Powered by Deep Web Technologies
Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ariz. Admin. Code § R14-2-1603 | Open Energy Information  

Open Energy Info (EERE)

LibraryAdd to library Legal Document- RegulationRegulation: Ariz. Admin. Code R14-2-1603Legal Abstract Certificates of Convenience and Necessity Published NA Year Signed or...

2

Ariz. Admin. Code § R-14-3-219 | Open Energy Information  

Open Energy Info (EERE)

Legal Document- OtherOther: Ariz. Admin. Code R-14-3-219Legal Abstract Power Plant and Transmission Line Siting Committee: Form of application for certificate of environmental...

3

Ariz. Admin. Code § R14-3-219 | Open Energy Information  

Open Energy Info (EERE)

Legal Document- OtherOther: Ariz. Admin. Code R14-3-219Legal Abstract Power Plant and Transmission Line Siting Committee: Form of application for certificate of environmental...

4

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2004-10-01T23:59:59.000Z

5

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-03-15T23:59:59.000Z

6

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-01-30T23:59:59.000Z

7

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-11-20T23:59:59.000Z

8

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-08-15T23:59:59.000Z

9

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-01-18T23:59:59.000Z

10

CH-TRU Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-10-15T23:59:59.000Z

11

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-05-01T23:59:59.000Z

12

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-12-15T23:59:59.000Z

13

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-06-20T23:59:59.000Z

14

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2006-06-20T23:59:59.000Z

15

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-08-15T23:59:59.000Z

16

CH-TRU Waste Content Codes (CH TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2004-12-01T23:59:59.000Z

17

CH-TRU Waste Content Codes (CH-TRUCON)  

SciTech Connect (OSTI)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

Washington TRU Solutions LLC

2005-01-15T23:59:59.000Z

18

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

19

Admin login? | OpenEI Community  

Open Energy Info (EERE)

Admin login? Admin login? Home > Groups > Databus What is the admin login for a new DataBus installation? And how do we change that password? Thanks, Submitted by Hopcroft on 5 September, 2013 - 16:59 1 answer Points: 0 Databus works with ActiveDirectory when using ./startProduction or ./startQa scripts. Using ./startDemo.sh allows the use of admin/nreliscool as the login/password. You should be able to run your development instance against Active Directory though just by setting the prod.domain=yourdomain.com where yourdomain is changed to your domain. thanks, Dean Deanhiller on 6 September, 2013 - 07:00 Groups Menu You must login in order to post into this group. Recent content Go to My Databus->Data Streams... yes, it is done the same way y... Update rows? How to use streaming chart?

20

Admin login? | OpenEI Community  

Open Energy Info (EERE)

Admin login? Admin login? Home > Groups > Databus What is the admin login for a new DataBus installation? And how do we change that password? Thanks, Submitted by Hopcroft on 5 September, 2013 - 16:59 1 answer Points: 0 Databus works with ActiveDirectory when using ./startProduction or ./startQa scripts. Using ./startDemo.sh allows the use of admin/nreliscool as the login/password. You should be able to run your development instance against Active Directory though just by setting the prod.domain=yourdomain.com where yourdomain is changed to your domain. thanks, Dean Deanhiller on 6 September, 2013 - 07:00 Groups Menu You must login in order to post into this group. Recent content Go to My Databus->Data Streams... yes, it is done the same way y... Update rows? How to use streaming chart?

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Memorandum, CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"  

Broader source: Energy.gov [DOE]

CH2M HG Idaho, LLC, Request for Variance to Title 10 Code of Federal Regulations part 851, "Worker Safety and Health"

22

Bonneville Power Admin (Washington) | Open Energy Information  

Open Energy Info (EERE)

Bonneville Power Admin Bonneville Power Admin Place Washington Utility Id 1738 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0046/kWh The following table contains monthly sales and revenue data for Bonneville Power Admin (Washington). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 2,220.339 71,908.718 8 2,220.339 71,908.718 8

23

Bonneville Power Admin | Open Energy Information  

Open Energy Info (EERE)

Power Admin Power Admin Jump to: navigation, search Name Bonneville Power Admin Place Oregon Utility Id 1738 Utility Location Yes Ownership F NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IP - 12 Industrial NR - 12 Industrial PF - 12 Exchange Residential PF - 12 Public - Average Tier 1 + Tier 2 rate Residential PF - 12 Public - Average Tier 1 rate Residential

24

Crosswalk between DOERS and Admin Schedules  

Broader source: Energy.gov (indexed) [DOE]

2/00 2/00 Cross-Walk -DOERS to Admin Sched rev2.wpd DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules DOERS Item Number Description of Records DOE Administrative or Programmatic Schedule Number / Item NARA Case Number DOERS 1, Medical, Health and Safety Records DOERS 1, Item 1a Safety Management Records DOE Admin18, Item 11.1a, NC-326-75-2 DOERS 1, item 1 (b, c, d, & e) Safety Management Records DOE Admin 18, item 11.1 (c, d, e & f) II NNA-1023(2) II NNA-310(6) II NNA-1023(3) II NNA-409(25) DOERS 1, Item 2 Fire Unit Records DOE Admin18 ,Item 11.4 (a thru g) NC-430-76-2(3) II NNA-1858(1B) II NNA-2939 II NNA-1858(1C) II NNA-1858(E) II NNA-1858(1F) DOERS 1, Item 3 Medical or Health Research Project Case Files R & D Programmatic Schedule

25

Description of the FCUP code used to compute currents due to recoil protons from CH/sub 2/ foils  

SciTech Connect (OSTI)

A computer code, FCUP, was developed at EG and G during the period from 1973 to the present to compute proton currents produced by a time- and energy-dependent neutron flux striking a CH/sub 2/ foil and knocking protons into a detector placed at an angle with respect to the target foil and the neutron beam. This report describes the methods of calculation used and the physical assumptions and limitations involved and suggests possibilities for improving the calculations.

Stelts, M.L.; Glasgow, D.W.; Wood, B.E.; Craft, A.D.

1982-07-01T23:59:59.000Z

26

[20:22 2003/9/25 DOWLA-CH12.tex] DOWLA: Handbook of RF and Wireless Technologies Page: 375 375400 TURBO CODES  

E-Print Network [OSTI]

without an FEC code, coded systems can afford to operate with a lower transmit power, transmit over longer[20:22 2003/9/25 DOWLA-CH12.tex] DOWLA: Handbook of RF and Wireless Technologies Page: 375 375 powerful types of forward-error-correcting channel codes. Included is not only a discus- sion

Valenti, Matthew C.

27

Southeastern Power Admin | Open Energy Information  

Open Energy Info (EERE)

Power Admin Power Admin Place Georgia Utility Id 29304 Utility Location Yes Ownership F NERC Location SERC NERC FRCC Yes NERC SERC Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Wholesale Power Rate Schedule AP-1-B Commercial Wholesale Power Rate Schedule AP-2-B Commercial Wholesale Power Rate Schedule AP-3-B Commercial Wholesale Power Rate Schedule AP-4-B Commercial Wholesale Power Rate Schedule CBR-1-H Commercial Wholesale Power Rate Schedule CC-1-I Commercial Wholesale Power Rate Schedule CK-1-H Commercial

28

Geothermal: Sponsored by OSTI -- Quality Assurance of NUFT Code...  

Office of Scientific and Technical Information (OSTI)

Quality Assurance of NUFT Code for Underground Test Area (UGTA) Activities Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

29

E-Print Network 3.0 - admin tool detail Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Speak clearly and enunciate your words so that you can be understood. Sys Admins: "ME Help Desk... to identify them to the users of the lab. Sys Admins, Linux Admins ... Source:...

30

Property:Incentive/ProgAdmin | Open Energy Information  

Open Energy Info (EERE)

ProgAdmin ProgAdmin Jump to: navigation, search Property Name Incentive/ProgAdmin Property Type String Description Program Administrator. Pages using the property "Incentive/ProgAdmin" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + Clean Energy Development Fund and Vermont Department of Taxes + A AEP (Central and North) - CitySmart Program (Texas) + CLEAResult Consulting + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + CLEAResult Consulting + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + CLEAResult Consulting + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + CLEAResult Consulting + AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program (Ohio) + AEP Ohio gridSMART +

31

UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone  

Broader source: Energy.gov (indexed) [DOE]

UTILITIES UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OREGON BONNEVILLE POWER ADMIN POC Greg Eisenach Telephone (360) 418-8063 Email gaeisenach@bpa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan

32

TO NATIONAL ARCHIVES and RECOIXDS ADMIN  

Broader source: Energy.gov (indexed) [DOE]

/nstructions on revers /nstructions on revers -- TO NATIONAL ARCHIVES and RECOIXDS ADMIN WASHINGTON, DC 20408 1 . FROM (Agency o r establishment) ICATION TO AGENCY DepartinentofEnera 2. MAJOR SUBDIVISION N a t i o n a I Erierqv I n f ornlation C e n t e r 4. NAME OF PERSON WI-rt4 WHOM TO CONFERTE~TELEPHONE 6. AGENCY CERTIFICATION / I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal 0 1 1 t l ~ e attdched P page(s) are not now needed for the business of this agency or wil not be needed afier the retention eriods s eciiied; and that written concurrence from P r the General A c c o ~ l l ~ t i n g Office, undcr the provisions o Title 8 o the GAO Manual for Guidance of Federal a is not required; is c~ttc:chcd; or L

33

A description of NUEXS, an upgrade of the code FCUP used to compute proton recoil current from CH{sub 2} foils  

SciTech Connect (OSTI)

A computer code, FCUP, developed by A. Craft computes currents of recoil protons from a time- and energy-dependent neutron flux striking a CH{sub 2} foil. Three problem areas need to be addressed to extend the code`s usefulness. First, FCUP computes a response that is not time dependent; that is, only the input time bin is broadened to account for the finite time distribution of protons from a single neutron energy; second, the time coordinate of the signal predicted is translated arbitrarily rather than absolutely relative to the time of maximum neutron production in the source; and third, the code does not account for electron pickup by protons at low proton energies in the target and absorber foils. This report describes the changes in calculational method used to overcome these problems.

Stelts, M.L.; Wood, B.E.

1982-08-01T23:59:59.000Z

34

FORESTRY COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone  

Broader source: Energy.gov (indexed) [DOE]

FORESTRY FORESTRY COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Timber tract operations 113110 Cutting and transporting timber 113310 GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov Timber tract operations 113110 Cutting and transporting timber 113310 NEW MEXICO NNSA SERVICE CENTER POC Gregory Gonzales Telephone (505) 845-5420 Email ggonzales@doeal.gov Timber tract operations 113110 Cutting and transporting timber 113310 OHIO EM BUSINESS CENTER POC Karen Bahan Telephone (513) 246-0555 Email karen.bahan@emcbc.doe.gov Timber tract operations 113110 Cutting and transporting timber 113310 OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa.gov Timber tract operations 113110

35

RAPID/Roadmap/19-AK-c | Open Energy Information  

Open Energy Info (EERE)

41.06.060 - Geothermal Resources Definitions Alaska Admin. Code tit. 11, ch. 93 - Water Management Alaska Admin. Code tit. 11, ch. 05.010 - Fees Resources SET VARIABLES FOR...

36

U.S. Department of Energy Southwestern Power Admin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Admin Admin istration Categorical Exclusion Determination Form Proposed Action Title: Moodys Radio Tower Land Acquisition Program or Field Office: Southwestern Power Administration Location(s) (City/County/State): Moodys, Cherokee County, Oklahoma Proposed Action Description: Southwestern Power Administration proposes to obtain title, in fee, for a portion of land at the Southwestern Power Administration Moody Radio Tower site. Categorical Exclusion(s) Applied: I 0 CFR 1021, Appendix B to Subpart D, Part B 1.24- Transfer, lease, disposition, or acquisition of interests in personal property or real property. For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of 10 CFR Part 1021

37

SBOT GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone  

Broader source: Energy.gov (indexed) [DOE]

GEORGIA GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

38

Code Description Code Description  

E-Print Network [OSTI]

Fellowship - Tuition 5568 Grant 5130 Academic Faculty Fringe Benefits 5567 Scholarship 5137 Admin Faculty Fringe Benefits 5138 Research Faculty Fringe Benefits 5135 Temp Faculty Fringe Benefits 5304 Computer Services 5142 Tuition Waiver - Faculty/Admin 5305 Computer Svcs (Ext) 5459 Contract/ Pers Service

39

NEW - DOE O 422.1 Admin Chg 2, Conduct of Operations - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEW - DOE O 422.1 Admin Chg 2, Conduct of Operations by Diane Johnson The objective of this Order is to define the requirements for establishing and implementing Conduct of...

40

Certification for DOE O 422.1 Admin Chg 1 - DOE Directives, Delegation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

There is no history to display for this document. Certifies: DOE O 422.1 Admin Chg 2, Conduct of Operations on Dec 03, 2014 There are no exemptions listed for this document....

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microsoft PowerPoint - PaulBoscoProjMgmtContAdmin  

Broader source: Energy.gov (indexed) [DOE]

Procurement Conference Procurement Conference November 28, 2007 Paul Bosco, PE, PMP Director, OECM Office of Management Office of Engineering and Construction Management 2 Operational Organization Chart Office of Engineering & Construction Management POLICY - GUIDANCE - OVERSIGHT Pete Check Deputy Director Steven Rossi - Budget Rosalyn Matthews - Admin Assist. Secretarial Support (CTAC) - Rekiya Barber Pete Check Deputy Director Steven Rossi - Budget Rosalyn Matthews - Admin Assist. Secretarial Support (CTAC) - Rekiya Barber Vacant* Director for Project Management Systems & Assessments Vacant* Director for Project Management Systems & Assessments Rosalie Jordan** Director for Facilities Management & Professional Development Rosalie Jordan** Director for Facilities Management &

42

Admin Duties [by Duty] for 10-11 Duty Type / Scope Name  

E-Print Network [OSTI]

Admin Duties [by Duty] for 10-11 Duty Type / Scope Name Convenor - Non-Hons BoE & SCC Committees Bradfield, Julian Convenor - BoE - UG3 BoE & SCC Committees Kalorkoti, Kyriakos - UG4 BoE & SCC Committees Arvind, DK - MSc BoE & SCC Committees [inc EuMi and DTC] Stirling, Colin Co-ordinator - British

Edinburgh, University of

43

ch_9  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 9.0 Re Re f f er er ences ences 9-1 DOE/EIS-0287 DOE/EIS-0287 9-2 References Chapter 1 DOE (U.S. Department of Energy), 1999, Record of Decision Idaho Nuclear Technology and Engineering Center Operable Unit 3-13, Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho, DOE/ID-10660, Idaho Operations Office, Idaho Falls, Idaho, October. Kelly, K. B., 1999, State of Idaho, Office of Attorney General, Boise, Idaho, letter to B. Bowhan, U.S. Department of Energy, Idaho Operations Office, Idaho Falls, Idaho, transmitting "Third Modification to Consent Order," Idaho Code §39-4413, April 20. USDC (U.S. District Court for the District of Idaho), 1995, Public Service Company of Colorado v. Philip E. Batt, Civil No. 91-0035-S-EJL (Lead Case), Consent Order, October

44

CH Packaging Operations Manual  

SciTech Connect (OSTI)

Introduction - This procedure provides instructions for assembling the following CH packaging payload: -Drum payload assembly -Standard Waste Box (SWB) assembly -Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2003-06-26T23:59:59.000Z

45

CH Packaging Operations Manual  

SciTech Connect (OSTI)

This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

Washington TRU Solutions LLC

2005-06-13T23:59:59.000Z

46

Harmonizing Above Code Codes  

Broader source: Energy.gov (indexed) [DOE]

Harmonizing "Above Code" Harmonizing "Above Code" Codes Doug Lewin Executive Director, SPEER 6 Regional Energy Efficiency Organizations SPEER Members Texas grid facing an energy crisis * No new generation coming online * Old, inefficient coal-fired plants going offline * ERCOT CEO Trip Doggett said "We are very concerned about the significant drop in the reserve margin...we will be very tight on capacity next summer and have a repeat of this year's emergency procedures and conservation appeals." Higher codes needed to relieve pressure Building Codes are forcing change * 2012 IECC 30% higher than 2006 IECC * IRC, the "weaker code," will mirror IECC in 2012 * City governments advancing local codes with

47

SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch  

E-Print Network [OSTI]

SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch Allows monitoring AER over at the University of Sevilla and the second by Tobi Delbruck at INI in Zurich. The firmware and host code is written. Last modified 8/20/2005 Under subversion https://svn.ini.unizh.ch/repos/avlsi/CAVIAR/wp5/USBAER

Delbruck, Tobi

48

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field  

E-Print Network [OSTI]

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

Yoo, S. J. Ben

49

Laplace Transforms (Ch. 7) LAPLACE TRANSFORMS (Ch. 7)  

E-Print Network [OSTI]

Laplace Transforms (Ch. 7) LAPLACE TRANSFORMS (Ch. 7) ? restart; ? with( plots ): ? with( DEtools ): The Laplace transform is a very common, and useful, technique for solving and analyz­ ing the solution of the Laplace transform is that derivatives are transformed into powers; thus, the differential equation

Meade, Douglas B.

50

marchand@cui.unige.ch Collection Guiding  

E-Print Network [OSTI]

marchand@cui.unige.ch Collection Guiding: Multimedia Collection Browsing and Visualization Stéphane Marchand-Maillet Viper ­ CVML ­ University of Geneva marchand@cui.unige.ch http://viper.unige.ch marchand Perspectives marchand@cui.unige.ch © http://viper.unige.ch ­ December 2004 3 Collection Guiding: Browsing

Genève, Université de

51

CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II  

E-Print Network [OSTI]

Physics PHYS 4312 Nuclear and Particle Physics Other Engineering Electives #12;CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II CH E 3330 Engineering Materials Science CH E 4342 Polymer Physics

Zhang, Yuanlin

52

NEW - DOE O 422.1 Admin Chg 2, Conduct of Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to define the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. A Conduct of Operations Program consists of formal documentation, practices, and actions implementing disciplined and structured operations that support mission success and promote worker, public, and environmental protection. The goal is to minimize the likelihood and consequences of human fallibility or technical and organizational system failures. Conduct of Operations is one of the safety management programs recognized in the Nuclear Safety Rule [Title 10 Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management], but it also supports safety and mission success for a wide range of hazardous, complex, or mission-critical operations, and some conduct of operations attributes can enhance even routine operations. It supports the Integrated Safety Management (ISM) System by providing concrete techniques and practices to implement the ISM Core Functions of Develop and Implement Hazard Controls and Perform Work Within Controls. It may be implemented through facility policies, directives, plans, and safety management systems and need not be a stand-alone program.

53

Data Coding  

Science Journals Connector (OSTI)

Data coding is the classification of data and assignment of a representation for that data, or the assignment of a specific code...

2008-01-01T23:59:59.000Z

54

CH Packaging Program Guidance  

SciTech Connect (OSTI)

The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

Washington TRU Solutions LLC

2005-02-28T23:59:59.000Z

55

AEC ADMIN Files  

Broader source: Energy.gov (indexed) [DOE]

utmaan~ mrm NO. u utmaan~ mrm NO. u s Romnlacd %I+ b 1 ; e n r d ~ m ~ d r n ~ f n n t b n r k S U I ~ ~ ~ t e h ~ ~ e u REQ*';T FOR AUTHORITY TO fi POSE OF RECORDS (Forinrtructionson the use ol fhk form raa Naiionat Archhsr Manual o n the Dirpoartion ol Federal Xscords) - - - . -. - m: THE ARCHIVIST OF THE UNITED STATES, NATIONAL ARCH IVES. WASHINGTON 25. D . C. 1. FROM (AGENCY OR ESTABLIMhlLVll DATE "iCilVEC - 1 - ~. CONGRESSIONAL AUWORIUTION HOUSE NO. 1 $9 9 r n m m r - - .~ U. S. Atomic Enerm Coimission --- Is" I - - - / * -l',,,1.7./,--,' 2 . MAJOR SUBDIVISION NOTIFICATION TO AGENCY .. All Cost-type Contractors CONG 21%; H*S AUTHORIZED SP;"?KIL w R P ~ S W R K ~ --I "DIST.5;bL AI'PROVCD" IN CQLCUS 10 3 . MINOR SUBQIVISION . ~ . . + NAME OF PERSON barn w o h t TO COFFER Thomas J. Puglies3

56

Theresa Jackson Admin. Assistant  

E-Print Network [OSTI]

& Chem Eng. -School of Law -Social Work -Weidenbaum Center Stephanie Bemberg Research Grant Specialist School -Chemistry -Computer Science Eng. -Design & Visual Arts Sch. -Edison Theatre -Engineering.moore@wustl.edu Office of Sponsored Research Services - Grant Team Teri Medley Director 747-4444 teri

Kroll, Kristen L.

57

www.sprachenzentrum.uzh.ch Language Center  

E-Print Network [OSTI]

of Zurich and ETH Zurich Rämistrasse 71 CH-8006 Zurich Phone +41 44 634 52 81 Fax +41 44 634 82 89 wwwwww.sprachenzentrum.uzh.ch Language Center University of Zurich Language Center of the University

Zürich, Universität

58

Code constructions and code families for nonbinary quantum stabilizer code  

E-Print Network [OSTI]

Stabilizer codes form a special class of quantum error correcting codes. Nonbinary quantum stabilizer codes are studied in this thesis. A lot of work on binary quantum stabilizer codes has been done. Nonbinary stabilizer codes have received much...

Ketkar, Avanti Ulhas

2005-11-01T23:59:59.000Z

59

SC-CH FACTS Customer Service  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SC-CH FACTS SC-CH FACTS Customer Service Office of Communications P (630) 252-2110 F (630) 252-9473 Address 9800 South Cass Ave. Argonne, Illinois 60439 Websites Chicago Office www.ch.doe.gov Office of Science http://science.energy.gov/ U.S. Department of Energy http://energy.gov/ CH Factoids Who We Are ... Our Mission The Office of Science - Chicago Office (SC-CH) is a field office of the U.S. Department of Energy (DOE), a Cabinet-level agency with

60

CH Packaging Operations for High Wattage Waste  

SciTech Connect (OSTI)

This document provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

Washington TRU Solutions LLC

2006-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Department Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department Codes Department Codes Code Organization BO Bioscience Department BU Business Development & Analysis Office DI Business Operations NC Center for Functional Nanomaterials CO Chemistry Department AD Collider Accelerator Department PA Community, Education, Government and Public Affairs CC Computational Science Center PM Condensed Matter Physics and Materials Science Department CI Counterintelligence AE Department of Energy DC Directorate - Basic Energy Sciences DK Directorate - CEGPA DE Directorate - Deputy Director for Operations DO Directorate - Director's Office DH Directorate - Environment, Safety and Health DF Directorate - Facilities and Operations DA Directorate - Global and Regional Solutions DB Directorate - Nuclear and Particle Physics DL Directorate - Photon Sciences

62

Project: UAF Utilities Waste Line Repairs Ch6 to Ch13 Project No: 2013101 UTWH  

E-Print Network [OSTI]

Project: UAF Utilities Waste Line Repairs Ch6 to Ch13 Project No: 2013101 UTWH Subject: Project Schedule Project Duration: May 27 to August 10, 2014 The sewer line will be constructed in phases

Ickert-Bond, Steffi

63

High Performance “Reach” Codes  

E-Print Network [OSTI]

Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

Edelson, J.

2011-01-01T23:59:59.000Z

64

Coded Data  

Science Journals Connector (OSTI)

An individual is given a number and all that individual's data is encoded under that number so that the individual cannot be recognized. Data are then collated, analyzed and reported on ... the code to the pers...

2008-01-01T23:59:59.000Z

65

Enforcement Letter, CH2M Hill Hanford Group Inc, - September...  

Office of Environmental Management (EM)

CH2M Hill Hanford Group Inc, - September 6, 2007 Enforcement Letter, CH2M Hill Hanford Group Inc, - September 6, 2007 September 6, 2007 Issued to CH2M Hill Hanford Group, Inc.,...

66

NMR Study of the Dynamics of ILs with -CH2Si(CH3)3 vs CH2C(CH3)3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetic Resonance Study of the Dynamics of Imidazolium Ionic Magnetic Resonance Study of the Dynamics of Imidazolium Ionic Liquids with -CH2Si(CH3)3 vs CH2C(CH3)3 Substituents S. H. Chung, R. Lopato, S. G. Greenbaum, H. Shirota, E. W. Castner, Jr. and J. F. Wishart J. Phys. Chem. B 111, 4885-4893 (2007). [Find paper at ACS Publications] or use ACS Articles on Request Abstract: Trimethylsilylmethyl (TMSiM)-substituted imidazolium bis(trifluoromethylsulfonyl)imide (NTf2-), and tetrafluoroborate (BF4-) ionic liquids (ILs) have lower room-temperature viscosities by factors of 1.6 and 7.4, respectively, than isostructural neopentylimidazolium ILs. In an attempt to account for the effects of silicon substitution in imidazolium RTILs and to investigate the ion dynamics, we report nuclear magnetic resonance (NMR) measurements of 1H (I = 1/2) and 19F (I = 1/2)

67

Secondary kinetics of methanol decomposition : theoretical rate coefficients for {sup 3}CH{sub 2} + OH, {sup 3}CH{sub 2} + {sup 3}CH{sub 2}, and {sup 3}CH{sub 2} + CH{sub 3}.  

SciTech Connect (OSTI)

Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the {sup 3}CH{sub 2} + OH, {sup 3}CH{sub 2} + {sup 3}CH{sub 2}, and {sup 3}CH{sub 2} + CH{sub 3} barrierless association reactions. The predicted rate coefficient for the {sup 3}CH{sub 2} + OH reaction ({approx} 1.2 x 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1} for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the {sup 3}CH{sub 2} + CH{sub 3} and {sup 3}CH{sub 2} + {sup 3}CH{sub 2} reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C{sub 2}H{sub 2} + 2H and C{sub 2}H{sub 2} + H{sub 2} products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH{sub 3} and OH and for the CH{sub 3} + OH reaction, are used to test the geometric mean rule for the CH{sub 3}, {sup 3}CH{sub 2}, and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the {sup 3}CH{sub 2} + OH and {sup 3}CH{sub 2} + CH{sub 3} reactions to better than 20%, with a larger (up to 50%) error for the CH{sub 3} + OH reaction.

Jasper, A. W.; Klippenstein, S. J.; Harding, L. B.; Chemistry

2007-09-06T23:59:59.000Z

68

ChIP-seq Identification of Weakly Conserved Heart Enhancers  

SciTech Connect (OSTI)

Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme non-coding sequence conservation successfully predicts enhancers active in many tissues, but fails to identify substantial numbers of heart enhancers. Here we used ChIP-seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over three thousand candidate heart enhancers genome-wide. Compared to other tissues studied at this time-point, most candidate heart enhancers are less deeply conserved in vertebrate evolution. Nevertheless, the testing of 130 candidate regions in a transgenic mouse assay revealed that most of them reproducibly function as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary constraint of embryonic enhancers can vary depending on tissue type.

Blow, Matthew J.; McCulley, David J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Bristow, James; Ren, Bing; Black, Brian L.; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

2010-07-01T23:59:59.000Z

69

Codes and Standards Activities  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards...

70

Green Building Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

71

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073  

E-Print Network [OSTI]

plasmas for these tokamaks have been constructed [1] using the TRANSP plasma analysis code. Neutral beamPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA of the Neutral-beam-induced Rotation, Radial Electric Field, and Flow Shearing Rate in Next-step Burning Plasmas

72

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUMDUAL BS CHE/CH MAJOR (leading to BS ChE w/ 2 majors) Revised 6-25-13 CSB CH 101 (4) Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network [OSTI]

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUMDUAL BS CHE/CH MAJOR (leading to BS ChE w/ 2 majors) Revised 6-25-13 CSB CH 101 (4) Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH 118) CH 101 (4) CH 102 (4) CH 231 (3) CH 223 (4) CH 461 (3) c CH

Carver, Jeffrey C.

73

Approved Module Information for CH3108, 2014/5 Module Title/Name: Polymer III Module Code: CH3108  

E-Print Network [OSTI]

Additives for Polymer Modification [Part 2]:To illustrate the role of different additives in plastics School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 20 and their effects in modifying polymer properties and performance using different modification methods

Neirotti, Juan Pablo

74

Introduction Properties of Expander Codes  

E-Print Network [OSTI]

of Expander Codes Our Results Conclusions Background Basic Definitions LDPC Codes Expander Codes Turbo CodesIntroduction Properties of Expander Codes Our Results Conclusions Expander Codes: Constructions, Haifa 32000, Israel. Vitaly Skachek Expander Codes: Constructions and Bounds #12;Introduction Properties

Skachek, Vitaly

75

DOE Code:  

Broader source: Energy.gov (indexed) [DOE]

we1rbox installatiOn we1rbox installatiOn ____:....;...=.~;;....:..;=-+- DOE Code: - - !- Project Lead: Wes R1esland NEPA COMPLIANCE SURVEY J 3-24-10 1 Date: Project Information 1. Project Overview What are tne enwonmental mpacts? Contractor~~ _ _ _ _ ] 11 The purpose of this project is to prepare a pad for a 90 ton crane to get 1nto positiOn and ng up so we can 1 set our new weir box into position We will widen the existing road around 20 feet at the north end and taper our fill to about5 feet at the south end for a total of about 200 feeL and budd a near level pad for them tong up the crane on We will use the d1rt from the hill irnrnedJateiy north of the work to oe done 2. 3 4 What*s the legal location? What IS the durabon of the prOJed?

76

J. Am. Chem. SOC.1994,116, 7815-7826 7815 Conversion of CH4 to CH3OH: Reactions of COO+with CH4  

E-Print Network [OSTI]

J. Am. Chem. SOC.1994,116, 7815-7826 7815 Conversion of CH4 to CH3OH: Reactions of COO+with CH4 a half century because of its great economic and scientific importance.' Although this oxidation reaction of providing fundamental information regarding this process is to study a prototypical gas-phase reaction MO

Clemmer, David E.

77

Usage Codes Observer code Vessel code Trip ID  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Observer code Vessel code Trip ID Permit holder name/address Permit / N MMSI No. Y / N Present? Usage Water capacity (m3): Fuel capacity: m3 / tonnes Other: Other: Kw all that apply & note types of materials for each) Capacity: Usage Incinerator: Net mensuration Y / N

78

Usage Codes Observer code Vessel code Trip ID  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Sonar Observer code Vessel code Trip ID Additional Information KHz: RPM / Other _______________Global Registry ID:MMSI No. Permit expiration (dd-mm- yy): Y / N Present? Usage contact Diver / dive equipment Usage Manufacturer Hull mounted / towed Catch Y / N Other: Y / N Y / NOther

79

CH353 Physical Chemistry I Summer 2012  

E-Print Network [OSTI]

CH353 Physical Chemistry I Summer 2012 OUTLINE AND SCHEDULE This course will be team taught by Prof. Robert Wyatt and Lauren Webb Text: P. Atkins and J. de Paula, Physical Chemistry, 9th edition This course-T phase diagrams 2. Sublimation curve, vaporization curve, melting curve, triple point, critical point 3

80

COST 526 Project CH4 Final Report  

E-Print Network [OSTI]

1 COST 526 ­ Project CH4 Final Report Modelling, Simulating and Analysing EQ-Casting and Quenching. Remark: Due to the delay of the funding of the proposed investment casting project we change the focus of the project. The development of an Open Source optimization tool (see collaboration) was a relevant

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Last revised: December 2011 CH 153K  

E-Print Network [OSTI]

-volume reference tool such as the CRC Handbook of Chemistry and Physics. It mightLast revised: December 2011 CH 153K Finding Physical and Chemical Property be electronic versions of printed books (e.g. the CRC Handbook), or they may

82

Codes 101 | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes 101 Codes 101 This course covers basic knowledge of energy codes and standards, the development processes of each, historical timelines, adoption, implementation, and enforcement of energy codes and standards, and voluntary energy efficiency programs. Most sections have links that provide additional details on that section's topic as well as additional resources for more information. Begin Learning! Estimated Length: 1-2 hours CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Self-paced, online Building Type: Commercial Residential Focus: Adoption Code Development Compliance Code Version: ASHRAE Standard 90.1 International Energy Conservation Code (IECC) Model Energy Code (MEC) Target Audience: Advocate Architect/Designer Builder

83

Earth & Aquatic Sciences Admin Support  

E-Print Network [OSTI]

. M. Iversen R. J. Norby J. R. Phillips D. E. Todd, Jr J. M. Warren Atmospheric Radiation Measurement. Sorensen J. W. Terry Risk and Regulatory Analysis C. W. McGinn R. A. Raschke A. Q. Armstrong R. E. Bock G

84

Earth & Aquatic Sciences Admin Support  

E-Print Network [OSTI]

. Copeland-Pfeiffer D. J. Brice J. Childs N. Griffiths * p L. Gu C. M. Iversen R. J. Norby J. R. Phillips J J. W. Terry Risk and Regulatory Analysis C. W. McGinn R.A. Raschke A. Q. Armstrong R. E. Bock F. G

85

Administrator Asst. Admin.(OAR)  

E-Print Network [OSTI]

's Guide to Radon (`86) > (`86) > RERP (`86) > (`87) > Air Concentration and Dose Conversion Factors Implementation Activities External Factors (`70) | (`70) (`71) R. Sansom (`72) | (`70) (`74) | (`74) | (`73) (`77) > (`74) > Department of Energy Organization Act Creates DOE (`77) > i l fi i lvi i i (`77) > CRCPD Report

86

Joint/Intercollege (Admin. Home)  

E-Print Network [OSTI]

) Genomic Sciences Master of Bioinformatics x (COS) Doctor of Philosophy Bioinformatics x (COS) Master of Science Functional Genomics x (COS) Master of Functional Genomics x (COS) Doctor of Philosophy Functional Genomics x (COS) #12;

Liu, Paul

87

People's Physics Book Ch 8-1 The Big Idea  

E-Print Network [OSTI]

People's Physics Book Ch 8-1 The Big Idea When any two bodies in the universe interact, they can components are conserved. #12;People's Physics Book Ch 8-2 Key Concepts · Impulse is how momentum

California at Santa Cruz, University of

88

CH-ANL Report.indd  

Broader source: Energy.gov (indexed) [DOE]

1 2.0 STATUS AND RESULTS ..................................................................... 1 3.0 CONCLUSIONS .................................................................................... 5 4.0 RATING ................................................................................................. 5 5.0 OPPORTUNITIES FOR IMPROVEMENT .......................................... 6 APPENDIX A: SUPPLEMENTAL INFORMATION ................................... 7 APPENDIX B: SITE-SPECIFIC FINDINGS ................................................. 8 Abbreviations Used in This Report ANL Argonne National Laboratory CH Offi ce of Science Chicago Offi ce CIC Classifi cation and Information Control DOE U.S. Department of Energy NNSA National Nuclear Security Administration

89

JASPERSE CHEM 350 TEST 2 VERSION 1 Ch. 4 The Study of Chemical Reactions; Ch. 5 Stereochemistry  

E-Print Network [OSTI]

nucleophile that you could use to make the following by SN2. (3 points) OCH2CH3 3. For the structure shown, (3JASPERSE CHEM 350 TEST 2 VERSION 1 Ch. 4 The Study of Chemical Reactions; Ch. 5 Stereochemistry Ch of the following is true regarding an SN1 reaction? a. It would be faster at 25° than 50° b. It would be faster

Jasperse, Craig P.

90

Unusual reaction paths of SN2 nucleophile substitution reactions CH4+H-  

E-Print Network [OSTI]

Unusual reaction paths of SN2 nucleophile substitution reactions CH4+H- CH4+H- and CH4+F- CH3F for the SN2 nucleophile substitution reactions CH4+H- CH4+H- and CH4+F- CH3F+H- . The calculated gradient of the PES, which is observed for almost all the studied gas phase SN2 reactions [1-18]. However, when

Quapp, Wolfgang

91

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Broader source: Energy.gov (indexed) [DOE]

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

92

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

93

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

94

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

95

Coding AuthentiCity  

E-Print Network [OSTI]

This thesis analyzes the impact of form-based codes, focusing on two research questions: (1) What is the underlying motivation for adopting a form-based code? (2) What motivations have the most significant impact on ...

Mercier, Rachel Havens

2008-01-01T23:59:59.000Z

96

Introduction to Algebraic Codes  

E-Print Network [OSTI]

for health care. These self-correcting codes that occur in nature might be better than all of. our coding theory based on algebra or algebraic geometry. It is a myth

97

Ch. VII, Temperature, heat flow maps and temperature gradient...  

Open Energy Info (EERE)

Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the...

98

Ch. VI, The geophysical environment around Waunita Hot Springs...  

Open Energy Info (EERE)

Ch. VI, The geophysical environment around Waunita Hot Springs Author A. L. Lange Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

99

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect (OSTI)

This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2005-04-04T23:59:59.000Z

100

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect (OSTI)

This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2005-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2011 Annual Planning Summary for Chicago Operations Office (CH)  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Chicago Operations Office (CH) (See Science APS).

102

Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H? ? CH4 + H? and CH4 + F? ? CH3F + H?: Quantum chemical calculations  

Science Journals Connector (OSTI)

Abstract Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H? ? CH4 + H? and CH4 + F? ? CH3F + H?. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

Ruslan M. Minyaev; Wolfgang Quapp; Benjamin Schmidt; Ilya V. Getmanskii; Vitaliy V. Koval

2013-01-01T23:59:59.000Z

103

Sustainable Acquisition Coding System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents &...

104

GENII Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GENII Code GENII Code GENII is a second generation of environmental dosimetry computer code compiled in the Hanford Environmental Dosimetry System (Generation II). GENII provides a...

105

Code of Conduct  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Governance » Governance » Ethics, Accountability » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Code of Conduct (505) 667-7506 Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our work, and mutual respect and teamwork. LANL must demonstrate to customers and the public that the Laboratory is accountable for its actions and that it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of Conduct is designed to help employees recognize and

106

Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments  

Science Journals Connector (OSTI)

...important sink for atmospheric CH 3 Br, a result...half of the atmospheric organobromine burden...delay the recovery of stratospheric...from ocean waters is a major source of cloud condensation nuclei...above the atmospheric boundary layer...

Oliver W. Wingenter; Karl B. Haase; Peter Strutton; Gernot Friederich; Simone Meinardi; Donald R. Blake; F. Sherwood Rowland

2004-01-01T23:59:59.000Z

107

People's Physics Book Ch 7-1 The Big Idea  

E-Print Network [OSTI]

People's Physics Book Ch 7-1 The Big Idea The universe has many remarkable qualities, among them. This is the second of the five fundamental conservation laws in physics. The other four are conservation of energy;People's Physics Book Ch 7-2 as just the two cars. In this case, internal forces include

California at Santa Cruz, University of

108

Code Red 2 kills off Code Red 1  

E-Print Network [OSTI]

#12;#12;Code Red 2 kills off Code Red 1 Code Red 2 settles into weekly pattern Nimda enters the ecosystem Code Red 2 dies off as programmed CR 1 returns thanks to bad clocks #12;Code Red 2 dies off as programmed Nimda hums along, slowly cleaned up With its predator gone, Code Red 1 comes back, still

Paxson, Vern

109

Code loops in both parities  

Science Journals Connector (OSTI)

We present equivalent definitions of code loops in any characteristic p?0. The most natural definition is via combinatorial polarization, but we also show how to realize code loops by linear codes and as a class of symplectic conjugacy ... Keywords: Characteristic form, Code loop, Combinatorial polarization, Conjugacy closed loop, Doubly even code, Even code loop, Kronecker product, Moufang loop, Odd code loop, Self-orthogonal code, Small Frattini loop, Symmetric associator, Symplectic loop

Aleš Drápal; Petr Vojt?chovský

2010-06-01T23:59:59.000Z

110

cwebch3 ICON cweb_ch3.ico cwebch4 ICON cweb_ch4.ico cwebs3 ...  

E-Print Network [OSTI]

cwebch3 ICON cweb_ch3.ico cwebch4 ICON cweb_ch4.ico cwebs3 ICON cweb_s3.ico cwebs4 ICON cweb_s4.ico dvi3 ICON dvi3.ico dvi4 ICON dvi4.ico gf3 ...

111

cwebch1 ICON cweb_ch1.ico cwebch2 ICON cweb_ch2.ico cwebs1 ...  

E-Print Network [OSTI]

cwebch1 ICON cweb_ch1.ico cwebch2 ICON cweb_ch2.ico cwebs1 ICON cweb_s1.ico cwebs2 ICON cweb_s2.ico dvi1 ICON dvi1.ico dvi2 ICON dvi2.ico gf1 ...

112

Perspective on the reactions between F and CH3CH2F: The free energy landscape of the  

E-Print Network [OSTI]

Perspective on the reactions between F and CH3CH2F: The free energy landscape of the E2 and SN2 as well as the connecting bottlenecks. The free energy profile and barrier along the E2 and SN2 reaction contribution to the SN2 channel. elimination reaction molecular dynamics substitution reaction umbrella

Nielsen, Steven O.

113

Mechanical code comparator  

DOE Patents [OSTI]

A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

114

Building Codes Resources  

Broader source: Energy.gov [DOE]

Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations.

115

" Row: NAICS Codes;" " Column...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving...

116

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

117

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit:...

118

Tokamak Systems Code  

SciTech Connect (OSTI)

The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

1985-03-01T23:59:59.000Z

119

" Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

Establishment","Onsite","per Establishment" "Code(a)","Subsector and Industry","(million sq ft)","(counts)","(sq ft)","(counts)","(counts)" ,,"Total United...

120

Codes and Standards  

Broader source: Energy.gov [DOE]

Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

" Row: NAICS Codes;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

1.3. Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of...

122

Special Report Order, CH2M Hill Hanford Group, Inc. - October...  

Broader source: Energy.gov (indexed) [DOE]

CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 October 22, 2001 Special Report Order ssued to CH2M Hill...

123

Microsoft Word - SC-CH FTCP TQP WFSA Template-2013-final--10...  

Broader source: Energy.gov (indexed) [DOE]

SC-CH in support of PNSO oversight of RPL; SC-CH is providing one fire protection engineer, but because of limited technical certifications, SC-CH is acquiring the services of...

124

11. CONTRACT ID CODE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Pantex Site Office P.O. Box 30030 Amarillo, TX 79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 CODE I FACILITY CODE SA. AMENDMENT OF SOLICITATION NO.

125

PETSc: Docs: Code Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code Management Code Management Home Download Features Documentation Manual pages and Users Manual Citing PETSc Tutorials Installation SAWs Changes Bug Reporting Code Management FAQ License Linear Solver Table Applications/Publications Miscellaneous External Software Developers Site In this file we list some of the techniques that may be used to increase one's efficiency when developing PETSc application codes. We have learned to use these techniques ourselves, and they have improved our efficiency tremendously. Editing and Compiling The biggest time sink in code development is generally the cycle of EDIT-COMPILE-LINK-RUN. We often see users working in a single window with a cycle such as: Edit a file with emacs. Exit emacs. Run make and see some error messages. Start emacs and try to fix the errors; often starting emacs hides

126

Hydrogen Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

127

Residential Building Code Compliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

128

CH2M HILL Plateau Remediation Company | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

129

Enforcement Letter, CH2M Hill - October 4, 2004 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process Research Unit On October 4, 2004, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to CH2M Hill concerning expiration of the company's...

130

Population SAMC, ChIP-chip Data Analysis and Beyond  

E-Print Network [OSTI]

This dissertation research consists of two topics, population stochastics approximation Monte Carlo (Pop-SAMC) for Baysian model selection problems and ChIP-chip data analysis. The following two paragraphs give a brief introduction to each...

Wu, Mingqi

2011-02-22T23:59:59.000Z

131

Comprehensive Research Areas in ChBE Biomedical Engineering  

E-Print Network [OSTI]

& BioprocessingCatalysis, Reaction Kinetics & Reaction EngineeringComplex Fluids & Multiphase Flow EnergyComprehensive Research Areas in ChBE Biomedical Engineering Biotechnology, Bioinformatics & M EM S Nanotechnology Polymers & Materials Science Process Systems Engineering Pulp & Paper

Sherrill, David

132

Gyrokinetic Toroidal Code: a 3D Parallel Particle-in-Cell Code to Study Microturbulence in Magnetized Plasmas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

benchmarking and benchmarking and optimizing GTC on High Performance Computers Stéphane Ethier Princeton Plasma Physics Laboratory NERSC Users' Group meeting June 2006 Work Supported by DOE Contract No.DE-AC02-76CH03073 and by the DOE SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. The Gyrokinetic Toroidal Code * 3D particle-in-cell code to study microturbulence in magnetically confined fusion plasmas. * Solves the gyro-averaged Vlasov equation. * Gyrokinetic Poisson equation solved in real space. * Low noise δf method. * Global code (full torus as opposed to only a flux tube). * Massively parallel: typical runs done on 1024 processors. * Electrostatic approximation with adiabatic electrons. * Nonlinear and fully self-consistent. * Written in Fortran 90/95

133

Article original Diffrenciation par le systme API 50 CH  

E-Print Network [OSTI]

Article original DiffĂ©renciation par le système API 50 CH et Ă©lectrophorèse des mycoplasmes Marcy-l'Ă?toile, France (Reçu le 15 janvier 1991; acceptĂ© le 11 juin 1991) RĂ©sumĂ© ― Le système API'aspect des colonies lors de l'isolement, ainsi que les rĂ©sultats fournis par le système API 50 CH ont permis

Paris-Sud XI, Université de

134

10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B  

Broader source: Energy.gov (indexed) [DOE]

10 CFR Ch. III (1-1-11 Edition) Pt. 851, App. B must meet the applicable electrical safety codes and standards referenced in § 851.23. 11. NANOTECHNOLOGY SAFETY-RESERVED The Department has chosen to reserve this section since policy and procedures for nano- technology safety are currently being devel- oped. Once these policies and procedures have been approved, the rule will be amended to include them through a rulemaking con- sistent with the Administrative Procedure Act. 12. WORKPLACE VIOLENCE PREVENTION- RESERVED The Department has chosen to reserve this section since the policy and procedures for workplace violence prevention are currently being developed. Once these policies and pro- cedures have been approved, the rule will be amended to include them through a rule-

135

Seasonal variation of CH4 emissions from central California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal variation of CH4 emissions from central California Seasonal variation of CH4 emissions from central California Title Seasonal variation of CH4 emissions from central California Publication Type Journal Article Year of Publication 2012 Authors Jeong, Seongeun, Chuanfeng Zhao, Arlyn E. Andrews, Laura Bianco, James M. Wilczak, and Marc L. Fischer Journal Journal of Geophysical Research - Atmospheres Volume 117 Issue D11 Keywords atmospheric transport, emission inventory, greenhouse gas, inverse model, methane Abstract We estimate seasonal variations in methane (CH4) emissions from central California from December 2007 through November 2008 by comparing CH4 mixing ratios measured at a tall tower with transport model predictions based on a global 1° a priori CH4emissions map (EDGAR32) and a 10 km seasonally varying California-specific map, calibrated to statewide by CH4emission totals. Atmospheric particle trajectories and surface footprints are computed using the Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport models. Uncertainties due to wind velocity and boundary layer mixing depth are evaluated using measurements from radar wind profilers. CH4signals calculated using the EDGAR32 emission model are larger than those based on the California-specific model and in better agreement with measurements. However, Bayesian inverse analyses using the California-specific and EDGAR32 maps yield comparable annually averaged posterior CH4emissions totaling 1.55 ± 0.24 times and 1.84 ± 0.27 times larger than the California-specific prior emissions, respectively, for a region of central California within approximately 150 km of the tower. If these results are applicable across California, state total CH4 emissions would account for approximately 9% of state total greenhouse gas emissions. Spatial resolution of emissions within the region near the tower reveal seasonality expected from several biogenic sources, but correlations in the posterior errors on emissions from both prior models indicate that the tower footprints do not resolve spatial structure of emissions. This suggests that including additional towers in a measurement network will improve the regional specificity of the posterior estimates.

136

Atmospheric chemistry of trimethoxymethane, (CH{sub 3}O){sub 3}CH: Laboratory studies  

SciTech Connect (OSTI)

A pulse radiolysis technique was used to measure the UV absorption spectra of (CH{sub 3}O){sub 2}CHOCH{sub 2}({center_dot}) [A] and (CH{sub 3}O){sub 2}CHOCH{sub 2}O{sub 2}({center_dot}) [B] radicals derived from trimethoxymethane over the range 220--320 nm. The self-reaction rate constants for these radicals were k{sub 5} = (3.5 {+-} 0.5) {times} 10{sup {minus}11} and k{sub 6 obs} = (1.3 {+-} 0.2) {times} 10{sup {minus}11} cm{sup 3}/molecule s. Rate constants for reactions of B radicals with NO and NO{sub 2} were k{sub 7} = (9.0 {+-} 1.2) {times} 10{sup {minus}12} and k{sub 8} = (1.0 {+-} 0.2) {times} 10{sup {minus}11} cm{sup 3}/molecule s, respectively. Rate constants for the reaction of OH radicals and F atoms with trimethoxymethane and the reaction of A radicals with O{sub 2} were k{sub 1} = (6.0 {+-} 0.5) {times} 10{sup {minus}12}, k{sub 3} = (3.0 {+-} 0.7) {times} 10{sup {minus}10}, and k{sub 2} = (9.2 {+-} 1.5) {times} 10{sup {minus}12} cm{sup 3}/molecule s, respectively. Relative rate techniques were used to measure k(Cl + trimethoxymethane) = (1.5 {+-} 0.2) {times} 10{sup {minus}10} cm{sup 3}/molecule s. OH-radical-initiated oxidation of trimethoxymethane in air gives dimethyl carbonate in a molar yield of 81 {+-} 10%. These results are discussed with respect to the atmospheric chemistry of automotive fuel additives.

Platz, J.; Sehested, J.; Nielsen, O.J. [Risoe National Lab., Roskilde (Denmark). Atmospheric Chemistry, Plant Biology and Biogeochemistry Dept.] [Risoe National Lab., Roskilde (Denmark). Atmospheric Chemistry, Plant Biology and Biogeochemistry Dept.; Wallington, T.J. [Ford Motor Co., Dearborn, MI (United States)] [Ford Motor Co., Dearborn, MI (United States)

1999-04-15T23:59:59.000Z

137

Compiling Codes on Hopper  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compiling Codes Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention is that programs are compiled on the login nodes and executed on the compute nodes. Because the compute nodes and login nodes have different operating systems, binaries created for compute nodes may not run on the login node. The wrappers mentioned above guarantee that

138

Code of Ethics  

Science Journals Connector (OSTI)

code of ethics clarifies the ethical principles that are followed in a specific field. In this context we refer to the , formally adopted by the American Public Health Association in 2002. It is the first b...

2008-01-01T23:59:59.000Z

139

ANNOUNCEMENT: ZIP Code Information.  

Science Journals Connector (OSTI)

THE U. S. Post Office Department has announced that the use of ZIP Codes will be mandatory on all domestic addresses for subscriptions and other mailings by 1 January 1967. Accordingly, the American Institute of Physics has established a procedure for obtaining the necessary information. You are requested to follow this procedure exactly.First, do not submit a change of address request consisting merely of the addition of your ZIP Code. Second, if your address changes in any other way, do include the ZIP Code of the new address. Third, and most important, be sure to furnish your ZIP Code in accordance with instructions included with all renewal invoices and renewal orders which have been sent out by the AIP.Failure to conform to this procedure may result in delays.

1965-09-27T23:59:59.000Z

140

Quantum error control codes  

E-Print Network [OSTI]

QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Abdelhamid Awad Aly Ahmed, Sala

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Joint design of multi-resolution codes and intra / inter- layer network coding  

E-Print Network [OSTI]

In this thesis, we study the joint design of multi-resolution (MR) coding and network coding. The three step coding process consists of MR source coding, layer coding and multi-stream coding. The source coding considers ...

Wang, Tong, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

142

CO2 + CH4 Chemistry over Pd: Results of Kinetic Simulations Relevant to  

E-Print Network [OSTI]

-component feed gas consisted of CO2 and CH4 with total pressure of 1 bar. The CO2 ­ CH4 partial pressures reactions in certain situations. Even in the gas-phase for example the reaction between CO2 and CH4 yielding reactor employing CO2 and CH4 as the two-component feed gas. We discuss the pred

Spiteri, Raymond J.

143

JASPERSE CHEM 341 TEST 2 VERSION 1 Ch. 5 The Study of Chemical Reactions  

E-Print Network [OSTI]

an alkyl bromide and some nucleophile that you could use to make the following by SN2. (3 points) OCH2CH3 31 JASPERSE CHEM 341 TEST 2 VERSION 1 Ch. 5 The Study of Chemical Reactions Ch. 9 Stereochemistry Ch. 10,11 Alkyl Halides and their Reactions: Nucleophilic Substitution and Elimination 1. Predict

Jasperse, Craig P.

144

JASPERSE CHEM 341 TEST 2 VERSION 2 Ch. 5 The Study of Chemical Reactions  

E-Print Network [OSTI]

that you could use to make the following by SN2. (3 points each) O CH3 OCH3H 10. Draw all possible1 JASPERSE CHEM 341 TEST 2 VERSION 2 Ch. 5 The Study of Chemical Reactions Ch. 9 Stereochemistry Ch. 10,11 Alkyl Halides and their Reactions: Nucleophilic Substitution and Elimination 1. Rank

Jasperse, Craig P.

145

Maine | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

146

Nested Quantum Error Correction Codes  

E-Print Network [OSTI]

The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

Zhuo Wang; Kai Sun; Hen Fan; Vlatko Vedral

2009-09-28T23:59:59.000Z

147

CH2 Contorhaus Hansestadt Hamburg | Open Energy Information  

Open Energy Info (EERE)

CH2 Contorhaus Hansestadt Hamburg CH2 Contorhaus Hansestadt Hamburg Jump to: navigation, search Name CH2 Contorhaus Hansestadt Hamburg Place Hamburg, Germany Zip 20457 Sector Solar Product Germany-based firm that sets up closed-end funds for investor-capital market products and projects, including solar. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes  

Science Journals Connector (OSTI)

Abstract Two types of CHA zeolite membranes (SAPO-34, SSZ-13) were used for CO2/CH4, N2/CH4, and CO2/i-butane separations at both low (270 and 350 kPa) and high (1.73 MPa) pressures. The SSZ-13 membranes were more selective, with CO2/CH4 separation selectivities as high as 280 and N2/CH4 separation selectivities of 12 at 270 kPa feed pressure. For both types of membranes, selectivities and permeances decreased as the feed pressure increased. The CO2/i-butane separation selectivities were greater than 500,000 for SAPO-34 membranes, indicating extremely low densities of defects because i-butane is too large to enter the CHA pores. The CO2/i-butane selectivities were smaller for SSZ-13 membranes (2,800–20,000), in part because the SSZ-13 layer was on the outside of the porous mullite tubes and sealing the membrane on the zeolite surface was more difficult than for the SAPO-34 membranes that were grown on the inside of glazed alumina tubes. Propane, in feed concentrations from 1 to 9%, significantly influenced separations by decreasing permeances in most cases. The effect was larger for N2/CH4 than for CO2/CH4 mixtures, apparently because the more strongly-adsorbing CO2 competes better than N2 with propane for adsorption sites. Although propane caused permeances to decrease significantly over time, selectivities decreased much less. Propane decreased permeances more for SAPO-34 membranes than for SSZ-13 membranes at 350 kPa, and at high pressure propane even increased CO2 permeances and decreased CH4 permeances in SSZ-13 membranes, thus significantly increasing CO2/CH4 selectivities. Propane permeances reached steady state relatively quickly because its permeation was mostly through defects, but CO2, N2, and CH4 permeances did not stabilize in the presence of propane, even after seven days. The effects of propane were reversible when it was removed from the feed and the membranes were heated.

Ting Wu; Merritt C. Diaz; Yihong Zheng; Rongfei Zhou; Hans H. Funke; John L. Falconer; Richard D. Noble

2015-01-01T23:59:59.000Z

149

Alabama | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adoption » Status of State Energy Code Adoption Adoption » Status of State Energy Code Adoption Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Alabama Last updated on 2013-05-31 Current News The Alabama Energy and Residential Codes Board adopted the 2009 International Energy Conservation Code (IECC) for Commercial Buildings and the 2009 International Residential Code (IRC) for Residential Construction. The new codes will become effective on October 1, 2012. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in Alabama (BECP Report, Sept. 2009)

150

Washington | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Washington Washington Last updated on 2013-11-05 Current News The Washington State Building Code Council recently completed deliberations on adoption and amendment of the 2012 codes. This includes adoption of the 2012 IECC with state amendments. The new codes became effective July 1, 2013. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information WA 2012 Nonresidential Codes Approved Compliance Tools Nonresidential Energy Code Compliance Tools Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2010 Effective Date 07/01/2013 Adoption Date 02/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Washington DOE Determination Letter, May 31, 2013 Washington State Certification of Commercial and Residential Building Energy Codes

151

"GREENHOUSE GAS NAME","GREENHOUSE GAS CODE","FORMULA","GWP"  

U.S. Energy Information Administration (EIA) Indexed Site

Greenhouse Gases and Global Warming Potentials (GWP)" Greenhouse Gases and Global Warming Potentials (GWP)" "(From Appendix E of the instructions to Form EIA-1605)" "GREENHOUSE GAS NAME","GREENHOUSE GAS CODE","FORMULA","GWP" ,,,"TAR1","AR42" "(1) Carbon Dioxide","CO2","CO2",1,1 "(2) Methane","CH4","CH4",23,25 "(3) Nitrous Oxide","N2O","N2O",296,298 "(4) Hydroflourocarbons" "HFC-23 (trifluoromethane)",15,"CHF3",12000,14800 "HFC-32 (difluoromethane)",16,"CH2F2",550,675 "HFC-41 (monofluoromethane)",43,"CH3F",97,92 "HFC-125 (pentafluoroethane)",17,"CHF2CF3",3400,3500

152

NAICS Codes Description:  

Broader source: Energy.gov (indexed) [DOE]

Codes Codes Description: Filters: Date Signed only show values between '10/01/2006' and '09/30/2007', Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001') Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Actions Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 251 $164,546,671 541611 ADMINISTRATIVE MANAGEMENT AND GENERAL MANAGEMENT CONSULTING SERVICES 236 $52,396,806 514210 DATA PROCESSING SERVICES 195 $28,941,727 531210 OFFICES OF REAL ESTATE AGENTS AND BROKERS 190 $6,460,652 541330 ENGINEERING SERVICES 165 $33,006,079 163 $11,515,387 541690 OTHER SCIENTIFIC AND TECHNICAL CONSULTING SERVICES 92 $40,527,088 531390 OTHER ACTIVITIES RELATED TO REAL ESTATE 79 -$659,654 337214 OFFICE FURNITURE (EXCEPT WOOD) MANUFACTURING 78 $1,651,732

153

Building Energy Codes Fact Sheet  

Broader source: Energy.gov [DOE]

Building energy codes have been in place for over 20 years. Today's codes are providing energy savings of more than 30% compared to the codes of a decade ago. They're also saving consumers an estimated $5 billion annually as of 2012. Since 1992, building codes have saved about 300 million tons of carbon cumulatively. Read the fact sheet below to learn more about the Building Technologies Office's Building Energy Codes program.

154

X JNTRACT 10 CODE PAGE OF PAGES AMENDMENT OF SOLICITATt-.. 4/MODIFICATION OF CONTRACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.< .< JNTRACT 10 CODE PAGE OF PAGES AMENDMENT OF SOLICITATt-.. 4/MODIFICATION OF CONTRACT 1 I 2 2. AMENDMENTIMODIFICATION NO. 3. EFFECTIVE DATE 4. REQUISmONIPURCHASE REQ NO. S. PROJECT NO. (If sppf"teable) AOO3 See Block 16C. N/A Below 09CH11469.007 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) Code I U.S. Department of Energy ·Chicago Office Office of Science ·9800 South Cass Avenue Argonne,IL 60439 9A AMENDMENT OF SOLICITATION NO. 8. NAME AND ADDRESS OF CONTRACTOR (No. street county, State and ZIP Code) W!1. Spectra 1ech, Inc. 9.B. DATED (SEE ITEM 11) 132 Jefferson Court Oak Ridge,TN 37830 fOA MODIFICATION OF ContractlOrder NO. V' DE-AC02-09CH11469· 10.B. DATED (SEE ITEM 13) Nqvember 13, 2008 CODE N/A . IFACILlTY.CODE N/A

155

Coding for Cooperative Communications  

E-Print Network [OSTI]

develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c... modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeat- accumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel...

Uppal, Momin Ayub

2011-10-21T23:59:59.000Z

156

People's Physics Book Ch 20-1 The Big Ideas  

E-Print Network [OSTI]

(whether standing still or moving at a fast speed) is WRONG. In fact, the rate at which time passes dependsPeople's Physics Book Ch 20-1 The Big Ideas Einstein believed that the laws of physics do of physics. In other words, if you are on a moving train and drop a ball or if you are standing on a farm

California at Santa Cruz, University of

157

People's Physics Book Ch13-1 The Big Ideas  

E-Print Network [OSTI]

electrical energy into heat and light or an electric motor that converts electric energy into mechanicalPeople's Physics Book Ch13-1 The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical

California at Santa Cruz, University of

158

AT 351 Lab 3: Seasons and Surface Temperature (Ch. 3)  

E-Print Network [OSTI]

an important role in an area's local vertical temperature distribution. Below, Figure 1 shows the verticalAT 351 Lab 3: Seasons and Surface Temperature (Ch. 3) Question #1: Seasons (20 pts) A. In your own words, describe the cause of the seasons. B. In the Northern Hemisphere we are closer to the sun during

Rutledge, Steven

159

Lecture Ch. 5a Surface tension (Kelvin effect)  

E-Print Network [OSTI]

1 Lecture Ch. 5a · Surface tension (Kelvin effect) ­ Hygroscopic growth (subsaturated humidity Surface Tension · By definition · By 1st Law (modified for surface area change) Kelvin Effect · Force: What happens to condensed H2O? ­ Precipitation processes Surface Thermodynamics · Surfaces require

Russell, Lynn

160

Lecture Ch. 5a Surface tension (Kelvin effect)  

E-Print Network [OSTI]

1 Lecture Ch. 5a · Surface tension (Kelvin effect) ­ Hygroscopic growth (subsaturated humidity: · Expansion against pressure difference Surface Tension · By definition · By 1st Law (modified for surface) ­ Saturation · Chemical potential (Raoult effect) · Nucleation ­ Competition between surface and chemical

Russell, Lynn

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SRP essentials Werner Almesberger !Werner.Almesberger@epfl.ch? 1 ,  

E-Print Network [OSTI]

SRP essentials Werner Almesberger !Werner.Almesberger@epfl.ch? 1 , Tiziana Ferrari !Tiziana of the design of SRP, a highly scalable resource reservation protocol for Internet traffic. 1 About this paper This paper is a short introduction to the ``Scalable Reservation Protocol'' (SRP). It aims to provide

Almesberger, Werner

162

Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong  

E-Print Network [OSTI]

ultrafast hydrogen migration.7,8 The 38 fs 800 nm pump pulse produced methanol monocation, and a probe pulseMolecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS

Schlegel, H. Bernhard

163

Cloud Computing Ch Zh XCheng-Zhong Xu  

E-Print Network [OSTI]

1 Cloud Computing ECE7650 Ch Zh XCheng-Zhong Xu Outline What is cloud computing CharacteristicsCharacteristics (word processing and spreadsheets) Google video for business Google sites (intranet sites and wikis) "It/2010 Autonomic Cloud Management 6 #12;4 Essential Characteristics C. Xu @ Wayne State Cloud Computing 7 Essential

Xu, Cheng-Zhong

164

Lecture Ch. 2a Energy and heat capacity  

E-Print Network [OSTI]

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible P-V work ! define entropy Curry

Russell, Lynn

165

Lecture Ch. 2a Energy and heat capacity  

E-Print Network [OSTI]

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible "P-V" work define entropy Curry

Russell, Lynn

166

Ch 20. Magnetism Liu UCD Phy1B 2012 1  

E-Print Network [OSTI]

Ch 20. Magnetism Liu UCD Phy1B 2012 1 #12;I. MagnetI. Magnet Poles of a magnet: magnetic effect is strongest When the magnet is freely suspended North pole: pointing to north South pole: pointing to south Poles always come in pairs Liu UCD Phy1B 2012 2 #12;Magnetic MaterialsMagnetic Materials Magnetite Fe3O4

Yoo, S. J. Ben

167

Usage Codes Vessel name  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Vessel name Int'l radio call sign (IRCS) Generator Other: Max hoisting Sonar Power (Kw) KHz: KHz: VMS Usage Y / N GPS: Internal / external KHz: KHz: Ratio Accuracy (m Incinerator: Burned on board: Net sensors Hull mounted / towed Wired / wireless Y / N Y / N Usage Manufacturer

168

Usage Codes Additional Information  

E-Print Network [OSTI]

Usage Codes 1 5 2 6 3 7 4 8 Additional Information Winches (on deck) Electronics RPM: Max hoistingPresent? Usage Model Ratio Accuracy (m) Type: Electric / Hydraulic / Other _________________ KHz: GPS: Internal Other: Y / N Other: Y / N Y / NOther: Hydrophone Burned on board: Net sensors Usage Manufacturer High

169

The Woodland Carbon Code  

E-Print Network [OSTI]

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

170

Nebraska | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nebraska Nebraska Last updated on 2013-11-04 Current News Nebraska Legislature adopted the 2009 IECC/ASHRAE 90.1-2007. The code became effective August 27, 2011. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Cities and counties may adopt codes that differ from the Nebraska Energy Code; however, state law requires the adopted code to be equivalent to the Nebraska Energy Code. For existing buildings, only those renovations that will cost more than 50 percent of the replacement cost of the building must comply with the code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Nebraska (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

171

Summary | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary Summary The impact of energy codes on our future is apparent. From environmental and resource conservation to national security, energy concerns, and our economic challenges, energy codes will continue to be a key component of a sound public policy. For further information on building energy code adoption, compliance, and enforcement, review the ACE toolkits Adoption Compliance Enforcement Popular Links ACE Learning Series ACE Overview Top 10 Reasons for Energy Codes Development of Energy Codes Adoption of Energy Codes Compliance with Energy Codes Enforcement of Energy Codes Going Beyond Code Summary Acronyms and Abbreviations Toolkit Definitions Adoption Toolkit Compliance Toolkit Enforcement Toolkit Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, January 31, 2013 - 15:19

172

Florida | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Florida Florida Last updated on 2013-11-18 Current News The triennial code change process is currently underway. Florida expects to be equivalent to ASHRAE 90.1-10 and IECC 2012 by early 2014. Commercial Residential Code Change Current Code State Specific Amendments / Additional State Code Information N/A Approved Compliance Tools Can use State specific EnergyGauge Summit FlaCom State Specific Research Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/15/2012 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Florida DOE Determination Letter, May 31, 2013 Florida State Certification of Commercial Building Codes Current Code State Specific Amendments / Additional State Code Information Florida Building Code

173

CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM DUAL BS CHE/CH DEGREE Revised 2-21-12 CSB CH 101 (4) Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network [OSTI]

CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM DUAL BS CHE/CH DEGREE Revised 2-21-12 CSB CH 101 (4) Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH 118) CH 16 15 COURSE OFFERING Summer Only Fall Only Spring Only OPTIONAL COURSES GES 100 (1) MA 112 (3) MA

Carver, Jeffrey C.

174

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

175

Compliance with Energy Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compliance with Energy Codes Compliance with Energy Codes Energy code compliance must be achieved to realize the considerable benefits inherent in energy codes. BECP supports successful compliance by making no-cost compliance tools, REScheck(tm) and COMcheck(tm), and other resources widely available to everyone. BECP has also developed several resources to help states uniformly assess the rate of compliance with their energy codes for residential and commercial buildings. It is important to note that regardless of the level of enforcement, as a law the building owner/developer is ultimately responsible to comply with the energy code. Compliance will be increased if the adopting agency prepares the building construction community to comply with the energy code and provides resources to code officials to enforce it.

176

Adaptive code generators for tree coding of speech  

E-Print Network [OSTI]

Tree coding is a promising way of obtaining good performance for medium-to-low rate speech coding. The key part of a tree coder is the code generator which consists of a short-term predictor and a long-term predictor. The best predictor designed...

Dong, Hui

1998-01-01T23:59:59.000Z

177

SIID Tangible CONTROLLED OBJECT CODES: CAPITALIZED OBJECT CODES  

E-Print Network [OSTI]

vehicle 1811 - Motor Vehicle Other 1812 - Aircraft 1813 - Motor Vehicle (Natural Gas conversion -Passengers Cars 1814 - Motor Vehicles - Natural Gas Conversion-other 1820 - Boats 1841- Software > 100kSIID Tangible CONTROLLED OBJECT CODES: CAPITALIZED OBJECT CODES: Capital Objects Codes That Do

Hofmann, Hans A.

178

Methane Hydrates Code Comparison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Code Comparison Code Comparison Set-up for Problem 7 (Long-term simulations for Mt Elbert and PBU L- Pad "Like" Deposits) As discussed in the phone conference held on 11/9/2007, it is proposed that Problem 7 be made up of three separate cases: Problem 7a will look at a deposit similar to the Mt Elbert site. Problem 7b will be based on the PBU L-Pad site, and Problem 7c will be a down-dip version of the L-Pad site. In all three cases, a standard set of parameters will be used based on those found in Problem 6 (the history matches to the MDT data). The parameters chosen were consensus values based on the experiences of the various groups in attempting to match the MDT data for the C2 formation at Mount Elbert. Given below are the detailed descriptions of the three problems and the proposed

179

Minnesota | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Minnesota Minnesota Last updated on 2013-06-03 Current News The 2009 editions of the International Residential Code (IRC), International Building Code (IBC), and International Fire Code (IFC) will be published soon and the Construction Codes and Licensing Division and the State Fire Marshal Division have been discussing this adoption. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2004 with Amendments Amendments / Additional State Code Information Commercial Energy Code Approved Compliance Tools Compliance forms can be downloaded from ASHRAE State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Minnesota (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than ASHRAE 90.1-2004 Effective Date 06/01/2009

180

News | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Michigan | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michigan Michigan Last updated on 2013-06-03 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information 2009 Commercial MI Uniform Energy Code Rules Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Michigan (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 03/09/2011 Adoption Date 11/08/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Michigan DOE Determination Letter, May 31, 2013 Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 2009 Residential MI Uniform Energy Code Rules Approved Compliance Tools Can use REScheck

182

Nevada Energy Code for Buildings  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

183

Network coding for anonymous broadcast  

E-Print Network [OSTI]

This thesis explores the use of network coding for anonymous broadcast. Network coding, the technique of transmitting or storing mixtures of messages rather than individual messages, can provide anonymity with its mixing ...

Sergeev, Ivan A

2013-01-01T23:59:59.000Z

184

Matlab-Kinect Interface Code  

E-Print Network [OSTI]

This .zip file contains code and installation instructions for acquiring 3d arm movements in Matlab using the Microsoft Kinect 3d camera. The provided code has been validated in 32-bit and 64-bit Matlab with 32-bit and ...

Kowalski, Kevin

2012-06-01T23:59:59.000Z

185

Code of Practice Research Degrees  

E-Print Network [OSTI]

........................................................................ 15 Section Ten: FacilitiesCode of Practice For Research Degrees 2014/15 #12;2 Contents Section One: Preface ­ the purpose of the Code........................................................ 3 Section Two: Context

Evans, Paul

186

Georgia | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Georgia Georgia Last updated on 2013-07-18 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use COMcheck Must choose ASHRAE 90.1-2007 as code option. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Georgia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 11/03/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Georgia State Certification of Commercial and Residential Building Codes Extension Request Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use REScheck

187

Robust LT codes with alternating feedback  

Science Journals Connector (OSTI)

In this paper, we propose robust LT codes with alternating feedback (LT-AF codes), which lightly utilize the feedback channel and surpass the performance of existing LT codes with feedback. In LT-AF codes, we consider a loss prone feedback channel for ... Keywords: Erasure channel, Feedback channel, Forward error correction codes, LT codes, Rateless codes

Ali Talari, Nazanin Rahnavard

2014-08-01T23:59:59.000Z

188

SENIOR ADMIN 614.292.3309  

E-Print Network [OSTI]

EVENT PLANNING MAINTENANCE ENGINEERING PLANNING STOCKROOM VEHICLE & EQUIPMENT MAINTENANCE JASON CONTROLS WIRELESS CLOCKS RETRO-COMMISSIONING NETWORK SUPPORT UPS SYSTEMS MANAGEMENT LANDSCAPE SERVICES

Howat, Ian M.

189

What's coming in 2012 codes  

E-Print Network [OSTI]

Administration Why Building Energy Codes Matter Why Building Energy Codes Matter ? Buildings account for 70% of electricity use ? Buildings account for 38% of CO2 emissions (Source: US Green Building Council) Residential Progress Commercial Progress... ? Southeast Energy Efficiency Alliance ? Southwest Energy Efficiency Project Why Building Energy Codes Matter Why Building Energy Codes Matter ? Share of Energy Consumed by Major Sectors of the Economy (2010) Source: U.S. Energy Information...

Lacey, E

2011-01-01T23:59:59.000Z

190

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc...  

Office of Environmental Management (EM)

3-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 August 29, 2003 Issued to CH2M Hill Hanford Group, Inc., related to Quality Assurance Issues at the...

191

Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24...  

Broader source: Energy.gov (indexed) [DOE]

Inc. - April 24, 2001 Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 April 24, 2001 Issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety...

192

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc...  

Broader source: Energy.gov (indexed) [DOE]

Inc - EA-2005-01 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01 March 10, 2005 Issued to CH2M Hill Hanford Group, Inc., related to Radiological and...

193

Voluntary Protection Program Onsite Review, CH2M HILL B&W West...  

Office of Environmental Management (EM)

CH2M HILL B&W West Valley LLC, West Valley Demonstration Project - October 2013 Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC, West Valley Demonstration...

194

Enforcement Letter, CH2M Oak Ridge, LLC - SEL-2012-01 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oak Ridge, LLC - SEL-2012-01 Enforcement Letter, CH2M Oak Ridge, LLC - SEL-2012-01 May 4, 2012 Issued to URS CH2M Oak Ridge, LLC, related to a Security Incident involving the...

195

Independent Oversight Review, URS CH2M Oak Ridge - June 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

URS CH2M Oak Ridge - June 2013 Independent Oversight Review, URS CH2M Oak Ridge - June 2013 June 2013 Review of Oak Ridge Environmental Management Radiological Controls Activity...

196

Characterisation of CH3X fluxes from Scottish and high latitude wetlands   

E-Print Network [OSTI]

Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are two halocarbons that are unique in that they play a significant role in stratospheric ozone destruction, and are mainly produced by natural systems. The current ...

Hardacre, Catherine

2010-01-01T23:59:59.000Z

197

2009 Solar Decathlon Building Code  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BUILDING CODE Last Updated: September 29, 2008 2009 Solar Decathlon Building Code i September 29, 2008 Contents Section 1. Introduction ............................................................................................................................................................. 1 Section 2. Adopted Codes ........................................................................................................................................................ 1 Section 3. Building Planning and Construction .............................................................................................................. 1 3-1. Fire Protection and Prevention ................................................................................................................................. 1

198

Rotationally invariant multilevel block codes  

E-Print Network [OSTI]

The objective of this thesis is to evaluate the performance of block codes that are designed to be rotationally invariant, in a multilevel coding scheme, over a channel modelled to be white gaussian noise. Also, the use of non-binary codes...

Kulandaivelu, Anita

2012-06-07T23:59:59.000Z

199

MATH 406/806 Introduction to Coding Theory  

E-Print Network [OSTI]

, convolutional codes, turbo codes, expander codes, low-density parity-check (LDPC) codes. References: R.M. Roth

Offin, Dan

200

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc.- EA-2006-06  

Broader source: Energy.gov [DOE]

Issued to CH2M Hill Hanford Group, Inc., related to Radiological Contamination Events at the Hanford Site Tank Farms

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Southeast Energy Efficiency Alliance's Building Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

202

Cal. Wat. Code § 13376 | Open Energy Information  

Open Energy Info (EERE)

Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code 13376...

203

DE-AC02-09CH11466  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-09CH11466 2-09CH11466 copies of the amendment; (b) By acknowledging receipt of this amendment on each copy of the offer submitted; or (c) By separate letter or telegram which includes a reference to the solicitation and amendment numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED AT THE PLACE DESIGNATED FOR THE RECEIPT OF OFFERS PRIOR TO THE HOUR AND DATE SPECIFIED MAY RESULT IN REJECTION OF YOUR OFFER. If by virtue of this amendment you desire to change an offer already submitted, such change may be made by telegram or letter, provided each telegram or letter makes reference to the solicitation and this amendment, and is received prior to the opening hour and date specified. Word Modification PRINCETON NJ 085442020 002484665 TRUSTEES OF PRINCETON UNIVERSITY, THE

204

S'eparation des convexes J.Ch. Gilbert, Inria  

E-Print Network [OSTI]

S'eparation des convexes J.Ch. Gilbert, Inria Th'eor`eme de Hahn­Banach (forme analytique) ffl Soit. ffl Th'eor`eme de Hahn­Banach (forme analytique). Si \\Delta E est un espace vectoriel (non n toujours un f tel que l'on ait 'egalit'e. 1 #12; Th'eor`emes de Hahn­Banach (formes g'eom'etriques) ffl

205

Polarized Infrared Absorption Spectrum of Matrix-Isolated Methylperoxyl Radicals, CH3OO X~ 2A  

E-Print Network [OSTI]

: October 1, 2001 We have used a tandem pair of supersonic nozzles to produce clean samples of CH3OO matrix. The CH3/O2/20 K argon radical sandwich acts to produce target methylperoxyl radicals: CH3 + O2 f that nucleate all clouds and ice particles.7 In a qualitative manner, an organic aerosol is oxidatively

Ellison, Barney

206

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE  

E-Print Network [OSTI]

MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

207

Interactions between wetlands CH4 emissions and climate at global scale  

E-Print Network [OSTI]

emissions? Observations Introduction Tool Wetlands emissions [CH4 ]atmo Feedback Conclusion #12;[CO2 ]atmo e.g.: Climate (T) CO2 anthropogenic emissions wetlands CH4 emissions Under future climate change, Shindell et al. (2004) => +78% under climate change generated by 2xCO2 Introduction Tool Wetlands emissions [CH4

Canet, LĂ©onie

208

JASPERSE CHEM 341 TEST 2 VERSION 3 Ch. 5 The Study of Chemical Reactions  

E-Print Network [OSTI]

toward SN2 reactions (from most reactive 1 to least reactive 4). Br Br Br I 4. Rank the bond strength1 JASPERSE CHEM 341 TEST 2 VERSION 3 Ch. 5 The Study of Chemical Reactions Ch. 9 Stereochemistry Ch. 10,11 Alkyl Halides and their Reactions: Nucleophilic Substitution and Elimination 1. List

Jasperse, Craig P.

209

JASPERSE CHEM 350 TEST 2 VERSION 3 Ch. 4 The Study of Chemical Reactions  

E-Print Network [OSTI]

toward SN2 reactions (from most reactive 1 to least reactive 4). Br Br Br I 4. Rank the bond strengthJASPERSE CHEM 350 TEST 2 VERSION 3 Ch. 4 The Study of Chemical Reactions Ch. 5 Sterochemistry Ch. 6 the following alkyl halides in order of decreasing reactivity toward SN1/E1 reactions (from most reactive 1

Jasperse, Craig P.

210

JASPERSE CHEM 350 TEST 2 VERSION 2 Ch. 4 The Study of Chemical Reactions  

E-Print Network [OSTI]

;9. Show an alkyl bromide and some nucleophile that you could use to make the following by SN2. (3 pointsJASPERSE CHEM 350 TEST 2 VERSION 2 Ch. 4 The Study of Chemical Reactions Ch. 5 Sterochemistry Ch. 6 that is needed in each case) for each of the following reactions. (Minor products or inorganic side products need

Jasperse, Craig P.

211

Near-infrared electronic spectrum of CH2 Jennifer L. Gottfried and Takeshi Okaa)  

E-Print Network [OSTI]

Near-infrared electronic spectrum of CH2 Âż Jennifer L. Gottfried and Takeshi Okaa) Department B1( u)X~ 2 A1 electronic transition of CH2 have been observed in the near infrared from 11 000. In this paper, we report the first observation of an elec- tronic transition of CH2 in the near infrared at 0

Oka, Takeshi

212

CH 301 8-9:30am TTh Spring 2012 Instructor D. Walker  

E-Print Network [OSTI]

CH 301 8-9:30am TTh Spring 2012 Instructor D. Walker Syllabus: CH301 Principles of Chemistry I, engineering, chemistry, biochem, textiles, and many other areas. Chemistry is considered the central science Other times by appointment--please schedule in advance via email #12;CH 301 8-9:30am TTh Spring 2012

213

Development | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

214

Energy Codes at a Glance  

SciTech Connect (OSTI)

Feeling dim from energy code confusion? Read on to give your inspections a charge. The U.S. Department of Energy’s Building Energy Codes Program addresses hundreds of inquiries from the energy codes community every year. This article offers clarification for topics of confusion submitted to BECP Technical Support of interest to electrical inspectors, focusing on the residential and commercial energy code requirements based on the most recently published 2006 International Energy Conservation Code® and ANSI/ASHRAE/IESNA1 Standard 90.1-2004.

Cole, Pamala C.; Richman, Eric E.

2008-09-01T23:59:59.000Z

215

Wyner-Ziv coding based on TCQ and LDPC codes and extensions to multiterminal source coding  

E-Print Network [OSTI]

to approach the Wyner-Ziv distortion limit D??W Z(R), the trellis coded quantization (TCQ) technique is employed to quantize the source X, and irregular LDPC code is used to implement Slepian-Wolf coding of the quantized source input Q(X) given the side...

Yang, Yang

2005-11-01T23:59:59.000Z

216

Pennsylvania | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pennsylvania Pennsylvania Last updated on 2013-11-05 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Pennsylvania (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 12/31/2009 Adoption Date 12/10/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Pennsylvania DOE Determination Letter, May 31, 2013 Pennsylvania State Certification of Commercial and Residential Building Energy Codes Current Code 2009 IECC Amendments / Additional State Code Information Pennsylvania's current residential code is the 2009 IECC, 2009 IRC, Chapter 11, and/or PA-Alt. Adherence to Pennsylvania's Alternative Residential Energy Provisions 2009 is an acceptable means of demonstrating compliance with the energy conservation code requirements of the Uniform Construction Code.

217

Ohio | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ohio Ohio Last updated on 2013-10-21 Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Ohio's commercial code is the 2009 IECC with a direct reference to ASHRAE 90.1-07. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Ohio (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 11/01/2011 Adoption Date 03/07/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Ohio DOE Determination Letter, May 31, 2013 Ohio State Certification of Commercila and Residential Building Energy Codes Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Effective January 1, 2013 the residential code in Ohio is based on Chapter 11 of the 2009 IRC. It includes the 2009 IECC and state-specific alternative compliance paths. The 2013 Residential Code of Ohio (RCO) contains amendments to allow compliance to be demonstrated in three ways: (1) 2009 IECC; or (2) RCO Sections 1101 through 1104; or RCO Section 1105 ("The Ohio Homebuilder's Association Alternative Energy Code Option").

218

Kentucky | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

219

Wyoming | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

220

Ab initio molecular orbital study on the gas phase SN2 reaction F? + \\{CH3Cl\\} ? CH3F + Cl?  

Science Journals Connector (OSTI)

Ab-initio molecular orbital (MO) and direct ab initio dynamics calculations have been applied to the gas phase SN2 reaction F? + \\{CH3Cl\\} ? CH3F + Cl?. Several basis sets were examined in order to select the most convenient and best fitted basis set to that of high-quality calculations. The Hartree–Fock (HF) 3?21+G(d) calculation reasonably represents a potential energy surface calculated at the MP2/6?311++G(2df,2pd) level. A direct ab initio dynamics calculation at the HF/3?21+G(d) level was carried out for the SN2 reaction. A full dimensional ab initio potential energy surface including all degrees of freedom was used in the dynamics calculation. Total energies and gradients were calculated at each time step. Two initial configurations at time zero were examined in the direct dynamics calculations: one is a near collinear collision, and the other is a side-attack collision. It was found that in the near collinear collision almost all total available energy is partitioned into two modes: the relative translational mode between the products (?40%) and the C ? F stretching mode (?60%). The other internal modes of CH3F were still in the ground state. The lifetimes of the early- and late-complexes F? … \\{CH3Cl\\} and FCH3 … Cl? are significantly short enough to dissociate directly to the products. On the other hand, in the side-attack collision, the relative translation energy was about 20% of total available energy.

Manabu Igarashi; Hiroto Tachikawa

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Energy Codes News | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

222

Top 10 Reasons for Energy Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Top 10 Reasons for Energy Codes Top 10 Reasons for Energy Codes The projected energy savings attributable to energy codes translates into an estimated cumulative savings of 800 million metric tons of carbon dioxide by 2030-that's equivalent to removing 145 million vehicles from our nation's roadways. Here are the top 10 reasons for adopting and implementing energy codes. Today's global energy, economic, and environmental challenges necessitate a U.S. strategy identifying a suite of energy-efficiency-related initiatives that is implemented by the building industry and relevant stakeholders. Energy codes are a core component of that strategy and, in addition, have an impact on other strategies to improve our built environment. Energy Codes... SAVE money and help reduce needless consumption of energy to heat,

223

Arkansas | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arkansas Arkansas Last updated on 2013-12-10 Current News ASHRAE 90.1-2007 became the effective commercial code in Arkansas on January 1, 2013. Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 with Amendments Amendments / Additional State Code Information Arkansas Supplements and Amendments Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Arkansas Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 01/01/2013 Adoption Date 01/13/2012 Code Enforcement Mandatory DOE Determination ASHRAE Standard 90.1-2007: Yes ASHRAE Standard 90.1-2010: No Energy cost savings for Arkansas resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $100 million annually by 2030.

224

Delaware | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

225

Chapter 28 - Perceptual Audio Coding  

Science Journals Connector (OSTI)

Abstract Audio Coding has proliferated as a mainstream enabling digital technology for all types of applications that provide audio and multimedia to consumers using transmission or storage channels with limited capacity. Since its infancies in the eighties and early nineties, the technology behind low bitrate audio coding has developed rapidly until today. Nonetheless, the technology generations seen to date follow several common themes, including the use of time/frequency-domain processing, redundancy reduction (entropy coding), and irrelevancy removal through the pronounced exploitation of perceptual effects. The latter aspect is of paramount importance to the understanding and the performance of the coding systems and has gained more and more in importance over time. Starting from basic principles, this article provides an overview of methods for low bitrate perceptual audio coding and its evolution over time along with some related coding standards (e.g., “mp3”) and typical applications.

Jürgen Herre; Sascha Disch

2014-01-01T23:59:59.000Z

226

Vibronic spectroscopy of unsaturated transition metal complexes: CrC2H, CrCH3 , and NiCH3  

E-Print Network [OSTI]

to characterize diatomic transition metal oxides, nitrides, and carbides.8­22 In addition to these pure metallicVibronic spectroscopy of unsaturated transition metal complexes: CrC2H, CrCH3 , and NiCH3 Dale J investigation of small transition metal clusters and organo- metallic radicals is that these species serve

Morse, Michael D.

227

SEAMOPT - Stirling engine optimization code  

SciTech Connect (OSTI)

Experience is described with use of a fast-running Stirling engine optimization code developed at Argonne intended for public release. Stirling engine modeling is provided by the SEAM1 thermodynamic code. An interface was written to combine SEAM1 with a general optimization code and assess maximum component stress levels. Thus full engine thermodynamic and structural simulation is done during the optimization process. Several examples of the use of this code to optimize the GPU-3 engine are described. In one case efficiency was improved by over 25%.

Heames, T.J.; Daley, J.G.

1984-01-01T23:59:59.000Z

228

BPA Hotline & Codes of Conduct  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hotline & Codes of Conduct Pages default Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

229

FOUNDATION REVENUE OBJECT CODES LSU Foundation Revenue Object Codes  

E-Print Network [OSTI]

FOUNDATION REVENUE OBJECT CODES 4 page 1 LSU Foundation Revenue Object Codes 0F00 Foundation - Balance Forward 0F01 Foundation - Other Contributions 0F02 Foundation - State of Louisiana 0F03 Foundation - Corporate Contributions 0F04 Foundation - Corporate Match Contributions 0F05 Foundation - Individual

Harms, Kyle E.

230

Bureau of Construction Codes - 2009 Michigan Uniform Energy Code - Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

These rules take effect March 9, 2011 (By authority conferred on the director of the department of energy, labor, and economic growth by section 4 of 1972 PA 230, MCL 125.1504, and Executive Reorganization Order Nos. 2003-1 and 2008-20, MCL 445.2011 and MCL 445.2025) R 408.31087, R 408.31088, R 408.31089, and R 408.31090 of the Michigan Administrative Code are amended and R 408.31087a is added to the code as follows: PART 10a MICHIGAN UNIFORM ENERGY CODE R 408.31087 Applicable code. Rule 1087. Rules governing the energy efficiency for the design and construction of buildings and structures, not including residential buildings, shall be those contained in the international energy conservation code, 2009 edition, section 501.1 and the ASHRAE

231

Julia Fink, CRAFT +41 (0) 21 693 20 61 EPFL, Station 20 julia.fink@epfl.ch NCCR robotics  

E-Print Network [OSTI]

Julia Fink, CRAFT +41 (0) 21 693 20 61 EPFL, Station 20 julia.fink@epfl.ch NCCR robotics CH-1015 Lausanne http://craft.epfl.ch www.nccr-robotics.ch Contact References Kahn Jr., P.H., Friedman, B., Perez-Granados, D.R., Freier, N.G.: Robotic Pets in the Lives of Preschool Children. Proceedings CHI EA `04, 1449

Dalang, Robert C.

232

Test Plan: WIPP bin-scale CH TRU waste tests  

SciTech Connect (OSTI)

This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

Molecke, M.A.

1990-08-01T23:59:59.000Z

233

Louisiana | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Louisiana Louisiana Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information N/A Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Louisiana (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 07/20/2011 Adoption Date 07/20/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Louisiana DOE Determination Letter, May 31, 2013 Louisiana State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IRC Amendments / Additional State Code Information Louisiana's current residential code is the 2006 IRC with direct reference to the 2006 IECC. All AC duct insulation is R6 instead of R8 and to include Section R301.2.1.1 of the 2003 edition of the IRC in lieu of Section R301.2.1.1 of the 2006 edition.

234

LFSC - Linac Feedback Simulation Code  

SciTech Connect (OSTI)

The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

Ivanov, Valentin; /Fermilab

2008-05-01T23:59:59.000Z

235

on education Code of Ethics  

E-Print Network [OSTI]

the forum Abroad on education Code of Ethics for Education Abroad #12;The Forum on Education Abroad Code of Ethics for Education Abroad Contents Page Section I Preamble 2 Section II Ethical Principles for Education Abroad 3 Section III Ethical Guidelines: Examples of Ethical Best 6 Practices for Education Abroad

Illinois at Chicago, University of

236

Secure Symmetrical Multilevel Diversity Coding  

E-Print Network [OSTI]

Secure symmetrical multilevel diversity coding (S-SMDC) is a source coding problem, where a total of L - N discrete memoryless sources (S1,...,S_L-N) are to be encoded by a total of L encoders. This thesis considers a natural generalization of SMDC...

Li, Shuo

2012-07-16T23:59:59.000Z

237

Tennessee | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tennessee Tennessee Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2006 IECC Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Tennessee (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2006 IECC Effective Date 07/01/2011 Adoption Date 06/02/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: No ASHRAE 90.1-2010: No Tennessee DOE Determination Letter, May 31, 2013 Tennessee State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IECC Approved Compliance Tools Can use REScheck State Specific Research Impacts of the 2009 IECC for Residential Buildings in the State of Tennessee (BECP Report, Sept. 2009)

238

ALOHA Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ALOHA Code ALOHA Code ALOHA Code Central Registry Toolbox Code Version(s): V5.2.3 Code Owner: National Oceanic and Atmospheric Administration (NOAA) Description: The Arial Locations of Hazardous Atmospheres (ALOHA) is atmospheric dispersion model maintained by the Hazardous Materials Division of National Oceanic and Atmospheric Administration (NOAA). ALOHA is one of three separate, integrated software applications in the Computer-Aided Management of Emergency Operations (CAMEO) suite. While the other two software applications: Cameo is primarily a database application and Marplot is the mapping application. ALOHA is used primarily for the evaluations of the consequences of atmospheric releases of chemical species. In addition to safety analysis applications in the Department of Energy (DOE) Complex, ALOHA is applied

239

Alaska | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Alaska Last updated on 2013-12-10 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information N/A Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Alaska (BECP Report, Sept. 2009) Approximate Energy Efficiency Effective Date Code Enforcement DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Energy cost savings for Alaska resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly $50 million annually by 2030. Alaska DOE Determination Letter, May 31, 2013

240

GENII Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GENII Code GENII Code GENII Code GENII is a second generation of environmental dosimetry computer code compiled in the Hanford Environmental Dosimetry System (Generation II). GENII provides a state-of-the-art, technically peer-reviewed, documented set of programs for calculating radiation dose and risk from radio nuclides released into the environment. The GENII System includes capabilities for calculating radiation doses following postulated chronic and acute releases. Version 2.10 is currently being evaluated for inclusion in the Central Registry. For more information on GENII to: http://radiologicalsciences.pnl.gov/resources/hardware.asp The GENII code-specific guidance report has been issued identifying applicable regimes in accident analysis, default inputs, and special

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Massachusetts | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Massachusetts Massachusetts Last updated on 2013-11-04 Current News The BBRS voted to adopt the 2012 IECC and ASHRAE 90.1-2010 on July 9, 2013. They will be phased in over an extended concurrency period, and is expected to become the sole effective baseline energy code on July 1, 2014. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information 13.0 Energy Conservation- 2009 IECC Approved Compliance Tools State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Massachusetts (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 01/01/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes

242

Virginia | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virginia Virginia Last updated on 2013-11-05 Current News BHCD/DHCD workgroups are currently meeting over the next 12+ months for the 2012 USBC/IECC regulatory process, with an anticipated effective date in early 2014. Commercial Residential Code Change Current Code 2009 IECC Amendments / Additional State Code Information Virginia's current code is the 2009 IECC with reference to ASHRAE 90.1-2007. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Virginia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 03/01/2011 Adoption Date 07/26/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Virginia DOE Determination Letter, May 31, 2013

243

U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau  

Broader source: Energy.gov (indexed) [DOE]

CH2M HILL CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement The U.S. Department of Energy (DOE) Richland Operations Office (DOE-RL) and CH2M HILL Plateau Remediation Company (CHPRC) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to enhance teaming to further execute the Plateau Remediation Contract. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement More Documents & Publications CH2M HILL Plateau Remediation Company

244

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal  

Broader source: Energy.gov (indexed) [DOE]

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations March 7, 2013 - 12:00pm Addthis The Justice Department, in conjunction with the U.S. Attorney's Office for the Eastern District of Washington, announced today that Colorado-based CH2M Hill Hanford Group Inc. (CHG) and its parent company, CH2M Hill Companies Ltd. (CH2M Hill) have agreed that CHG committed federal criminal violations, defrauding the public by engaging in years of widespread time

245

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Broader source: Energy.gov (indexed) [DOE]

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

246

Structure of Neutral Nanosized Clusters Produced by Coexpansion of CF4 and CH4  

Science Journals Connector (OSTI)

experimentTn (K)p0 (bar)bCF4CH4CF4CH4CF4CH4ACH4/ACF4e ... Carbon 1s photoelectron spectroscopy of CF4 and CO: Search for chemical effects on the carbon 1s hole-state lifetime ... C 1s photoelectron spectra for CF4 and CO were measured at several photon energies near the C 1s threshold. ...

M. Winkler; J. Harnes; K. J. Břrve

2011-09-21T23:59:59.000Z

247

Contract No.: DE-AC02-09CH11466 Section J Appendix I  

E-Print Network [OSTI]

Contract No.: DE-AC02-09CH11466 Section J ­ Appendix I M160 J-I-1 ATTACHMENT J.9 APPENDIX I DOE DIRECTIVES / LIST B Applicable to the Operation of PPPL Contract No. DE-AC02-09CH11466 #12;Modification 0160 Contract No.: DE-AC02-09CH11466 Section J ­ Appendix I J-I-2 DOE Directive Date Title ES&H O 150.1A 03

248

Contract No.: DE-AC02-09CH11466 ATTACHMENT J.4  

E-Print Network [OSTI]

Contract No.: DE-AC02-09CH11466 Section J Appendix D J-D-1 ATTACHMENT J.4 APPENDIX D BUDGET PROGRAM Applicable to the Operation of PPPL Contract No. DE-AC02-09CH11466 #12;Contract No.: DE-AC02-09CH11466 Section J Appendix D J-D-2 BUDGET PROGRAM This Appendix implements the clause of this contract entitled

Princeton Plasma Physics Laboratory

249

Contract No. DE-AC02-09CH11466 Section J Appendix G  

E-Print Network [OSTI]

Contract No. DE-AC02-09CH11466 Section J ­ Appendix G M135 J-G-1 ATTACHMENT J.7 APPENDIX G PURCHASING SYSTEM REQUIREMENTS Applicable to the Operation of PPPL Contract No. DE-AC02-09CH11466 #12;Contract No. DE-AC02-09CH11466 Section J ­ Appendix G M135 J-G-2 Appendix G Purchasing System Requirements

Princeton Plasma Physics Laboratory

250

Nitrogen Directed C-H Activation and Functionalization Stoltz Literature Group Meeting  

E-Print Network [OSTI]

-H Functionalization Chelation Assistance II. C-H/Olefin coupling III. C-H Carbonylation IV. Ru/Rh C-H Arylation V. Pd hydrocarbons, such as those found in gas and oil C HH HH H H H H H H C-H bond strengths . 105 kcal/mol 110 kcal)3 O Si(OEt)3 Murai, Nature. 1993, 366, 529. 93% Success of these reactions is attributed to chelation

Stoltz, Brian M.

251

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

252

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

253

Business Models for Code Compliance | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compliance Compliance Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center Business Models for Code Compliance The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to demonstrate, quantify, and monetize energy code compliance and coordinate deployment at the local, state, and regional levels. Consumer Assurance through Code Compliance Energy efficiency measures in the buildings sector, if properly realized and captured, provide a tremendous opportunity to reduce energy consumption and expenditures. Yet currently there is a lack of assurance that buildings as designed realize the levels of energy efficiency established in the

254

San Francisco Building Code Amendments to the  

E-Print Network [OSTI]

occupancy types regulated by the San Francisco Building Code, including: A, B, E, F, H, I, L, M, R, S, and U1 2010 San Francisco Building Code Amendments to the 2010 California Green Building Standards Code (Omitting amendments to 2010 California Building Code and 2010 California Residential Code which do

255

Enforcement Letter, CH2M Hill Mound, Inc - December 22, 2004...  

Broader source: Energy.gov (indexed) [DOE]

Inc - December 22, 2004 December 22, 2004 Issued to CH2M Hill Mound, Inc. related to a Radioactive Contamination Event during Remediation Activities at the Miamisburg Closure...

256

Stoichiometry of CH4 and CO2 flux in a California Rice Paddy  

E-Print Network [OSTI]

Measurements of carbon sequestration by long-term eddyemission versus carbon sequestration, Tellus, Ser. B,which to estimate carbon sequestration from F CH4 data since

McMillan, Andrew M. S.; Goulden, Michael L.; Tyler, Stanley C.

2007-01-01T23:59:59.000Z

257

Consent Order, CH2M-WG Idaho, LLC- WCO-2011-01  

Broader source: Energy.gov [DOE]

Issued to CH2M-WG Idaho, LLC related to a Hoisting Incident that occurred at the Sodium Bearing Waste Treatment Project at the Idaho National Laboratory

258

Consent Order, CH2M Hill Hanford Group, Inc.- EA-2000-09  

Broader source: Energy.gov [DOE]

Issued to CH2M Hill Hanford Group, Inc., related to Quality Problems at the Hanford Site Tank Farms, (EA-2000-09)

259

Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc.- NEA-2008-02  

Broader source: Energy.gov [DOE]

Issued to CH2M Hill Hanford Group, Inc., related to a Radioactive Waste Spill at the Hanford Site Tank Farms

260

About Building Energy Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compliance Compliance Regulations Resource Center About Building Energy Codes U.S. Energy Consumption by Sector (2011) Source: U.S. Energy Information Administration, Annual Energy Review According to the U.S. Energy Information Administration's Electric Power Annual, U.S. residential and commercial buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in significant cost savings in both the private and public sectors of the U.S. economy. Efficient buildings reduce power demand and have less of an environmental impact. The Purpose of Building Energy Codes Energy codes and standards set minimum efficiency requirements for new and renovated buildings, assuring reductions in energy use and emissions over

Note: This page contains sample records for the topic "admin code ch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A PRECESSING JET IN THE CH Cyg SYMBIOTIC SYSTEM  

SciTech Connect (OSTI)

Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from {approx}300 AU to {approx}1400 AU, with the shock front propagating with velocity <100 km s{sup -1}. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at {approx}170 AU, and a SW component ending in several clumps extending out to {approx}750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of {approx}500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

Karovska, Margarita; Gaetz, Terrance J.; Raymond, John C.; Lee, Nicholas P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Carilli, Christopher L. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hack, Warren [Space Telescope Science Institute, Baltimore, MD 21218-2463 (United States)], E-mail: mkarovska@cfa.harvard.edu

2010-02-20T23:59:59.000Z

262

Building Energy Codes Survey Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes Program Codes Program Building Energy Codes Survey Tool The following surveys are available: No available surveys Please contact ( webmaster@energycode.pnl.gov ) for further assistance. English Albanian Arabic Basque Belarusian Bosnian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional; Hong Kong) Chinese (Traditional; Taiwan) Croatian Czech Danish Dutch Dutch Informal English Estonian Finnish French Galician German German informal Greek Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Italian (formal) Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian (Bokmal) Norwegian (Nynorsk) Persian Polish Portuguese Portuguese (Brazilian) Punjabi Romanian Russian Serbian Sinhala Slovak Slovenian Spanish Spanish (Mexico) Swedish Thai Turkish Urdu Vietnamese Welsh

263

DOE Patents Database - Widget Code  

Office of Scientific and Technical Information (OSTI)

Widget Inclusion Code Widget Inclusion Code Download and install the DOepatents widget by copying and pasting its HTML inclusion code.