as determined by NNSA Headquarters and/or field site management, shall use a defined formal process to tailor environment, safety, and health; project management; safeguards and security; quality assurance; business; and administrative standards and, as determined by NNSA management, other standards used to perform federal and contractor work. Here, the term standard encompasses federal,

291

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Area Power Administration Customer Meeting The meeting will begin at 12:30 pm MST We have logged on early for connectivity purposes Please stand-by until the meeting begins Please be sure to call into the conference bridge at: 888-989-6414 Conf. Code 60223 If you have connectivity issues, please contact: 866-900-1011 1 Introduction  Welcome  Introductions  Purpose of Meeting ◦ Status of the SLCA/IP Rate ◦ SLCA/IP Marketing Plan ◦ Credit Worthiness Policy ◦ LTEMP EIS update ◦ Access to Capital  Handout Materials http://www.wapa.gov/crsp/ratescrsp/default.htm 2 SLCA/IP Rate 3 1. Status of Repayment 2. Current SLCA/IP Firm Power Rate (SLIP-F9) 3. Revenue Requirements Comparison Table 4.SLCA/IP Rate 5. Next Steps

292

Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

World Shale Gas Resources: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States APRIL 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 The information presented in this overview is based on the report "World Shale Gas Resources: An Initial Assessment," which was prepared by Advanced Resources International (ARI) for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

293

Executive Summary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ix ... Transportation tariffs for interstate pipeline companies are few years have increased the availability of some natural gas

294

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The National Nuclear Security Administration Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Test...

295

Reports | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The National Nuclear Security Administration Reports Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Test and...

296

Summary Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

See Glossary. b Values reflect the month of acquisition, ... U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 38 Table 17.

297

Paddistrict IV - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly August 2012 36 Figure 6. U.S. No. 2 Distillate Prices to Residences by PAD District

298

Appendix A - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration Fuel Oil and Kerosene Sales 2009 37 Technical Note 1: EIA-821: Annual Fuel Oil and Kerosene Sales Report, 2007

299

Dixie Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Power Assn Power Assn Place Mississippi Utility Id 5175 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial/Industrial (100 kW - 1000 kW) Industrial Commercial/Industrial (100kW - 1000kW) - Primary Voltage Commercial Commercial/Industrial (Over 1000 kW) Industrial Commercial/Industrial (Over 1000 kW) - Primary Voltage Commercial Commercial/Industrial (Under 100 kW) Commercial Commercial/Industrial (Under 100 kW) - Primary Voltage Commercial Commercial/Industrial No Demand Industrial

300

Dixie Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Membership Corp Membership Corp Place Louisiana Utility Id 5202 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 10,001 - 29,000 Average Lumens Per Lamp Lighting 29,002 - 60,000 Average Lumens Per Lamp Lighting 60,000 - 155,000 Average Lumens Per Lamp Lighting 7,000 - 10,000 Average Lumens Per Lamp Lighting Church Schedule (C) Commercial Commercial and Small Power Service Schedule B Commercial Commercial and Small Power Time-of-Use Commercial Farm Home Schedule Residential Large Power Service - Schedule LP Industrial

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v*Zy- i , . v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line to relieve congestion in the Sacramento area. In addition, Western has rights-of- way for many transmission lines that could be rebuilt to increase transmission capacity. For example, Western's Tracy-Livermore 230-kV line is a single circuit line but the existing towers could support a double circuit line. These rights-of-way would have to

302

Howard Gruenspecht Deputy Administrator Duties  

Gasoline and Diesel Fuel Update (EIA)

Howard Gruenspecht Howard Gruenspecht Deputy Administrator Duties Howard Gruenspecht was named Deputy Administrator of the U.S. Energy Information Administration (EIA) in March 2003. As the EIA Deputy Administrator, Howard assists the Administrator in collecting, analyzing, and disseminating independent and impartial energy information to promote sound policy-making, efficient markets, and public understanding of energy and its interaction with the econo- my and the environment. EIA provides a wide range of information and data products covering energy production, stocks, demand, imports, exports, and prices. EIA also prepares analyses and special reports on topics of current interest. Howard works closely with the Administra- tor to provide overall leadership, planning, and policy direction for the

303

Two-person control administration: preventing administration faults through duplication  

Science Conference Proceedings (OSTI)

Modern computing systems are complex and difficult to administer, making them more prone to system administration faults. Faults can occur simply due to mistakes in the process of administering a complex system. These mistakes can make the system insecure ...

Shaya Potter; Steven M. Bellovin; Jason Nieh

2009-11-01T23:59:59.000Z

304

Speeches | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeches | National Nuclear Security Administration Speeches | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Speeches Home > Media Room > Speeches Speeches NNSA officials frequently speak at public events around the world on topics ranging from nuclear security to infrastructure and strategic planning.

305

Supercomputers | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers | National Nuclear Security Administration Supercomputers | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Supercomputers Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Supercomputers

306

Newsletters | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletters | National Nuclear Security Administration Newsletters | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Newsletters Home > Media Room > Newsletters Newsletters NNSA publishes a monthly newsletter featuring current events and activities across the nuclear security enterprise. Online archives are available back

307

Announcements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Announcements | National Nuclear Security Administration Announcements | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Announcements Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract > Announcements

308

Thomas D. Williams Assistant Administrator  

Gasoline and Diesel Fuel Update (EIA)

Thomas D. Williams Thomas D. Williams Assistant Administrator for Resource and Tecnology Management Duties Thomas D. Williams is the Assistant Administrator for Resource & Technology Management. He provides leadership and direction to oversee the management and operation of EIA's employee services, information technology policy and operations, and integrated planning, budget, procurement, evaluation and project management activity. Biography Thom is a career member of the Senior Executive Service with more than 27 years of professional experience in developing, linking, and implementing successful strategic, financial, human capital, operational, technology, and administrative policies and plans for federal research, science, engineering, and regulatory programs.

309

Environmental recordkeeping: The administrative record  

Science Conference Proceedings (OSTI)

This document provides information on an environmental records management system. It includes information on environmental recordkeeping; environmental regulations with emphasis on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); and the administrative record including a case study of the Hanford Site's administrative record system. This paper will focus on the following objectives: (1) Identify resources that can be used as reference tools; (2) understand the reasons for developing and maintaining an administrative record; and, (3) evaluate an existing system and identify means of complying with the regulations. 15 refs., 2 figs.

Sprouse, B.S.

1991-08-01T23:59:59.000Z

310

Speeches | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Speeches | National Nuclear Security Administration Speeches | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Speeches Home > Media Room > Speeches Speeches NNSA officials frequently speak at public events around the world on topics ranging from nuclear security to infrastructure and strategic planning.

311

Better Buildings Neighborhood Program: Grants Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools & Resources Tools & Resources Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Grants Administration to someone by E-mail Share Better Buildings Neighborhood Program: Grants Administration on Facebook Tweet about Better Buildings Neighborhood Program: Grants Administration on Twitter Bookmark Better Buildings Neighborhood Program: Grants Administration on Google Bookmark Better Buildings Neighborhood Program: Grants Administration on Delicious Rank Better Buildings Neighborhood Program: Grants Administration on Digg Find More places to share Better Buildings Neighborhood Program: Grants Administration on AddThis.com... Case Studies Resource Directory Webcasts Workshops Grants Administration Grants Administration Better Buildings Neighborhood Program award recipients were selected

312

Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Programs Home > Field Offices > Welcome to the Sandia Field Office > Programs Programs The SFO Programs office is responsible for direction, day-to-day oversight and contract administration activities in support of the technical

313

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION  

Office of Legacy Management (LM)

.' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

314

ADMINISTRATION OF ORNL RESEARCH REACTORS  

SciTech Connect

Organization of the ORNL Operations division for administration of the Oak Ridge Research Reactor, the Low Intensity Testing Reactor, and the Oak Ridge Graphite Reactor is described. (J.R.D.)

Casto, W.R.

1962-08-20T23:59:59.000Z

315

Chapter 30 - Cost Accounting Standards Administration | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 - Cost Accounting Standards Administration Chapter 30 - Cost Accounting Standards Administration 30.1DOE'sOversightofCertainContractorDefinedPensionPlansandItsEffect...

316

Our Operations | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

and operations programs and policies. Administration Programs Management and Budget NNSA's Office of Management and Administration's goal is to create a well-managed,...

317

Customer Services Handbook, 2010, Office of Administration |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer Services Handbook, 2010, Office of Administration Customer Services Handbook, 2010, Office of Administration Customer Services Handbook Customer Services Handbook, 2010,...

318

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Sources: U.S. Energy Information Administration, Form EIA-923, Power Plant Operations Report; U.S. Energy Information Administration, Form EIA-906, ...

319

Energy Information Administration (WFP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Administration (WFP) Energy Information Administration (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This...

320

Annual Energy Review - Energy Information Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Energy - Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum &...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ...  

U.S. Energy Information Administration (EIA)

statement of adam sieminski administrator energy information administration u.s. department of energy before the subcommittee on energy and power committee on energy ...

322

WHO Technical Manual on Tobacco Tax Administration  

E-Print Network (OSTI)

WHO Technical Manual on Tobacco Tax Administration WHOData WHO technical manual on tobacco tax administration. 1.ack now l edgemen ts This manual has been produced with a

2010-01-01T23:59:59.000Z

323

Northern Maine Independent System Administrator (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Northern Maine Independent System Administrator (NMISA) is a non-profit entity responsible for the administration of the northern Maine transmission system and electric power markets in...

324

Power Marketing Administrations Leading the Nation's Transition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administrations Leading the Nation's Transition to a 21st Century Electric Grid Power Marketing Administrations Leading the Nation's Transition to a 21st Century Electric...

325

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT OF ADAM SIEMINSKI STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY Before the COMMITTEE ON ENERGY AND NATURAL RESOURCES U. S. SENATE JULY 16, 2013 2 Chairman Wyden, Ranking Member Murkowski, and Members of the Committee, thank you for the opportunity to appear before you today to discuss the U.S. petroleum supply system, which is changing rapidly. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. By law, EIA's data, analyses, and

326

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADAM SIEMINSKI ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY before the SUBCOMMITTEE ON ENERGY AND POWER COMMITTEE ON ENERGY AND COMMERCE U. S. HOUSE OF REPRESENTATIVES JUNE 26, 2013 2 Chairman Whitfield, Ranking Member Rush and Members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Renewable Fuel Standard (RFS) program. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. By law, EIA's data, analyses, and

327

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

U.S. Energy Information Administration (EIA) Indexed Site

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY before the SUBCOMMITTEE ON ENERGY AND POWER COMMITTEE ON ENERGY AND COMMERCE U. S. HOUSE OF REPRESENTATIVES FEBRUARY 5, 2013 2 Mr. Chairman and Members of the Subcommittee, I appreciate the opportunity to appear before you today at this hearing on American Energy Security and Innovation: An Assessment of North America's Energy Resources. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. EIA is the Nation's premier source of

328

MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2004 0, 2004 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION THE DIRECTOR, OFFICE OF MANAGEMENT, BUDGET AND EVALUATION/CHIEF FINANCIAL OFFICER FROM: William S. Maharay r Deputy Inspector General for Audit Services Office of Inspector General SUBJECT: Federal Managers' Financial Integrity Act Audit Report Audit Report No.: OAS-L-05-01 We reviewed selected aspects of the Department of Energy's (Department) implementation of the Federal Managers' Financial Integrity Act (FMFIA) of 1982. The objective of FMFIA, and the Department's management control program, is to ensure that controls are working effectively and that program and administrative functions are performed in an economic and efficient marner consistent with applicable laws. As a result of its evaluation of management controls, the Department identified "significant

329

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADAM SIEMINSKI ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE AND TECHNOLOGY UNITED STATES HOUSE OF REPRESENTATIVES FEBRUARY 13, 2013 Chairman Lummis, Ranking Member Swalwell and Members of the Committee, I appreciate the opportunity to appear before you today to provide testimony on the U.S. energy outlook. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. EIA is the Nation's premier source of

330

Budget | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Budget | National Nuclear Security Administration Budget | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Budget Home > About Us > Budget Budget Full details of the President's FY14 budget for NNSA can be found here. We're keeping the American people safe. President Obama has laid out the most ambitious view of nuclear security in decades. Our

331

Leadership | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Leadership | National Nuclear Security Administration Leadership | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Leadership Home > Field Offices > Welcome to the Livermore Field Office > Leadership Leadership Kimberly D. Lebak, Manager Kim Lebak became the Livermore Site Manager in January, 2012 for the National Nuclear Security Administration of the U.S. Department of Energy.

332

Events | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Events | National Nuclear Security Administration Events | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Events Home > Media Room > Events Events Learn more about upcoming events in your community and find out how to request NNSA involvement at your next event. Event Nov 2, 2011 Webinar: Proposed Changes to the CFR Part 810 Regulation

333

Pollux | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Pollux | National Nuclear Security Administration Pollux | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Pollux Pollux Pollux The National Nuclear Security Administration (NNSA) announced that Pollux, a subcritical experiment, was successfully conducted at its Nevada National Security Site (NNSS). This video is of the vessel containing the Pollux experiment.

334

Budget | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Budget | National Nuclear Security Administration Budget | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Budget Home > About Us > Budget Budget Full details of the President's FY14 budget for NNSA can be found here. We're keeping the American people safe. President Obama has laid out the most ambitious view of nuclear security in decades. Our

335

Events | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Events | National Nuclear Security Administration Events | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Events Home > Media Room > Events Events Learn more about upcoming events in your community and find out how to request NNSA involvement at your next event. Event Nov 2, 2011 Webinar: Proposed Changes to the CFR Part 810 Regulation

336

Testimonials | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Testimonials | National Nuclear Security Administration Testimonials | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Testimonials Home > Federal Employment > Working at NNSA > Testimonials Testimonials At the NNSA, you will have the opportunity to work with some of the brightest professionals in the world who routinely tackle highly complex

337

Compensation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Compensation | National Nuclear Security Administration Compensation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Compensation Home > Federal Employment > Working at NNSA > Compensation Compensation Whether you're a new college graduate, someone with industry experience looking to move into a Federal job or a current government employee looking

338

Overview | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Overview | National Nuclear Security Administration Overview | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Overview Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Overview Overview

339

Development Administration By Alice Buck  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research and Development Administration By Alice Buck March 1982 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources 1 Introduction Congress created the Energy Research and Development Administration on October 11, 1974, in response to the Nation's growing need for additional sources of energy. The new agency would coordinate energy programs formerly scattered among many federal agencies, and serve as the focal point for a major effort by the Federal Government to expand energy research and development efforts. New ways to conserve existing supplies as well as the commercial

340

Accomplishments | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments | National Nuclear Security Administration Accomplishments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Accomplishments Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Accomplishments

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Operations | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Operations Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations Operations NNSA's Emergency Response Operations program acts as the headquarters command and control, functioning as the coordinating focal point for all

342

SOUTHWESTERN POWER ADMINISTRATION ANNUAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

ADMINISTRATION ADMINISTRATION ANNUAL REPORT 20 10 This page inTenTionally lefT blank. S o u t h w e S t e r n p o w e r a d m i n i S t r at i o n pa g e 1 2010 a n n u a l r e p o r t Table of conTenTs Letter to the Secretary ------------------------------------------------------------------------------------- 3 Southwestern System Map ------------------------------------------------------------------------------- 4 About Southwestern --------------------------------------------------------------------------------------- 5 Supplementary Information ------------------------------------------------------------------------------ 6 Southwestern Federal Power System Energy Production -------------------------------

343

Procurement | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement | National Nuclear Security Administration Procurement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Procurement Home > About Us > Our Operations > Acquisition and Project Management > Small Business > Procurement Procurement NNSA's Small Business program serves as the Info-structure through which NNSA effectively disseminates information regarding our small business

344

Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Operations Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations Operations NNSA's Emergency Response Operations program acts as the headquarters command and control, functioning as the coordinating focal point for all

345

Accomplishments | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Accomplishments | National Nuclear Security Administration Accomplishments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Accomplishments Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Accomplishments

346

International | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

International | National Nuclear Security Administration International | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog International Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > International International U.S. Department of Energy / U.S. Nuclear Regulatory Commission

347

Contact | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Contact | National Nuclear Security Administration Contact | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Contact Home > About Us > Our Locations > Albuquerque Complex > Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM > Contact Contact "Promoting Equal Opportunity and Cultural Diversity for APAs in Government"

348

Retail Unbundling - Illinois - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Residential Restructuring Status by State. Energy Information Administration (U.S. Dept. of Energy)

349

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity.

350

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... More Tables on New Jersey's Electricity Profile: Formats;

351

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... State Energy Data System ... converted with EIA conversion factors. Strait of Hormuz.

352

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Refrigeration, Office Equipment and Special Space Uses: TXT:

353

Retail Unbundling - California - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Residential Restructuring Status by State. Energy Information Administration (U.S. Dept. of Energy)

354

Retail Unbundling- Michigan - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Residential Restructuring Status by State. Energy Information Administration (U.S. Dept. of Energy)

355

Retail Unbundling - South Carolina - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Residential Restructuring Status by State. Energy Information Administration (U.S. Dept. of Energy)

356

Annual Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Uranium fuel, nuclear reactors, ... About the National Energy Modeling System (NEMS)

357

Federal Energy Management Program: General Services Administration -  

NLE Websites -- All DOE Office Websites (Extended Search)

General Services General Services Administration - Suitland, Maryland to someone by E-mail Share Federal Energy Management Program: General Services Administration - Suitland, Maryland on Facebook Tweet about Federal Energy Management Program: General Services Administration - Suitland, Maryland on Twitter Bookmark Federal Energy Management Program: General Services Administration - Suitland, Maryland on Google Bookmark Federal Energy Management Program: General Services Administration - Suitland, Maryland on Delicious Rank Federal Energy Management Program: General Services Administration - Suitland, Maryland on Digg Find More places to share Federal Energy Management Program: General Services Administration - Suitland, Maryland on AddThis.com... Energy-Efficient Products

358

Management & Administration | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Management & Administration Management & Administration Management & Administration Management & Administration The Office of Management and Administration directs the development, coordination, and execution of overall OIG management and administrative policy and planning. This responsibility includes directing the OIG's strategic planning process, financial management activities, personnel management and security programs, administrative support services, and information resources programs. In addition, the staff members from this Office represent the Inspector General at hearings, negotiations, and conferences on budget, financial, managerial, and other resource matters. The staff also coordinates activities of the Council of Inspector's General on Integrity and Efficiency. The Office is organized into two

359

SUBJECT: National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration Sandia Site Ofce P. 0. Box 5400 Albuquerque, NM 87185 JAN O=P= ONP= Annual National Environmental Policy Act Planning Sumary 2013 Attached is: the Annual National Environmental Policy Act (NEPA) Planning Summary for the National Nuclear Security Administation, Sandia Site Ofce (SSO). Currently, there are two environmental assessments planned and one environmental impact statement in progess for the

360

Recovery | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery | National Nuclear Security Administration Recovery | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Recovery Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > Recovery Recovery NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tools & Resources: Grants Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Grants Administration Grants Administration Better Buildings Neighborhood Program award recipients were selected through two competitive funding opportunity announcements (FOA): Energy Efficiency and Conservation Block Grant Program (EECBG): Retrofit Ramp-up and General Innovation Fund Programs (DE-FOA-0000148) State Energy Program (SEP) Special Project: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action (DE-FOA-0000251) The U.S. Department of Energy (DOE) selected 34 EECBG recipients and seven SEP recipients in 2010. The 41 Better Buildings award recipients need to comply with DOE and American Recovery and Reinvestment Act of 2009 (ARRA) program regulations and guidance, as described in their award special terms and conditions. DOE has made a number of resources available to help grant recipients administer their programs and comply with federal financial assistance policies and regulations.

362

Weapons | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Weapons | National Nuclear Security Administration Weapons | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Weapons Home > Our Mission > Managing the Stockpile > Weapons Weapons The New START Treaty, which was signed in 2010, between the United States and Russian Federation will cap the strategic deployed nuclear arsenals of each country at 1,550 warheads, a nearly 75% reduction compared with the

363

Preparedness | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Preparedness | National Nuclear Security Administration Preparedness | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Preparedness Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > Preparedness Preparedness NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier

364

National Nuclear Security Administration IUA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IUA IUA '1.L'\I~~ Pantex Site Office IIV1'~~4j P. O. Box 30030 Amarillo, TX 79120 National Nuclear Security Administration NEPA Compliance Officer Rationale Pantex Site Office Proj. No.: EXP-IO-OlS-C NEPA ID No.: PXP-IO-OOOI Uninterruptable Power Supply (UPS)/Generator Replacement Application of DOE NEPA Procedure: Categorical Exclusions B 1.3 and B 1.23, Applicable to Facility Operations (10 CFR Part 1021 , Subpart D, Appendix B), apply to the proposed activity described below. Rationale: The U.S . Department of Energy (DOE), National Nuclear Security Administration (NNSA), proposes to demolish Building 12-20, which is 225 square feet (sf) in size, along with a small concrete pad of approximately 32 sf. The building currently houses an inoperable

365

Nonproliferation | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation Home > About Us > Our Programs > Nonproliferation Nonproliferation One of the gravest threats the United States and the international community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA,

366

Veterans | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Veterans | National Nuclear Security Administration Veterans | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Veterans Home > Federal Employment > Our Jobs > Hiring Flexibilities > Veterans Veterans NNSA strives to be a model employer for veterans who wish to continue their service to the nation through civilian employment. When applying for NNSA

367

Engineering | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Engineering | National Nuclear Security Administration Engineering | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Engineering Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Engineering Engineering NNSA uses modern tools and capabilities in the engineering sciences field which are needed to ensure the safety, security, reliability and

368

Benefits | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits | National Nuclear Security Administration Benefits | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Benefits Home > Federal Employment > Working at NNSA > Benefits Benefits The great jobs we have at NNSA also come with comprehensive benefits packages. They are among the best and most comprehensive available and play a vital role in demonstrating the Federal government and NNSA's

369

Benefits | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Benefits | National Nuclear Security Administration Benefits | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Benefits Home > Federal Employment > Working at NNSA > Benefits Benefits The great jobs we have at NNSA also come with comprehensive benefits packages. They are among the best and most comprehensive available and play a vital role in demonstrating the Federal government and NNSA's

370

Policy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Policy | National Nuclear Security Administration Policy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Policy Home > About Us > Our Programs > Emergency Response > Planning for Emergencies > Policy Policy NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier

371

Chapter 02 - Administrative Control of Funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. Administrative Control of Funds 2-1 . Administrative Control of Funds 2-1 CHAPTER 2 ADMINISTRATIVE CONTROL OF FUNDS 1. INTRODUCTION. a. Background/Authority. Title 31, section 1514, of the United States Code (31 U.S.C. 1514), Administrative Division of Apportionments, requires the Secretary of Energy to prescribe and carry out a system for administratively controlling funds. In compliance with this requirement, this chapter establishes the policy and general procedures for administrative control of funds within Department of Energy (DOE), and specifies the penalties that apply to persons who violate these procedures. Additional information regarding DOE's internal control requirements can be found in DOE O

372

National Aeronautics and Space Administration  

E-Print Network (OSTI)

Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as

Curt Niebur; Nasa Headquarters; Terry Hurford; Nasa Goddard; Curt Niebur; Nasa Headquarters

2007-01-01T23:59:59.000Z

373

AN ADMINISTRATIVE CHALLENGE: NUCLEAR MEDICINE  

SciTech Connect

The development of nuclear medicine facilities in hospitals in the United States is discussed, particularly in relation to the problems presented to hospital administration for understanding, organizing, and planning such facilities. The increase in the number of hospital radioisotope departments from 1952 to 1958 was 300%, a growth unparalleled by any other major hospital service. Today, 20%, of the hospitals in the U. S. maintain radioisotope departments. Reasons for the relative lag among smaller hospitals are discussed. Responsibilities of administrations, in seeing that A.E.C. licensing requirements for the use of radioisotopes in general hospitals are maintained, are outlined. Organization of a hospital isotopes committee and appointment of a safety officer is commented on. After an outline of the various radioisotope techniques most useful to the general hospital, the cost of the necessary equipment and other laboratory facilities is estimated. Other problems discussed in relation to responsibilities of hospital administrators include laundry decontamination, shielding, training of nursing personnel, information programs for personnel, legalities arising over radiation exposure claims, and the corresponding need for the keeping of records, autopsies, insurance, waste disposal, public fears and misconceptions, sanitation, and film badge monitoring. (H.H.D.)

Hellman, J.S.

1961-02-01T23:59:59.000Z

374

Data.gov Administrator | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data.gov Administrator Primary tabs View Track(active tab) Type Title Author Replies Last updated Community Consumer Data.gov Administrator 0 2 months 2 weeks ago Forum topic...

375

Obama Administration's Budget Request for NIST Includes ...  

Science Conference Proceedings (OSTI)

... out in the President's Plan for Science ... precision timing, hydrogen energy sources, precision ... three appropriations outlined above, the Administration ...

2011-02-14T23:59:59.000Z

376

Retail Unbundling - California - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Residential Programs by State. Energy Information Administration ... The study responds to questions regarding market structure, ownership, market power, ...

377

Contacts for Administrative Functions | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Functions CIO Leadership Organization Contact Us Acquisition Administration Cyber Security E-Gov Enterprise Architecture Geospatial Science Program Information...

378

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Uranium fuel, nuclear reactors, generation, spent fuel.

379

ASC Newsletter Subscription | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

380

Contact Us | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

National Laboratories Press Release 62912). Institutional Research & Development National Nuclear Security Administration Office of Advanced Simulation and Computing and...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Appendix A Explanatory Notes - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration | Natural Gas Monthly 89 Appendix A ... Imports Derived from the Office of Fossil Energy ...

382

Performance Evaluations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

383

Mission Statements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

384

Whistleblower Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

385

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ...

386

January 2014 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

387

Green Week 2011 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

388

Long Term Care | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

389

January 2011 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

390

March 2011 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

391

National Aeronautics and Space Administration Technologies ...  

National Aeronautics and Space Administration Technologies Available for Licensing ... solar system and universe beyond; ... power, energy storage and conversion, ...

392

NNSA Production Office | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Production Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

393

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Electricity. Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

394

Retail Unbundling - Indiana - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The settlement included redesigned tariffs and bills to facilitate customer choice in the future for commercial and ...

395

Retail Unbundling - Iowa - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... adopted rules that gave utilities the option to file tariffs to implement unbundled service to small customers, ...

396

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... storage, imports and exports, production, prices, sales.

397

Monthly Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, ...

398

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, ...

399

Appendix A: Request Letters - Energy Information Administration  

U.S. Energy Information Administration (EIA)

18 U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman

400

Performance Evaluations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Performance Evaluations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas Supply Conference - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Supply Conference. William Trapmann Energy Information Administration. American Public Gas Association January 30 & 31, 2001

402

Appendix A Explanatory Notes - Energy Information Administration  

U.S. Energy Information Administration (EIA)

October 2013 U.S. Energy Information Administration | Natural Gas Monthly 89 Appendix A Explanatory Notes The Energy Information ...

403

NNSA has 'Natitude' | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

has 'Natitude' | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

404

Albuquerque Complex | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Albuquerque Complex | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

405

May 2013 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

406

August 2012 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

2 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

407

September 2013 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

408

November 2013 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

409

June 2011 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

1 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

410

February 2013 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

411

January 2014 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

4 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

412

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... nuclear reactors, ... The National Hurricane Center is posting routine updates on the status of Hurricane Isaac.

413

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration - EIA ... nuclear reactors, ... Selected National Average Natural Gas Prices, 2008-2013: XLS: PDF:

414

Contact Us | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

415

August 2010 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

416

July 2010 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

417

New Solicitations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

418

Career Paths | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

419

Current Awards | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

420

Public Affairs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... storage, imports and exports, production, prices, ...

422

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... imports and exports, production, prices, sales. Electricity.

423

International Energy Outlook 2011 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural gas Unconventional Total Conventional Natural gas (trillion cubic feet) U.S. Energy Information Administration International Energy Outlook 2011

424

Annual Reports | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Annual Reports | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

425

NEPA Terminology | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

NEPA Terminology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

426

BSL-3 Links | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Links | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

427

Electronic Comment Form | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Electronic Comment Form | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

428

BSL-3 Documents | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Documents | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

429

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Oil shipments through the Strait of Malacca supply China and Indonesia, two of the world's fastest growing ...

430

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the ... wind, geothermal ... so far and a discussion of any last potential ...

431

Nuclear Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

432

Verification & Validation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

433

Russian Locations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

434

March 2012 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

435

Timeline Print | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

436

July 2013 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

437

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

438

Senior Executive Service | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

439

Protective Forces | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

440

Research and Development | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Working with Interpreters | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

442

November 2011 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

443

February 2012 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

444

Site map | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

445

Executive Positions | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

446

Personnel Security Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

447

Career Fitter | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

448

Operations Center | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

449

Presidential Initiatives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

450

February 2013 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

451

March 2013 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

452

Cindy Lersten | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

453

NPO Press Releases | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

454

University Partnerships | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

455

Our Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

456

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

457

Frequently Asked Questions | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

458

NNSA Policy System | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

459

Responding to Emergencies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

460

Render Safe | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Incident Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

462

Bruce Diamond | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

463

First Responders | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

464

Exercise Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

465

Planning for Emergencies | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

466

Program Activities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

467

Steve Asher | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

468

START Signed | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

469

In The Spotlight | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

470

January 2012 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

471

International Exercises | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

472

Supplemental Directives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

473

Consequence Management | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

474

Russian Culture | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

475

Pay-banding | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

476

Production Technology | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

477

ASC Program Elements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

478

Pay Chart | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

479

Aerial Measuring System | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

480

Construction Projects | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

Note: This page contains sample records for the topic "administration cabinet dixie" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Robert B. Raines | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

482

Recruitment Schedule | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

483

Grant Application Process | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

484

Travel Resources | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

485

DEMO Project Goals | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

486

Program Structure | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

487

NNSA Established | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

488

Emergency Communications | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

489

December 2012 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

490

International Engagement | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

491

June 2012 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

492

Other Academic Alliances | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

493

International Partners | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

494

Management and Administration | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

495

Forrestal Watch Office | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

496

ASC Publications | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

497

Program Objectives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

498

ASC Newsletters | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

499

Readiness Assurance | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

500

Alternate Watch Office | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...