Sample records for adiabatic matching device

  1. Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices

    SciTech Connect (OSTI)

    Wang, C.A.; Choi, H.K.; Turner, G.W.; Spears, D.L.; Manfra, M.J. [Massachusetts Inst. of Tech., Lexington, MA (United States). Lincoln Lab.; Charache, G.W. [Lockheed Martin, Inc., Schenectady, NY (United States)

    1997-05-01T23:59:59.000Z

    The materials development of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} alloys for lattice-matched thermophotovoltaic (TPV) devices is reported. Epilayers with cutoff wavelength 2--2.4 {micro}m at room temperature and lattice-matched to GaSb substrates were grown by both low-pressure organometallic vapor phase epitaxy and molecular beam epitaxy. These layers exhibit high optical and structural quality. For demonstrating lattice-matched thermophotovoltaic devices, p- and n-type doping studies were performed. Several TPV device structures were investigated, with variations in the base/emitter thicknesses and the incorporation of a high bandgap GaSb or AlGaAsSb window layer. Significant improvement in the external quantum efficiency is observed for devices with an AlGaAsSb window layer compared to those without one.

  2. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOE Patents [OSTI]

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01T23:59:59.000Z

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  3. Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J

    2013-08-13T23:59:59.000Z

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to the lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.

  4. Adiabatic Quantum Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Dave; Flammia, Steven T.; Crosswhite, Gregory M.

    2013-06-01T23:59:59.000Z

    We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.

  5. Adiabatically implementing quantum gates

    SciTech Connect (OSTI)

    Sun, Jie; Lu, Songfeng, E-mail: lusongfeng@hotmail.com; Liu, Fang [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-14T23:59:59.000Z

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  6. Adiabatic topological quantum computing

    E-Print Network [OSTI]

    Chris Cesare; Andrew J. Landahl; Dave Bacon; Steven T. Flammia; Alice Neels

    2014-06-10T23:59:59.000Z

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.

  7. Abstract adiabatic charge pumping

    E-Print Network [OSTI]

    A. Joye; V. Brosco; F. Hekking

    2010-02-05T23:59:59.000Z

    This paper is devoted to the analysis of an abstract formula describing quantum adiabatic charge pumping in a general context. We consider closed systems characterized by a slowly varying time-dependent Hamiltonian depending on an external parameter $\\alpha$. The current operator, defined as the derivative of the Hamiltonian with respect to $\\alpha$, once integrated over some time interval, gives rise to a charge pumped through the system over that time span. We determine the first two leading terms in the adiabatic parameter of this pumped charge under the usual gap hypothesis. In particular, in case the Hamiltonian is time periodic and has discrete non-degenerate spectrum, the charge pumped over a period is given to leading order by the derivative with respect to $\\alpha$ of the corresponding dynamical and geometric phases.

  8. adiabatic quantum algorithms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adiabatic Quantum Architecture Design Minor-Embedding in Adiabatic Quantum Optimization Vicky Choi Department of Computer Science Virginia Tech Nov 18, 2009 12;Adiabatic...

  9. Stirling machines: adiabatic to isothermal

    SciTech Connect (OSTI)

    West, C.D.

    1986-01-01T23:59:59.000Z

    In most real Stirling engines the gas behavior in the cylinder is almost adiabatic, in contrast to the ideal Stirling engine in which all processes are isothermal. The combination of nearly adiabatic cylinders and nearly isothermal heat exchangers found in most Stirling engines leads to irreversibilities and loss of efficiency. Still worse, in many cases, is the performance of cylinders with a finite heat transfer intermediate between a near-adiabatic and near-isothermal behavior. Because of this behavior and because of the low thermal diffusivity of high-pressure gases, there is little hope of sufficiently enhancing the heat transfer within the cylinder of a conventional Stirling engine to increase the efficiency - in most cases, a decrease is more likely to result.

  10. Employing feedback in adiabatic quantum dynamics

    E-Print Network [OSTI]

    Armen E. Allahverdyan; Guenter Mahler

    2008-04-10T23:59:59.000Z

    We study quantum adiabatic dynamics, where the slowly moving field is influenced by system's state (feedback). The information for the feedback is gained from non-disturbating measurements done on an ensemble of identical non-interacting systems. The situation without feedback is governed by the adiabatic theorem: adiabatic energy level populations stay constant, while the adiabatic eigenvectors get a specific phase contribution (Berry phase). However, under feedback the adiabatic theorem does not hold: the adiabatic populations satisfy a closed equation of motion that coincides with the replicator dynamics well-known by its applications in evolutionary game theory. The feedback generates a new gauge-invariant adiabatic phase, which is free of the constraints on the Berry phase (e.g., the new phase is non-zero even for real adiabatic eigenfunctions).

  11. Fault-tolerant, Universal Adiabatic Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel

    2014-03-30T23:59:59.000Z

    Quantum computation has revolutionary potential for speeding computational tasks such as factoring and simulating quantum systems, but the task of constructing a quantum computer is daunting. Adiabatic quantum computation and other ``hands-off" approaches relieve the need for rapid, precise pulsing to control the system, inspiring at least one high-profile effort to realize a hands-off quantum computing device. But is hands-off incompatible with fault-tolerant? Concerted effort and many innovative ideas have not resolved this question but have instead deepened it, linking it to fundamental problems in quantum complexity theory. Here we present a hands-off approach that is provably (a) capable of scalable universal quantum computation in a non-degenerate ground state and (b) fault-tolerant against an analogue of the usual local stochastic fault model. A satisfying physical and numerical argument indicates that (c) it is also fault-tolerant against thermal excitation below a threshold temperature independent of the computation size.

  12. On The Power Of Coherently Controlled Quantum Adiabatic Evolutions

    E-Print Network [OSTI]

    Maria Kieferova; Nathan Wiebe

    2014-03-26T23:59:59.000Z

    A major challenge facing adiabatic quantum computing is that algorithm design and error correction can be difficult for adiabatic quantum computing. Recent work has considered addressing his challenge by using coherently controlled adiabatic evolutions in the place of classically controlled evolution. An important question remains: what is the relative power of controlled adiabatic evolution to traditional adiabatic evolutions? We address this by showing that coherent control and measurement provides a way to average different adiabatic evolutions in ways that cause their diabatic errors to cancel, allowing for adiabatic evolutions to combine the best characteristics of existing adiabatic optimizations strategies that are mutually exclusive in conventional adiabatic QIP. This result shows that coherent control and measurement can provide advantages for adiabatic state preparation. We also provide upper bounds on the complexity of simulating such evolutions on a circuit based quantum computer and provide sufficiency conditions for the equivalence of controlled adiabatic evolutions to adiabatic quantum computing.

  13. Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy. Abstract: True nanoscale optical spectroscopy requires the...

  14. Non-adiabatic molecular dynamics simulation of ultrafast solar cell electron transfer

    E-Print Network [OSTI]

    confinement devices [1­5]. Solar cells of the Graetzel type [6,7] are based on dye sensitized nanocrystalline in solar cells, photocatalysis and photoelectrolysis. The electronic structure of the dye cell; Ultrafast electron transfer; Non-adiabatic molecular dynamics simulation; Dye sensitized titanium

  15. Current and lattice matched tandem solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1987-01-01T23:59:59.000Z

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  16. Adiabatic thermal Child-Langmuir flow

    E-Print Network [OSTI]

    Mok, Rachel V. (Rachel Verla)

    2013-01-01T23:59:59.000Z

    A simulation model is presented for the verification of the recently developed steady-state one-dimensional adiabatic thermal Child-Langmuir flow theory. In this theory, a self-consistent Poisson equation is developed ...

  17. Send-side matching of data communications messages

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-07-01T23:59:59.000Z

    Send-side matching of data communications messages includes a plurality of compute nodes organized for collective operations, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  18. Exploring adiabatic quantum trajectories via optimal control

    E-Print Network [OSTI]

    Constantin Brif; Matthew D. Grace; Mohan Sarovar; Kevin C. Young

    2014-06-06T23:59:59.000Z

    Adiabatic quantum computation employs a slow change of a time-dependent control function (or functions) to interpolate between an initial and final Hamiltonian, which helps to keep the system in the instantaneous ground state. When the evolution time is finite, the degree of adiabaticity (quantified in this work as the average ground-state population during evolution) depends on the particulars of a dynamic trajectory associated with a given set of control functions. We use quantum optimal control theory with a composite objective functional to numerically search for controls that achieve the target final state with a high fidelity while simultaneously maximizing the degree of adiabaticity. Exploring properties of optimal adiabatic trajectories in model systems elucidates the dynamic mechanisms that suppress unwanted excitations from the ground state. Specifically, we discover that the use of multiple control functions makes it possible to access a rich set of dynamic trajectories, some of which attain a significantly improved performance (in terms of both fidelity and adiabaticity) through the increase of the energy gap during most of the evolution time.

  19. Adiabatic quantum control hampered by entanglement

    E-Print Network [OSTI]

    David Viennot

    2014-06-16T23:59:59.000Z

    We study defects in adiabatic control of a quantum system caused by the entanglement of the system with its environment. Such defects can be assimilated to decoherence processes due to perturbative couplings between the system and the environment. To analyse these effects, we propose a geometric approach based on a field theory on the control manifold issued from the higher gauge theory associated with the $C^*$-geometric phases. We study a visualization method to analyse the defects of adiabatic control based on the drawing of the field strengths of the gauge theory. To illustrate the present methodology we consider the example of the atomic STIRAP (stimulated Raman adiabatic passage) where the controlled atom is entangled with another atom. We study the robustness of the STIRAP effect when the controlled atom is entangled with another one.

  20. Adiabatic hyperspherical analysis of realistic nuclear potentials

    E-Print Network [OSTI]

    Daily, K M; Greene, Chris H

    2015-01-01T23:59:59.000Z

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin $T=3/2$ contribution in our analysis.

  1. Adiabatic hyperspherical analysis of realistic nuclear potentials

    E-Print Network [OSTI]

    K. M. Daily; Alejandro Kievsky; Chris H. Greene

    2015-03-20T23:59:59.000Z

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin $T=3/2$ contribution in our analysis.

  2. Scaling behavior of the adiabatic Dicke model

    SciTech Connect (OSTI)

    Liberti, Giuseppe; Plastina, Francesco [Dipartimento di Fisica, Universita della Calabria, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy); INFN-Gruppo collegato di Cosenza, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy); Piperno, Franco [Dipartimento di Fisica, Universita della Calabria, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy)

    2006-08-15T23:59:59.000Z

    We analyze the quantum phase transition for a set of N two-level systems interacting with a bosonic mode in the adiabatic regime. Through the Born-Oppenheimer approximation, we obtain the finite-size scaling expansion for many physical observables and, in particular, for the entanglement content of the system.

  3. Perturbative Analysis of Possible Failures in the Traditional Adiabatic Conditions

    E-Print Network [OSTI]

    T. Vértesi; R. Englman

    2005-11-15T23:59:59.000Z

    Recently, Marzlin and Sanders (2004) demonstrated an inconsistency when the adiabatic approximation was applied to specific, "inverse" time-evolving systems. Following that, Tong et al. (2005) showed that the widely used traditional adiabatic conditions are insufficient to guarantee the validity of the adiabatic approximation for this class of systems. In this article we explore the origin of these observations by a perturbative approach and find that in first order approximation certain nonzero terms appear in the solution which gives rise to the breakdown of the adiabatic approximation (despite the fact that the traditional adiabatic conditions are satisfied). We argue that in this case the Hamiltonian of Marzlin and Sanders' inverse time evolving system cannot be written in terms of t/T, where T denotes the total evolution time. It is further demonstrated that the new qualitative adiabatic condition of Ye et al. (2005) performs well in some cases when the traditional conditions fail to describe properly non-adiabatic evolution.

  4. Adiabatic state preparation study of methylene

    SciTech Connect (OSTI)

    Veis, Libor, E-mail: libor.veis@jh-inst.cas.cz; Pittner, Ji?í, E-mail: jiri.pittner@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8 (Czech Republic)

    2014-06-07T23:59:59.000Z

    Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

  5. On fixed-gap adiabatic quantum computation

    E-Print Network [OSTI]

    Ari Mizel

    2014-01-21T23:59:59.000Z

    Quantum computation has revolutionary potential for speeding algorithms and for simulating quantum systems such as molecules. We report here a quantum computer design that performs universal quantum computation within a single non-degenerate ground state protected from decohering noise by an energy gap that we argue is system-size-independent. Closely analogous to a traditional electric circuit, it substantially changes the requirements for quantum computer construction, easing measurement, timing, and heating problems. Using the standard adiabatic condition, we present evidence that this design permits "quantum concurrent processing" distributing a quantum computation among extra qubits to perform a quantum algorithm of N gates in an amount of time that scales with the square root of N. One consequence of our work is a fixed gap version of adiabatic quantum computation, which several arguments hinted could be impossible.

  6. Feedback-controlled adiabatic quantum computation

    E-Print Network [OSTI]

    R. D. Wilson; A. M. Zagoskin; S. Savel'ev; M. J. Everitt; Franco Nori

    2013-01-03T23:59:59.000Z

    We propose a simple feedback-control scheme for adiabatic quantum computation with superconducting flux qubits. The proposed method makes use of existing on-chip hardware to monitor the ground-state curvature, which is then used to control the computation speed to maximize the success probability. We show that this scheme can provide a polynomial speed-up in performance and that it is possible to choose a suitable set of feedback-control parameters for an arbitrary problem Hamiltonian.

  7. Controllable Adiabatic Manipulation of the Qubit State

    E-Print Network [OSTI]

    G. P. Berman. A. R. Bishop; F. Borgonovi; V. I. Tsifrinovich

    2007-05-09T23:59:59.000Z

    We propose a scheme which implements a controllable change of the state of the target spin qubit in such a way that both the control and the target spin qubits remain in their ground states. The interaction between the two spins is mediated by an auxiliary spin, which can transfer to its excited state. Our scheme suggests a possible relationship between the gate and adiabatic quantum computation.

  8. An overview of craniospinal axis fields and field matching

    SciTech Connect (OSTI)

    Scott, Robin L., E-mail: robinscott631@gmail.com

    2013-01-01T23:59:59.000Z

    Many methods are implemented for craniospinal axis (CSA) radiation treatment (RT). This paper’s goal is to define correctly matched CSA RT fields. Overlap or a space between matched RT fields can create variances of dose and the possibility of negative side effects or disease recurrence, respectively. An accurate CSA RT match procedure is created with localization markers, immobilization devices, equations, feathered matches, safety gap, and portal imaging. A CS match angle is predetermined to optimize patient position before immobilization device fabrication. Various central axis (CA) placements within the brain and spine fields that effect gantry, table, and collimator rotation are described. An overview of the methods used to create CSA RT fields and matches is presented for optimal CSA RT implementation. In addition, to the author’s knowledge, this is the first time that a prone CSA RT with anesthesia has been described.

  9. Adiabatic Elimination of Gaussian Subsystems from Quantum Dynamics under Continuous Measurement

    E-Print Network [OSTI]

    Ond?ej ?ernotík; Denis V. Vasilyev; Klemens Hammerer

    2015-03-25T23:59:59.000Z

    An ever broader range of physical platforms provides the possibility to study and engineer quantum dynamics under continuous measurements. In many experimental arrangements the system of interest is monitored by means of an ancillary device, whose sole purpose is to transduce the signal from the system to the measurement apparatus. Here, we present a method of adiabatic elimination when the transducer consists of an arbitrary number of bosonic modes with Gaussian dynamics while the measured object can be any quantum system. Crucially, our approach can cope with the highly relevant case of finite temperature of the transducer, which is not easily achieved with other methods. We show that this approach provides a significant improvement in the readout of superconducting qubits in circuit QED already for a few thermal excitations, and admits to adiabatically eliminate optomechanical transducers.

  10. Matched-pair classification

    SciTech Connect (OSTI)

    Theiler, James P [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  11. Matched Public PUF: Ultra Low Energy Security Platform

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    Matched Public PUF: Ultra Low Energy Security Platform Saro Meguerdichian and Miodrag Potkonjak that cannot be matched with any third such module. Each device enables rapid, low-energy computation of ultra Our strategic objective is to introduce concepts and a hard- ware platform that enable ultra low power

  12. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect (OSTI)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01T23:59:59.000Z

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  13. adiabatic compression heating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    non-adiabatic heat-recirculating combustors Paul D. Ronney Engineering Websites Summary: loss to ambient and heat conduction in the streamwise direction through the dividing wall...

  14. adiabatic initial conditions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Last Page Topic Index 1 Adiabatic initial conditions for perturbations in interacting dark energy models HEP - Phenomenology (arXiv) Summary: We present a new systematic...

  15. adiabatic temperature change: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a general theory of adiabatic output coupling from trapped atomic Bose-Einstein Condensates at finite temperatures. For weak coupling, the output rate from the condensate, and...

  16. adiabatic temperature rise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a general theory of adiabatic output coupling from trapped atomic Bose-Einstein Condensates at finite temperatures. For weak coupling, the output rate from the condensate, and...

  17. adiabatic splitting transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Balachandran, Vinitha 2007-01-01 29 Interferometry using Adiabatic Passage in Dilute Gas Bose-Einstein Condensates Quantum Physics (arXiv) Summary: We theoretically examine...

  18. Spatial Adiabatic Passage for Interacting Particles

    E-Print Network [OSTI]

    Gillet, Jeremie; Busch, Thomas

    2015-01-01T23:59:59.000Z

    Control over the quantum state of interacting particles to a high degree of fidelity is an important ability to have in the quest for understanding fundamental properties of non-classical states. However, the quickly increasing density of the spectrum, together with the appearance of crossings in time-dependent processes, makes any effort to control the system hard and resource intensive. Here we show that in trapped systems regimes can exist, in which isolated energy bands appear that allow to easily generalize known single-particle techniques. We demonstrate this for the well known spatial adiabatic passage effect, which can control the centre-of-mass state of atoms with high fidelity.

  19. Spatial Adiabatic Passage for Interacting Particles

    E-Print Network [OSTI]

    Jeremie Gillet; Albert Benseny; Thomas Busch

    2015-05-15T23:59:59.000Z

    Control over the quantum state of interacting particles to a high degree of fidelity is an important ability to have in the quest for understanding fundamental properties of non-classical states. However, the quickly increasing density of the spectrum, together with the appearance of crossings in time-dependent processes, makes any effort to control the system hard and resource intensive. Here we show that in trapped systems regimes can exist, in which isolated energy bands appear that allow to easily generalize known single-particle techniques. We demonstrate this for the well known spatial adiabatic passage effect, which can control the centre-of-mass state of atoms with high fidelity.

  20. On adiabatic perturbations in the ekpyrotic scenario

    SciTech Connect (OSTI)

    Linde, A. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Mukhanov, V. [Arnold-Sommerfeld-Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333, Munich (Germany); Vikman, A., E-mail: alinde@stanford.edu, E-mail: Viatcheslav.Mukhanov@physik.uni-muenchen.de, E-mail: alexander.vikman@googlemail.com [CCPP, New York University, Meyer Hall of Physics, 4 Washington Place, New York, NY 10003 (United States)

    2010-02-01T23:59:59.000Z

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.

  1. Adiabatic Fuel Cell Stack - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 IntroductionActinideAddingAddress: ~~. .Adiabatic Fuel

  2. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03T23:59:59.000Z

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  3. FRW Cosmologies with Adiabatic Matter Creation

    E-Print Network [OSTI]

    J. A. S. Lima; A. S. M. Germano; L. R. W. Abramo

    1995-11-02T23:59:59.000Z

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedman-Robertson-Walker (FRW) line element. For adiabatic matter creation, as developed by Prigogine and coworkers, we derive a simple expression relating the particle number density $n$ and energy density $\\rho$ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate $\\psi =3 \\beta nH$, where $\\beta$ is a pure number of the order of unity and $H$ is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index $\\gamma$ of the equation of state by an effective parameter $\\gamma_{*} = \\gamma (1 - \\beta)$. The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of $H$ suggested by recent measurements.

  4. MATCH Program (North Dakota)

    Broader source: Energy.gov [DOE]

    The MATCH Program supports the funding needs of a borrower whose financial capacity is very strong. The borrower must have a long-term credit rating of BBB or better as determined by a national...

  5. adiabatic markovian dynamics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adiabatic markovian dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Adiabatic Markovian...

  6. Abstract adiabatic charge pumping Institut Fourier, Universite de Grenoble 1

    E-Print Network [OSTI]

    Joye, Alain

    Abstract adiabatic charge pumping A. Joye, Institut Fourier, Universit´e de Grenoble 1 BP 74, 38402 This paper is devoted to the analysis of an abstract formula describing quantum adiabatic charge pumping with respect to , once integrated over some time interval, gives rise to a charge pumped through the system

  7. Adiabatic Charge Pumping in Open Quantum Systems JOSEPH E. AVRON

    E-Print Network [OSTI]

    Avron, Joseph

    Adiabatic Charge Pumping in Open Quantum Systems JOSEPH E. AVRON Technion ALEXANDER ELGART Courant pumps con- nected to a number of external leads. It is proven that under the rather general assumption on the Hamiltonian describing the system, in the adiabatic limit, the current through the pump is given by a formula

  8. Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons

    SciTech Connect (OSTI)

    Souma, Satofumi, E-mail: ssouma@harbor.kobe-u.ac.jp; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-05-05T23:59:59.000Z

    We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated.

  9. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect (OSTI)

    Humble, Travis S [ORNL; McCaskey, Alex [ORNL; Bennink, Ryan S [ORNL; Billings, Jay Jay [ORNL; D'Azevedo, Eduardo [ORNL; Sullivan, Blair D [ORNL; Klymko, Christine F [ORNL; Seddiqi, Hadayat [ORNL

    2014-01-01T23:59:59.000Z

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  10. How detrimental is decoherence in adiabatic quantum computation?

    E-Print Network [OSTI]

    Albash, Tameem

    2015-01-01T23:59:59.000Z

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...

  11. Stirling engine with one adiabatic cylinder

    SciTech Connect (OSTI)

    West, C.D.

    1982-03-01T23:59:59.000Z

    It is shown that integration around the P-V loop of a Stirling-like cycle with an adiabatic expansion or compression space is possible through careful application of the ideal gas laws. The result is a set of closed-form solutions for the work output, work input, and efficiency for ideal gases. Previous analyses have yielded closed-form solutions only for machines in which all spaces behave isothermally, or that have other limitations that simplify the arithmetic but omit important aspects of real machines. The results of this analysis, although still far removed from the exact behavior of real, practical engines, yield important insights into the effects observed in computer models and experimental machines. These results are especially illuminating for machines intended to operate with fairly small temperature differences. Heat pumps and low-technology solar-powered engines might be included in this category.

  12. Adiabatic Quantum Optimization for Associative Memory Recall

    E-Print Network [OSTI]

    Hadayat Seddiqi; Travis S. Humble

    2014-12-12T23:59:59.000Z

    Hopfield networks are a variant of associative memory that recall information stored in the couplings of an Ising model. Stored memories are fixed points for the network dynamics that correspond to energetic minima of the spin state. We formulate the recall of memories stored in a Hopfield network using energy minimization by adiabatic quantum optimization (AQO). Numerical simulations of the quantum dynamics allow us to quantify the AQO recall accuracy with respect to the number of stored memories and the noise in the input key. We also investigate AQO performance with respect to how memories are stored in the Ising model using different learning rules. Our results indicate that AQO performance varies strongly with learning rule due to the changes in the energy landscape. Consequently, learning rules offer indirect methods for investigating change to the computational complexity of the recall task and the computational efficiency of AQO.

  13. Multiplicity features of adiabatic autothermal reactors

    SciTech Connect (OSTI)

    Lovo, M.; Balakotaiah, V. (Houston Univ., TX (United States). Dept. of Chemical Engineering)

    1992-01-01T23:59:59.000Z

    In this paper singularity theory, large activation energy asymptotic, and numerical methods are used to present a comprehensive study of the steady-state multiplicity features of three classical adiabatic autothermal reactor models: tubular reactor with internal heat exchange, tubular reactor with external heat exchange, and the CSTR with external heat exchange. Specifically, the authors derive the exact uniqueness-multiplicity boundary, determine typical cross-sections of the bifurcation set, and classify the different types of bifurcation diagrams of conversion vs. residence time. Asymptotic (limiting) models are used to determine analytical expressions for the uniqueness boundary and the ignition and extinction points. The analytical results are used to present simple, explicit and accurate expressions defining the boundary of the region of autothermal operation in the physical parameter space.

  14. MobileMatch App

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,AMissionMobileMatch VolunteerMatch

  15. How detrimental is decoherence in adiabatic quantum computation?

    E-Print Network [OSTI]

    Tameem Albash; Daniel A. Lidar

    2015-03-30T23:59:59.000Z

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed system setting, remain beneficial in the open system setting. To address the high computational cost of master equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  16. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    E-Print Network [OSTI]

    G. Dridi; S. Guerin; V. Hakobyan; H. R. Jauslin; H. Eleuch

    2009-10-06T23:59:59.000Z

    We present a general and versatile technique of population transfer based on {\\it parallel adiabatic passage} by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3 $\\pi$, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically pico- and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  17. adiabatic shear localization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Adiabatic optimization without local minima Quantum Physics (arXiv) Summary: Several previous works have...

  18. adiabatic localized shift: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Adiabatic optimization without local minima Quantum Physics (arXiv) Summary: Several previous works have...

  19. adiabatic fast passage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gu; Lin Xie; Li-Zhen Ma 2009-04-29 60 Interferometry using Adiabatic Passage in Dilute Gas Bose-Einstein Condensates Quantum Physics (arXiv) Summary: We theoretically examine...

  20. Infrared cutoffs and the adiabatic limit in noncommutative spacetime

    E-Print Network [OSTI]

    Claus Doescher; Jochen Zahn

    2005-12-02T23:59:59.000Z

    We discuss appropriate infrared cutoffs and their adiabatic limit for field theories on the noncommutative Minkowski space in the Yang-Feldman formalism. In order to do this, we consider a mass term as interaction term. We show that an infrared cutoff can be defined quite analogously to the commutative case and that the adiabatic limit of the two-point function exists and coincides with the expectation, to all orders.

  1. Bose-Einstein condensates in rf-dressed adiabatic potentials

    SciTech Connect (OSTI)

    White, M.; Gao, H.; Pasienski, M.; DeMarco, B. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2006-08-15T23:59:59.000Z

    Bose-Einstein condensates of {sup 87}Rb atoms are transferred into radio-frequency induced adiabatic potentials and the properties of the corresponding dressed states are explored. We report on measurements of the spin composition of dressed condensates. We also show that adiabatic potentials can be used to trap atom gases in novel geometries, including suspending a cigar-shaped cloud above a curved sheet of atoms.

  2. Infrared cutoffs and the adiabatic limit in noncommutative spacetime

    SciTech Connect (OSTI)

    Doescher, Claus; Zahn, Jochen [II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Zentrum fuer Mathematische Physik, Universitaet Hamburg, Bundesstrasse 55, 20146 Hamburg (Germany)

    2006-02-15T23:59:59.000Z

    We discuss appropriate infrared cutoffs and their adiabatic limit for field theories on the noncommutative Minkowski space in the Yang-Feldman formalism. In order to do this, we consider a mass term as interaction term. We show that an infrared cutoff can be defined quite analogously to the commutative case and that the adiabatic limit of the two-point function exists and coincides with the expectation, to all orders.

  3. Non-Adiabatic Fluctuation in Measured Geometric Phase

    E-Print Network [OSTI]

    Qing Ai; Wenyi Huo; Gui Lu Long; C. P. Sun

    2009-04-01T23:59:59.000Z

    We study how the non-adiabatic effect causes the observable fluctuation in the "geometric phase" for a two-level system, which is defined as the experimentally measurable quantity in the adiabatic limit. From the Rabi's exact solution to this model, we give a reasonable explanation to the experimental discovery of phase fluctuation in the superconducting circuit system [P. J. Leek, \\textit{et al}., Science \\textbf{318}, 1889 (2007)], which seemed to be regarded as the conventional experimental error.

  4. Characteristic Evolution and Matching

    E-Print Network [OSTI]

    Jeffrey Winicour

    2005-12-08T23:59:59.000Z

    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black spacetime. A prime application of characteristic evolution is to compute waveforms via Cauchy-characteristic matching, which is also reviewed.

  5. Current- and lattice-matched tandem solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1985-10-21T23:59:59.000Z

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  6. SUPERCONDUCTING DEVICES

    E-Print Network [OSTI]

    Clarke, John

    2014-01-01T23:59:59.000Z

    communications. References Superconductor Applications: ~on all aspects of superconducting devices. IEEE Trans.on all aspects vf superconducting devices. The IBM Journal

  7. SUPERCONDUCTING DEVICES

    E-Print Network [OSTI]

    Clarke, John

    2014-01-01T23:59:59.000Z

    on all aspects of superconducting devices. IEEE Trans.on all aspects vf superconducting devices. The IBM JournalJ. Matisoo, The Superconducting Computer," Scientific

  8. Biochip scanner device

    DOE Patents [OSTI]

    Perov, Alexander (Troitsk, RU); Belgovskiy, Alexander I. (Mayfield Heights, OH); Mirzabekov, Andrei D. (Darien, IL)

    2001-01-01T23:59:59.000Z

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  9. Graphene field emission devices

    SciTech Connect (OSTI)

    Kumar, S., E-mail: shishirk@gmail.com; Raghavan, S. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Duesberg, G. S. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Chemistry, Trinity College Dublin, Dublin, D2 (Ireland); Pratap, R. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Department of Mechanical Engineering, Indian Institute of Science, Bengaluru (India)

    2014-09-08T23:59:59.000Z

    Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ?10?nA ?m{sup ?1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.

  10. Super-Adiabatic Particle Number in Schwinger and de Sitter Particle Production

    E-Print Network [OSTI]

    Robert Dabrowski; Gerald V. Dunne

    2014-05-01T23:59:59.000Z

    We consider the time evolution of the adiabatic particle number in both time-dependent electric fields and in de Sitter spaces, and define a super-adiabatic particle number in which the (divergent) adiabatic expansion is truncated at optimal order. In this super-adiabatic basis, the particle number evolves smoothly in time, according to Berry's universal adiabatic smoothing of the Stokes phenomenon. This super-adiabatic basis also illustrates clearly the quantum interference effects associated with particle production, in particular for sequences of time-dependent electric field pulses, and in eternal de Sitter space where there is constructive interference in even dimensions, and destructive interference in odd dimensions.

  11. Non-Hermitian shortcut to stimulated Raman adiabatic passage

    E-Print Network [OSTI]

    Boyan T. Torosov; Giuseppe Della Valle; Stefano Longhi

    2014-05-29T23:59:59.000Z

    We propose a non-Hermitian generalization of stimulated Raman adiabatic passage (STIRAP), which allows one to increase speed and fidelity of the adiabatic passage. This is done by adding balanced imaginary (gain/loss) terms in the diagonal (bare energy) terms of the Hamiltonian and choosing them such that they cancel exactly the nonadiabatic couplings, providing in this way an effective shortcut to adiabaticity. Remarkably, for a STIRAP using delayed Gaussian-shaped pulses in the counter-intuitive scheme the imaginary terms of the Hamiltonian turn out to be time independent. A possible physical realization of non-Hermitian STIRAP, based on light transfer in three evanescently-coupled optical waveguides, is proposed.

  12. Adiabatic regularisation of power spectra in $k$-inflation

    E-Print Network [OSTI]

    Alinea, Allan L; Nakanishi, Yukari; Naylor, Wade

    2015-01-01T23:59:59.000Z

    We look at the question posed by Parker {\\it et al.} about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll $k$-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale invariant power spectra. Furthermore, extending to non-minimal $k$-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.

  13. Adiabatic tracking of quantum many-body dynamics

    E-Print Network [OSTI]

    Hamed Saberi; Tomáš Opatrný; Klaus Mølmer; Adolfo del Campo

    2014-12-05T23:59:59.000Z

    The nonadiabatic dynamics of a many-body system driven through a quantum critical point can be controlled using counterdiabatic driving, where the formation of excitations is suppressed by assisting the dynamics with auxiliary multiple-body nonlocal interactions. We propose an alternative scheme which circumvents practical challenges to realize shortcuts to adiabaticity in mesoscopic systems by tailoring the functional form of the auxiliary counterdiabatic interactions. A driving scheme resorting in few-body short-range interactions is shown to generate an effectively adiabatic dynamics.

  14. Adiabatic regularisation of power spectra in $k$-inflation

    E-Print Network [OSTI]

    Allan L. Alinea; Takahiro Kubota; Yukari Nakanishi; Wade Naylor

    2015-03-26T23:59:59.000Z

    We look at the question posed by Parker {\\it et al.} about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll $k$-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale invariant power spectra. Furthermore, extending to non-minimal $k$-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.

  15. Realization of adiabatic Aharonov-Bohm scattering with neutrons

    E-Print Network [OSTI]

    Erik Sjöqvist; Martin Almquist; Ken Mattsson; Zeynep Nilhan Gürkan; Björn Hessmo

    2015-03-08T23:59:59.000Z

    The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect for neutrons that scatter on a long straight current-carrying wire. We propose an experiment to verify the effect and demonstrate its feasibility by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on the wire under realistic conditions.

  16. Voltage-matched, monolithic, multi-band-gap devices

    SciTech Connect (OSTI)

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22T23:59:59.000Z

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  17. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOE Patents [OSTI]

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22T23:59:59.000Z

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  18. Characteristic Evolution and Matching

    E-Print Network [OSTI]

    Jeffrey Winicour

    2012-01-12T23:59:59.000Z

    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.

  19. Daydreaming Devices

    E-Print Network [OSTI]

    Da Ponte, Ana Sofia Lopes

    2008-01-01T23:59:59.000Z

    Daydreaming Devices is a project on aspects of daydream and the design of convertible furniture within the context of art. This thesis addresses the concepts and the design of two daydreaming devices developed during my ...

  20. Probing Entanglement in Adiabatic Quantum Optimization with Trapped Ions

    E-Print Network [OSTI]

    Philipp Hauke; Lars Bonnes; Markus Heyl; Wolfgang Lechner

    2015-03-19T23:59:59.000Z

    Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.

  1. adiabatic quantum optimization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adiabatic quantum optimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Case studies in quantum...

  2. Adiabatic compressed air energy storage in hard rock

    SciTech Connect (OSTI)

    Driggs, C.L.

    1980-10-01T23:59:59.000Z

    Findings are discussed of a conceptual design study performed during 1980 which examined pure adiabatic CAES cycles operating in the temperature range of 700 to 900/sup 0/F. The project involved an investigation of the technical and economic feasibility of using commercially available technology to construct a plant based on the PEPCO study site and plant design requirements. The project is now complete.

  3. Analysis of non-adiabatic heat-recirculating combustors Paul D. Ronney

    E-Print Network [OSTI]

    Analysis of non-adiabatic heat-recirculating combustors Paul D. Ronney Department of Aerospace: Ronney, P. D., "Analysis of non-adiabatic heat-recirculating combustors," Combustion and Flame, Vol. 135, pp. 421-439 (2003). #12;Analysis of non-adiabatic heat-recirculating combustors Paul D. Ronney

  4. A Hybrid Adiabatic Content Addressable Memory for Ultra Low-Power Applications

    E-Print Network [OSTI]

    Tessier, Russell

    A Hybrid Adiabatic Content Addressable Memory for Ultra Low-Power Applications Aiyappan Natarajan/write operation. The adiabatic CAM is suitable for ultra low-power, low per- formance applications such as smart, Performance Keywords Ultra-low power, Energy recovery, adiabatic switching 1. INTRODUCTION Content Addressable

  5. Beyond adiabatic elimination: Effective Hamiltonians and singular perturbation

    E-Print Network [OSTI]

    Mikel Sanz; Enrique Solano; Íñigo L. Egusquiza

    2015-03-23T23:59:59.000Z

    Adiabatic elimination is a standard tool in quantum optics, which produces an effective Hamiltonian for a relevant subspace of states, incorporating effects of its coupling to states with much higher unperturbed energy. It shares with techniques from other fields the emphasis on the existence of widely separated scales. Given this fact, the question arises whether it is feasible to improve on the adiabatic approximation, similarly to some of those other approaches. A number of authors have addressed the issue from the quantum optics/atomic physics perspective, and have run into the issue of non-hermiticity of the effective Hamiltonian improved beyond the adiabatic approximation, which poses conceptual and practical problems. Here, we first briefly survey methods present in the physics literature. Next, we rewrite the problems addressed by the adiabatic elimination technique to make apparent the fact that they are singular perturbation problems from the point of view of dynamical systems. We apply the invariant manifold method for singular perturbation problems to this case, and show that this method produces the equation named after Bloch in nuclear physics. Given the wide separation of scales, it becomes intuitive that the Bloch equation admits iterative/perturbative solutions. We show, using a fixed point theorem, that indeed the iteration converges to a perturbative solution that produces in turn an exact Hamiltonian for the relevant subspace. We propose thus several sequences of effective Hamiltonians, starting with the adiabatic elimination and improving on it. We show the origin of the non-hermiticity, and that it is inessential given the isospectrality of the effective non-hermitian operator and a corresponding effective hermitian operator, which we build. We propose an application of the introduced techniques to periodic Hamiltonians.

  6. adiabatic absorption refrigeration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loss and dielectric loss as well as the efficient microwave devices and electromagnetic stealth. T he extensive development and use of the electronic devices have created a new...

  7. Current-matched high-efficiency, multijunction monolithic solar cells

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1993-01-01T23:59:59.000Z

    The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

  8. Sealing device

    SciTech Connect (OSTI)

    Garcia-Crespo, Andres Jose

    2013-12-10T23:59:59.000Z

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  9. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    SciTech Connect (OSTI)

    Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)

    2013-03-15T23:59:59.000Z

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  10. Roles of Dry Friction in Fluctuating Motion of Adiabatic Piston

    E-Print Network [OSTI]

    Tomohiko G. Sano; Hisao Hayakawa

    2014-03-08T23:59:59.000Z

    The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cusp-like singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.

  11. Adiabatic expansion and magnetic fields in AGN jets

    E-Print Network [OSTI]

    A. B. Pushkarev; Y. Y. Kovalev; A. P. Lobanov

    2008-12-25T23:59:59.000Z

    Results of high-resolution simultaneous multi-frequency 8.1-15.4 GHz VLBA polarimetric observations of relativistic jets in active galactic nuclei (the MOJAVE-2 project) are analyzed. We compare characteristics of VLBI features with jet model predictions and test if adiabatic expansion is a dominating mechanism for the evolution of relativistic shocks in parsec-scale AGN jets. We also discuss magnetic field configuration, both predicted by the model and deduced from electric vector position angle measurements.

  12. Quantum adiabatic evolution using fixed-point quantum search

    E-Print Network [OSTI]

    Avatar Tulsi

    2015-04-19T23:59:59.000Z

    A quantum system can be evolved from the ground state of an initial Hamiltonian to that of a final Hamiltonian by adiabatically changing the Hamiltonian with respect to time. The system remains in the ground-state of time-changing Hamiltonian provided the change is slow enough. More precisely, if $g$ is the minimum energy gap between the ground state and other eigenstates of time-changing Hamiltonian then the evolution time must scale as the inverse square of $g$ for a successful evolution. Childs et al.~\\cite{childs} proposed an alternative, where the system is kept in the ground state of a time-changing Hamiltonian by doing measurements at suitably small enough time intervals. Their scheme is successful only if the time scales as the inverse cube of $g$, and thus the time-scaling is inferior to the adiabatic evolution. Here, we propose another alternative which is essentially similar to the Childs' scheme but uses the concept of fixed-point quantum search (FPQS) algorithm~\\cite{fixed1,fixed2} to recover the inverse-square time-scaling behaviour of adiabatic evolution. Our algorithm uses selective transformations of the unknown ground states and phase-estimation algorithm (PEA) is the main tool to approximate such selective transformations. Thus we demonstrate an important application of fixed-point quantum search which achieves monotonic convergence towards the desired final state.

  13. Electrochromic devices

    DOE Patents [OSTI]

    Allemand, Pierre M. (Tucson, AZ); Grimes, Randall F. (Ann Arbor, MI); Ingle, Andrew R. (Tucson, AZ); Cronin, John P. (Tucson, AZ); Kennedy, Steve R. (Tuscon, AZ); Agrawal, Anoop (Tucson, AZ); Boulton, Jonathan M. (Tucson, AZ)

    2001-01-01T23:59:59.000Z

    An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

  14. Lattice matched semiconductor growth on crystalline metallic substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05T23:59:59.000Z

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  15. Device Performance

    SciTech Connect (OSTI)

    Not Available

    2006-06-01T23:59:59.000Z

    In the Device Performance group, within the National Center for Photovoltaic's Measurements and Characterization Division, we measure the performance of PV cells and modules with respect to standard reporting conditions--defined as a reference temperature (25 C), total irradiance (1000 Wm-2), and spectral irradiance distribution (IEC standard 60904-3). Typically, these are ''global'' reference conditions, but we can measure with respect to any reference set. To determine device performance, we conduct two general categories of measurements: spectral responsivity (SR) and current versus voltage (I-V). We usually perform these measurements using standard procedures, but we develop new procedures when required by new technologies. We also serve as an independent facility for verifying device performance for the entire PV community. We help the PV community solve its special measurement problems, giving advice on solar simulation, instrumentation for I-V measurements, reference cells, measurement procedures, and anomalous results. And we collaborate with researchers to analyze devices and materials.

  16. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm

    E-Print Network [OSTI]

    Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

    2009-12-04T23:59:59.000Z

    In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those which can be achieved with classical heuristic solvers. Interestingly we found that by using heuristic solvers to obtain approximate solutions we could already gain an advantage over the standard method AdaBoost. In this communication we generalize the baseline method to large scale classifier training. By large scale we mean that either the cardinality of the dictionary of candidate weak classifiers or the number of weak learners used in the strong classifier exceed the number of variables that can be handled effectively in a single global optimization. For such situations we propose an iterative and piecewise approach in which a subset of weak classifiers is selected in each iteration via global optimization. The strong classifier is then constructed by concatenating the subsets of weak classifiers. We show in numerical studies that the generalized method again successfully competes with AdaBoost. We also provide theoretical arguments as to why the proposed optimization method, which does not only minimize the empirical loss but also adds L0-norm regularization, is superior to versions of boosting that only minimize the empirical loss. By conducting a Quantum Monte Carlo simulation we gather evidence that the quantum adiabatic algorithm is able to handle a generic training problem efficiently.

  17. Theorem on the existence of a nonzero energy gap in adiabatic quantum computation

    E-Print Network [OSTI]

    Da-Jian Zhang; Xiao-Dong Yu; D. M. Tong

    2014-10-14T23:59:59.000Z

    Adiabatic quantum computation, based on the adiabatic theorem, is a promising alternative to conventional quantum computation. The validity of an adiabatic algorithm depends on the existence of a nonzero energy gap between the ground and excited states. However, it is difficult to ascertain the exact value of the energy gap. In this paper, we put forward a theorem on the existence of nonzero energy gap for the Hamiltonians used in adiabatic quantum computation. It can help to effectively identify a large class of the Hamiltonians without energy-level crossing between the ground and excited states.

  18. Method and system for reducing device performance degradation of organic devices

    DOE Patents [OSTI]

    Teague, Lucile C.

    2014-09-02T23:59:59.000Z

    Methods and systems for reducing the deleterious effects of gate bias stress on the drain current of an organic device, such as an organic thin film transistor, are provided. In a particular aspect, the organic layer of an organic device is illuminated with light having characteristics selected to reduce the gate bias voltage effects on the drain current of the organic device. For instance, the wavelength and intensity of the light are selected to provide a desired recovery of drain current of the organic device. If the characteristics of the light are appropriately matched to the organic device, recovery of the deleterious effects caused by gate bias voltage stress effects on the drain current of the organic device can be achieved. In a particular aspect, the organic device is selectively illuminated with light to operate the organic device in multiple modes of operation.

  19. Mysterious dipole synchrotron oscillations during and after adiabatic capture

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2012-03-01T23:59:59.000Z

    Strong synchrotron oscillations were observed during and after the 2.5-MHz rf adiabatic capture of a debunched booster batch in the Main Injector. Analysis shows two possible sources for the synchrotron oscillations. One is the frequency drift of the 2.5-MHz rf after the turning off of the 53-MHz rf voltage, thus resulting in an energy mismatch with the debunched beam. The second source is the energy mismatch of the injected booster beam with the frequency of the 53-MHz rf. We have been able to rule out the first possibility.

  20. Non-adiabatic pumping in an oscillating-piston model

    E-Print Network [OSTI]

    Maya Chuchem; Thomas Dittrich; Doron Cohen

    2012-04-02T23:59:59.000Z

    We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase-space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.

  1. Analysis of interference in attosecond transient absorption in adiabatic condition

    E-Print Network [OSTI]

    Dong, Wenpu; Wang, Xiaowei; Zhao, Zengxiu

    2015-01-01T23:59:59.000Z

    We simulate the transient absorption of attosecond pulses of infrared laser-dressed atoms by considering a three-level system with the adiabatic approximation. We study the delay-dependent interference features in the transient absorption spectra of helium atoms from the perspective of the coherent interaction processes between the attosecond pulse and the quasi-harmonics, and find that many features of the interference fringes in the absorption spectra of the attosecond pulse can be attributed to the coherence phase difference. And the modulation signals of laser-induced sidebands of the dark state is found related to the dark state with population modulated by the dressing field.

  2. Multidimensional Pattern Matching: A Survey

    E-Print Network [OSTI]

    Amir, Amihood

    Multidimensional Pattern Matching: A Survey Amihood Amir \\Lambda GIT--CC--92/29 July 1992 Abstract for this survey is the problem of searching aerial photographs. The (ambitious) practical goal of this application is to input an aerial photograph and a template of some object (a pattern). The output is all locations

  3. Critical flow of refrigerants through adiabatic capillary tubes: Experimental study of zeotropic mixtures R-407a and R-404a

    SciTech Connect (OSTI)

    Motta, S.Y.; Braga, S.L.; Parise, J.A.R.

    2000-07-01T23:59:59.000Z

    This paper investigates the flow of zeotropic mixtures of refrigerants through adiabatic capillary tubes. First, an extensive literature review related to the experimental study of these expansion devices was carried out. The results of this literature search showed a lack of experimental data for two fluids, R-407c and R-404a, in spite of the important role that these fluids now play as substitutes for R-22 and R-502 and the practical use of adiabatic capillary tubes in refrigeration systems. Extensive experimental data are presented for five different geometric configurations covering two inner diameters, 1.06 mm and 1.85 mm (0.0417 in. and 0.0728 in.), and three lengths, 1.05 m, 1.30 m, and 1.60 m (41.33 in., 51.18 in., and 62.99 in.). The flow rate covers a range of 10 kg/h to 112 kg/h (22 lb/h to 246.4 lb/h). The operating conditions were 220 psig to 280 psig (1,618 kPa to 2,031 kPa) of condensing pressure and 5 C to 30 C (9 F to 54 F) of subcooling. These results are presented in both graphical and tabulated forms and are intended to be a contribution to the development of environmentally benign refrigeration systems.

  4. Breakup of three particles within the adiabatic expansion method

    E-Print Network [OSTI]

    E. Garrido; A. Kievsky; M. Viviani

    2014-07-21T23:59:59.000Z

    General expressions for the breakup cross sections in the lab frame for $1+2$ reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The ${\\cal S}$-matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe $1+2$ processes, there are nevertheless particular configurations in the breakup channel (for example those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations.

  5. FRW-type cosmologies with adiabatic matter creation

    SciTech Connect (OSTI)

    Lima, J.A. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States); [Departamento de Fisica Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Germano, A.S. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil)] [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Abramo, L.R. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)

    1996-04-01T23:59:59.000Z

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density {ital n} and energy density {rho} which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate {psi}=3{beta}{ital nH}, where {beta} is a pure number of the order of unity and {ital H} is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index {gamma} of the equation of state by an effective parameter {gamma}{sub {asterisk}}={gamma}(1{minus}{beta}). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of {ital H} suggested by recent measurements. {copyright} {ital 1996 The American Physical Society.}

  6. Electrochemical device

    DOE Patents [OSTI]

    Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

    1988-01-12T23:59:59.000Z

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  7. Detection device

    DOE Patents [OSTI]

    Smith, J.E.

    1981-02-27T23:59:59.000Z

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  8. Overview of Quantum Memory Protection and Adiabaticity Induction by Fast-Signal Control

    E-Print Network [OSTI]

    Jun Jing; Lian-Ao Wu

    2014-12-04T23:59:59.000Z

    A quantum memory or information processing device is subject to disturbance from its surrounding environment or inevitable leakage due to its contact with other systems. To tackle these problems, several control protocols have been proposed for quantum memory or storage. Among them, the fast-signal control or dynamical decoupling based on external pulse sequences provides a prevailing strategy aimed at suppressing decoherence and preventing the target systems from the leakage or diffusion process. In this paper, we review the applications of this protocol in protecting quantum memory under the non-Markovian dissipative noise and maintaining systems on finite speed adiabatic passages without leakage there-from. We analyze leakage and control perturbative and nonperturbative dynamical equations including second-order master equation, quantum-state-diffusion equation, and one-component master equation derived from Feshbach PQ-partitioning technique. It turns out that the quality of fast-modulated signal control is insensitive to configurations of the applied pulse sequences. Specifically, decoherence and leakage will be greatly suppressed as long as the control sequence is able to effectively shift the system beyond the bath cutoff frequency, almost independent of the details of the control sequences which could be ideal pulses, regular rectangular pulses, random pulses and even noisy pulses.

  9. University Reactor Matching Grants Program

    SciTech Connect (OSTI)

    John Valentine; Farzad Rahnema; Said Abdel-Khalik

    2003-02-14T23:59:59.000Z

    During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given.

  10. Adiabatic Cooling of Antiprotons G. Gabrielse,1,* W. S. Kolthammer,1

    E-Print Network [OSTI]

    Richerme, Phil

    Adiabatic Cooling of Antiprotons G. Gabrielse,1,* W. S. Kolthammer,1 R. McConnell,1 P. Richerme,1 R, D-55099 Mainz, Germany (Received 1 December 2010; published 15 February 2011) Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low

  11. Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example if the evolution operator has no limit for adiabatic switchings, the Gell-Mann and Low formula allows to follow approximation (obtained by two different limiting procedures) is either useless or wrong, and the Gell

  12. Simple proof of equivalence between adiabatic quantum computation and the circuit model

    E-Print Network [OSTI]

    Ari Mizel; Daniel A. Lidar; Morgan Mitchell

    2007-02-26T23:59:59.000Z

    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.

  13. Surface tension effects on adiabatic gasliquid flow across micro pillars Santosh Krishnamurthy, Yoav Peles *

    E-Print Network [OSTI]

    Peles, Yoav

    Surface tension effects on adiabatic gas­liquid flow across micro pillars Santosh Krishnamurthy s t r a c t The effect of surface tension on adiabatic two-phase flow across a bank of 100 lm diameter was developed to account for surface tension force. In addition, a modified form of Chisholm correlation

  14. Fast adiabatic qubit gates using only $?_z$ control

    E-Print Network [OSTI]

    John M. Martinis; Michael R. Geller

    2014-07-17T23:59:59.000Z

    A controlled-phase gate was demonstrated in superconducting Xmon transmon qubits with fidelity reaching 99.4%, relying on the adiabatic interaction between the |11> and |02> states. Here we explain the theoretical concepts behind this protocol that achieves fast gate times with only $\\sigma_z$ control of the Hamiltonian, based on a theory of non-linear mapping of state errors to a power spectral density and use of optimal window functions. With a solution given in the Fourier basis, optimization is shown to be straightforward for practical cases of an arbitrary state change and finite bandwidth of control signals. We find that errors below $10^{-4}$ are readily achievable for realistic control waveforms.

  15. Stability of sunspots to convective motions. I. Adiabatic instability

    SciTech Connect (OSTI)

    Moreno-Insertis, F.; Spruit, H.C. (Instituto de Astrofisica de Canarias, La Laguna (Spain); Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.))

    1989-07-01T23:59:59.000Z

    For determining the adiabatic stability of a uniform vertical field in an arbitrary stratification it is sufficient to consider the limit of infinitesimal horizontal wavelength. It is shown how the behavior of the instability can be estimated qualitatively from the dependence of the equipartition field strength on depth. Modes are calculated numerically for analytic stratification models and for a detailed sunspot stratification, including the effects of partial ionization. It is concluded that for the observed field strengths of umbrae the stratification is indeed unstable, with a growth time of about 18 minutes. The unstable eigenfunctions have a maximum at about 2300 km below the surface of the umbra and are about 3900 km deep. Deeper layers may also be unstable depending on unknown details of the stratification. A connection between fluting instability and convective instability is noted. 37 refs.

  16. Adiabatic Pumping of Chern-Simons Axion Coupling

    E-Print Network [OSTI]

    Maryam Taherinejad; David Vanderbilt

    2014-11-06T23:59:59.000Z

    We study the adiabatic pumping of the Chern-Simons axion (CSA) coupling along a parametric loop characterized by a non-zero second Chern number $C^{(2)}$ from the viewpoint of the hybrid Wannier representation, in which the Wannier charge centers (WCCs) are visualized as sheets defined over a projected 2D Brillouin zone. We derive a new formula for the CSA coupling, expressing it as an integral involving Berry curvatures and potentials defined on the WCC sheets. We show that a loop characterized by a non-zero $C^{(2)}$ requires a series of sheet-touching events at which $2\\pi$ quanta of Berry curvature are passed from sheet to sheet, in such a way that $e^2/h$ units of CSA coupling are pumped by a lattice vector by the end of the cycle. We illustrate these behaviors via explicit calculations on a model tight-binding Hamiltonian and discuss their implications.

  17. Fast Adaptive Silhouette Area based Template Matching

    E-Print Network [OSTI]

    Zachmann, Gabriel

    Fast Adaptive Silhouette Area based Template Matching Daniel Mohr and Gabriel Zachmann If (Technical Informatics and Computer Systems) Prof. Dr. Gabriel Zachmann (Computer Graphics) Prof. Dr Template Matching Daniel Mohr and Gabriel Zachmann Clausthal University of Technology, Department

  18. Diversionary device

    DOE Patents [OSTI]

    Grubelich, Mark C. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A diversionary device has a housing having at least one opening and containing a non-explosive propellant and a quantity of fine powder packed within the housing, with the powder being located between the propellant and the opening. When the propellant is activated, it has sufficient energy to propel the powder through the opening to produce a cloud of powder outside the housing. An igniter is also provided for igniting the cloud of powder to create a diversionary flash and bang, but at a low enough pressure to avoid injuring nearby people.

  19. OLED devices

    DOE Patents [OSTI]

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22T23:59:59.000Z

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  20. Electrochromic device

    SciTech Connect (OSTI)

    Schwendemanm, Irina G. (Wexford, PA); Polcyn, Adam D. (Pittsburgh, PA); Finley, James J. (Pittsburgh, PA); Boykin, Cheri M. (Kingsport, TN); Knowles, Julianna M. (Apollo, PA)

    2011-03-15T23:59:59.000Z

    An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.

  1. Interband Coherence Induced Correction to Adiabatic Pumping in Periodically Driven Systems

    E-Print Network [OSTI]

    Hailong Wang; Longwen Zhou; Jiangbin Gong

    2015-03-03T23:59:59.000Z

    Periodic driving can create topological phases of matter absent in static systems. In terms of the displacement of the position expectation value of a time-evolving wavepacket in a closed system, a type of adiabatic dynamics in periodically driven systems is studied for general initial states possessing coherence between different Floquet bands. Under one symmetry assumption, the displacement of the wavepacket center over one adiabatic cycle is found to be comprised by two components independent of the time scale of the adiabatic cycle: a weighted integral of the Berry curvature summed over all Floquet bands, plus an interband coherence induced correction. The found correction is beyond a naive application of the quantum adiabatic theorem but survives in the adiabatic limit due to interband coherence. Our theoretical results are hence of general interest towards an improved understanding of the quantum adiabatic theorem. Our theory is checked using a periodically driven superlattice model with nontrivial topological phases. In addition to probing topological phase transitions, the adiabatic dynamics studied in this work is now also anticipated to be useful in manifesting coherence and decoherence effects in the representation of Floquet bands.

  2. Matching network for RF plasma source

    DOE Patents [OSTI]

    Pickard, Daniel S. (Palo Alto, CA); Leung, Ka-Ngo (Hercules, CA)

    2007-11-20T23:59:59.000Z

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  3. Transient particle energies in shortcuts to adiabatic expansions of harmonic traps

    E-Print Network [OSTI]

    Yang-Yang Cui; Xi Chen; J. G. Muga

    2015-05-12T23:59:59.000Z

    The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, non-adiabatic) and of the instantaneous power in characterizing or selecting different protocols.Specifically, we prove a virial theorem for STA processes, set minimal energies for specific times or viceversa, and discuss their realizability by means of Dirac impulses or otherwise.

  4. Stochasticity, superadiabaticity, and the theory of adiabatic invariants and guiding center motion

    SciTech Connect (OSTI)

    Dubin, D.H.E.; Krommes, J.A.

    1981-07-01T23:59:59.000Z

    The theory of adiabatic invariants is discussed within the modern framework of symplectic Hamiltonian dynamics. The distinctions between exact, adiabatic, and superadiabatic invariants are clarified. The intimate connection between adiabatic (as opposed to exact) invariance and resonant interactions between motions on disparate time scales is elucidated. For the important case of charged particle motion in a strong magnetic field, resonances between gyration, bounce motion, and an external sinusoidal perturbation are described explicitly by introducing a time-dependent symplectic formulation of the guiding center motion. Destruction of invariance is discussed for quite general situations of physical interest, including the case of a trapped particle in a tokamak.

  5. Optoelectronic device

    DOE Patents [OSTI]

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09T23:59:59.000Z

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  6. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    E-Print Network [OSTI]

    Barton, T. J.

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [ K.?R. Samokhvalova, J. Zhou and C. Chen ...

  7. Transient method of characteristics via the Adiabatic, Theta, and Multigrid Amplitude Function methods

    E-Print Network [OSTI]

    Shaner, Samuel Christopher

    2014-01-01T23:59:59.000Z

    In this thesis, we investigated the Adiabatic, Theta, and Multigrid Amplitude Function (MAF) methods for solving the Method of Characteristics (MOC) formulation of the time-dependent neutron transport equation. The transient ...

  8. An anatomy of a quantum adiabatic algorithm that transcends the Turing computability

    E-Print Network [OSTI]

    Tien D. Kieu

    2004-07-13T23:59:59.000Z

    We give an update on a quantum adiabatic algorithm for the Turing noncomputable Hilbert's tenth problem, and briefly go over some relevant issues and misleading objections to the algorithm.

  9. Contribution of the basis-dependent adiabatic geometric phase to noncyclic evolution

    E-Print Network [OSTI]

    M. T. Thomaz

    2015-04-19T23:59:59.000Z

    The geometric phase acquired by the vector states under an adiabatic evolution along a noncyclic path can be calculated correctly in any instantaneous basis of a Hamiltonian that varies in time due to a time-dependent classical field.

  10. General description of quasi-adiabatic dynamical phenomena near exceptional points

    E-Print Network [OSTI]

    Thomas J. Milburn; Jörg Doppler; Catherine A. Holmes; Stefano Portolan; Stefan Rotter; Peter Rabl

    2015-06-08T23:59:59.000Z

    The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyse this and related processes for the generic system of two coupled oscillator modes with loss or gain. We identify a characteristic system evolution consisting of periods of quasi-stationarity interrupted by abrupt non-adiabatic transitions, and we present a qualitative and quantitative description of this switching behaviour by connecting the problem to the phenomenon of stability loss delay. This approach makes accurate predictions for the breakdown of the adiabatic theorem as well as the occurrence of chiral behavior observed previously in this context, and provides a general framework to model and understand quasi-adiabatic dynamical effects in non-Hermitian systems.

  11. adiabatic pressure-gradient soliton: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tissues. To make Riba Sagarra, Jaume 9 Formation of solitons in atomic Bose-Einstein condensates by dark-state adiabatic passage Condensed Matter (arXiv) Summary: We propose a new...

  12. adiabatic-passage cross polarization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Guerin; H. R. Jauslin 2004-02-24 53 Interferometry using Adiabatic Passage in Dilute Gas Bose-Einstein Condensates Quantum Physics (arXiv) Summary: We theoretically examine...

  13. Schedule path optimization for quantum annealing and adiabatic quantum computing

    E-Print Network [OSTI]

    Lishan Zeng; Jun Zhang; Mohan Sarovar

    2015-05-01T23:59:59.000Z

    Quantum annealing and adiabatic quantum computing have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent quantum annealing implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.

  14. Calculating excitation energies by extrapolation along adiabatic connections

    E-Print Network [OSTI]

    Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas

    2015-01-01T23:59:59.000Z

    In this paper, an alternative method to range-separated linear-response time-dependent density-functional theory and perturbation theory is proposed to improve the estimation of the energies of a physical system from the energies of a partially interacting system. Starting from the analysis of the Taylor expansion of the energies of the partially interacting system around the physical system, we use an extrapolation scheme to improve the estimation of the energies of the physical system at an intermediate point of the range-separated or linear adiabatic connection where either the electron--electron interaction is scaled or only the long-range part of the Coulomb interaction is included. The extrapolation scheme is first applied to the range-separated energies of the helium and beryllium atoms and of the hydrogen molecule at its equilibrium and stretched geometries. It improves significantly the convergence rate of the energies toward their exact limit with respect to the range-separation parameter. The range...

  15. Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste

    SciTech Connect (OSTI)

    Bollinger, James

    2006-01-12T23:59:59.000Z

    The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.

  16. Heating requirements and non-adiabatic surface effects for a model in the National Transonic Facility

    E-Print Network [OSTI]

    Pare, Louis Alphonse

    1984-01-01T23:59:59.000Z

    insulated, adiabatic surface. A heat transfer analysis intended to yield a conservative estimate of the non-adiabatic condition was performed. A Finite element heat transfer computer code was developed and used to compute the steady state temperature... identified regions on the surface of the model susceptible to surface heating and the magnitude of the respective surface temperatures. The addition of insulation within the cavity to limit surface heating was also investigated. The geometry...

  17. An evolution of adiabatic matter: A case for the quasistatic regime

    E-Print Network [OSTI]

    W. Barreto

    2013-08-01T23:59:59.000Z

    We establish the connection between the standard ADM 3+1 treatment of matter with its characteristic equivalent, in the context of spherical symmetry. The flux-conservative rendition of the fluid equations are obtained. Considering adiabatic distributions of perfect fluid, we evolve the system using the so-called post-quasi-static approximation in radiation coordinates. We obtain an adiabatic matter evolution in the quasi-static regime or slow motion, which is not shear-free nor geodesic.

  18. Entanglement of a qubit coupled to a resonator in the adiabatic regime

    SciTech Connect (OSTI)

    Liberti, Giuseppe; Piperno, Franco [Dipartimento di Fisica, Universita della Calabria, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy); Zaffino, Rosa Letizia; Plastina, Francesco [Dipartimento di Fisica, Universita della Calabria, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy); INFN-Gruppo collegato di Cosenza, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy)

    2006-03-15T23:59:59.000Z

    We discuss the ground state entanglement of a bi-partite system, composed by a qubit strongly interacting with an oscillator mode, as a function of the coupling strength, the transition frequency and the level asymmetry of the qubit. This is done in the adiabatic regime in which the time evolution of the qubit is much faster than the oscillator one. Within the adiabatic approximation, we obtain a complete characterization of the ground state properties of the system and of its entanglement content.

  19. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2007-07-10T23:59:59.000Z

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  20. Training a Binary Classifier with the Quantum Adiabatic Algorithm

    E-Print Network [OSTI]

    Hartmut Neven; Vasil S. Denchev; Geordie Rose; William G. Macready

    2008-11-04T23:59:59.000Z

    This paper describes how to make the problem of binary classification amenable to quantum computing. A formulation is employed in which the binary classifier is constructed as a thresholded linear superposition of a set of weak classifiers. The weights in the superposition are optimized in a learning process that strives to minimize the training error as well as the number of weak classifiers used. No efficient solution to this problem is known. To bring it into a format that allows the application of adiabatic quantum computing (AQC), we first show that the bit-precision with which the weights need to be represented only grows logarithmically with the ratio of the number of training examples to the number of weak classifiers. This allows to effectively formulate the training process as a binary optimization problem. Solving it with heuristic solvers such as tabu search, we find that the resulting classifier outperforms a widely used state-of-the-art method, AdaBoost, on a variety of benchmark problems. Moreover, we discovered the interesting fact that bit-constrained learning machines often exhibit lower generalization error rates. Changing the loss function that measures the training error from 0-1 loss to least squares maps the training to quadratic unconstrained binary optimization. This corresponds to the format required by D-Wave's implementation of AQC. Simulations with heuristic solvers again yield results better than those obtained with boosting approaches. Since the resulting quadratic binary program is NP-hard, additional gains can be expected from applying the actual quantum processor.

  1. Proposal for a second-generation, lattice matched, multiple junction Ga{sub 2}AsSb TPV converter

    SciTech Connect (OSTI)

    Horner, G.S. [Keithley Instruments, Solon Ohio (United States); Coutts, T.J.; Wanlass, M.W. [National Renewable Energy Laboratory, Golden Colorado (United States)

    1995-01-05T23:59:59.000Z

    First order device modeling is used to show that spontaneously ordered Ga{sub 2}AsSb may prove useful in the newly-active field of thermophotovoltaic power generation. Optimal band gaps for single-, double- and triple-junction III-V devices are presented for a range of blackbody emitter temperatures (1000--2000 K), and it is shown that monolithic, current-matched devices may be constructed that are lattice-matched throughout the stack to an underlying InP substrate. Device efficiency, short-circuit current, fill factor, and open-circuit voltage calculations are presented. The power generation capabilities are expected to be substantial due to the proximity of the devices to the thermal radiators. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Medical Device Reliability BIOMATERIALS

    E-Print Network [OSTI]

    NEMI Medical Electronics team to address short- and long-term reliability issues with medical devices. OurMedical Device Reliability BIOMATERIALS Our goal is to provide medical device manufacturers, and consistency of active implantable medical devices. These devices, including pacemakers, cardiac defibrillators

  3. Color Matching for PlasticsColor Matching for Plastics Bill CheethamBill Cheetham

    E-Print Network [OSTI]

    Watson, Ian

    1 Color Matching for PlasticsColor Matching for Plastics Bill CheethamBill Cheetham GeneralIndustrial Systems Information ServicesInformation Services Medical SystemsMedical Systems PlasticsPlastics Power Electric Global Research Applications ­ GE Plastics · FormTool - lab color matching tool · Color

  4. Connector device for building integrated photovoltaic device

    SciTech Connect (OSTI)

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03T23:59:59.000Z

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  5. Operated device estimation framework

    E-Print Network [OSTI]

    Rengarajan, Janarthanan

    2009-05-15T23:59:59.000Z

    Protective device estimation is a challenging task because there are numerous protective devices present in a typical distribution system. Among various protective devices, auto-reclosers and fuses are the main overcurrent protection on distribution...

  6. Adiabatic many-body state preparation and information transfer in quantum dot arrays

    E-Print Network [OSTI]

    Umer Farooq; Abolfazl Bayat; Stefano Mancini; Sougato Bose

    2015-04-27T23:59:59.000Z

    Quantum simulation of many-body systems are one of the most interesting tasks of quantum technology. Among them is the preparation of a many-body system in its ground state when the vanishing energy gap makes the cooling mechanisms ineffective. Adiabatic theorem, as an alternative to cooling, can be exploited for driving the many-body system to its ground state. In this paper, we study two most common disorders in quantum dot arrays, namely exchange coupling fluctuations and hyperfine interaction, in adiabatically preparation of ground state in such systems. We show that the adiabatic ground state preparation is highly robust against those disorder effects making it good analog simulator. Moreover, we also study the adiabatic classical information transfer, using singlet-triplet states, across a spin chain. In contrast to ground state preparation the transfer mechanism is highly affected by disorder and in particular, the hyperfine interaction is very destructive for the performance. This suggests that for communication tasks across such arrays adiabatic evolution is not as effective and quantum quenches could be preferable.

  7. Interpolation Approach to Hamiltonian-varying Quantum Systems and the Adiabatic Theorem

    E-Print Network [OSTI]

    Yu Pan; Zibo Miao; Nina H. Amini; Valery Ugrinovskii; Matthew R. James

    2015-03-11T23:59:59.000Z

    Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure could be taken as the error of adiabatic approximation. We prove under certain conditions, this error can be precisely estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example on which the applicability of the adiabatic theorem is questionable.

  8. Adiabatic many-body state preparation and information transfer in quantum dot arrays

    E-Print Network [OSTI]

    Umer Farooq; Abolfazl Bayat; Stefano Mancini; Sougato Bose

    2014-11-05T23:59:59.000Z

    Quantum simulation of many-body systems are one of the most interesting tasks of quantum technology. Among them is the preparation of a many-body system in its ground state when the vanishing energy gap makes the cooling mechanisms ineffective. Adiabatic theorem, as an alternative to cooling, can be exploited for driving the many-body system to its ground state. In this paper, we study two most common disorders in quantum dot arrays, namely exchange coupling fluctuations and hyperfine interaction, in adiabatically preparation of ground state in such systems. We show that the adiabatic ground state preparation is highly robust against those disorder effects making it good analog simulator. Moreover, we also study the adiabatic classical information transfer, using singlet-triplet states, across a spin chain. In contrast to ground state preparation the transfer mechanism is highly affected by disorder and in particular, the hyperfine interaction is very destructive for the performance. This suggests that for communication tasks across such arrays adiabatic evolution is not as effective and quantum quenches could be preferable.

  9. Process And Apparatus To Accomplish Autothermal Or Steam Reforming Via A Reciprocating Compression Device

    SciTech Connect (OSTI)

    Lyons, K. David (Morgantown, WV); James, Robert (Fairmont, WV); Berry, David A. (Mt. Morris, PA); Gardner, Todd (Morgantown, WV)

    2004-09-21T23:59:59.000Z

    The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

  10. Process to Accomplish Autothermal or Steam Reforming Via a Reciprocating Compression Device

    SciTech Connect (OSTI)

    Lyons, David K.; James, Robert; Berry, David A.; Gardern, Todd

    2004-09-21T23:59:59.000Z

    The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

  11. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    SciTech Connect (OSTI)

    Altimiras, Carles, E-mail: carles.altimiras@sns.it; Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien [Service de Physique de l’Etat Condensé (CNRS URA 2464), IRAMIS, CEA Saclay, 91191 Gif-sur-Yvette (France)] [Service de Physique de l’Etat Condensé (CNRS URA 2464), IRAMIS, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2013-11-18T23:59:59.000Z

    We report the efficient coupling of a 50??? microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a ?/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L?80??{sub 0}, resulting in a characteristic impedance Z{sub C}?1?k?. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35?k? range with bandwidths above 100?MHz around a resonant frequency tunable between 4 and 6 GHz.

  12. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    DOE Patents [OSTI]

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11T23:59:59.000Z

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  13. Non-Hermitian heat engine with all-quantum-adiabatic-process cycle

    E-Print Network [OSTI]

    S. Lin; Z. Song

    2015-04-10T23:59:59.000Z

    A non-Hermitian system is expected to describe an open system which exchanges energy and particles with external reservoirs. Correspondingly, such an exchange can be adiabatic in the context of quantum mechanics. We investigate a non-Hermitian quantum heat engine (QHE) by a concrete simple two-level system, which is an S = 1/2 spin in a complex external magnetic field. The non- Hermitian PT -symmetric Hamiltonian, as a self-contained one, describes both working medium and reservoirs. A heat-engine cycle is composed of completely quantum adiabatic processes. The heat efficiency is obtained to be the same as that of Hermitian quantum Carnot cycle. The power output of this scheme can be arbitrary high, because the corresponding quantum adiabatic passages do not require a long time scale. A classical analogue of this scheme is also presented.

  14. Adiabatic approximation, Gell-Mann and Low theorem and degeneracies: A pedagogical example

    E-Print Network [OSTI]

    Christian Brouder; Gabriel Stoltz; Gianluca Panati

    2008-07-26T23:59:59.000Z

    We study a simple system described by a 2x2 Hamiltonian and the evolution of the quantum states under the influence of a perturbation. More precisely, when the initial Hamiltonian is not degenerate,we check analytically the validity of the adiabatic approximation and verify that, even if the evolution operator has no limit for adiabatic switchings, the Gell-Mann and Low formula allows to follow the evolution of eigenstates. In the degenerate case, for generic initial eigenstates, the adiabatic approximation (obtained by two different limiting procedures) is either useless or wrong, and the Gell-Mann and Low formula does not hold. We show how to select initial states in order to avoid such failures.

  15. Compressed Index for Dictionary Matching (extended abstract)

    E-Print Network [OSTI]

    Hon, Wing-Kai; Lam, Tak-Wah; Shah, Rahul; Siu-Lung, Tam; Vitter, Jeffrey Scott

    2008-01-01T23:59:59.000Z

    the kth- order empirical entropy of T, and ¾ is the size of the alphabet. In this paper we study compressed representation for another classical problem of string indexing, which is called dictionary matching in the literature. Precisely, a collection D...

  16. Santa Claus Meets Hypergraph Matchings Arash Asadpour

    E-Print Network [OSTI]

    Santa Claus Meets Hypergraph Matchings Arash Asadpour , Uriel Feige , and Amin Saberi June 17, 2008 94305, USA. saberi@stanford.edu 1 #12;extensively in computer science, operations research, economics

  17. Multi-junction solar cell device

    DOE Patents [OSTI]

    Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

    2007-12-18T23:59:59.000Z

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  18. Radial pulsations of neutron stars: computing alternative polytropic models regarding density and adiabatic index

    E-Print Network [OSTI]

    Vassilis Geroyannis; Georgios Kleftogiannis

    2014-06-14T23:59:59.000Z

    We revisit the problem of radial pulsations of neutron stars by computing four general-relativistic polytropic models, in which "density" and "adiabatic index" are involved with their discrete meanings: (i) "rest-mass density" or (ii) "mass-energy density" regarding the density, and (i) "constant" or (ii) "variable" regarding the adiabatic index. Considering the resulting four discrete combinations, we construct corresponding models and compute for each model the frequencies of the lowest three radial modes. Comparisons with previous results are made. The deviations of respective frequencies of the resolved models seem to exhibit a systematic behavior, an issue discussed here in detail.

  19. Microwave-stimulated Raman adiabatic passage in a Bose-Einstein condensate on an atom chip

    E-Print Network [OSTI]

    Dupont-Nivet, Matthieu; Laudat, Théo; Westbrook, Christoph I; Schwartz, Sylvain

    2015-01-01T23:59:59.000Z

    We report the achievement of stimulated Raman adiabatic passage (STIRAP) in the microwave frequency range between internal states of a Bose-Einstein condensate (BEC) magnetically trapped in the vicinity of an atom chip. The STIRAP protocol used in this experiment is robust to external perturbations as it is an adiabatic transfer, and power-efficient as it involves only resonant (or quasi-resonant) processes. Taking into account the effect of losses and collisions in a non-linear Bloch equations model, we show that the maximum transfer efficiency is obtained for non-zero values of the one- and two-photon detunings, which is confirmed quantitatively by our experimental measurements.

  20. Slowly changing potential problems in Quantum Mechanics: Adiabatic Theorems, Ergodic Theorems, and Scattering

    E-Print Network [OSTI]

    Shmuel Fishman; Avy Soffer

    2015-01-06T23:59:59.000Z

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the Adiabatic Theorem in the gapless case. We prove a new Uniform Ergodic Theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and Asymptotic Completeness.

  1. Ultimate field-free molecular alignment by combined adiabatic-impulsive field design

    E-Print Network [OSTI]

    S. Guerin; A. Rouzee; E. Hertz

    2008-03-05T23:59:59.000Z

    We show that a laser pulse designed as an adiabatic ramp followed by a kick allows one to reach a perfect postpulse molecular alignment, free of saturation. The mechanism is based on an optimized distribution of the energy between a weakly efficient but non saturating adiabatic ramp and an efficient but saturating impulsive field. Unprecedent degrees of alignment are predicted using state-of-the-art pulse shaping techniques and non-destructive field intensities. The scheme can be extended to reach high degrees of orientation of polar molecules using designed half-cycle pulses.

  2. Controlled Flow of Spin-Entangled Electrons via Adiabatic Quantum Pumping

    E-Print Network [OSTI]

    Kunal K. Das; Sungjun Kim; Ari Mizel

    2005-06-21T23:59:59.000Z

    We propose a method to dynamically generate and control the flow of spin-entangled electrons, each belonging to a spin-singlet, by means of adiabatic quantum pumping. The pumping cycle functions by periodic time variation of localized two-body interactions. We develop a generalized approach to adiabatic quantum pumping as traditional methods based on scattering matrix in one dimension cannot be applied here. We specifically compute the flow of spin-entangled electrons within a Hubbard-like model of quantum dots, and discuss possible implementations and identify parameters that can be used to control the singlet flow.

  3. Two-photon adiabatic passage in ultracold Rb interacting with a single nanosecond, chirped pulse

    E-Print Network [OSTI]

    Liu, Gengyuan

    2015-01-01T23:59:59.000Z

    A semiclassical, four-level model of a nanosecond, chirped pulse interacting with all optically accessible hyperfine states in the ultracold Rb atom is analyzed aiming at population inversion within $5S_{1/2}$ electronic state. The nature of two-photon adiabatic passage performed by such a single pulse having a bandwidth smaller than the hyperfine splitting of $5S_{1/2}$ state is investigated in the framework of the dressed state picture. It is shown that two dressed states are involved in the adiabatic dynamics of population inversion. The excited state manifold appeared to play an important mediating role in the mechanism of population transfer.

  4. Michigan Matching Initiative for Student Support The Michigan Matching Initiative for Student Support offers an extra incentive for

    E-Print Network [OSTI]

    Eustice, Ryan

    Michigan Matching Initiative for Student Support The Michigan Matching Initiative for Student scholarships for Michigan students. Terms of the matching program are as follows: Gifts eligible for matching, graduate, or professional scholarships at the University of Michigan. Qualifying gifts will be matched

  5. LowEnergy Adder Design with a SinglePhase SourceCoupled Adiabatic Logic

    E-Print Network [OSTI]

    Papaefthymiou, Marios

    that uses a single­phase power­ clock. SCAL cascades comprise alternating PMOS and NMOS­type gates. LowLow­Energy Adder Design with a Single­Phase Source­Coupled Adiabatic Logic Suhwan Kim Marios C. In comparison with corresponding 8­bit CLAs in alternative logic styles that operate at minimum supply voltages

  6. A Prediction Model for Adiabatic and Diabatic Capillary Tubes with Alternative Refrigerants

    E-Print Network [OSTI]

    Zhang, Yupeng

    2014-12-05T23:59:59.000Z

    line) that exits the evaporator, which creates the so called capillary tube/suction line heat exchanger. Models to predict the mass flow in both adiabatic capillary tubes and capillary tube/suction line heat exchangers are developed in this thesis...

  7. Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies

    E-Print Network [OSTI]

    S. V. S. Sastry; S. Kailas; A. K. Mohanty; A. Saxena

    2003-11-12T23:59:59.000Z

    The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comparison of the systematics of fusion barrier with and without L-dependence has been presented.

  8. Reversible ratchets as Brownian particles in an adiabatically changing periodic potential Juan M. R. Parrondo

    E-Print Network [OSTI]

    Parrondo, Juan M.R.

    Reversible ratchets as Brownian particles in an adiabatically changing periodic potential Juan M. R of particles is induced without any energy consumption. These cycles can be called reversible ratchets called ratch- ets, since they are somehow inspired by the discussion in Ref. 16 of a ratchet working

  9. Optimization and Numerical Simulation of the Cycling Process and Magnetic Shielding of a Miniature Adiabatic

    E-Print Network [OSTI]

    Timbie, Peter

    , which is crucial to minimize stray magnetic fields that could interfere with other refrigerator stagesOptimization and Numerical Simulation of the Cycling Process and Magnetic Shielding of a Miniature Adiabatic Demagnetization Refrigerator Benjamin M. Cain May 18, 2004 A Senior Honors Thesis Project Under

  10. A Miniature Continuous Adiabatic Demagnetization Refrigerator with compact shielded superconducting magnets.

    E-Print Network [OSTI]

    Timbie, Peter

    insulated from the bath. The refrigeration cycle exploits the interaction between the atomic magnetic a magnetic field is applied to a param- agnetic refrigerant, its magnetic spins are aligned and orderedA Miniature Continuous Adiabatic Demagnetization Refrigerator with compact shielded superconducting

  11. Quantum pumping in closed systems, adiabatic transport, and the Kubo formula Doron Cohen

    E-Print Network [OSTI]

    Cohen, Doron

    Quantum pumping in closed systems, adiabatic transport, and the Kubo formula Doron Cohen Department received 30 June 2003; published 3 October 2003 Quantum pumping in closed systems is considered. We explain that the Kubo formula contains all the physically relevant ingredients for the calculation of the pumped charge

  12. Optimal transport of ultracold atoms in the non-adiabatic regime A. Couvert1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with ultracold atoms by moving slowly optical tweezers [3]. Transport of cold packets of atoms is also transport of cold atoms has been demon- strated using several different configurations. One can move we report the transport of a cold atom cloud in the non-adiabatic regime with a high degree

  13. adiabatic in-situ combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adiabatic in-situ combustion First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Experimental Study of In...

  14. Adiabatic expansion, early x-ray data and the central engine in GRBs

    E-Print Network [OSTI]

    R. Barniol Duran; P. Kumar

    2009-03-02T23:59:59.000Z

    The Swift satellite early x-ray data shows a very steep decay in most of the Gamma-Ray Bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some left-over radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an "ember" that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the micro-physics of the adiabatic expansion. We use the adiabatic invariance of p_{\\perp}^2/B (p_{\\perp} is the component of the electrons' momentum normal to the magnetic field, B) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early x-ray data and find that only about 20% of our sample of 107 bursts is potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the x-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.

  15. LI, SONG, GONG: SKETCH RECOGNITION BY ENSEMBLE MATCHING 1 Sketch Recognition by Ensemble Matching

    E-Print Network [OSTI]

    Gong, Shaogang

    LI, SONG, GONG: SKETCH RECOGNITION BY ENSEMBLE MATCHING 1 Sketch Recognition by Ensemble Matching://www.eecs.qmul.ac.uk/~yzs Shaogang Gong http://www.eecs.qmul.ac.uk/~sgg School of Electronic Engineering and Computer Science, Queen with its authors. It may be distributed unchanged freely in print or electronic forms. #12;2 LI, SONG, GONG

  16. Bipolar thermoelectric devices

    E-Print Network [OSTI]

    Pipe, Kevin P. (Kevin Patrick), 1976-

    2004-01-01T23:59:59.000Z

    The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

  17. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26T23:59:59.000Z

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  18. Articulating feedstock delivery device

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-11-05T23:59:59.000Z

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  19. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31T23:59:59.000Z

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  20. INFORMATION DEVICES AND

    E-Print Network [OSTI]

    Mottram, Nigel

    to access or hold sensitive, confidential or personal information on mobile devices, such as laptopsPROTECTION OF INFORMATION HELD ON MOBILE DEVICES AND ENCRYPTION POLICY (V3.5) the place of useful;Protection of Information Held on Mobile Devices and Encryption Policy (v3.5) Page 1 Table of Contents 1

  1. An Exponential Separation between the Matching Principle and

    E-Print Network [OSTI]

    Beame, Paul

    principle is the perfect matching principle, NPM n , which states that no graph on 2n + 1 nodes consists of a perfect matching. We encode NPM n using \\Gamma 2n+1 2 \\Delta matching variables, P fi;jg , i; j Ÿ 2n+ 1. Using these variables, NPM n can be written as the disjunction of the following matching clauses: V f

  2. Improved substrate structures for InP-based devices

    SciTech Connect (OSTI)

    Wanlass, M.; Sheldon, P.

    1988-09-30T23:59:59.000Z

    A substrate structure for an InP-based semiconductor device having an InP-based film is disclosed. The substrate structure includes a substrate region having a light-weight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice matched at its one end to the GaAs layer and substantially lattice matched at its opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region and the InP-based device. 1 fig.

  3. Substrate structures for InP-based devices

    SciTech Connect (OSTI)

    Wanlass, Mark W. (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1990-01-01T23:59:59.000Z

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  4. Matched asymptotic expansions in financial engineering

    E-Print Network [OSTI]

    Howison, Sam

    Matched asymptotic expansions in financial engineering Sam Howison OCIAM and Nomura Centre of the approach in `plain vanilla' option valuation, in valuation using a fast mean-reverting-stochastic expansions applied directly to stochastic processes of diffusion type is also proposed. Keywords: option

  5. Impedance-matched drilling telemetry system

    DOE Patents [OSTI]

    Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

    2008-04-22T23:59:59.000Z

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  6. Video Matching Peter Sand and Seth Teller

    E-Print Network [OSTI]

    Ouhyoung, Ming

    Video Matching Peter Sand and Seth Teller MIT Computer Science and Artificial Intelligence robotic motion control systems that would normally be used to ensure registra- tion of multiple video due to moving people, changes in lighting, and/or different exposure settings. e-mail: {sand

  7. Portable data collection device

    DOE Patents [OSTI]

    French, Patrick D. (Aurora, CO)

    1996-01-01T23:59:59.000Z

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

  8. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, Kevin L. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  9. Formation of a heteronuclear tetramer A{sub 3}B via Efimov-resonance-assisted stimulated Raman adiabatic passage

    SciTech Connect (OSTI)

    Li Guanqiang; Peng Ping [Faculty of Science, Shaanxi University of Science and Technology, 710021 Xi'an (China)

    2011-04-15T23:59:59.000Z

    We investigate the formation of a heteronuclear tetramer A{sub 3}B by an Efimov-resonance-assisted stimulated Raman adiabatic passage scheme, which is considered a viable means of creating the homonuclear tetramer A{sub 4}[H. Jing and Y. Jiang, Phys. Rev. A 77, 065601 (2008)]. The atom-molecule dark-state solution for the system is derived, and the adiabatic conversion from atoms to heteronuclear tetramers is studied via the concept of adiabatic fidelity. In addition, the effects of external field parameters (including Rabi pulse strength, width, and single photon detuning) on the conversion are discussed.

  10. Fermion-dimer scattering using an impurity lattice Monte Carlo approach and the adiabatic projection method

    E-Print Network [OSTI]

    Serdar Elhatisari; Dean Lee

    2014-12-01T23:59:59.000Z

    We present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use L\\"uscher's finite-volume relations to determine the s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo calculations we use a new lattice algorithm called impurity lattice Monte Carlo. This algorithm can be viewed as a hybrid technique which incorporates elements of both worldline and auxiliary-field Monte Carlo simulations.

  11. Semiclassical analysis of the electron-nuclear coupling in electronic non-adiabatic processes

    E-Print Network [OSTI]

    Agostini, Federica; Gross, E K U

    2015-01-01T23:59:59.000Z

    In the context of the exact factorization of the electron-nuclear wave function, the coupling between electrons and nuclei beyond the adiabatic regime is encoded (i) in the time-dependent vector and scalar potentials and (ii) in the electron-nuclear coupling operator. The former appear in the Schroedinger-like equation that drives the evolution of the nuclear degrees of freedom, whereas the latter is responsible for inducing non-adiabatic effects in the electronic evolution equation. As we have devoted previous studies to the analysis of the vector and scalar potentials, in this paper we focus on the properties of the electron-nuclear coupling operator, with the aim of describing a numerical procedure to approximate it within a semiclassical treatment of the nuclear dynamics.

  12. Adiabatic Isometric Mapping Algorithm for Embedding 2-Surfaces in Euclidean 3-Space

    E-Print Network [OSTI]

    Ray, Shannon; Alsing, Paul M; Yau, Shing-Tung

    2015-01-01T23:59:59.000Z

    Alexandrov proved that any simplicial complex homeomorphic to a sphere with strictly non-negative Gaussian curvature at each vertex can be isometrically embedded uniquely in $\\mathbb{R}^3$ as a convex polyhedron. Due to the nonconstructive nature of his proof, there have yet to be any algorithms, that we know of, that realizes the Alexandrov embedding in polynomial time. Following his proof, we developed the adiabatic isometric mapping (AIM) algorithm. AIM uses a guided adiabatic pull-back procedure to produce "smooth" embeddings. Tests of AIM applied to two different polyhedral metrics suggests that its run time is sub cubic with respect to the number of vertices. Although Alexandrov's theorem specifically addresses the embedding of convex polyhedral metrics, we tested AIM on a broader class of polyhedral metrics that included regions of negative Gaussian curvature. One test was on a surface just outside the ergosphere of a Kerr black hole.

  13. Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction

    E-Print Network [OSTI]

    David Gosset; Barbara M. Terhal; Anna Vershynina

    2014-09-27T23:59:59.000Z

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique groundstate by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its $q$-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.

  14. Z .Mechanics of Materials 28 1998 227236 Adiabatic shearband in WHA in high-strain-rate compression

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    , the deformation of a Z .conventional depleted uranium DU penetrator quickly localizes into intense adiabatic of the impacting face of the penetra- tor. Therefore, the uranium projectile is an efficient penetrator. The DU

  15. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect (OSTI)

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); Merlemis, N. [Laser, Non linear and Quantum Optics Labs, Physics Department University of Patras, Patras, Greece 26500 (Greece); TEI of Athens, Phys. Chem. and Mater. Tech. Department, Athens, Greece, 12 210 (Greece); Giannetas, V. [Physics Department, University of Patras, Patras, Greece 26500 (Greece)

    2010-11-10T23:59:59.000Z

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  16. Adiabatic rapid passage two-photon excitation of a Rydberg atom

    E-Print Network [OSTI]

    Kuznetsova, Elena; Malinovskaya, Svetlana A

    2015-01-01T23:59:59.000Z

    We considered the two-photon adiabatic rapid passage excitation of a single atom from the ground to a Rydberg state. Three schemes were analyzed: both pump and Stokes fields chirped and pulsed, only the pump field is chirped, and only the pump field is pulsed and chirped while the Stokes field is continuous wave (CW). In all three cases high transfer efficiencies $>99\\%$ were achieved for the experimentally realizable Rabi frequencies and the pulse durations of the fields.

  17. Novel adiabatic bifilar helical wiggler entrance for free-electron laser applications

    SciTech Connect (OSTI)

    Hartemann, F.; Buzzi, J.M.; Lamain, H.

    1988-08-22T23:59:59.000Z

    A new adabatic bifilar helical wiggler entrance is presented. This introduction region is obtained by using a liquid shunt resistance to progressively shunt the current circulating in the wiggler helical windings. We have built a prototype wiggler and measured the field profiles obtained with this new scheme. The results agree very well with computer calculations and show that, indeed, one obtains a high quality adiabatic wiggler with this method.

  18. Adiabatic charge pumping in open quantum systems J.E. Avron(a)

    E-Print Network [OSTI]

    Adiabatic charge pumping in open quantum systems J.E. Avron(a) , A. Elgart(b) , G.M. Graf(c) , L for charge transport in quantum pumps connected to a number of external leads. It is proved that under rather the pump is given by a formula of B¨uttiker, Pr^etre, and Thomas, relating it to the frozen S

  19. A non-equilibrium model for fixed-bed multi-component adiabatic adsorption

    E-Print Network [OSTI]

    Harwell, Jeffrey Harry

    1979-01-01T23:59:59.000Z

    to enter the bed. Solutions along a z ~ constant char- acteristic are the history of the. volumn element of the bed located a s constant, This physical interpretat1on is a physical approximation of the real world where adsorber discontinuities... 1 3. 3. 2 3e3e3 3. 3. 4 3. 3. 5 Solution of the multi-component adiabatic adsorption equation, . ~ ~ ~ Fluid phase equations. Fixed-bed solid phase equations. , ~ Construction of the solution surface by stepwise integra- tion...

  20. Convergence and adiabatic elimination for a driven dissipative quantum harmonic oscillator

    E-Print Network [OSTI]

    Rémi Azouit; Alain Sarlette; Pierre Rouchon

    2015-03-21T23:59:59.000Z

    We prove that a harmonic oscillator driven by Lindblad dynamics where the typical drive and loss channels are two-photon processes instead of single-photon ones, converges to a protected subspace spanned by two coherent states of opposite amplitude. We then characterize the slow dynamics induced by a perturbative single-photon loss on this protected subspace, by performing adiabatic elimination in the Lindbladian dynamics.

  1. Theory of adiabatic quantum control in the presence of cavity-photon shot noise

    E-Print Network [OSTI]

    Christopher Chamberland

    2014-07-28T23:59:59.000Z

    Many areas of physics rely upon adiabatic state transfer protocols, allowing a quantum state to be moved between different physical systems for storage and retrieval or state manipulation. However, these state-transfer protocols suffer from dephasing and dissipation. In this thesis we go beyond the standard open-systems treatment of quantum dissipation allowing us to consider non-Markovian environments. We use adiabatic perturbation theory in order to give analytic descriptions for various quantum state-transfer protocols. The leading-order corrections will give rise to additional terms adding to the geometric phase preventing us from achieving a perfect fidelity. We obtain analytical descriptions for the effects of the geometric phase in non-Markovian regimes. The Markovian regime is usually treated by solving a standard Bloch-Redfield master equation, while in the non-Markovian regime, we perform a secular approximation allowing us to obtain a solution to the density matrix without solving master equations. This solution contains all the relevant phase information for our state-transfer protocol. After developing the general theoretical tools, we apply our methods to adiabatic state transfer between a four-level atom in a driven cavity. We explicitly consider dephasing effects due to unavoidable photon shot noise and give a protocol for performing a phase gate. These results will be useful to ongoing experiments in circuit quantum electrodynamics (QED) systems.

  2. Compressed Indexes for Approximate String Matching

    E-Print Network [OSTI]

    Sung, Wing-Kin Ken"

    Compressed Indexes for Approximate String Matching Ho-Leung Chan1 Tak-Wah Lam1, Wing-Kin Sung2 Siu the index space to O(n log n). Huynh et al. [10] and Lam et al. [11] further compressed the index to O,wongss}@comp.nus.edu.sg Abstract. We revisit the problem of indexing a string S[1..n] to support searching all substrings

  3. Matched Index of Refraction Flow Facility

    SciTech Connect (OSTI)

    Mcllroy, Hugh

    2010-01-01T23:59:59.000Z

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  4. Matched Index of Refraction Flow Facility

    ScienceCinema (OSTI)

    Mcllroy, Hugh

    2013-05-28T23:59:59.000Z

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  5. Variable metric methods for automatic history matching

    E-Print Network [OSTI]

    Armasu, Razvan

    1985-01-01T23:59:59.000Z

    . Automatic history matching codes presently in use employ steepest descent with optimal control, and although they were proven superior to others, their performance is not entirely satisfactory due to the poor rate of convergence as the performance index... rates of convergence when compared to the steepest descent They can be made to start out as steepest descent and end up as a second order algorithm, using functional and gradient information only, In this work several variable metric algorithms...

  6. Barrier breaching device

    DOE Patents [OSTI]

    Honodel, C.A.

    1983-06-01T23:59:59.000Z

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  7. Barrier breaching device

    DOE Patents [OSTI]

    Honodel, Charles A. (Tracy, CA)

    1985-01-01T23:59:59.000Z

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  8. Complete adiabatic waveform templates for a test-mass in the Schwarzschild spacetime: VIRGO and Advanced LIGO studies

    E-Print Network [OSTI]

    P. Ajith; Bala R. Iyer; C. A. K. Robinson; B. S. Sathyaprakash

    2005-06-10T23:59:59.000Z

    Post-Newtonian expansions of the binding energy and gravitational wave flux truncated at the {\\it same relative} post-Newtonian order form the basis of the {\\it standard adiabatic} approximation to the phasing of gravitational waves from inspiralling compact binaries. Viewed in terms of the dynamics of the binary, the standard approximation is equivalent to neglecting certain conservative post-Newtonian terms in the acceleration. In an earlier work, we had proposed a new {\\it complete adiabatic} approximant constructed from the energy and flux functions. At the leading order it employs the 2PN energy function rather than the 0PN one in the standard approximation, so that, effectively the approximation corresponds to the dynamics where there are no missing post-Newtonian terms in the acceleration. In this paper, we compare the overlaps of the standard and complete adiabatic templates with the exact waveform in the adiabatic approximation of a test-mass motion in the Schwarzschild spacetime, for the VIRGO and the Advanced LIGO noise spectra. It is found that the complete adiabatic approximants lead to a remarkable improvement in the {\\it effectualness} at lower PN ($<$ 3PN) orders, while standard approximants of order $\\geq$ 3PN provide a good lower-bound to the complete approximants for the construction of effectual templates. {\\it Faithfulness} of complete approximants is better than that of standard approximants except for a few post-Newtonian orders. Standard and complete approximants beyond the adiabatic approximation are also studied using the Lagrangian templates of Buonanno, Chen and Vallisneri.

  9. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23T23:59:59.000Z

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  10. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02T23:59:59.000Z

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  11. Mobile Device Management Android Device Enrollment

    E-Print Network [OSTI]

    to manage your device. c. Enter your password. #12;d. Accept the Terms and Conditions e. You have completed. 2. Get Touchdown from Google Play a. Open up the Google Play Store. b. Search for Touchdown. c. Use the application. #12;3. Get Citrix Mobile Connect from Google Play a. Open up the Google Play Store. b. Search

  12. Capillary interconnect device

    DOE Patents [OSTI]

    Renzi, Ronald F

    2013-11-19T23:59:59.000Z

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  13. Extending graph homomorphism and simulation for real life graph matching 

    E-Print Network [OSTI]

    Wu, Yinghui

    2011-06-30T23:59:59.000Z

    Among the vital problems in a variety of emerging applications is the graph matching problem, which is to determine whether two graphs are similar, and if so, find all the valid matches in one graph for the other, based ...

  14. Device for cutting protrusions

    DOE Patents [OSTI]

    Bzorgi, Fariborz M. (Knoxville, TN)

    2011-07-05T23:59:59.000Z

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  15. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (El Cerrito, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2010-01-10T23:59:59.000Z

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  16. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2008-04-08T23:59:59.000Z

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  17. Planar electrochemical device assembly

    DOE Patents [OSTI]

    Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA)

    2010-11-09T23:59:59.000Z

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  18. Planar electrochemical device assembly

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-06-19T23:59:59.000Z

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  19. Resistance after firing protected electric match. [Patent application

    DOE Patents [OSTI]

    Montoya, A.P.

    1980-03-20T23:59:59.000Z

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  20. Matching univalent functions and conformal welding

    E-Print Network [OSTI]

    Grong, Erlend; Vasil'ev, Alexander

    2008-01-01T23:59:59.000Z

    Given a conformal mapping $f$ of the unit disk $\\mathbb D$ onto a simply connected domain $D$ in the complex plane bounded by a closed Jordan curve, we consider the problem of constructing a matching conformal mapping, i.e., the mapping of the exterior of the unit disk $\\mathbb D^*$ onto the exterior domain $D^*$ regarding to $D$. The answer is expressed in terms of a linear differential equation with a driving term given as the kernel of an operator dependent on the original mapping $f$. Examples are provided. This study is related to the problem of conformal welding and to representation of the Virasoro algebra in the space of univalent functions.

  1. Matching univalent functions and conformal welding

    E-Print Network [OSTI]

    Erlend Grong; Pavel Gumenyuk; Alexander Vasil'ev

    2008-06-05T23:59:59.000Z

    Given a conformal mapping $f$ of the unit disk $\\mathbb D$ onto a simply connected domain $D$ in the complex plane bounded by a closed Jordan curve, we consider the problem of constructing a matching conformal mapping, i.e., the mapping of the exterior of the unit disk $\\mathbb D^*$ onto the exterior domain $D^*$ regarding to $D$. The answer is expressed in terms of a linear differential equation with a driving term given as the kernel of an operator dependent on the original mapping $f$. Examples are provided. This study is related to the problem of conformal welding and to representation of the Virasoro algebra in the space of univalent functions.

  2. Roadmap to Residency: From Application to the Match and Beyond

    E-Print Network [OSTI]

    Sherman, S. Murray

    Roadmap to Residency: From Application to the Match and Beyond Association of American Medical Colleges Learn Serve Lead #12;Roadmap to Residency: From Application to the Match and Beyond #12;© 2006 with application to U.S. residency programs. iii Roadmap to Residency: From Application to the Match and Beyond

  3. Matching of asymptotic expansions for the wave propagation in media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot ­ p.1/29 inria-00528072 The wavelength The width of the slot ¡ Matching of asymptotic expansions for the wave propagation in media

  4. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08T23:59:59.000Z

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  5. Background field method and nonrelativistic QED matching

    E-Print Network [OSTI]

    Jong-Wan Lee; Brian C. Tiburzi

    2014-11-15T23:59:59.000Z

    We discuss the resolution of an inconsistency between lattice background field methods and nonrelativistic QED matching conditions. In particular, we show that lack of on-shell conditions in lattice QCD with time-dependent background fields generally requires that certain operators related by equations of motion should be retained in an effective field theory to correctly describe the behavior of Green's functions. The coefficients of such operators in a nonrelativistic hadronic theory are determined by performing a robust nonrelativistic expansion of QED for relativistic scalar and spin-half hadrons including nonminimal electromagnetic couplings. Provided that nonrelativistic QED is augmented with equation-of-motion operators, we find that the background field method can be reconciled with the nonrelativistic QED matching conditions without any inconsistency. We further investigate whether nonrelativistic QED can be employed in the analysis of lattice QCD correlation function in background fields, but we are confronted with difficulties. Instead, we argue that the most desirable approach is a hybrid one which relies on a relativistic hadronic theory with operators chosen based on their relevance in the nonrelativistic limit. Using this hybrid framework, we obtain practically useful forms of correlation functions for scalar and spin-half hadrons in uniform electric and magnetic fields.

  6. Rain sampling device

    DOE Patents [OSTI]

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14T23:59:59.000Z

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  7. Rain sampling device

    DOE Patents [OSTI]

    Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

    1991-01-01T23:59:59.000Z

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  8. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect (OSTI)

    Hobson, M. J.

    1981-11-01T23:59:59.000Z

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  9. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Patents [OSTI]

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27T23:59:59.000Z

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  10. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25T23:59:59.000Z

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  11. A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion

    SciTech Connect (OSTI)

    Fan, Zhengfeng; Ren, Guoli; Liu, Bin; Wu, Junfeng [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T.; Liu, Jie; Wang, L. F.; Ye, Wenhua [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-10-15T23:59:59.000Z

    In the present letter, we propose the design of a wedged-peak pulse at the late stage of indirect drive. Our simulations of one- and two-dimensional radiation hydrodynamics show that the wedged-peak-pulse design can raise the drive pressure and capsule implosion velocity without significantly raising the fuel adiabat. It can thus balance the energy requirement and hydrodynamic instability control at both ablator/fuel interface and hot-spot/fuel interface. This investigation has implication in the fusion ignition at current mega-joule laser facilities.

  12. Device control at CEBAF

    SciTech Connect (OSTI)

    Schaffner, S.; Barker, D.; Bookwalter, V. [and others

    1996-08-01T23:59:59.000Z

    CEBAF has undergone a major conversion of its accelerator control system from TACL to EPICS, affecting device control for the RF system, magnets, the machine protection system, the vacuum and valves, and the diagnostic systems including beam position monitors, harps, and the camera and solenoid devices (beam viewers, faraday cups, optical transition radiation viewers, synchrotron radiation monitor, etc.). Altogether these devices require approximately 125,000 EPICS database records. The majority of these devices are controlled through CAMAC; some use embedded microprocessors (RF and magnets), and newer interfaces are in VME. The standard EPICS toolkit was extended to include a driver for CAMAC which supports dual processors on one serial highway, custom database records for magnets and BPMs, and custom data acquisition tasks for the BPMs. 2 refs., 1 tab.

  13. Multimaterial rectifying device fibers

    E-Print Network [OSTI]

    Orf, Nicholas D

    2009-01-01T23:59:59.000Z

    Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

  14. Electronic security device

    DOE Patents [OSTI]

    Eschbach, Eugene A. (Richland, WA); LeBlanc, Edward J. (Kennewick, WA); Griffin, Jeffrey W. (Kennewick, WA)

    1992-01-01T23:59:59.000Z

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  15. Electronic security device

    DOE Patents [OSTI]

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17T23:59:59.000Z

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  16. Design and fabrication of 6.1-.ANG. family semiconductor devices using semi-insulating A1Sb substrate

    DOE Patents [OSTI]

    Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick Hong (Livermore, CA); Wu, Kuang Jen J. (Cupertino, CA)

    2007-05-29T23:59:59.000Z

    For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.

  17. The APM/Matched-Filter Cluster Catalog

    E-Print Network [OSTI]

    Wataru Kawasaki

    1999-12-15T23:59:59.000Z

    A catalog of nearby clusters in the 5800 deg$^2$ area in the southern Galactic cap is constructed by applying a matched-filter cluster-finding algorithm to the sample of 3.3 million galaxies from the APM Galaxy Survey. I have preliminarily detected more than 4000 cluster candidates with estimated redshift of less than 0.2 and with richness similar to those of ACO clusters. Generally, a good correspondence is found between the nearest cluster candidates in our catalog and the ACO clusters which have measured redshift. While the ACO catalog becomes incomplete at z>0.08, the completeness limit of our cluster catalog reaches z=0.15.

  18. Thermally matched fluid cooled power converter

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2005-06-21T23:59:59.000Z

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  19. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  20. Semiclassical (SC) Description of Electronically Non-AdiabaticDynamics via the Initial Value Representation (IVR)

    SciTech Connect (OSTI)

    Ananth, V.; Venkataraman, C.; Miller, W.H.

    2007-06-22T23:59:59.000Z

    The initial value representation (IVR) of semiclassical (SC) theory is used in conjunction with the Meyer-Miller/Stock-Thoss description of electronic degrees of freedom in order to treat electronically non-adiabatic processes. It is emphasized that the classical equations of motion for the nuclear and electronic degrees of freedom that emerge in this description are precisely the Ehrenfest equations of motion (the force on the nuclei is the force averaged over the electronic wavefunction), but that the trajectories given by these equations of motion do not have the usual shortcomings of the traditional Ehrenfest model when they are used within the SC-IVR framework. For example, in the traditional Ehrenfest model (a mixed quantum-classical approach) the nuclear motion emerges from a non-adiabatic encounter on an average potential energy surface (a weighted average according to the population in the various electronic states), while the SC-IVR describes the correct correlation between electronic and nuclear dynamics, i.e., the nuclear motion is on one potential energy surface or the other depending on the electronic state. Calculations using forward-backward versions of SC-IVR theory (FB-IVR) are presented to illustrate this behavior. An even more approximate version of the SC-IVR, the linearized approximation (LSC-IVR), is slightly better than the traditional Ehrenfest model, but since it cannot describe quantum coherence effects, the LSC-IVR is also not able to describe the correct correlation between nuclear and electronic dynamics.

  1. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions

    SciTech Connect (OSTI)

    Robey, H. F.; MacGowan, B. J.; Landen, O. L.; LaFortune, K. N.; Widmayer, C.; Celliers, P. M.; Moody, J. D.; Ross, J. S.; Ralph, J.; LePape, S.; Berzak Hopkins, L. F.; Spears, B. K.; Haan, S. W.; Clark, D.; Lindl, J. D.; Edwards, M. J. [LLNL, Livermore, California 94550 (United States)] [LLNL, Livermore, California 94550 (United States)

    2013-05-15T23:59:59.000Z

    Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (?R) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shape (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ?R from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (?0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ?R by 50%.

  2. Non-adiabatic quantum pumping by a randomly moving quantum dot

    E-Print Network [OSTI]

    Stanislav Derevyanko; Daniel Waltner

    2015-02-10T23:59:59.000Z

    We look at random time dependent fluctuations of the electrical charge in an open 1D quantum system represented by a quantum dot experiencing random lateral motion. In essentially non-adiabatic settings we study both diffusive and ballistic (Levy) regimes of the barrier motion. Here the electric current as well as the net pumped electric charge experience random fluctuations over the static background. We show that in the large-time limit $t \\to \\infty$ the wavefunction is naturally separated into the Berry-phase component (resulting from the singular part of the wave amplitude in the co-moving frame) and the non-adiabatic correction (arising from fast oscillating, slow decaying tails of the same amplitude). In the special limit of a delta-correlated continuous Gaussian random walk we obtain closed analytical expressions for the ensemble averaged amplitude in the co-moving frame and demonstrate that the main contribution to the average wavefunction and probability current comes from the Berry-phase component which leads to the saturation of the fluctuations of the electric current and the pumped charge. We also derive the exact expressions for the average propagator (in the co-moving basis representation) for both types of motion.

  3. Ideal quantum gas in expanding cavity: nature of non-adiabatic force

    E-Print Network [OSTI]

    K. Nakamura; S. K. Avazbaev; Z. A. Sobirov; D. U. Matrasulov; T. Monnai

    2011-05-21T23:59:59.000Z

    We consider a quantum gas of non-interacting particles confined in the expanding cavity, and investigate the nature of the non-adiabatic force which is generated from the gas and acts on the cavity wall. Firstly, with use of the time-dependent canonical transformation which transforms the expanding cavity to the non-expanding one, we can define the force operator. Secondly, applying the perturbative theory which works when the cavity wall begins to move at time origin, we find that the non-adiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with the general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with use of transitionless quantum states is also explained. The study is done on both cases of the hard-wall and soft-wall confinement with the time-dependent confining length.

  4. Spectral tailoring device

    DOE Patents [OSTI]

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05T23:59:59.000Z

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  5. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, Rick (Chesapeake, VA)

    1999-01-01T23:59:59.000Z

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  6. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, R.

    1999-10-12T23:59:59.000Z

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  7. Nonaqueous Electrical Storage Device

    DOE Patents [OSTI]

    McEwen, Alan B. (Melrose, MA); Evans, David A. (Seekonk, MA); Blakley, Thomas J. (Woburn, MA); Goldman, Jay L. (Mansfield, MA)

    1999-10-26T23:59:59.000Z

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  8. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, John M. (Modesto, CA)

    1997-01-01T23:59:59.000Z

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  9. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16T23:59:59.000Z

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  10. Ion manipulation device

    DOE Patents [OSTI]

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16T23:59:59.000Z

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  11. Fragment capture device

    DOE Patents [OSTI]

    Payne, Lloyd R. (Los Lunas, NM); Cole, David L. (Albuquerque, NM)

    2010-03-30T23:59:59.000Z

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  12. Electrochromic optical switching device

    DOE Patents [OSTI]

    Lampert, C.M.; Visco, S.J.

    1992-08-25T23:59:59.000Z

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  13. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, J.M.

    1997-09-30T23:59:59.000Z

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  14. Electrochromic optical switching device

    SciTech Connect (OSTI)

    Lampert, Carl M. (El Sobrante, CA); Visco, Steven J. (Berkeley, CA)

    1992-01-01T23:59:59.000Z

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  15. Thermodynamics -1 A gas is compressed adiabatically from a pressure of P0 to a pressure P = (1+c)P0. This problem will

    E-Print Network [OSTI]

    Virginia Tech

    by slowly sliding the piston to the right in the above figure so that the pressure becomes P = (1+c)P0. CallThermodynamics - 1 A gas is compressed adiabatically from a pressure of P0 to a pressure P = (1+c perform an adiabatic compression by rapidly sliding the piston, controlling the piston velocity so

  16. Phononic crystal devices

    DOE Patents [OSTI]

    El-Kady, Ihab F. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

    2012-01-10T23:59:59.000Z

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  17. Dielectrophoretic columnar focusing device

    DOE Patents [OSTI]

    James, Conrad D. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Derzon, Mark S. (Tijeras, NM)

    2010-05-11T23:59:59.000Z

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  18. A quantitative method for measuring the quality of history matches

    SciTech Connect (OSTI)

    Shaw, T.S. [Kerr-McGee Corp., Oklahoma City, OK (United States); Knapp, R.M. [Univ. of Oklahoma, Norman, OK (United States)

    1997-08-01T23:59:59.000Z

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  19. Achromatic phase matching at third orders of dispersion

    DOE Patents [OSTI]

    Richman, Bruce

    2003-10-21T23:59:59.000Z

    Achromatic phase-matching (APM) is used for efficiently multiplying the frequency of broad bandwidth light by using a nonlinear optical medium comprising a second-harmonic generation (SHG) crystal and stationary optical elements whose configuration, properties, and arrangement have been optimized to match the angular dispersion characteristics of the SHG crystal to at least the third order. These elements include prisms and diffraction gratings for directing an input light beam onto the SHG crystal such that each ray wavelength is aligned to match the phase-matching angle for the crystal at each wavelength of light to at least the third order and such that every ray wavelength overlap within the crystal.

  20. Substrate structures for InP-based devices

    SciTech Connect (OSTI)

    Wanlass, M.W.; Sheldon, P.

    1990-10-16T23:59:59.000Z

    A substrate structure for an InP-based semiconductor device having an InP based film is described. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at the opposite end to the InP=based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  1. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

    1984-01-01T23:59:59.000Z

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  2. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29T23:59:59.000Z

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  3. Device Oriented Project Controller

    SciTech Connect (OSTI)

    Dalesio, Leo; Kraimer, Martin

    2013-11-20T23:59:59.000Z

    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions have been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.

  4. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01T23:59:59.000Z

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  5. Cascaded thermoacoustic devices

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09T23:59:59.000Z

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  6. Liquid mixing device

    SciTech Connect (OSTI)

    O'Leary, R. P.

    1985-08-06T23:59:59.000Z

    A mixing device for mixing at least two liquids to produce a homogenous mixture. The device includes an elongated chamber in which a vertically oriented elongated mixing cavity is located. The cavity is sealed at its lower end and it is open at its upper end and in communication with the interior of the chamber. An elongated conduit extends the length of the cavity and is adapted to receive liquids to be mixed. The conduit includes a plurality of ports located at longitudinally spaced positions therealong and which ports are directed in different directions. The ports create plural streams of liquid which interact and mix with one another within the cavity. The mixed liquids overflow the cavity and out its top end into the chamber 24. The chamber 24 includes an outlet from which the mixed liquids are withdrawn. In accordance with the preferred embodiment gas eductor means are provided in the inlet to the conduit to introduce gas bubbles within the cavity. Gas vent means are also provided in the device to vent any introduced gases from the device so that only the mixed liquids flow out the outlet.

  7. Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney

    E-Print Network [OSTI]

    1 Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney@usc.edu Colloquium topic area: 12. New Technology Concepts Keywords: Micro-combustion, Heat-recirculating combustors, Extinction limits Shortened running title: Numerical Modeling of Heat-Recirculating Combustors Word count

  8. Statistical mechanics solution sheet 2 1. The isothermal transformations are at constant T and the adiabatic transforma-

    E-Print Network [OSTI]

    Dettmann, Carl

    T and the adiabatic transforma- tions are at constant S. Thus a Carnot cycle is simply a rectangle in (S, T) space. 2 raising of temperature by an infinite number of heat baths is a reversible process; reversible processes this reversibly, and obtain the maximum amount of work. 6. We have (from the first law at constant N) dS = d

  9. J. Adv. Model. Earth Syst., Vol. 2, Art. #8, 19 pp. Adiabatic Rearrangement of Hollow PV Towers

    E-Print Network [OSTI]

    Schubert, Wayne H.

    J. Adv. Model. Earth Syst., Vol. 2, Art. #8, 19 pp. Adiabatic Rearrangement of Hollow PV Towers potential vorticity (PV). is structure has been referred to as a hollow PV tower. e sign reversal of the radial gradient of PV satis es the Charney-Stern necessary condition for combined barotropic

  10. Within the free troposphere, PV is conserved by frictionless, adiabatic motion. However, friction and diabatic processes in the

    E-Print Network [OSTI]

    Plant, Robert

    Within the free troposphere, PV is conserved by frictionless, adiabatic motion. However, friction and diabatic processes in the boundary layer can create or destroy PV. PV is generated in the warm PV anomaly above the low centre, confined in the vertical but spread in the horizontal. This shape

  11. An "adiabatic-hindered-rotor" treatment allows para-H2 to be treated as if it were spherical

    E-Print Network [OSTI]

    Le Roy, Robert J.

    An "adiabatic-hindered-rotor" treatment allows para-H2 to be treated as if it were spherical Hui Li­ molecule interactions, the common assumption that para-H2 may be treated as a spherical particle is often K , it is often considered a good approximation to treat para-H2 as a spherical particle.1

  12. Progresses in the Studies of Adiabatic Splitting of Charged Particles Beams by Crossing Nonlinear Resonances

    E-Print Network [OSTI]

    Franchi, A; Giovannozzi, M

    2009-01-01T23:59:59.000Z

    The multi-turn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by non-linear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  13. Exact Analysis of the Adiabatic Invariants in Time-Dependent Harmonic Oscillator

    E-Print Network [OSTI]

    Marko Robnik; Valery G. Romanovski

    2005-06-16T23:59:59.000Z

    The theory of adiabatic invariants has a long history and important applications in physics but is rarely rigorous. Here we treat exactly the general time-dependent 1-D harmonic oscillator, $\\ddot{q} + \\omega^2(t) q=0$ which cannot be solved in general. We follow the time-evolution of an initial ensemble of phase points with sharply defined energy $E_0$ and calculate rigorously the distribution of energy $E_1$ after time $T$, and all its moments, especially its average value $\\bar{E_1}$ and variance $\\mu^2$. Using our exact WKB-theory to all orders we get the exact result for the leading asymptotic behaviour of $\\mu^2$.

  14. Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff

    E-Print Network [OSTI]

    J. C. Niemeyer; R. Parentani; D. Campo

    2002-09-03T23:59:59.000Z

    As a simple model for unknown Planck scale physics, we assume that the quantum modes responsible for producing primordial curvature perturbations during inflation are placed in their instantaneous adiabatic vacuum when their proper momentum reaches a fixed high energy scale M. The resulting power spectrum is derived and presented in a form that exhibits the amplitude and frequency of the superimposed oscillations in terms of H/M and the slow roll parameter epsilon. The amplitude of the oscillations is proportional to the third power of H/M. We argue that these small oscillations give the lower bound of the modifications of the power spectrum if the notion of free mode propagation ceases to exist above the critical energy scale M.

  15. Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff

    E-Print Network [OSTI]

    Niemeyer, J C; Campo, D

    2002-01-01T23:59:59.000Z

    As a simple model for unknown Planck scale physics, we assume that the quantum modes responsible for producing primordial curvature perturbations during inflation are placed in their instantaneous adiabatic vacuum when their proper momentum reaches a fixed high energy scale M. The resulting power spectrum is derived and presented in a form that exhibits the amplitude and frequency of the superimposed oscillations in terms of H/M and the slow roll parameter epsilon. The amplitude of the oscillations is proportional to the third power of H/M. We argue that these small oscillations give the lower bound of the modifications of the power spectrum if the notion of free mode propagation ceases to exist above the critical energy scale M.

  16. The exact forces on classical nuclei in non-adiabatic charge transfer

    E-Print Network [OSTI]

    Federica Agostini; Ali Abedi; Yasumitsu Suzuki; Seung Kyu Min; Neepa T. Maitra; E. K. U. Gross

    2015-01-31T23:59:59.000Z

    The decomposition of electronic and nuclear motion presented in~[A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces, and analyze their structure. Lastly, an analysis of the exact potentials in the context of trajectory surface hopping procedure is presented, including preliminary investigations of velocity-adjustment, and the force-induced decoherence effect.

  17. Radiative hydrodynamics in the highly super adiabatic layer of stellar evolution models

    E-Print Network [OSTI]

    F. J. Robinson; P. Demarque; S. Sofia; K. L. Chan; Y. -C. Kim; D. B. Guenther

    2000-11-02T23:59:59.000Z

    We present results of three dimensional simulations of the uppermost part of the sun, at 3 stages of its evolution. Each model includes physically realistic radiative-hydrodynamics (the Eddington approximation is used in the optically thin region), varying opacities and a realistic equation of state (full treatment of the ionization of H and He). In each evolution model, we investigate a domain, which starts at the top of the photosphere and ends just inside the convection zone (about 2400 km in the sun model). This includes all of the super-adiabatic layer (SAL). Due to the different positions of the three models in the $log (g) $ vs $log T_{eff}$ plane, the more evolved models have lower density atmospheres. The reduction in density causes the amount of overshoot into the radiation layer, to be greater in the more evolved models.

  18. A coupled-trajectory quantum-classical approach to decoherence in non-adiabatic processes

    E-Print Network [OSTI]

    Min, Seung Kyu; Gross, E K U

    2015-01-01T23:59:59.000Z

    We present a novel quantum-classical approach to non-adiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasi-classical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as effect of the coupling to the nuclei and correctly reproduces the expected quantum behaviour. Moreover, the splitting of the nuclear wave packet is captured as consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in the Letter is supported by numerical results that are compared to quantum mechanical calculations.

  19. A maximum-entropy approach to the adiabatic freezing of a supercooled liquid

    E-Print Network [OSTI]

    Santi Prestipino

    2013-04-29T23:59:59.000Z

    I employ the van der Waals theory of Baus and coworkers to analyze the fast, adiabatic decay of a supercooled liquid in a closed vessel with which the solidification process usually starts. By imposing a further constraint on either the system volume or pressure, I use the maximum-entropy method to quantify the fraction of liquid that is transformed into solid as a function of undercooling and of the amount of a foreign gas that could possibly be also present in the test tube. Upon looking at the implications of thermal and mechanical insulation for the energy cost of forming a solid droplet within the liquid, I identify one situation where the onset of solidification inevitably occurs near the wall in contact with the bath.

  20. Roadmap to Residency: From Application to the Match and Beyond

    E-Print Network [OSTI]

    Weber, David J.

    Roadmap to Residency: From Application to the Match and Beyond Association of American Medical Colleges Learn Serve Lead Second Edition #12;Roadmap to Residency: From Application to the Match and Beyond in the processes associated with application to U.S. residency programs. iii Roadmap to Residency: From Application

  1. Matching of asymptotic expansions for the wave propagation in media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Matching of asymptotic expansions for the wave propagation in media with thin slot S-SAM Matching of asymptotic expansions for the wave propagation in media with thin slot ­ p.1/38 inria-00528070 of asymptotic expansions for the wave propagation in media with thin slot ­ p.2/38 inria-00528070,version1-21Oct

  2. CONFIRMATION OF COST SHARING OR MATCHING COMMITMENT Data Entry Date

    E-Print Network [OSTI]

    Krovi, Venkat

    CONFIRMATION OF COST SHARING OR MATCHING COMMITMENT Data Entry Date F286-480 ACCOUNT NO. SPONSOR MATCHING PROJECT DIRECTOR NAME COST SHARING DEPARTMENT AWARD PERIOD PROJECT TITLE PARTICIPATION OF SUNY = Project Director; C = Co-Project Director; Blank = Other Participant OTHER SUNY COSTS: Please indicate any

  3. Using Negative Shape Features for Logo Similarity Matching Aya Soffer

    E-Print Network [OSTI]

    Samet, Hanan

    Using Negative Shape Features for Logo Similarity Matching Aya Soffer , Hanan Samet y Computer A method for representing and matching logos based on positiveandnegative shape features ispresented. Neg. The goal is to find logos in a database that are most similar to a given sample logo. A border is added

  4. SPE-169507-MS Artificial Intelligence (AI) Assisted History Matching

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    with the measured production data is obtained. Complexity and insufficient knowledge of reservoir characteristics advancements in reservoir data acquisition have raised the complexity of the reservoir model and therefore History matching is the process of adjusting uncertain reservoir parameters until an acceptable match

  5. Red emitting photonic devices using InGaP/InGaAlP material system

    E-Print Network [OSTI]

    Kangude, Yamini

    2005-01-01T23:59:59.000Z

    In this thesis, two red emitting photonic devices are presented using the InGaP/InGaAlP material system. InGaP/InGaAlP material system provides large flexibility in the band gap energy while being lattice matched to GaAs ...

  6. Managing the Storage and Battery Resources in an Image Capture Device (Digital Camera) using Dynamic

    E-Print Network [OSTI]

    Vahdat, Amin

    Managing the Storage and Battery Resources in an Image Capture Device (Digital Camera) using to be matched with intel- ligent image storage mechanisms that are aware of local storage and battery the consumed battery and storage resources in digital cameras. Such application aware technologies

  7. Non- contacting capacitive diagnostic device

    DOE Patents [OSTI]

    Ellison, Timothy

    2005-07-12T23:59:59.000Z

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  8. Course Information --EE 531 Semiconductor Devices and Device Simulation

    E-Print Network [OSTI]

    Hochberg, Michael

    of Semiconductor Devices" by Hess "Si Processing for the VLSI Era: Vol. 3-- The Submicron MOSFET" by Wolf "Advanced: 20% Exam 1: 30% Exam 2: 30% Project: 20% Prerequisite: Semiconductor Devices (EE 482) or equivalent

  9. Support and maneuvering device

    DOE Patents [OSTI]

    Wood, R.L.

    1987-03-23T23:59:59.000Z

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

  10. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01T23:59:59.000Z

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  11. Support and maneuvering device

    DOE Patents [OSTI]

    Wood, Richard L. (Arvada, CO)

    1988-01-01T23:59:59.000Z

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof.

  12. Light modulating device

    DOE Patents [OSTI]

    Rauh, R.D.; Goldner, R.B.

    1989-12-26T23:59:59.000Z

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

  13. Light modulating device

    DOE Patents [OSTI]

    Rauh, R. David (Newton, MA); Goldner, Ronald B. (Lexington, MA)

    1989-01-01T23:59:59.000Z

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

  14. Regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1982-01-12T23:59:59.000Z

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  15. Dielectrokinetic chromatography devices

    DOE Patents [OSTI]

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16T23:59:59.000Z

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  16. Hybrid electroluminescent devices

    SciTech Connect (OSTI)

    Shiang, Joseph John (Niskayuna, NY); Duggal, Anil Raj (Niskayuna, NY); Michael, Joseph Darryl (Schenectady, NY)

    2010-08-03T23:59:59.000Z

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  17. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31T23:59:59.000Z

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  18. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  19. Biomolecular detection device

    DOE Patents [OSTI]

    Huo, Qisheng (Albuquerque, NM); Liu, Jun (Albuquerque, NM)

    2008-10-21T23:59:59.000Z

    A device for detecting and measuring the concentration of biomolecules in solution, utilizing a conducting electrode in contact with a solution containing target biomolecules, with a film with controllable pore size distribution characteristics applied to at least one surface of the conducting electrode. The film is functionalized with probe molecules that chemically interact with the target biomolecules at the film surface, blocking indicator molecules present in solution from diffusing from the solution to the electrode, thereby changing the electrochemical response of the electrode.

  20. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

    1985-01-15T23:59:59.000Z

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  1. Thermophotovoltaic energy conversion device

    DOE Patents [OSTI]

    Charache, G.W.; Baldasaro, P.F.; Egley, J.L.

    1998-05-19T23:59:59.000Z

    A thermophotovoltaic device and a method for making the thermophotovoltaic device are disclosed. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used. 1 fig.

  2. Thermoelectric Materials, Devices and Systems:

    Broader source: Energy.gov (indexed) [DOE]

    -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ......

  3. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect (OSTI)

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01T23:59:59.000Z

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  4. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect (OSTI)

    None

    2009-12-11T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  5. Method and apparatus for measuring flow velocity using matched filters

    DOE Patents [OSTI]

    Raptis, Apostolos C. (Downers Grove, IL)

    1983-01-01T23:59:59.000Z

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  6. Method and apparatus for measuring flow velocity using matched filters

    DOE Patents [OSTI]

    Raptis, A.C.

    1983-09-06T23:59:59.000Z

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  7. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.

    1993-11-23T23:59:59.000Z

    Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.

  8. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, Charles E. (Sunnyvale, CA); Eimerl, David (Livermore, CA); Velsko, Stephan P. (Livermore, CA); Roberts, David (Sagamore Hills, OH)

    1993-01-01T23:59:59.000Z

    Temperature-insensitive, phase-matched harmomic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions.

  9. Method for accurately positioning a device at a desired area of interest

    DOE Patents [OSTI]

    Jones, Gary D. (Tijeras, NM); Houston, Jack E. (Albuquerque, NM); Gillen, Kenneth T. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A method for positioning a first device utilizing a surface having a viewing translation stage, the surface being movable between a first position where the viewing stage is in operational alignment with a first device and a second position where the viewing stage is in operational alignment with a second device. The movable surface is placed in the first position and an image is produced with the first device of an identifiable characteristic of a calibration object on the viewing stage. The moveable surface is then placed in the second position and only the second device is moved until an image of the identifiable characteristic in the second device matches the image from the first device. The calibration object is then replaced on the stage of the surface with a test object, and the viewing translation stage is adjusted until the second device images the area of interest. The surface is then moved to the first position where the test object is scanned with the first device to image the area of interest. An alternative embodiment where the devices move is also disclosed.

  10. A Prediction Model for Adiabatic and Diabatic Capillary Tubes with Alternative Refrigerants 

    E-Print Network [OSTI]

    Zhang, Yupeng

    2014-12-05T23:59:59.000Z

    The capillary tube is a very common throttling device located between the condenser and evaporator in a refrigeration system. In some refrigerant systems, a section of the capillary tube is connected to a section of the ...

  11. Nanoscale Josephson Devices

    E-Print Network [OSTI]

    Bell, Chris

    , ferromagnetically (aligned ferromagnetic layers) FIB Focused Ion Beam GL Ginzburg-Landau GPIB General Purpose Interface Bus GMR Giant Magnetoresistance HTS High Temperature Superconductor I Insulator LED Light Emitting Diode LTS Low Temperature Superconductor MR... . The fabrication of intrinsic Josephson junctions in the high temperature superconductor Tl2Ba2CaCu2O8 will then be discussed, as well as Nb/MoSi2/Nb junctions, superconducting quantum interference devices, and finally GaN light emitting diodes. The work on Tl2Ba2...

  12. Micro environmental sensing device

    DOE Patents [OSTI]

    Polosky, Marc A. (Tijeras, NM); Lukens, Laurance L. (Tijeras, NM)

    2006-05-02T23:59:59.000Z

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  13. Multiported storage devices

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01T23:59:59.000Z

    of niultiported storage device 3 Linux file I/O subsystem 4 Windows NT layered I/O driver model 10 15 5 Location of multiported module in I/O stack 17 6 The bulfer cache . . . 20 7 Queuing of I/O requests 8 Processing of I/O requests by smart blkfiltcr 9... Registering of filter applet via Linux stacked module mechanism . 21 22 . . 26 10 Table of registered filter applets (functions) . . 27 11 Overhead due to presence of smart blkfilter alone . 12 Overhead of smart blkfilter using rot13 filter port 31 33...

  14. Nanotube resonator devices

    DOE Patents [OSTI]

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06T23:59:59.000Z

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  15. Stretchable and foldable electronic devices

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  16. Stretchable and foldable electronic devices

    DOE Patents [OSTI]

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2014-12-09T23:59:59.000Z

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  17. Part-based Probabilistic Point Matching using Equivalence Constraints 

    E-Print Network [OSTI]

    McNeill, Graham; Vijayakumar, Sethu

    Correspondence algorithms typically struggle with shapes that display part-based variation. We present a probabilistic approach that matches shapes using independent part transformations, where the parts themselves are ...

  18. approach matching gene: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, and argued should be considered such as the evaluation of the performance of a CSP approach against traditional Deville, Yves 10 A classification of schema-based matching...

  19. MATCH: Metadata Access Tool for Climate and Health Datasets

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MATCH is a searchable clearinghouse of publicly available Federal metadata (i.e. data about data) and links to datasets. Most metadata on MATCH pertain to geospatial data sets ranging from local to global scales. The goals of MATCH are to: 1) Provide an easily accessible clearinghouse of relevant Federal metadata on climate and health that will increase efficiency in solving research problems; 2) Promote application of research and information to understand, mitigate, and adapt to the health effects of climate change; 3) Facilitate multidirectional communication among interested stakeholders to inform and shape Federal research directions; 4) Encourage collaboration among traditional and non-traditional partners in development of new initiatives to address emerging climate and health issues. [copied from http://match.globalchange.gov/geoportal/catalog/content/about.page

  20. Matching of Infrared Emitters with Textiles For Improved Energy Utilization 

    E-Print Network [OSTI]

    Carr, W. W.; Williamson, V. A.; Johnson, M. R.; Do, B. T.

    1994-01-01T23:59:59.000Z

    The successful utilization of infrared radiation is dependent on the spectral characteristics of the material being processed and on how well the spectral output of the infrared source matches those of the material being heated. Very little bas been...

  1. Matching of Infrared Emitters with Textiles For Improved Energy Utilization

    E-Print Network [OSTI]

    Carr, W. W.; Williamson, V. A.; Johnson, M. R.; Do, B. T.

    The successful utilization of infrared radiation is dependent on the spectral characteristics of the material being processed and on how well the spectral output of the infrared source matches those of the material being heated. Very little bas been...

  2. A Hierarchical History Matching Method and its Applications

    E-Print Network [OSTI]

    Yin, Jichao

    2012-02-14T23:59:59.000Z

    the computed drainage volume with the measured SRV within specified confidence limits. Finally, we demonstrate the value of integrating downhole temperature measurements as coarse-scale constraint during streamline-based history matching of dynamic production...

  3. Design of Pattern Matching Systems: Pattern, Algorithm, and Scanner

    E-Print Network [OSTI]

    Wang, Hao

    2013-10-23T23:59:59.000Z

    Pattern matching is at the core of many computational problems, e.g., search engine, data mining, network security and information retrieval. In this dissertation, we target at the more complex patterns of regular expression and time series...

  4. Matching Gift Companies LEHIGH UNIVERSITY 1 3M Corporation

    E-Print Network [OSTI]

    Gilchrist, James F.

    Corporation Foundation The Eaton Charitable Fund Electroline Corporation Eli Lilly and Company FoundationMatching Gift Companies LEHIGH UNIVERSITY 1 3M Corporation Abbott Laboratories Accenture Foundation Technologies, Inc. Air Products Air Products Foundation Albemarle Corporation Alcoa Foundation Alliance Capital

  5. JMatch: Java plus Pattern Matching Jed Liu Andrew C. Myers

    E-Print Network [OSTI]

    Keinan, Alon

    considered useful in other languages. Functional languages offer ex­ pressive pattern matching. Logic representing the official policies or endorsement, either ex­ pressed or implied, of the Defense Advanced. Modal abstraction simplifies the spec­ ification (and use) of abstractions; invertible computation

  6. JMatch: Java plus Pattern Matching Jed Liu Andrew C. Myers

    E-Print Network [OSTI]

    Myers, Andrew C.

    considered useful in other languages. Functional languages offer ex- pressive pattern matching. Logic representing the official policies or endorsement, either ex- pressed or implied, of the Defense Advanced. Modal abstraction simplifies the spec- ification (and use) of abstractions; invertible computation

  7. Mouse Pointing Endpoint Prediction Using Kinematic Template Matching

    E-Print Network [OSTI]

    Wobbrock, Jacob O.

    Mouse Pointing Endpoint Prediction Using Kinematic Template Matching Phillip T. Pasqual and Jacob O and that copies bear this notice and the full citation on the first page. Copyrights for components of this work

  8. Thermoplastic tape compaction device

    DOE Patents [OSTI]

    Campbell, V.W.

    1994-12-27T23:59:59.000Z

    A device is disclosed for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite. 5 figures.

  9. Carbon based prosthetic devices

    SciTech Connect (OSTI)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31T23:59:59.000Z

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  10. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30T23:59:59.000Z

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  11. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01T23:59:59.000Z

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  12. Method for making electro-fluidic connections in microfluidic devices

    DOE Patents [OSTI]

    Frye-Mason, Gregory C.; Martinez, David; Manginell, Ronald P.; Heller, Edwin J.; Chanchani, Rajen

    2004-08-10T23:59:59.000Z

    A method for forming electro-fluidic interconnections in microfluidic devices comprises forming an electrical connection between matching bond pads on a die containing an active electrical element and a microfluidic substrate and forming a fluidic seal ring that circumscribes the active electrical element and a fluidic feedthrough. Preferably, the electrical connection and the seal ring are formed in a single bonding step. The simple method is particularly useful for chemical microanalytical systems wherein a plurality of microanalytical components, such as a chemical preconcentrator, a gas chromatography column, and a surface acoustic wave detector, are fluidically interconnected on a hybrid microfluidic substrate having electrical connection to external support electronics.

  13. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 11, NOVEMBER 2007 1 480-GMACS/mW Resonant Adiabatic

    E-Print Network [OSTI]

    Genov, Roman

    in the design of portable and implantable microsys- tems supporting the use of a miniature battery power supply of the energy per unit computation), thus has to be maximized. In this work the adiabatic charge- recycling

  14. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 11, NOVEMBER 2007 2573 480-GMACS/mW Resonant Adiabatic

    E-Print Network [OSTI]

    Cauwenberghs, Gert

    in the de- sign of portable and implantable microsystems supporting the use of a miniature battery power.1109/JSSC.2007.907224 adiabatic charge-recycling principle is applied to mixed-signal charge-based computing

  15. FAST: Fast Adaptive Silhouette Area based Template Matching

    E-Print Network [OSTI]

    Daniel Mohr; Gabriel Zachmann

    2010-01-01T23:59:59.000Z

    Template matching is a well-proven approach in the area of articulated object tracking. Matching accuracy and computation time of template matching are essential and yet often conflicting goals. In this paper, we present a novel, adaptive template matching approach based on the silhouette area of the articulated object. With our approach, the ratio between accuracy and speed simply is a modifiable parameter, and, even at high accuracy, it is still faster than a state-of-the-art approach. We approximate the silhouette area by a small set of axis-aligned rectangles. Utilizing the integral image, we can thus compare a silhouette with an input image at an arbitrary position independently of the resolution of the input image. In addition, our rectangle covering yields a very memory efficient representation of templates. Furthermore, we present a new method to build a template hierarchy optimized for our rectangular representation of template silhouettes. With the template hierarchy, the complexity of our matching method for n templates is O(logn) and independent of the input resolution. For example, a set of 3000 templates can be matched in 2.3 ms. Overall, our novel methods are an important contribution to a complete system for tracking articulated objects.

  16. RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine. Final report

    SciTech Connect (OSTI)

    DiNanno, L.R.; DiBella, F.A.; Koplow, M.D.

    1983-12-01T23:59:59.000Z

    A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air-cooled condenser-regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged (TC) diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound (TCPD) diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy-duty trnsport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene (PFB) and 40 mole percent hexafluorobenzene (HFB). Included in these 1983 work efforts was the thermal stability testing of the RC-1 organic fluid in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900/sup 0/F. This report describes the work performed for one of the multiple contracts awarded under the Department of Energy's Heavy-Duty Transport Technology Program.

  17. Examining the specific entropy (density of adiabatic invariants) of the outer electron radiation belt

    SciTech Connect (OSTI)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2008-01-01T23:59:59.000Z

    Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.

  18. Einstein-Maxwell Dirichlet walls, negative kinetic energies, and the adiabatic approximation for extreme black holes

    E-Print Network [OSTI]

    Tomas Andrade; William R. Kelly; Donald Marolf

    2015-03-13T23:59:59.000Z

    The gravitational Dirichlet problem -- in which the induced metric is fixed on boundaries at finite distance from the bulk -- is related to simple notions of UV cutoffs in gauge/gravity duality and appears in discussions relating the low-energy behavior of gravity to fluid dynamics. We study the Einstein-Maxwell version of this problem, in which the induced Maxwell potential on the wall is also fixed. For flat walls in otherwise-asymptotically-flat spacetimes, we identify a moduli space of Majumdar-Papapetrou-like static solutions parametrized by the location of an extreme black hole relative to the wall. Such solutions may be described as balancing gravitational repulsion from a negative-mass image-source against electrostatic attraction to an oppositely-signed image charge. Standard techniques for handling divergences yield a moduli space metric with an eigenvalue that becomes negative near the wall, indicating a region of negative kinetic energy and suggesting that the Hamiltonian may be unbounded below. One may also surround the black hole with an additional (roughly spherical) Dirichlet wall to impose a regulator whose physics is more clear. Negative kinetic energies remain, though new terms do appear in the moduli-space metric. The regulator-dependence indicates that the adiabatic approximation may be ill-defined for classical extreme black holes with Dirichlet walls.

  19. String theories as the adiabatic limit of Yang-Mills theory

    E-Print Network [OSTI]

    Popov, Alexander D

    2015-01-01T23:59:59.000Z

    We consider Yang-Mills theory with a matrix gauge group $G$ on a direct product manifold $M=\\Sigma_2\\times H^2$, where $\\Sigma_2$ is a two-dimensional Lorentzian manifold and $H^2$ is a two-dimensional open disc with the boundary $S^1=\\partial H^2$. The Euler-Lagrange equations for the metric on $\\Sigma_2$ yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on $H^2$ is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a worldsheet $\\Sigma_2$ moving in the based loop group $\\Omega G=C^\\infty (S^1, G)/G$, where $S^1$ is the boundary $S^1=\\partial H^2$ of $H^2$. By choosing $G= R^{d-1, 1}$ and putting to zero all parameters in $\\Omega R^{d-1, 1}$ besides $R^{d-1, 1}$, we get a string moving in $R^{d-1, 1}$. If one takes $\\Sigma_2= R\\times [0,1]$ or $R\\times S^1$, one obtains equations for open or closed strings. Similarly one can get equations of string moving in ...

  20. Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    NASH,THOMAS J.

    2000-11-01T23:59:59.000Z

    The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/{micro}s, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-{micro}m in diameter.

  1. Antimony Based III-V Thermophotovoltaic Devices

    SciTech Connect (OSTI)

    CA Wang

    2004-06-09T23:59:59.000Z

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature around 1100 to 1700 K, since these cells potentially can be spectrally matched to the thermal source. Cells under development include GaSb and the lattice-matched GaInAsSb/GaSb and InPAsSb/InAs quaternary systems. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to quaternary GaInAsSb and InPAsSb alloys. Device performance of 0.7-eV GaSb cells exceeds 90% of the practical limit. GaInAsSb TPV cells have been the primary focus of recent research, and cells with energy gap E{sub g} ranging from {approx}0.6 to 0.49 eV have been demonstrated. Quantum efficiency and fill factor approach theoretical limits. Open-circuit voltage factor is as high as 87% of the practical limit for the higher-E{sub g} cells, but degrades to below 80% with decreasing E{sub g} of the alloy, which might be due to Auger recombination. InPAsSb cells are the least studied, and a cell with E{sub g} = 0.45-eV has extended spectral response out to 4.3 {micro}m. This paper briefly reviews the main contributions that have been made for antimonide-based TPV cells, and suggests additional studies for further performance enhancements.

  2. New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors

    SciTech Connect (OSTI)

    Boatner, L.A.

    2008-06-24T23:59:59.000Z

    This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD.

  3. Opportunistic, collaborative and synchronized, proximal device ecology

    E-Print Network [OSTI]

    Toledano, Eyal

    2013-01-01T23:59:59.000Z

    CoSync is an on-device software framework for coordinating proximal consumer electronic devices in order to create a synchronized, opportunistic and collaborative device ecology. The CoSync device ecology combines multiple ...

  4. Monolithic multi-color light emission/detection device

    SciTech Connect (OSTI)

    Wanlass, Mark W. (Golden, CO)

    1995-01-01T23:59:59.000Z

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

  5. Monolithic multi-color light emission/detection device

    SciTech Connect (OSTI)

    Wanlass, M.W.

    1995-02-21T23:59:59.000Z

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

  6. A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    E-Print Network [OSTI]

    Ouerdane, H; Apertet, Y; Michot, A; Abbout, A

    2013-01-01T23:59:59.000Z

    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.

  7. Tunable surface plasmon devices

    DOE Patents [OSTI]

    Shaner, Eric A. (Rio Rancho, NM); Wasserman, Daniel (Lowell, MA)

    2011-08-30T23:59:59.000Z

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  8. Personal annunciation device

    DOE Patents [OSTI]

    Angelo, Peter (Oak Ridge, TN); Younkin, James (Oak Ridge, TN); DeMint, Paul (Kingston, TN)

    2011-01-25T23:59:59.000Z

    A personal annunciation device (PAD) providing, in an area of interest, compensatory annunciation of the presence of an abnormal condition in a hazardous area and accountability of the user of the PAD. Compensatory annunciation supplements primary annunciation provided by an emergency notification system (ENS). A detection system detects an abnormal condition, and a wireless transmission system transmits a wireless transmission to the PAD. The PAD has a housing enclosing the components of the PAD including a communication module for receiving the wireless transmission, a power supply, processor, memory, annunciation system, and RFID module. The RFID module has an RFID receiver that listens for an RFID transmission from an RFID reader disposed in a portal of an area of interest. The PAD identifies the transmission and changes its operating state based on the transmission. The RFID readers recognize, record, and transmit the state of the PAD to a base station providing accountability of the wearer.

  9. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15T23:59:59.000Z

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  10. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08T23:59:59.000Z

    This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  11. False color viewing device

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

  12. False color viewing device

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-10-20T23:59:59.000Z

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  13. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA)

    1990-01-01T23:59:59.000Z

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  14. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, S.E.

    1985-08-16T23:59:59.000Z

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  15. Electrical safety device

    DOE Patents [OSTI]

    White, David B. (Greenock, PA)

    1991-01-01T23:59:59.000Z

    An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.

  16. Light emitting ceramic device

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18T23:59:59.000Z

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  17. Module isolation devices

    SciTech Connect (OSTI)

    Carolan, Michael Francis; Cooke, John Albert; Buzinski, Michael David

    2010-04-27T23:59:59.000Z

    A gas flow isolation device includes a gas flow isolation valve movable from an opened condition to a closed condition. The module isolation valve in one embodiment includes a rupture disk in flow communication with a flow of gas when the module isolation valve is in an opened condition. The rupture disk ruptures when a predetermined pressure differential occurs across it causing the isolation valve to close. In one embodiment the valve is mechanically linked to the rupture disk to maintain the valve in an opened condition when the rupture disk is intact, and which permits the valve to move into a closed condition when the rupture disk ruptures. In another embodiment a crushable member maintains the valve in an open condition, and the flow of gas passed the valve upon rupturing of the rupture disk compresses the crushable member to close the isolation valve.

  18. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17T23:59:59.000Z

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  19. An interactive teaching device simulating intussusception reduction

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    1764-x TECHNICAL INNOVATION An interactive teaching deviceIRB. We developed an interactive teaching device to simulate

  20. Microbiopsy/precision cutting devices

    DOE Patents [OSTI]

    Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.

    1999-07-27T23:59:59.000Z

    Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.

  1. Microbiopsy/precision cutting devices

    DOE Patents [OSTI]

    Krulevitch, Peter A. (Pleasanton, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, M. Allen (Berkeley, CA); Benett, William J. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.

  2. Structured wafer for device processing

    SciTech Connect (OSTI)

    Okandan, Murat; Nielson, Gregory N

    2014-11-25T23:59:59.000Z

    A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.

  3. Structured wafer for device processing

    DOE Patents [OSTI]

    Okandan, Murat; Nielson, Gregory N

    2014-05-20T23:59:59.000Z

    A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.

  4. Fast algorithms for matching CCD images to a stellar catalogue

    E-Print Network [OSTI]

    V. Tabur

    2007-10-19T23:59:59.000Z

    Two new algorithms are described for matching two dimensional coordinate lists of point sources that are signifcantly faster than previous methods. By matching rarely occurring triangles (or more complex shapes) in the two lists, and by ordering searches by decreasing probability of success, it is demonstrated that very few candidates need be considered to find a successful match. Moreover, by immediately testing the suitability of a potential match using an efficient mechanism, the need to process the entire candidate set is avoided, yielding considerable performance improvements. Triangles are described by a cosine metric that reduces the density of triangle space, permitting efficient searches. An alternative shape characterization method that reduces computational overhead in the construction phase is discussed. The algorithms are tested on a set of 10 063 wide-field survey images, with fields-of-view up to 4.8 x 3.6 deg, successfully matching 100% of the images in a mean elapsed time of 6 ms (2.4 GHz Athlon CPU). The elapsed time of the searching phase is shown to vary by less than 1 ms for list sizes between 10 and 200 points, demonstrating that fast, robust searches may be completed in nearly constant time, independent of list size.

  5. String theories as the adiabatic limit of Yang-Mills theory

    E-Print Network [OSTI]

    Alexander D. Popov

    2015-07-14T23:59:59.000Z

    We consider Yang-Mills theory with a matrix gauge group $G$ on a direct product manifold $M=\\Sigma_2\\times H^2$, where $\\Sigma_2$ is a two-dimensional Lorentzian manifold and $H^2$ is a two-dimensional open disc with the boundary $S^1=\\partial H^2$. The Euler-Lagrange equations for the metric on $\\Sigma_2$ yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on $H^2$ is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a worldsheet $\\Sigma_2$ moving in the based loop group $\\Omega G=C^\\infty (S^1, G)/G$, where $S^1$ is the boundary of $H^2$. By choosing $G=R^{d-1, 1}$ and putting to zero all parameters in $\\Omega R^{d-1, 1}$ besides $R^{d-1, 1}$, we get a string moving in $R^{d-1, 1}$. In arXiv:1506.02175 it was described how one can obtain the Green-Schwarz superstring action from Yang-Mills theory on $\\Sigma_2\\times H^2$ while $H^2$ shrinks to a point. Here we also consider Yang-Mills theory on a three-dimensional manifold $\\Sigma_2\\times S^1$ and show that in the limit when the radius of $S^1$ tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring action.

  6. Automatic Mechetronic Wheel Light Device

    DOE Patents [OSTI]

    Khan, Mohammed John Fitzgerald (Silver Spring, MD)

    2004-09-14T23:59:59.000Z

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  7. Beam characteristics of energy-matched flattening filter free beams

    SciTech Connect (OSTI)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom)] [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom)] [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)] [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15T23:59:59.000Z

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40?cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed less variation with field size, the d{sub max} value was deeper for the matched FFF beam than the FFF beam and deeper than the flattened beam for field sizes greater than 5 cm × 5 cm. The head leakage when using the machine in FFF mode is less than half that for a flattened beam, but comparable for both FFF modes. The radiation protection dose-rate measurements show an increase of instantaneous dose-rates when operating the machines in FFF mode but that increase is less than the ratio of MU/min produced by the machine. Conclusions: The matching of a FFF beam to a flattened beam at a depth of 10 cm in water by increasing the FFF beam energy does not reduce any of the reported benefits of FFF beams. Conversely, there are a number of potential benefits resulting from matching the FFF beam; the depth of maximum dose is deeper, the out of field dose is potentially reduced, and the beam quality and penetration more closely resembles the flattened beams currently used in clinical practice, making dose distributions in water more alike. Highlighted in this work is the fact that some conventional specifications and methods for measurement of beam parameters such as penumbra are not relevant and further work is required to address this situation with respect to “matched” FFF beams and to determine methods of measurement that are not reliant on an associated flattened beam.

  8. Signature of smooth transition from diabatic to adiabatic states in heavy-ion fusion reactions at deep subbarrier energies

    E-Print Network [OSTI]

    Takatoshi Ichikawa; Kouichi Hagino; Akira Iwamoto

    2009-09-12T23:59:59.000Z

    We propose a novel extension of the standard coupled-channels framework for heavy-ion reactions in order to analyze fusion reactions at deep subbarrier incident energies. This extension simulates a smooth transition between the diabatic two-body and the adiabatic one-body states. To this end, we damp gradually the off-diagonal part of the coupling potential, for which the position of the onset of the damping varies for each eigen channel. We show that this model accounts well for the steep falloff of the fusion cross sections for the $^{16}$O+$^{208}$Pb, $^{64}$Ni+$^{64}$Ni, and $^{58}$Ni+$^{58}$Ni reactions.

  9. The transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: Generic orbits

    E-Print Network [OSTI]

    Pranesh A. Sundararajan

    2008-05-08T23:59:59.000Z

    The inspiral of a stellar mass compact object falling into a massive Kerr black hole can be broken into three different regimes: An adiabatic inspiral phase, where the inspiral timescale is much larger than the orbital period; a late-time radial infall, which can be approximated as a plunging geodesic; and a regime where the body transitions from the inspiral to plunge. In earlier work, Ori and Thorne have outlined a method to compute the trajectory during this transition for a compact object in a circular, equatorial orbit. We generalize this technique to include inclination and eccentricity.

  10. Experiences with string matching on the Fermi Architecture

    SciTech Connect (OSTI)

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    2011-02-25T23:59:59.000Z

    String matching is at the core of many real-world applications, such as security, bioinformatic, data mining. All these applications requires the ability to match always growing data sets against large dictionaries effectively, fastly and possibly in real time. Unfortunately, string matching is a computationally intensive procedure which poses significant challenges on current software and hardware implementations. Graphic Processing Units (GPU) have become an interesting target for such high-throughput applications, but the algorithms and the data structures need to be redesigned to be parallelized and adapted to the underlining hardware, coping with the limitations imposed by these architectures. In this paper we present an efficient implementation of the Aho-Corasick string matching algorithm on GPU, showing how we progressively redesigned the algorithm and the data structures to fit on the architecture. We then evaluate the implementation on single and multiple Tesla C2050 (T20 ``Fermi'' based) boards, comparing them to the previous Tesla C1060 (T10 based) solutions and equivalent multicore implementations on x86 CPUs. We discuss the various tradeoffs of the different architectures.

  11. Compressed Index for Dictionary Matching with One Error

    E-Print Network [OSTI]

    Hon, Wing-Kai; Lam, Tak-Wah; Shah, Rahul; Siu-Lung, Tam; Vitter, Jeffrey Scott

    2011-03-29T23:59:59.000Z

    . (1999), which requires O(n^{1+epsilon}) words of space and reports all occurrences in O(|T|loglog n + occ) time. Recently, there have been successes in compressing the dictionary matching index while keeping the query time optimal (Belazzougui, 2010, Hon...

  12. Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems

    E-Print Network [OSTI]

    Mathieu, Claire

    on classical combinatorial optimization problems [23]: set cover, minimum spanning tree, Steiner tree, maximum structures, with the notable exception of Gupta and P´al's work on stochastic Steiner Tree [9]. SecondCommitment Under Uncertainty: Two-Stage Stochastic Matching Problems Irit Katriel , Claire Kenyon

  13. Assortative Matching of Exporters and Importers Yoichi Sugita

    E-Print Network [OSTI]

    Nesterov, Yurii

    Assortative Matching of Exporters and Importers Yoichi Sugita SSE Kensuke Teshima ITAM Enrique Seira ITAM Preliminary This Version: February 2014 First Version: November 2013 Abstract: This paper, Instituto Tecnológico Autónomo de México Av. Santa Teresa # 930, México, D. F. 10700 (E-mail: kensuke.teshima@itam

  14. UC Santa Barbara ERGONOMICS MATCHING FUNDS APPLICATION FORM

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    UC Santa Barbara ERGONOMICS MATCHING FUNDS APPLICATION FORM INSTRUCTIONS: 1. Complete and copy of invoices or receipt to: Julie McAbee, Ergonomics Coordinator, Mail Code: 5132. REIMBURSEMENT); and d) Pre-approved furniture and accessories as recommended by Ergonomics Coordinator. 2. Limits

  15. Maximizing Efficiency of Solar-Powered Systems by Load Matching

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    energy. However, solar powered sys- tems must also consider the output level of the solar panel for power be counterproductive. Another problem that is of particular importance to solar pan- els is load matching. Solar panels is around 0.7­1.2, solar panels have a much larger Ri value as a function of the solar output and current

  16. Phase matching using Bragg reflection waveguides for monolithic nonlinear optics

    E-Print Network [OSTI]

    , (2005). 9. P. Yeh, A. Yariv, " Bragg reflection waveguides," Opt. Commun. 19, 427-430 (1976). 10. P. Yeh, A. Yariv, C Hong "Electromagnetic propagation in periodic stratified media: I. General Theory," JPhase matching using Bragg reflection waveguides for monolithic nonlinear optics applications A. S

  17. On Efficient Matching of Streaming XML Documents and Queries

    E-Print Network [OSTI]

    Lakshmanan, Laks V.S.

    On Efficient Matching of Streaming XML Documents and Queries Laks V.S. Lakshmanan 1 and P. Sailaja­commerce, and supply­chain management require the ability to manage large sets of specifications of prod­ ucts and.g., a document that is streaming by) is quite small compared to the number of registered queries (which can

  18. CONTINUOUS EDGE GRADIENT-BASED TEMPLATE MATCHING FOR ARTICULATED OBJECTS

    E-Print Network [OSTI]

    Daniel Mohr; Gabriel Zachmann

    template matching, deformable object detection, confidence map, edge feature, graphics hardware In this paper, we propose a novel edge gradient based template matching method for object detection. In contrast to other methods, ours does not perform any binarization or discretization during the online matching. This is facilitated by a new continuous edge gradient similarity measure. Its main components are a novel edge gradient operator, which is applied to query and template images, and the formulation as a convolution, which can be computed very efficiently in Fourier space. We compared our method to a state-of-the-art chamfer based matching method. The results demonstrate that our method is much more robust against weak edge response and yields much better confidence maps with fewer maxima that are also more significant. In addition, our method lends itself well to efficient implementation on GPUs: at a query image resolution of 320 × 256 and a template resolution of 80 × 80 we can generate about 330 confidence maps per second. 1

  19. Continuous Edge Gradient-Based Template Matching for Articulated

    E-Print Network [OSTI]

    Zachmann, Gabriel

    Zachmann IfI Technical Report Series IfI-09-01 #12;Impressum Publisher: Institut für Informatik, Technische (Technical Computer Science) Prof. Dr. Gabriel Zachmann (Computer Graphics) #12;Continuous Edge Gradient-Based Template Matching for Articulated Objects Daniel Mohr and Gabriel Zachmann Abstract Detection

  20. Enhancing Patent Expertise through Automatic Matching with Scientific Papers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Enhancing Patent Expertise through Automatic Matching with Scientific Papers Kafil Hajlaoui of scientific papers, developed in the context of an international patents classification plan related in their task of evaluation of the originality and novelty of a patent, by of- fering to the latter the most

  1. Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays

    E-Print Network [OSTI]

    Tanner, David B.

    Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays Pierre of electroactive and conducting polymers offers new opportunities for the design of materials for electrochromic the most promising electrochromic (EC) properties. Here, we report the use of highly porous metallized

  2. Matching a Human Walking Sequence with a VRML Synthetic Model

    E-Print Network [OSTI]

    Buades Rubio, Jose María

    animation, computer vision, medical rehabilitation, virtual reality and entertainment. There is a greatMatching a Human Walking Sequence with a VRML Synthetic Model J. M. Buades, Ramon Mas and Francisco University of the Balearic Islands 07071 Palma de Mallorca, SPAIN {josemaria,ramon,paco}@anim.uib.es Abstract

  3. Visual Text Features for Image Matching Sam S. Tsai1

    E-Print Network [OSTI]

    Girod, Bernd

    Visual Text Features for Image Matching Sam S. Tsai1 , Huizhong Chen1 , David Chen1 , Vasu features that are based on text in cameraphone images. A robust text detection algorithm locates individual the visual text features in a way that resembles image features. We calculate their location, scale

  4. Accelerating Search of Approximate Match on Large Protein Sequence Databases

    E-Print Network [OSTI]

    Wang, Wei

    of supporting indexed search on large biological sequence databases since the construction cost of the index Yang 2 , Yi Xia 3 , Philip Yu 4 Keywords: protein sequence index, approximate match. Due. Building an appropriate index structure is one of the possibilities to achieve such a goal, which

  5. University of Michigan Medical School 2010 Residency Match Results

    E-Print Network [OSTI]

    Shyy, Wei

    University of Michigan Medical School 2010 Residency Match Results Name Institution Specialty Michael Ambrose U Michigan Hosps-Ann Arbor Pediatrics Kate Anderson Exempla St Joseph Hosp-CO Family Medicine Ketti Augusztiny U Michigan Hosps-Ann Arbor Family Med/Ypsilanti Kathryn Baker U Michigan Hosps

  6. SHAPE MATCHING USING FUZZY DISCRETE PARTICLE SWARM OPTIMIZATION*

    E-Print Network [OSTI]

    Hefei Institute of Intelligent Machines

    importantly, the recognition based on shape feature is also a central problem in those fields such as patternSHAPE MATCHING USING FUZZY DISCRETE PARTICLE SWARM OPTIMIZATION* Ji-Xiang Du1, 2 De-Shuang Huang1 based on fuzzy discrete particle swarm optimization (FDPSO) is proposed. Based on fuzzy theory and PSO

  7. Matched slow pulses using double electromagnetically induced transparency

    E-Print Network [OSTI]

    Lvovsky, Alexander

    Matched slow pulses using double electromagnetically induced transparency Andrew MacRae,* Geoff, 2008 We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using Optical Society of America OCIS codes: 270.1670, 270.5585, 190.5530. Electromagnetically induced

  8. Matching NLO QCD computations with PYTHIA using MC@NLO

    E-Print Network [OSTI]

    Paolo Torrielli; Stefano Frixione

    2010-05-05T23:59:59.000Z

    We present the matching between a next-to-leading order computation in QCD and the PYTHIA parton shower Monte Carlo, according to the MC@NLO formalism. We study the case of initial-state radiation, and consider in particular single vector boson hadroproduction.

  9. ENUMERATION OF MATCHINGS IN FAMILIES OF SELF-SIMILAR GRAPHS

    E-Print Network [OSTI]

    Wagner, Stephan

    provide a variety of examples, some of which also exhibit the difficulties that arise if our technical to treat the problem in more generality and also exhibit how an independence theorem for the number of matchings that was proved in [22] can be applied to shorten the calculations. The specific case of two

  10. Learning models of camera control for imitation in football matches

    E-Print Network [OSTI]

    Demiris, Yiannis

    be used to provide coverage for a match, each requiring a human operator. Using robotic cameras, automated learn a model of the movement of human cameraman in terms of how the players are moving. 1 Department the movement of the camera and the position of players in the game. The same algorithms are applied to both

  11. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    DOE Patents [OSTI]

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25T23:59:59.000Z

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  12. Diamonds are an Electronic Device’s Best Friend

    Broader source: Energy.gov [DOE]

    Researchers at Argonne National Lab recently devised a way to use diamonds to brighten the performance of electronic devices, which could put a bit more sparkle in everyone’s day.

  13. Approximate Weighted Matching On Emerging Manycore and Multithreaded Architectures

    SciTech Connect (OSTI)

    Halappanavar, Mahantesh; Feo, John T.; Villa, Oreste; Tumeo, Antonino; Pothen, Alex

    2012-11-30T23:59:59.000Z

    Graph matching is a prototypical combinatorial problem with many applications in computer science and scientific computing, but algorithms for computing optimal matchings are challenging to parallelize. Approximate matching algorithms provide an alternate route for parallelization, and in many contexts compute near-optimal matchings for large-scale graphs. We present sharedmemory parallel implementations for computing half-approximate weighted matching on state-of-the-art multicore (Intel Nehalem and AMD Magny-Cours), manycore (Nvidia Tesla and Nvidia Fermi) and massively multithreaded (Cray XMT) platforms. We provide two implementations: the first implementation uses shared work queues, and is suited to all these platforms; the second implementation is based on dataflow principles, and exploits the architectural features of the Cray XMT. Using a carefully chosen dataset that exhibits characteristics from a wide range of real-world applications, we show scalable performance across different platforms. In particular, for one instance of the input, an R-MAT graph (RMAT-G), we show speedups of: about 32 on 48 cores of an AMD Magny-Cours; 7 on 8 cores of Intel Nehalem; 3 on Nvidia Tesla and 10 on Nvidia Fermi relative to one core of Intel Nehalem; and 60 on 128 processors of Cray XMT. We demonstrate good weak and strong scaling for graphs with up to a billion edges using up to 12, 800 threads. Given the breadth of this work, we focus on simplicity and portability of software rather than excessive fine-tuning for each platform. To the best of our knowledge, this is the first such large-scale study of the half-approximate weighted matching problem on shared-memory platforms. Driven by the critical enabling role of combinatorial algorithms such as matching in scientific computing and the emergence of informatics applications, there is a growing demand to support irregular computations on current and future computing platforms. In this context, we evaluate the capability of emerging multithreaded platforms to tolerate latency induced by irregular memory access patterns, and to support fine-grained parallelism via light-weight synchronization mechanisms. By contrasting the architectural features of these platforms against the Cray XMT, which is specifically designed to support irregular memory-intensive applications, we delineate the impact of these choices on performance.

  14. Split ring containment attachment device

    DOE Patents [OSTI]

    Sammel, Alfred G. (Pittsburgh, PA)

    1996-01-01T23:59:59.000Z

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  15. Stable roommates matchings, mirror posets, median graphs, and the local/global median phenomenon in stable matchings

    E-Print Network [OSTI]

    Cheng, Christine

    rise to mirror posets and vice versa, and mirror posets give rise to SR stable matchings and vice versa to as the bipartite version of SR, is the stable marriage problem (SM). There are n men and n women each of whom ranks-0830678. 1 #12;preference list, append an arbitrary ordering of the other men; do the same for the women

  16. Stable roommates matchings, mirror posets, median graphs, and the local/global median phenomenon in stable matchings

    E-Print Network [OSTI]

    Cheng, Christine

    rise to mirror posets and vice versa, and mirror posets give rise to SR stable matchings and vice versa problem (SM). There are n men and n women each of whom ranks participants from the opposite sex only the same for the women. It is straightforward to check that both instances have exactly the same stable

  17. Polymer electronic devices and materials.

    SciTech Connect (OSTI)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01T23:59:59.000Z

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  18. Personal cooling air filtering device

    DOE Patents [OSTI]

    Klett, James (Knoxville, TN); Conway, Bret (Denver, NC)

    2002-08-13T23:59:59.000Z

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  19. Sketch Recognition on Mobile Devices

    E-Print Network [OSTI]

    Lucchese, George 1987-

    2012-11-29T23:59:59.000Z

    Sketch recognition allows computers to understand and model hand drawn sketches and diagrams. Traditionally sketch recognition systems required a pen based PC interface, but powerful mobile devices such as tablets and smartphones can provide a new...

  20. Optical and optoelectronic fiber devices

    E-Print Network [OSTI]

    Shapira, Ofer, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, ...

  1. OCDR guided laser ablation device

    DOE Patents [OSTI]

    Dasilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

    2002-01-01T23:59:59.000Z

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  2. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  3. Sketch Recognition on Mobile Devices 

    E-Print Network [OSTI]

    Lucchese, George 1987-

    2012-11-29T23:59:59.000Z

    Sketch recognition allows computers to understand and model hand drawn sketches and diagrams. Traditionally sketch recognition systems required a pen based PC interface, but powerful mobile devices such as tablets and smartphones can provide a new...

  4. Device-transparent personal storage

    E-Print Network [OSTI]

    Strauss, Jacob A. (Jacob Alo), 1979-

    2010-01-01T23:59:59.000Z

    Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

  5. Efficient Aho-Corasick String Matching on Emerging Multicore Architectures

    SciTech Connect (OSTI)

    Tumeo, Antonino; Villa, Oreste; Secchi, Simone; Chavarría-Miranda, Daniel

    2013-12-12T23:59:59.000Z

    String matching algorithms are critical to several scientific fields. Beside text processing and databases, emerging applications such as DNA protein sequence analysis, data mining, information security software, antivirus, ma- chine learning, all exploit string matching algorithms [3]. All these applica- tions usually process large quantity of textual data, require high performance and/or predictable execution times. Among all the string matching algorithms, one of the most studied, especially for text processing and security applica- tions, is the Aho-Corasick algorithm. 1 2 Book title goes here Aho-Corasick is an exact, multi-pattern string matching algorithm which performs the search in a time linearly proportional to the length of the input text independently from pattern set size. However, depending on the imple- mentation, when the number of patterns increase, the memory occupation may raise drastically. In turn, this can lead to significant variability in the performance, due to the memory access times and the caching effects. This is a significant concern for many mission critical applications and modern high performance architectures. For example, security applications such as Network Intrusion Detection Systems (NIDS), must be able to scan network traffic against very large dictionaries in real time. Modern Ethernet links reach up to 10 Gbps, and malicious threats are already well over 1 million, and expo- nentially growing [28]. When performing the search, a NIDS should not slow down the network, or let network packets pass unchecked. Nevertheless, on the current state-of-the-art cache based processors, there may be a large per- formance variability when dealing with big dictionaries and inputs that have different frequencies of matching patterns. In particular, when few patterns are matched and they are all in the cache, the procedure is fast. Instead, when they are not in the cache, often because many patterns are matched and the caches are continuously thrashed, they should be retrieved from the system memory and the procedure is slowed down by the increased latency. Efficient implementations of string matching algorithms have been the fo- cus of several works, targeting Field Programmable Gate Arrays [4, 25, 15, 5], highly multi-threaded solutions like the Cray XMT [34], multicore proces- sors [19] or heterogeneous processors like the Cell Broadband Engine [35, 22]. Recently, several researchers have also started to investigate the use Graphic Processing Units (GPUs) for string matching algorithms in security applica- tions [20, 10, 32, 33]. Most of these approaches mainly focus on reaching high peak performance, or try to optimize the memory occupation, rather than looking at performance stability. However, hardware solutions supports only small dictionary sizes due to lack of memory and are difficult to customize, while platforms such as the Cell/B.E. are very complex to program.

  6. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOE Patents [OSTI]

    McCown, Steven H. (Rigby, ID); Derr, Kurt W. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID)

    2012-05-08T23:59:59.000Z

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  7. Assistive Devices for the Home

    E-Print Network [OSTI]

    Harris, Janie

    2002-01-31T23:59:59.000Z

    , contact a physical therapist or occupational therapist through a home health agency or your local hospital. The following Web sites have information about devices that can make your home safer and more functional: http...Assistive Devices for the Home Janie Harris Extension Specialist, Housing and Environment The Texas A&M University System If you were to become impaired or disabled from an accident or illness, how ?user-friendly? would your home be? There are many...

  8. Piezo-phototronic effect devices

    DOE Patents [OSTI]

    Wang, Zhong L.; Yang, Qing

    2013-09-10T23:59:59.000Z

    A semiconducting device includes a piezoelectric structure that has a first end and an opposite second end. A first conductor is in electrical communication with the first end and a second conductor is in electrical communication with the second end so as to form an interface therebetween. A force applying structure is configured to maintain an amount of strain in the piezoelectric member sufficient to generate a desired electrical characteristic in the semiconducting device.

  9. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  10. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema (OSTI)

    Haase, Andy

    2014-06-13T23:59:59.000Z

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  11. DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

  12. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered...

  13. Functionalized Graphene Nanoroads for Quantum Well Device. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoroads for Quantum Well Device. Functionalized Graphene Nanoroads for Quantum Well Device. Abstract: Using density functional theory, a series of calculations of structural and...

  14. Semiconductor-based, large-area, flexible, electronic devices

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN)

    2011-03-15T23:59:59.000Z

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  15. MATCHED FILTER COMPUTATION ON FPGA, CELL, AND GPU

    SciTech Connect (OSTI)

    BAKER, ZACHARY K. [Los Alamos National Laboratory; GOKHALE, MAYA B. [Los Alamos National Laboratory; TRIPP, JUSTIN L. [Los Alamos National Laboratory

    2007-01-08T23:59:59.000Z

    The matched filter is an important kernel in the processing of hyperspectral data. The filter enables researchers to sift useful data from instruments that span large frequency bands. In this work, they evaluate the performance of a matched filter algorithm implementation on accelerated co-processor (XD1000), the IBM Cell microprocessor, and the NVIDIA GeForce 6900 GTX GPU graphics card. They provide extensive discussion of the challenges and opportunities afforded by each platform. In particular, they explore the problems of partitioning the filter most efficiently between the host CPU and the co-processor. Using their results, they derive several performance metrics that provide the optimal solution for a variety of application situations.

  16. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    2000-01-01T23:59:59.000Z

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  17. Load Response Fundamentally Matches Power System Reliability Requirements

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL] [ORNL

    2007-01-01T23:59:59.000Z

    Responsive load is the most underutilized reliability resource available to the power system. Loads are frequently barred from providing the highest value and most critical reliability services; regulation and spinning reserve. Advances in communications and control technology now make it possible for some loads to provide both of these services. The limited storage incorporated in some loads better matches their response capabilities to the fast reliability-service markets than to the hourly energy markets. Responsive loads are frequently significantly faster and more accurate than generators, increasing power system reliability. Incorporating fast load response into microgrids further extends the reliability response capabilities that can be offered to the interconnected power system. The paper discusses the desired reliability responses, why this matches some loads' capabilities, what the advantages are for the power system, implications for communications and monitoring requirements, and how this resource can be exploited.

  18. Similarity Matching Techniques for Fault Diagnosis in Automotive Infotainment Electronics

    E-Print Network [OSTI]

    Kabir, Mashud

    2009-01-01T23:59:59.000Z

    Fault diagnosis has become a very important area of research during the last decade due to the advancement of mechanical and electrical systems in industries. The automobile is a crucial field where fault diagnosis is given a special attention. Due to the increasing complexity and newly added features in vehicles, a comprehensive study has to be performed in order to achieve an appropriate diagnosis model. A diagnosis system is capable of identifying the faults of a system by investigating the observable effects (or symptoms). The system categorizes the fault into a diagnosis class and identifies a probable cause based on the supplied fault symptoms. Fault categorization and identification are done using similarity matching techniques. The development of diagnosis classes is done by making use of previous experience, knowledge or information within an application area. The necessary information used may come from several sources of knowledge, such as from system analysis. In this paper similarity matching tec...

  19. Canect: Matching You the Best-fit Translation Service

    E-Print Network [OSTI]

    Guo, Yujie

    2011-05-31T23:59:59.000Z

    information about the project: http://www.torry- ue.com/project/Thesis2011.htm. You will find the proposal file, research data, design materials and the html prototype for the system. I also attached the project presentation, scenario video, user experience... map and testing adobe swf files as supporting materials for the projects. CANECT: MATCHING YOU THE BEST-FIT TRANSLATION SERVICE 2 Design Research As the first part of the thesis, research was carried from three different directions...

  20. Dual control active superconductive devices

    DOE Patents [OSTI]

    Martens, Jon S. (Albuquerque, NM); Beyer, James B. (Madison, WI); Nordman, James E. (Madison, WI); Hohenwarter, Gert K. G. (Madison, WI)

    1993-07-20T23:59:59.000Z

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  1. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21T23:59:59.000Z

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  2. Reliability Testing of Polysilicon For MEMs Devices

    SciTech Connect (OSTI)

    LaVan, D.A.; Buchheit, T.E.

    1999-04-05T23:59:59.000Z

    Mission critical applications of MEMS devices require knowledge of the distribution in their material properties and long-term reliability of the small-scale structures. This project reports on a new testing program at Sandia to quantify the strength distribution using samples that reflect the dimensions of critical MEMS components. The strength of polysilicon fabricated with Sandia's SUMMiT 4-layer process was successfully measured using samples with gage sections 2.5 {micro}m thick by 1.7 {micro}m wide and lengths of 15 and 25 {micro}m. These tensile specimens have a freely moving pivot on one end that anchors the sample to the silicon die and prevents off axis loading during testing. Each sample is loaded in uniaxial tension by pulling laterally with a flat tipped diamond in a computer-controlled Nanoindenter. The stress-strain curve is calculated using the specimen cross section and gage length dimensions verified by measuring against a standard in the SEM. The first 48 samples had a means strength of 2.24 {+-} 0.35 GPa. Fracture strength measurements grouped into three strength levels, which matched three failure modes observed in post mortem examinations. The seven samples in the highest strength group failed in the gage section (strength of 2.77 {+-} 0.04 GPa), the moderate strength group failed at the gage section fillet and the lowest strength group failed at a dimple in the hub. With this technique, multiple tests can be programmed at one time and performed without operator assistance at a rate of 20-30 per day allowing the collection of significant populations of data. Since the new test geometry has been proven, the project is moving to test the distributions seen from real geometric features typical to MEMS such as the effect of gage length, fracture toughness, bonding between layers, etch holes, dimples and shear of gear teeth.

  3. Bad data packet capture device

    DOE Patents [OSTI]

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Vranas, Pavlos

    2010-04-20T23:59:59.000Z

    An apparatus and method for capturing data packets for analysis on a network computing system includes a sending node and a receiving node connected by a bi-directional communication link. The sending node sends a data transmission to the receiving node on the bi-directional communication link, and the receiving node receives the data transmission and verifies the data transmission to determine valid data and invalid data and verify retransmissions of invalid data as corresponding valid data. A memory device communicates with the receiving node for storing the invalid data and the corresponding valid data. A computing node communicates with the memory device and receives and performs an analysis of the invalid data and the corresponding valid data received from the memory device.

  4. Microelectroporation device for genomic screening

    DOE Patents [OSTI]

    Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.

    2014-09-09T23:59:59.000Z

    We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.

  5. Device Independent Random Number Generation

    E-Print Network [OSTI]

    Mataj Pivoluska; Martin Plesch

    2015-02-23T23:59:59.000Z

    Randomness is an invaluable resource in today's life with a broad use reaching from numerical simulations through randomized algorithms to cryptography. However, on the classical level no true randomness is available and even the use of simple quantum devices in a prepare-measure setting suffers from lack of stability and controllability. This gave rise to a group of quantum protocols that provide randomness certified by classical statistical tests -- Device Independent Quantum Random Number Generators. In this paper we review the most relevant results in this field, which allow the production of almost perfect randomness with help of quantum devices, supplemented with an arbitrary weak source of additional randomness. This is in fact the best one could hope for to achieve, as with no starting randomness (corresponding to no free will in a different concept) even a quantum world would have a fully deterministic description.

  6. INSTITUTE for QUANTUM STRUCTURES AND DEVICES

    E-Print Network [OSTI]

    Plotkin, Steven S.

    , and #12;the design and fabrication of quantum devices based on magnetic, quantum dot, and superconducting

  7. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22T23:59:59.000Z

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  8. Gas sensing with acoustic devices

    SciTech Connect (OSTI)

    Martin, S.J.; Frye, G.C. [Sandia National Labs., Albuquerque, NM (United States); Spates, J.J. [Ktech Corp., Albuquerque, NM (United States); Butler, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31T23:59:59.000Z

    A survey is made of acoustic devices that are suitable as gas and vapor sensors. This survey focuses on attributes such as operating frequency, mass sensitivity, quality factor (Q), and their ability to be fabricated on a semiconductor substrate to allow integration with electronic circuitry. The treatment of the device surface with chemically-sensitive films to detect species of interest is discussed. Strategies for improving discrimination are described, including sensor arrays and species concentration and separation schemes. The advantages and disadvantages of integrating sensors with microelectronics are considered, along with the effect on sensitivity of scaling acoustic gas sensors to smaller size.

  9. Template attacks on different devices

    E-Print Network [OSTI]

    Choudary, Omar; Kuhn, Markus G.

    2014-08-15T23:59:59.000Z

    the devices from a battery via a 3.3 V linear regulator and supplied a 1 MHz sine wave clock signal. We used a Tektronix TDS 7054 8-bit oscilloscope with P6243 active probe, at 250 MS/s, with 500 MHz bandwidth in SAMPLE mode. Devices Alpha and Beta used a CPU... the value zero, meaning that in our traces none of the variability should be caused by variable data in other nearby instructions that may be processed concurrently in various pipeline stages. This approach, also used in other studies [8,13,17], provides a...

  10. Beta ray flux measuring device

    DOE Patents [OSTI]

    Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

    1990-01-01T23:59:59.000Z

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  11. Surface-micromachined microfluidic devices

    DOE Patents [OSTI]

    Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Montague, Stephen (Albuquerque, NM); Smith, James H. (Redmond, WA); Paul, Phillip H. (Livermore, CA); Krygowski, Thomas W. (Cortlandt Manor, NY); Allen, James J. (Albuquerque, NM); Nichols, Christopher A. (Hauppauge, NY); Jakubczak, II, Jerome F. (Rio Rancho, NM)

    2003-01-01T23:59:59.000Z

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  12. Implantable biomedical devices on bioresorbable substrates

    DOE Patents [OSTI]

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04T23:59:59.000Z

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  13. A superconducting-nanowire 3-terminal electronic device

    E-Print Network [OSTI]

    Adam N. McCaughan; Karl K. Berggren

    2014-03-25T23:59:59.000Z

    In existing superconducting electronic systems, Josephson junctions play a central role in processing and transmitting small-amplitude electrical signals. However, Josephson-junction-based devices have a number of limitations including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability to drive large impedances, and (4) difficulty in controlling the junction critical current (which depends sensitively on sub-Angstrom-scale thickness variation of the tunneling barrier). Here we present a nanowire-based superconducting electronic device, which we call the nanocryotron (nTron), that does not rely on Josephson junctions and can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is capable of driving impedances of more than 100 k{\\Omega}, and operates in typical ambient magnetic fields at temperatures of 4.2K. The device uses a localized, Joule-heated hotspot formed in the gate to modulate current flow in a perpendicular superconducting channel. We have characterized the nTron, matched it to a theoretical framework, and applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nTron has immediate applications in classical and quantum communications, photon sensing and astronomy, and its performance characteristics make it compatible with existing superconducting technologies. Furthermore, because the hotspot effect occurs in all known superconductors, we expect the design to be extensible to other materials, providing a path to digital logic, switching, and amplification in high-temperature superconductors.

  14. Coherent superposition of M-states in a single rovibrational level of H2 by Stark-induced adiabatic Raman passage

    E-Print Network [OSTI]

    Zare, Richard N.

    2014) We prepare an ensemble of isolated rovibrationally excited (v = 1, J = 2) H2 molecules in a phase possibilities for investigations of phase-locked reaction dynamics. Although considerable effort has been spent- locked superposition of magnetic sublevels M using Stark-induced adiabatic Raman passage with linearly

  15. Adiabatic charge pumping in open quantum systems J.E. Avron (a) , A. Elgart (b) , G.M. Graf (c) , L. Sadun (d) , K. Schnee (e)

    E-Print Network [OSTI]

    Adiabatic charge pumping in open quantum systems J.E. Avron (a) , A. Elgart (b) , G.M. Graf (c) , L for charge transport in quantum pumps connected to a number of external leads. It is proved that under rather the pump is given by a formula of Buttiker, Pr^etre, and Thomas, relating it to the frozen S

  16. Adiabatic charge pumping in open quantum systems J.E. Avron (a) , A. Elgart (b) , G.M. Graf (c) , L. Sadun (d) , K. Schnee (e)

    E-Print Network [OSTI]

    Adiabatic charge pumping in open quantum systems J.E. Avron (a) , A. Elgart (b) , G.M. Graf (c) , L for charge transport in quantum pumps connected to a number of external leads. It is proved that under rather the pump is given by a formula of BË?uttiker, Prâ??etre, and Thomas, relating it to the frozen S

  17. arXiv:cond-mat/0307619v231Aug2003 Quantum pumping in closed systems, adiabatic transport, and the Kubo formula

    E-Print Network [OSTI]

    Cohen, Doron

    arXiv:cond-mat/0307619v231Aug2003 Quantum pumping in closed systems, adiabatic transport pumping in closed systems is considered. We explain that the Kubo formula contains all the physically relevant ingredients for the calculation of the pumped charge (Q) within the frame- work of linear response

  18. History-Matching Production Data Using Ensemble Smoother with Multiple Data Assimilation: A Comparative Study

    E-Print Network [OSTI]

    Xia, Xiaoyang

    2014-12-18T23:59:59.000Z

    estimation by matching numerical simulation results with true oil production history. Sequential reservoir model updating technique Ensemble Kalman filter (EnKF) has gained popularity in automatic history matching because of simple conceptual formulation...

  19. Deterministic and Robust Generation of Single Photons On a Chip with 99.5% Indistinguishability Using Rapid Adiabatic Passage

    E-Print Network [OSTI]

    Yu-Jia Wei; Yu-Ming He; Ming-Cheng Chen; Yi-Nan Hu; Yu He; Dian Wu; Christian Schneider; Martin Kamp; Sven Höfling; Chao-Yang Lu; Jian-Wei Pan

    2014-05-08T23:59:59.000Z

    We demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single InGaAs quantum dot using the method of rapid adiabatic passage. Comparative study is performed with transform-limited, negatively chirped and positively chirped pulses, identifying the last one to be the most robust against fluctuation of driving strength. The generated single photons are background free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. The single-photon source can be readily scaled up to multi-photon entanglement and used for quantum metrology, boson sampling and linear optical quantum computing.

  20. Encapsulation methods for organic electrical devices

    DOE Patents [OSTI]

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18T23:59:59.000Z

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  1. Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing

    Broader source: Energy.gov [DOE]

    Project objective: to detect and locate more microearthquakes observed during EGS operations using the matched field processing (MFP) technique.

  2. Asymmetric perfectly matched layer for the absorption of waves

    SciTech Connect (OSTI)

    Vay, Jean-Luc

    2002-02-10T23:59:59.000Z

    The Perfectly Matched Layer (PML) has become a standard for comparison in the techniques that have been developed to close the system of Maxwell equations (more generally wave equations) when simulating an open system. The original Berenger PML formulation relies on a split version of Maxwell equations with numerical electric and magnetic conductivities. They present here an extension of this formulation which introduces counterparts of the electric and magnetic conductivities affecting the term which is spatially differentiated in the equations. they phase velocity along each direction is also multiplied by an additional coefficient. They show that, under certain constraints on the additional numerical coefficients, this ''medium'' does not generate any reflection at any angle and any frequency and is then a Perfectly Matched Layer. Technically it is a super-set of Berenger's PML to which it reduces for a specific set of parameters and like it, it is anisotropic. However, unlike the PML, it introduces some asymmetry in the absorption rate and is therefore labeled an APML for Asymmetric Perfectly Matched Layer. They present here the numerical considerations that have led them to introduce such a medium as well as its theory. Several finite-different numerical implementations are derived (in one, two and three dimensions) and the performance of the APML is contrasted with that of the PML in one and two dimensions. Using plane wave analysis, they show that the APML implementations lead to higher absorption rates than the considered PML implementations. Although they have considered in this paper the finite-different discretization of Maxwell-like equations only, the APML system of equations may be used with other discretization schemes, such as finite-elements, and may be applied to other equations, for applications beyond electromagnetics.

  3. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27T23:59:59.000Z

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  4. High performance thermoelectric nanocomposite device

    DOE Patents [OSTI]

    Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

    2011-10-25T23:59:59.000Z

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  5. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

    1993-01-01T23:59:59.000Z

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  6. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, P.T.

    1985-03-05T23:59:59.000Z

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  7. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, Peter T. (East Brunswick, NJ)

    1985-01-01T23:59:59.000Z

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  8. Surface-Micromachined Microfluidic Devices

    DOE Patents [OSTI]

    Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Montague, Stephen (Albuquerque, NM); Smith, James H. (Redmond, WA); Paul, Phillip H. (Livermore, CA); Krygowski, Thomas W. (Coutlandt Manor, NY); Allen, James J. (Albuquerque, NM); Nichols, Christopher A. (Hauppauge, NY); Jakubczak, II, Jerome F. (Rio Rancho, NM)

    2004-09-28T23:59:59.000Z

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  9. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01T23:59:59.000Z

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  10. In situ biofilm coupon device

    DOE Patents [OSTI]

    Peyton, B.M.; Truex, M.J.

    1997-06-24T23:59:59.000Z

    An apparatus is disclosed for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements. 3 figs.

  11. In situ biofilm coupon device

    DOE Patents [OSTI]

    Peyton, Brent M. (Kennewick, WA); Truex, Michael J. (Richland, WA)

    1997-01-01T23:59:59.000Z

    An apparatus for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements.

  12. Coupled cavity model based on the mode matching technique

    E-Print Network [OSTI]

    Ayzatsky, M I

    2015-01-01T23:59:59.000Z

    We have developed the mode matching technique that is based on the using the eigenmodes of circular cavities and the eigenwaves of circular waveguides as the basic functions for calculation the properties of nonuniform disc-loaded waveguides. We have obtained exact infinite systems of coupled equations which can be reduced by making some assumptions. Under such procedure we can receive more exact parameters of nonuniform equivalent circuits by solving the appropriative algebraic systems. These parameters of equivalent circuits are functions both geometric sizes and frequency. Moreover, under such approach all used values have interpretation. We called this approach as coupled cavity model.

  13. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    SciTech Connect (OSTI)

    Wang, J; Templeton, D C; Harris, D B

    2011-01-21T23:59:59.000Z

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.

  14. Match Pumps to System Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications »of Energy WisconsinMatch Pumps

  15. Matching Government Needs with Energy Efficient Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications »of Energy WisconsinMatch

  16. A Nonparametric Matching Method for Covariate Adjustment with Application to Economic Evaluation

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    A Nonparametric Matching Method for Covariate Adjustment with Application to Economic Evaluation of propensity score and Mahalanobis distance matching. We apply Genetic Matching to an economic evaluation and nonparametric methods; observational stud- ies; health economic evaluation #12;1 Introduction Progress has been

  17. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO); Friedman, Daniel J. (Lakewood, CO)

    2001-01-01T23:59:59.000Z

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  18. Hardware device binding and mutual authentication

    DOE Patents [OSTI]

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04T23:59:59.000Z

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  19. Procedure for matching synfuel users with potential suppliers. Final report

    SciTech Connect (OSTI)

    None

    1981-09-26T23:59:59.000Z

    A procedure has been developed for matching prospective users and producers of synthetic fuels. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain synthetic fuel exemption (Fuel Use Act); determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation in evaluating potential markets for synthetic fuels. Application of the screening procedure resulted in the identification of one or more candidates for supplying synthetic fuel to each of the prospective users. In this report the development of the screening procedure is described. Chapter 1 contains a detailed description of the seven screens; Chapter 2 describes the development of the hierarchical procedure for applying the screens to each synthetic fuels project; Chapter 3 describes the modification of the screening procedure for low and medium Btu gas; Chapter 4 describes the application of the procedure. Appendix A is a list of references used in developing the procedure; Appendix B is a detailed listing of proposed and ongoing synthetic fuel projects.

  20. Symbolic Dynamics in a Matching Labour Market Model

    E-Print Network [OSTI]

    Diana A. Mendes; Vivaldo M. Mendes; J. Sousa Ramos

    2006-08-01T23:59:59.000Z

    In this paper we apply the techniques of symbolic dynamics to the analysis of a labor market which shows large volatility in employment flows. In a recent paper, Bhattacharya and Bunzel \\cite{BB} have found that the discrete time version of the Pissarides-Mortensen matching model can easily lead to chaotic dynamics under standard sets of parameter values. To conclude about the existence of chaotic dynamics in the numerical examples presented in the paper, the Li-Yorke theorem or the Mitra sufficient condition were applied which seems questionable because they may lead to misleading conclusions. Moreover, in a more recent version of the paper, Bhattacharya and Bunzel \\cite{BB1} present new results in which chaos is completely removed from the dynamics of the model. Our paper explores the matching model so interestingly developed by the authors with the following objectives in mind: (i) to show that chaotic dynamics may still be present in the model for standard parameter values; (ii) to clarify some open questions raised by the authors in \\cite{BB}, by providing a rigorous proof of the existence of chaotic dynamics in the model through the computation of topological entropy in a symbolic dynamics setting.

  1. A Critical Appraisal of NLO+PS Matching Methods

    SciTech Connect (OSTI)

    Hoeche, Stefan; /SLAC; Krauss, Frank; Schonherr, Marek; /Durham U., IPPP; Siegert, Frank; /Freiburg U.

    2012-03-19T23:59:59.000Z

    In this publication, uncertainties in and differences between the MC{at}NLO and POWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator SHERPA are employed to assess the impact on a representative selection of observables. In the MC{at}NLO approach a phase space restriction has been added to subtraction and parton shower, which allows to vary in a transparent way the amount of non-singular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W{sup {+-}} and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.

  2. Matching the Hagedorn temperature in AdS/CFT correspondence

    SciTech Connect (OSTI)

    Harmark, Troels; Orselli, Marta [Niels Bohr Institute and Nordita Blegdamsvej 17, 2100 Copenhagen O (Denmark)

    2006-12-15T23:59:59.000Z

    We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on RxS{sup 3} to the Hagedorn temperature of string theory on AdS{sub 5}xS{sup 5}. The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. The near-critical region is near a point with zero temperature and critical chemical potential. On the gauge-theory side we are taking a decoupling limit found in Ref. 7 in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX{sub 1/2} Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperature and the thermodynamics of the Heisenberg spin chain and we use this to compute it in two distinct regimes. On the string-theory side, we identify the dual limit for which the string tension and string coupling go to zero. This limit is taken of string theory on a maximally supersymmetric pp-wave background with a flat direction, obtained from a Penrose limit of AdS{sub 5}xS{sup 5}. We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge-theory side.

  3. Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)

    SciTech Connect (OSTI)

    Burton, E.

    2014-02-01T23:59:59.000Z

    The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA) and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.

  4. Matching and fairness in threat-based mobile sensor coverage

    SciTech Connect (OSTI)

    Ma, Cheng-Yu {Jan} L [ORNL; Yau, King Y [ORNL; Chin, Jren-Chit [ORNL; Rao, Nageswara S [ORNL; Shankar, Mallikarjun [ORNL

    2009-12-01T23:59:59.000Z

    Mobile sensors can be used to effect complete coverage of a surveillance area for a given threat over time, thereby reducing the number of sensors necessary. The surveillance area may have a given threat profile as determined by the kind of threat, and accompanying meteorological, environmental, and human factors. In planning the movement of sensors, areas that are deemed higher threat should receive proportionately higher coverage. We propose a coverage algorithm for mobile sensors to achieve a coverage that will match - over the long term and as quantified by an RMSE metric - a given threat profile. Moreover, the algorithm has the following desirable properties: (1) stochastic, so that it is robust to contingencies and makes it hard for an adversary to anticipate the sensor's movement, (2) efficient, and (3) practical, by avoiding movement over inaccessible areas. Further to matching, we argue that a fairness measure of performance over the shorter time scale is also important. We show that the RMSE and fairness are, in general, antagonistic, and argue for the need of a combined measure of performance, which we call efficacy. We show how a pause time parameter of the coverage algorithm can be used to control the trade-off between the RMSE and fairness, and present an efficient offline algorithm to determine the optimal pause time maximizing the efficacy. Finally, we discuss the effects of multiple sensors, under both independent and coordinated operation. Extensive simulation results - under realistic coverage scenarios - are presented for performance evaluation.

  5. MIT Device Simulation WebLab : an online simulator for microelectronic devices

    E-Print Network [OSTI]

    Solis, Adrian (Adrian Orbita)

    2005-01-01T23:59:59.000Z

    In the field of microelectronics, a device simulator is an important engineering tool with tremendous educational value. With a device simulator, a student can examine the characteristics of a microelectronic device described ...

  6. The Efficacy of Profile Matching as a Means of Controlling for the Effects of Response Distortion on Personality Measures

    E-Print Network [OSTI]

    Glaze, Ryan 1983-

    2012-12-04T23:59:59.000Z

    not received much empirical attention is profile matching. Profile matching assesses the fit between test-takers’ predictor profiles and a standard profile which represents an ideal or high performing employee’s profile. Since profile matching assesses fit...

  7. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  8. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  9. Variable ratio regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1981-12-15T23:59:59.000Z

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  10. RFQ device for accelerating particles

    DOE Patents [OSTI]

    Shepard, K.W.; Delayen, J.R.

    1995-06-06T23:59:59.000Z

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  11. Neutron-absorber release device

    DOE Patents [OSTI]

    VAN Erp, Jan B. (Hinsdale, IL); Kimont, Edward L. (Evergreen Park, IL)

    1976-01-01T23:59:59.000Z

    A resettable device is provided for supporting an object, sensing when an environment reaches a critical temperature and releasing the object when the critical temperature is reached. It includes a flexible container having a material inside with a melting point at the critical temperature. The object's weight is supported by the solid material which gives rigidity to the container until the critical temperature is reached at which point the material in the container melts. The flexible container with the now fluid material inside has insufficient strength to support the object which is thereby released. Biasing means forces the container back to its original shape so that when the temperature falls below the melting temperature the material again solidifies, and the object may again be supported by the device.

  12. Nanowire structures and electrical devices

    DOE Patents [OSTI]

    Bezryadin, Alexey (Champaign, IL); Remeika, Mikas (Urbana, IL)

    2010-07-06T23:59:59.000Z

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  13. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05T23:59:59.000Z

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  14. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  15. Encapsulant materials and associated devices

    DOE Patents [OSTI]

    Kempe, Michael D (Littleton, CO); Thapa, Prem (Lima, OH)

    2011-03-08T23:59:59.000Z

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  16. Encapsulant materials and associated devices

    DOE Patents [OSTI]

    Kempe, Michael D (Littleton, CO); Thapa, Prem (Lima, OH)

    2012-05-22T23:59:59.000Z

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  17. Release strategies for making transferable semiconductor structures, devices and device components

    DOE Patents [OSTI]

    Rogers, John A. (Champaign, IL); Nuzzo, Ralph G. (Champaign, IL); Meitl, Matthew (Raleigh, NC); Ko, Heung Cho (Urbana, IL); Yoon, Jongseung (Urbana, IL); Menard, Etienne (Durham, NC); Baca, Alfred J. (Urbana, IL)

    2011-04-26T23:59:59.000Z

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  18. Release strategies for making transferable semiconductor structures, devices and device components

    DOE Patents [OSTI]

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25T23:59:59.000Z

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  19. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  20. Editorial: Photovoltaic Materials and Devices

    SciTech Connect (OSTI)

    Sopori, B.; Tan, T.; Rupnowski, P.

    2012-01-01T23:59:59.000Z

    As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

  1. Pressure Driven Pump for Portable Microfluidic Devices 

    E-Print Network [OSTI]

    Nguyen, Vincent

    2014-09-20T23:59:59.000Z

    Microfluidic devices have become interesting areas of research for their ability to create high throughput chemical analysis and other functions. In some microfluidic devices, fluids are actively moved through the valves to maintain a characteristic...

  2. Implementation for simplifying Bluetooth device connection methods

    E-Print Network [OSTI]

    Wan, Tehyih Debbie, 1981-

    2004-01-01T23:59:59.000Z

    This thesis provides a way for users to easily add and remove devices to secure groups, allowing for a more intuitive way of making connections between devices. These groups allow users to seamlessly make connections between ...

  3. Rapid prototyping method for a microfluidics device

    E-Print Network [OSTI]

    Klauber, Kameron L

    2012-01-01T23:59:59.000Z

    The product design process can be described as a number of steps taken to turn an idea into a reality. One particular design process of creating a microfluidics device was studied and analyzed. A device containing channels ...

  4. Matching of correlators in AdS_3/CFT_2

    E-Print Network [OSTI]

    Marika Taylor

    2007-09-12T23:59:59.000Z

    Recently exact agreement has been found between three-point correlators of chiral operators computed in string theory on AdS_3 x S^3 x T^4 with NS-NS flux and those computed in the symmetric orbifold CFT. However, it has also been shown that these correlators disagree with those computed in supergravity, under any identification of single particle operators which respects the symmetries. In this note we resolve this disagreement: the key point is that mixings with multi-particle operators are not suppressed even at large N in extremal correlators. Allowing for such mixings, orbifold/string theory operators and supergravity operators can be matched such that both non-extremal and extremal three point functions agree, giving further evidence for the non-renormalization of the chiral ring.

  5. Environmental Effects on Power Electronic Devices

    Broader source: Energy.gov (indexed) [DOE]

    the complex relationship between environment (temperature, humidity, and vibration) and automotive power electronic device (PED) performance through materials characterization...

  6. Organic electrophosphorescence device having interfacial layers

    SciTech Connect (OSTI)

    Choulis, Stelios A. (San Jose, CA); Mathai, Mathew (Santa Clara, CA); Choong, Vi-En (San Jose, CA); So, Franky (Gainesville, FL)

    2010-08-10T23:59:59.000Z

    Techniques are described for forming an organic light emitting diode device with improved device efficiency. Materials having at least one energy level that is similar to those of a phosphorescent light emitting material in the diode are incorporated into the device to directly inject holes or electrons to the light emitting material.

  7. Sensor device and methods for using same

    DOE Patents [OSTI]

    Rothgeb, Timothy Michael; Gansle, Kristina Marie Rohal; Joyce, Jonathan Livingston; Jordan, James Madison; Rohwer, Tedd Addison; Lockhart, Randal Ray; Smith, Christopher Lawrence; Trinh, Toan; Cipollone, Mark Gary

    2005-10-25T23:59:59.000Z

    A sensor device and method of employment is provided. More specifically, a sensor device adapted to detect, identify and/or measure a chemical and/or physical characteristic upon placement of the device into an environment, especially a liquid medium for which monitoring is sought is provided.

  8. Medical Devices and Systems PRECISE Center

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    that are not likely to be met by research in your field alone? ­ Advances in medical devices domain requires12/16/2008 1 Medical Devices and Systems Insup Lee PRECISE Center Department Computer and Information Science University of Pennsylvania 12/15/08 CPS Information Day Medical Devices Containing

  9. Tunable circuit for tunable capacitor devices

    SciTech Connect (OSTI)

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19T23:59:59.000Z

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  10. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21T23:59:59.000Z

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  11. Portable control device for networked mobile robots

    DOE Patents [OSTI]

    Feddema, John T. (Albuquerque, NM); Byrne, Raymond H. (Albuquerque, NM); Bryan, Jon R. (Edgewood, NM); Harrington, John J. (Albuquerque, NM); Gladwell, T. Scott (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  12. 1-ID: Sector 1, Insertion Device Beamline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A No. of Poles 72 Undulator Period 3.3 cm Device Length 2.4 m Minimum Gap 11 mm Downstream insertion device No. of Poles 72 Undulator Period 2.3 cm Device Length 2.4 m Minimum...

  13. Low Frequency Noise in Nano-Devices

    E-Print Network [OSTI]

    useless as a result. Extremely small devices are also prone to the large device to device variations and Technology, Leningrad, in 1996. From 1977 he is a research fellow of A. F. Ioffe Institute of Physics and Technology, St. Petersburg, Russia. From 1999 he is with the Rensselaer Polytechnic Institute (RPI). His

  14. Device Selection by a Personal Proxy Agent

    E-Print Network [OSTI]

    von Bochmann, Gregor

    Device Selection by a Personal Proxy Agent N. Hadibi, K. El-khatib, Eric Z. Zhang, Ken Chan, G. v user to access communication devices currently present in his Personal Area Network (PAN) Performs PreferencesDevice Capability An example Scenario: Connecting Alice and Bob w/o a Personal Proxy Internet Home

  15. The Simplicity Device: Your Personal Mobile Representative

    E-Print Network [OSTI]

    The Simplicity Device: Your Personal Mobile Representative Giovanni Bartolomeo1, Francesca Martire1 mobile phone that stores and handles personal information about the user. The Simplicity Device can be connected (e.g. via Bluetooth) to several other devices thus allowing personalization of services

  16. SECURITY FOR WIRELESS NETWORKS AND DEVICES

    E-Print Network [OSTI]

    connections. Users of handheld devices such as personal digital assis tants (PDAs) and cell phones can synMarch 2003 SECURITY FOR WIRELESS NETWORKS AND DEVICES Shirley Radack, Editor, Computer Security organizations and users have found that wireless communications and devices are convenient, flexible, and easy

  17. Manual authentication for wireless devices Christian Gehrmann

    E-Print Network [OSTI]

    Mitchell, Chris

    is to examine how these services might best be achieved for personal wireless-enabled devices. Using the terminology of Stajano [12], the problem is that of securely `imprinting' a personal device. That is, suppose a user has two wireless-enabled devices, e.g. a mobile phone and a Personal Digital Assistant (PDA

  18. THE FIRST MEASUREMENT OF THE ADIABATIC INDEX IN THE SOLAR CORONA USING TIME-DEPENDENT SPECTROSCOPY OF HINODE/EIS OBSERVATIONS

    SciTech Connect (OSTI)

    Van Doorsselaere, Tom; Wardle, Nick; Jansari, Kishan; Verwichte, Erwin; Nakariakov, Valery M. [CFSA, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Del Zanna, Giulio, E-mail: Tom.VanDoorsselaere@wis.kuleuven.BE [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2011-02-01T23:59:59.000Z

    We use observations of a slow magnetohydrodynamic wave in the corona to determine for the first time the value of the effective adiabatic index, using data from the Extreme-ultraviolet Imaging Spectrometer on board Hinode. We detect oscillations in the electron density, using the CHIANTI atomic database to perform spectroscopy. From the time-dependent wave signals from multiple spectral lines the relationship between relative density and temperature perturbations is determined, which allows in turn to measure the effective adiabatic index to be {gamma}{sub eff} = 1.10 {+-} 0.02. This confirms that the thermal conduction along the magnetic field is very efficient in the solar corona. The thermal conduction coefficient is measured from the phase lag between the temperature and density, and is shown to be compatible with Spitzer conductivity.

  19. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10T23:59:59.000Z

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  20. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18T23:59:59.000Z

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.