V-145: IBM Tivoli Federated Identity Manager Products Java Multiple...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities April 30, 2013 - 12:09am Addthis PROBLEM: IBM Tivoli Federated Identity Manager Products Java ...
V-119: IBM Security AppScan Enterprise Multiple Vulnerabilities...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
9: IBM Security AppScan Enterprise Multiple Vulnerabilities V-119: IBM Security AppScan Enterprise Multiple Vulnerabilities March 26, 2013 - 12:56am Addthis PROBLEM: IBM Security...
V-074: IBM Informix Genero libpng Integer Overflow Vulnerability |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy 74: IBM Informix Genero libpng Integer Overflow Vulnerability V-074: IBM Informix Genero libpng Integer Overflow Vulnerability January 22, 2013 - 12:11am Addthis PROBLEM: IBM Informix Genero libpng Integer Overflow Vulnerability PLATFORM: IBM Informix Genero releases prior to 2.41 - all platforms ABSTRACT: A vulnerability has been reported in libpng. REFERENCE LINKS: IBM Security Bulletin: 1620982 Secunia Advisory SA51905 Secunia Advisory SA48026 CVE-2011-3026 IMPACT
V-132: IBM Tivoli System Automation Application Manager Multiple
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Vulnerabilities | Department of Energy 2: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities V-132: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities April 12, 2013 - 6:00am Addthis PROBLEM: IBM has acknowledged multiple vulnerabilities in IBM Tivoli System Automation Application Manager PLATFORM: The vulnerabilities are reported in IBM Tivoli System Automation Application Manager versions 3.1, 3.2, 3.2.1, and 3.2.2 ABSTRACT: Multiple security
V-180: IBM Application Manager For Smart Business Multiple Vulnerabilities
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
| Department of Energy 0: IBM Application Manager For Smart Business Multiple Vulnerabilities V-180: IBM Application Manager For Smart Business Multiple Vulnerabilities June 18, 2013 - 12:38am Addthis PROBLEM: IBM Application Manager For Smart Business Multiple Vulnerabilities PLATFORM: IBM Application Manager For Smart Business 1.x ABSTRACT: A security issue and multiple vulnerabilities have been reported in IBM Application Manager For Smart Business REFERENCE LINKS: Security Bulletin
U-198: IBM Lotus Expeditor Multiple Vulnerabilities | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
8: IBM Lotus Expeditor Multiple Vulnerabilities U-198: IBM Lotus Expeditor Multiple Vulnerabilities June 25, 2012 - 7:00am Addthis PROBLEM: Multiple vulnerabilities have been reported in IBM Lotus Expeditor. PLATFORM: IBM Lotus Expeditor 6.x ABSTRACT: The vulnerabilities can be exploited by malicious people to conduct cross-site scripting attacks, disclose potentially sensitive information, bypass certain security restrictions, and compromise a user's system.. Reference Links: Vendor Advisory
U-181: IBM WebSphere Application Server Information Disclosure
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Vulnerability | Department of Energy 81: IBM WebSphere Application Server Information Disclosure Vulnerability U-181: IBM WebSphere Application Server Information Disclosure Vulnerability June 1, 2012 - 7:00am Addthis PROBLEM: A vulnerability has been reported in IBM WebSphere Application Server. PLATFORM: IBM WebSphere Application Server 6.1.x IBM WebSphere Application Server 7.0.x IBM WebSphere Application Server 8.0.x ABSTRACT: The vulnerability is caused due to missing access controls in
T-686: IBM Tivoli Integrated Portal Java Double Literal Denial...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
this November 2011 IBM Downloads Addthis Related Articles V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities T-694: IBM Tivoli Federated Identity...
V-145: IBM Tivoli Federated Identity Manager Products Java Multiple
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Vulnerabilities | Department of Energy 45: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities April 30, 2013 - 12:09am Addthis PROBLEM: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities PLATFORM: IBM Tivoli Federated Identity Manager versions 6.1, 6.2.0, 6.2.1, and 6.2.2. IBM Tivoli Federated Identity Manager Business Gateway versions 6.1.1, 6.2.0, 6.2.1
V-230: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Vulnerabilities | Department of Energy 0: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting Vulnerabilities V-230: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting Vulnerabilities August 29, 2013 - 4:10am Addthis PROBLEM: Multiple vulnerabilities have been reported in IBM TRIRIGA Application Platform, which can be exploited by malicious people to conduct cross-site scripting attacks. PLATFORM: IBM TRIRIGA Application Platform 2.x ABSTRACT: The vulnerabilities are
V-211: IBM iNotes Multiple Vulnerabilities | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
1: IBM iNotes Multiple Vulnerabilities V-211: IBM iNotes Multiple Vulnerabilities August 5, 2013 - 6:00am Addthis PROBLEM: Multiple vulnerabilities have been reported in IBM Lotus iNotes PLATFORM: IBM iNotes 9.x ABSTRACT: IBM iNotes has two cross-site scripting vulnerabilities and an ActiveX Integer overflow vulnerability REFERENCE LINKS: Secunia Advisory SA54436 IBM Security Bulletin 1645503 CVE-2013-3027 CVE-2013-3032 CVE-2013-3990 IMPACT ASSESSMENT: High DISCUSSION: 1) Certain input related
V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Attacks | Department of Energy 9: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks August 28, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in IBM Lotus iNotes PLATFORM: IBM Lotus iNotes 8.5.x ABSTRACT: IBM Lotus iNotes 8.5.x contains four cross-site scripting vulnerabilities REFERENCE LINKS: Security Tracker Alert ID 1028954 IBM Security Bulletin 1647740
U-116: IBM Tivoli Provisioning Manager Express for Software Distributi...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
for the affected ActiveX control Addthis Related Articles V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-094: IBM Multiple Products Multiple...
U-049: IBM Tivoli Netcool Reporter CGI Bug Lets Remote Users Inject
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Commands on the Target System | Department of Energy 49: IBM Tivoli Netcool Reporter CGI Bug Lets Remote Users Inject Commands on the Target System U-049: IBM Tivoli Netcool Reporter CGI Bug Lets Remote Users Inject Commands on the Target System December 1, 2011 - 9:00am Addthis PROBLEM: IBM Tivoli Netcool Reporter CGI Bug Lets Remote Users Inject Commands on the Target System. PLATFORM: IBM Tivoli Netcool Reporter prior to 2.2.0.8 ABSTRACT: A vulnerability was reported in IBM Tivoli Netcool
U-186: IBM WebSphere Sensor Events Multiple Vulnerabilities | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy 86: IBM WebSphere Sensor Events Multiple Vulnerabilities U-186: IBM WebSphere Sensor Events Multiple Vulnerabilities June 8, 2012 - 7:00am Addthis PROBLEM: Multiple vulnerabilities have been reported in IBM WebSphere Sensor Events PLATFORM: IBM WebSphere Sensor Events 7.x ABSTRACT: Some vulnerabilites have unknown impacts and others can be exploited by malicious people to conduct cross-site scripting attacks. Reference Links: Secunia ID 49413 No CVE references. Vendor URL IMPACT
T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Cross-Site Scripting Attacks | Department of Energy 2: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks September 21, 2011 - 8:15am Addthis PROBLEM: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site Scripting Attacks. PLATFORM: WebSphere Commerce Edition V7.0 ABSTRACT: A remote user can access the target user's cookies (including
U-111: IBM AIX ICMP Processing Flaw Lets Remote Users Deny Service...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
aixefixessecurityicmpfix.tar Addthis Related Articles U-096: IBM AIX TCP Large Send Offload Bug Lets Remote Users Deny Service V-031: IBM WebSphere DataPower...
V-147: IBM Lotus Notes Mail Client Lets Remote Users Execute...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
7: IBM Lotus Notes Mail Client Lets Remote Users Execute Java Applets V-147: IBM Lotus Notes Mail Client Lets Remote Users Execute Java Applets May 2, 2013 - 6:00am Addthis...
U.S. Department of Energy and IBM to Collaborate in Advancing
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Supercomputing Technology | Department of Energy IBM to Collaborate in Advancing Supercomputing Technology U.S. Department of Energy and IBM to Collaborate in Advancing Supercomputing Technology November 15, 2006 - 9:25am Addthis Lawrence Livermore and Argonne National Lab Scientists to Work with IBM Designers WASHINGTON, DC -- The U.S. Department of Energy (DOE) announced today that its Office of Science, the National Nuclear Security Administration (NNSA) and IBM will share the cost of a
IBM References | Argonne Leadership Computing Facility
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Feedback Form IBM References Contents IBM Redbooks A2 Processor Manual QPX Vector Instruction Set Architecture XL Compiler Documentation MASS Documentation Back to top IBM...
IBM Presentation Template Full Version
Annual Energy Outlook [U.S. Energy Information Administration (EIA)]
... Residential and Small Commercial Energy Customers 22% 21% 31% 26% Sample Size 5084 2010 IBM Corporation 7 7 IBM Confidential DRAFT In home technology will be one way to ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
great challenge reminiscent of the one faced by the Manhattan Project." Director Charles McMillan The Stretch, IBM's first transistorized computer: meeting Lab's growing computing...
The Easy Way of Finding Parameters in IBM (EWofFP-IBM)
Turkan, Nureddin [Bozok University, Faculty of Arts and Science, Department of Physics, Divanh Yolu, 66200 Yozgat (Turkey)
2008-11-11
E2/M1 multipole mixing ratios of even-even nuclei in transitional region can be calculated as soon as B(E2) and B(M1) values by using the PHINT and/or NP-BOS codes. The correct calculations of energies must be obtained to produce such calculations. Also, the correct parameter values are needed to calculate the energies. The logic of the codes is based on the mathematical and physical Statements describing interacting boson model (IBM) which is one of the model of nuclear structure physics. Here, the big problem is to find the best fitted parameters values of the model. So, by using the Easy Way of Finding Parameters in IBM (EWofFP-IBM), the best parameter values of IBM Hamiltonian for {sup 102-110}Pd and {sup 102-110}Ru isotopes were firstly obtained and then the energies were calculated. At the end, it was seen that the calculated results are in good agreement with the experimental ones. In addition, it was carried out that the presented energy values obtained by using the EWofFP-IBM are dominantly better than the previous theoretical data.
V-178: IBM Data Studio Web Console Java Multiple Vulnerabilities
Broader source: Energy.gov [DOE]
IBM Data Studio Web Console uses the IBM Java Runtime Environment (JRE) and might be affected by vulnerabilities in the IBM JRE
V-161: IBM Maximo Asset Management Products Java Multiple Vulnerabilit...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Articles U-179: IBM Java 7 Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-094: IBM Multiple Products Multiple...
International Business Machines Corp IBM | Open Energy Information
Business Machines Corp IBM Jump to: navigation, search Name: International Business Machines Corp (IBM) Place: Armonk, New York Zip: 10504 Sector: Services Product: IBM is a...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
How to use Open|SpeedShop to Analyze the Performance of Parallel Codes. Donald Frederick LLNL LLNL---PRES---508651 Performance Analysis is becoming more important Â± Complex architectures Â± Complex applications Â± Mapping applications onto architectures Often hard to know where to start Â± Which experiments to run first? Â± How to plan follow---on experiments? Â± What kind of problems can be explored? Â± How to interpret the data? How to use OSS to Analyze the Performance of Parallel Codes? 2
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
by J. StÃ¶hr (SSRL), M. Samant (IBM), J. LÃ¼ning (SSRL) Today's laptop computers utilize flat panel displays where the light transmission from the back to the front of the display is modulated by orientation changes in liquid crystal (LC) molecules. Details are discussed in Ref. 2 below. One of the key steps in the manufacture of the displays is the alignment of the LC molecules in the display. Today this is done by mechanical rubbing of two polymer surfaces and then sandwiching the LC between
IBM Probes Material Capabilities at the ALS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
IBM Probes Material Capabilities at the ALS IBM Probes Material Capabilities at the ALS Print Wednesday, 12 February 2014 11:05 Vanadium dioxide, one of the few known materials that acts like an insulator at low temperatures but like a metal at warmer temperatures, is a somewhat futuristic material that could yield faster and much more energy-efficient electronic devices. Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain
IBM Probes Material Capabilities at the ALS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
IBM Probes Material Capabilities at the ALS IBM Probes Material Capabilities at the ALS Print Wednesday, 12 February 2014 11:05 Vanadium dioxide, one of the few known materials that acts like an insulator at low temperatures but like a metal at warmer temperatures, is a somewhat futuristic material that could yield faster and much more energy-efficient electronic devices. Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain
IBM Probes Material Capabilities at the ALS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain greater insight into vanadium dioxide's unusual phase ...
Integrated Building Management System (IBMS)
Anita Lewis
2012-07-01
This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.
U-181: IBM WebSphere Application Server Information Disclosure...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Execution Vulnerability U-272: IBM WebSphere Commerce User Information Disclosure Vulnerability T-722: IBM WebSphere Commerce Edition Input Validation Holes Permit Cross-Site ...
V-122: IBM Tivoli Application Dependency Discovery Manager Java...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Automation Application Manager Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities T-694: IBM Tivoli Federated Identity...
V-205: IBM Tivoli System Automation for Multiplatforms Java Multiple...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Automation Application Manager Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities V-122: IBM Tivoli Application...
V-094: IBM Multiple Products Multiple Vulnerabilities | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Multiple Vulnerabilities V-132: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity Manager Products Java Multiple ...
August 15, 2001: IBM ASCI White | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
5, 2001: IBM ASCI White August 15, 2001: IBM ASCI White August 15, 2001: IBM ASCI White August 15, 2001 Lawrence Livermore National Laboratory dedicates the "world's fastest supercomputer," the IBM ASCI White supercomputer with 8,192 processors that perform 12.3 trillion operations per second.
V-132: IBM Tivoli System Automation Application Manager Multiple...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Application Manager versions 3.1, 3.2, 3.2.1, and 3.2.2 ABSTRACT: Multiple security vulnerabilities exist in the IBM Java Runtime Environment component of IBM Tivoli System ...
Design and development of an IBM/VM menu system
Cazzola, D.J.
1992-10-01
This report describes a full screen menu system developed using IBM`s Interactive System Productivity Facility (ISPF) and the REXX programming language. The software was developed for the 2800 IBM/VM Electrical Computer Aided Design (ECAD) system. The system was developed to deliver electronic drawing definitions to a corporate drawing release system. Although this report documents the status of the menu system when it was retired, the methodologies used and the requirements defined are very applicable to replacement systems.
T-681:IBM Lotus Symphony Multiple Unspecified Vulnerabilities
Broader source: Energy.gov [DOE]
Multiple unspecified vulnerabilities in IBM Lotus Symphony 3 before FP3 have unknown impact and attack vectors, related to "critical security vulnerability issues."
V-054: IBM WebSphere Application Server for z/OS Arbitrary Command Execution Vulnerability
Broader source: Energy.gov [DOE]
A vulnerability was reported in the IBM HTTP Server component 5.3 in IBM WebSphere Application Server (WAS) for z/OS
V-230: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
0: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting Vulnerabilities V-230: IBM TRIRIGA Application Platform Multiple Cross-Site Scripting Vulnerabilities August 29, ...
New ALS Technique Guides IBM in Next-Generation Semiconductor...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
chip, which then form transistors," says Jed Pitera, a research staff member in science and technology at IBM Research-Almaden. "But it's also really hard to do the...
Design and development of an IBM/VM menu system
Cazzola, D.J.
1992-10-01
This report describes a full screen menu system developed using IBM's Interactive System Productivity Facility (ISPF) and the REXX programming language. The software was developed for the 2800 IBM/VM Electrical Computer Aided Design (ECAD) system. The system was developed to deliver electronic drawing definitions to a corporate drawing release system. Although this report documents the status of the menu system when it was retired, the methodologies used and the requirements defined are very applicable to replacement systems.
V-118: IBM Lotus Domino Multiple Vulnerabilities | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
to version 9.0 or update to version 8.5.3 Fix Pack 4 when available Addthis Related Articles T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment Service...
Aragon, Kathryn M.; Eaton, Shelley M.; McCornack, Marjorie T.; Shannon, Sharon A.
2014-12-01
When a requirements engineering effort fails to meet expectations, often times the requirements management tool is blamed. Working with numerous project teams at Sandia National Laboratories over the last fifteen years has shown us that the tool is rarely the culprit; usually it is the lack of a viable information architecture with well- designed processes to support requirements engineering. This document illustrates design concepts with rationale, as well as a proven information architecture to structure and manage information in support of requirements engineering activities for any size or type of project. This generalized information architecture is specific to IBM's Rational DOORS (Dynamic Object Oriented Requirements System) software application, which is the requirements management tool in Sandia's CEE (Common Engineering Environment). This generalized information architecture can be used as presented or as a foundation for designing a tailored information architecture for project-specific needs. It may also be tailored for another software tool. Version 1.0 4 November 201
Studies of phase transitions and quantum chaos relationships in extended Casten triangle of IBM-1
Proskurins, J.; Andrejevs, A.; Krasta, T.; Tambergs, J. [University of Latvia, Institute of Solid State Physics (Latvia)], E-mail: juris_tambergs@yahoo.com
2006-07-15
A precise solution of the classical energy functional E(N, {eta}, {chi}; {beta}) minimum problem with respect to deformation parameter {beta} is obtained for the simplified Casten version of the standard interacting boson model (IBM-1) Hamiltonian. The first-order phase transition lines as well as the critical points of X(5), -X(5), and E(5) symmetries are considered. The dynamical criteria of quantum chaos-the basis state fragmentation width and the wave function entropy - are studied for the ({eta}, {chi}) parameter space of the extended Casten triangle, and the possible relationships between these criteria and phase transition lines are discussed.
U-114: IBM Personal Communications WS File Processing Buffer Overflow Vulnerability
Office of Energy Efficiency and Renewable Energy (EERE)
A vulnerability in WorkStation files (.ws) by IBM Personal Communications could allow a remote attacker to cause a denial of service (application crash) or potentially execute arbitrary code on vulnerable installations of IBM Personal Communications.
International Border Management Systems (IBMS) Program : visions and strategies.
McDaniel, Michael; Mohagheghi, Amir Hossein
2011-02-01
Sandia National Laboratories (SNL), International Border Management Systems (IBMS) Program is working to establish a long-term border security strategy with United States Central Command (CENTCOM). Efforts are being made to synthesize border security capabilities and technologies maintained at the Laboratories, and coordinate with subject matter expertise from both the New Mexico and California offices. The vision for SNL is to provide science and technology support for international projects and engagements on border security.
EZVIDEO, FORTRAN graphics routines for the IBM AT
Patterson, M.R.; Holdeman, J.T.; Ward, R.C.; Jackson, W.L.
1989-10-01
A set of IBM PC-based FORTRAN plotting routines called EZVIDEO is described in this report. These routines are written in FORTRAN and can be called from FORTRAN programs. EZVIDEO simulates a subset of the well-known DISSPLA graphics calls and makes plots directly on the IBM AT display screen. Screen dumps can also be made to an attached LaserJet or Epson printer to make hard copy without using terminal emulators. More than forty DISSPLA calls are simulated by the EZVIDEO routines. Typical screen plots require about 10 seconds (s), and good hard copy of the screen image on a laser printer requires less than 2 minutes (min). This higher-resolution hard copy is adequate for most purposes because of the enhanced resolution of the screen in the EGA and VGA modes. These EZVIDEO routines give the IB, AT user a stand-alone capability to make useful scientific or engineering plots directly on the AT, using data generated in FORTRAN programs. The routines will also work on the IBM PC or XT in CGA mode, but they require more time and yield less resolution. 7 refs., 4 figs.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2 Problem Scarcity of clean water leads to disease, death and often international tension. In many parts of the world, access to potable water is limited. The clean water supply...
The conjugate gradient NAS parallel benchmark on the IBM SP1
Trefethen, A.E.; Zhang, T.
1994-12-31
The NAS Parallel Benchmarks are a suite of eight benchmark problems developed at the NASA Ames Research Center. They are specified in such a way that the benchmarkers are free to choose the language and method of implementation to suit the system in which they are interested. In this presentation the authors will discuss the Conjugate Gradient benchmark and its implementation on the IBM SP1. The SP1 is a parallel system which is comprised of RS/6000 nodes connected by a high performance switch. They will compare the results of the SP1 implementation with those reported for other machines. At this time, such a comparison shows the SP1 to be very competitive.
WA_01_018_IBM_Waiver_of_Governement_US_and_Foreign_Patent_Ri.pdf |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy 1_018_IBM_Waiver_of_Governement_US_and_Foreign_Patent_Ri.pdf WA_01_018_IBM_Waiver_of_Governement_US_and_Foreign_Patent_Ri.pdf (18.1 MB) More Documents & Publications WA_04_053_IBM_CORP_Waiver_of_the_Government_U.S._and_Foreign.pdf WA_00_015_COMPAQ_FEDERAL_LLC_Waiver_Domestic_and_Foreign_Pat.pdf Advance Patent Waiver W(A)2002-023
U-154: IBM Rational ClearQuest ActiveX Control Buffer Overflow Vulnerability
Broader source: Energy.gov [DOE]
A vulnerability was reported in IBM Rational ClearQuest. A remote user can cause arbitrary code to be executed on the target user's system.
V-122: IBM Tivoli Application Dependency Discovery Manager Java Multiple Vulnerabilities
Broader source: Energy.gov [DOE]
Multiple security vulnerabilities exist in the Java Runtime Environments (JREs) that can affect the security of IBM Tivoli Application Dependency Discovery Manager
T-594: IBM solidDB Password Hash Authentication Bypass Vulnerability
Broader source: Energy.gov [DOE]
This vulnerability could allow remote attackers to execute arbitrary code on vulnerable installations of IBM solidDB. Authentication is not required to exploit this vulnerability.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Tech Transfer Success Stories * 2012 Problem Optical coatings are ubiquitous, appearing on items that range from electronic devices, photographic lenses, and windows to aircraft sensors, photovoltaic cells, and lightweight plastic goggles for troops in the field. The coatings are applied to materials such as glass and ceramics, which protect or alter the way the material reflects and transmits light. However, the two main methods of applying these coatings - sputtering and chemical vapor
U-116: IBM Tivoli Provisioning Manager Express for Software Distribution Multiple Vulnerabilities
Broader source: Energy.gov [DOE]
Multiple vulnerabilities have been reported in IBM Tivoli Provisioning Manager Express for Software Distribution, which can be exploited by malicious people to conduct SQL injection attacks and compromise a user's system
T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability
Broader source: Energy.gov [DOE]
IBM and Oracle Java products contain a vulnerability that could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on a targeted system.
New ALS Technique Guides IBM in Next-Generation Semiconductor Development
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015 09:37 A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials
Lawrence Livermore and IBM Collaborate to Build New Brain-Inspired
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Supercomputer: Chip-architecture breakthrough accelerates path to exascale computing; helps computers tackle complex, cognitive tasks such as pattern recognition sensory processing | Department of Energy and IBM Collaborate to Build New Brain-Inspired Supercomputer: Chip-architecture breakthrough accelerates path to exascale computing; helps computers tackle complex, cognitive tasks such as pattern recognition sensory processing Lawrence Livermore and IBM Collaborate to Build New
Broader source: Energy.gov [DOE]
There is a high risk security vulnerability with the ActiveBar ActiveX controls used by IBM Rational System Architect.
U-007: IBM Rational AppScan Import/Load Function Flaws Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
Two vulnerabilities were reported in IBM Rational AppScan. A remote user can cause arbitrary code to be executed on the target user's system.
Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM
Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet
2008-05-12
The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes.
Linger, Richard C; Pleszkoch, Mark G; Prowell, Stacy J; Sayre, Kirk D; Ankrum, Scott
2013-01-01
Organizations maintaining mainframe legacy software can benefit from code modernization and incorporation of security capabilities to address the current threat environment. Oak Ridge National Laboratory is developing the Hyperion system to compute the behavior of software as a means to gain understanding of software functionality and security properties. Computation of functionality is critical to revealing security attributes, which are in fact specialized functional behaviors of software. Oak Ridge is collaborating with MITRE Corporation to conduct a demonstration project to compute behavior of legacy IBM Assembly Language code for a federal agency. The ultimate goal is to understand functionality and security vulnerabilities as a basis for code modernization. This paper reports on the first phase, to define functional semantics for IBM Assembly instructions and conduct behavior computation experiments.
Shape coexistence in the neutron-deficient Pt isotopes in a configuration mixing IBM
Morales, Irving O.; Vargas, Carlos E.; Frank, Alejandro
2004-09-13
The recently proposed matrix-coherent state approach for configuration mixing IBM is used to describe the evolving geometry of the neutron deficient Pt isotopes. It is found that the Potential Energy Surface (PES) of the Platinum isotopes evolves, when the number of neutrons decreases, from spherical to oblate and then to prolate shapes, in agreement with experimental measurements. Oblate-Prolate shape coexistence is observed in 194,192Pt isotopes.
New ALS Technique Guides IBM in Next-Generation Semiconductor Development
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials that self-assemble spontaneously form nanostructures down to the molecular scale, which would revolutionize
How Would IBM's Quiz-Show Computer, Watson, Do as a Competitor in the
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
National Science Bowl? | U.S. DOE Office of Science (SC) How Would IBM's Quiz-Show Computer, Watson, Do as a Competitor in the National Science Bowl? News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.17.16
Additive synthesis with DIASS-M4C on Argonne National Laboratory`s IBM POWERparallel System (SP)
Kaper, H.; Ralley, D.; Restrepo, J.; Tiepei, S.
1995-12-31
DIASS-M4C, a digital additive instrument was implemented on the Argonne National Laboratory`s IBM POWER parallel System (SP). This paper discusses the need for a massively parallel supercomputer and shows how the code was parallelized. The resulting sounds and the degree of control the user can have justify the effort and the use of such a large computer.
Crowdsourcing Initiative Seeks Buildings-Related Problems to Solve |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Crowdsourcing Initiative Seeks Buildings-Related Problems to Solve Crowdsourcing Initiative Seeks Buildings-Related Problems to Solve June 30, 2015 - 9:00am Addthis Calling all building technology innovators! The Building Technologies Office is partnering with the successful SunShot Catalyst crowdsourcing initiative to identify and solve problems related to software development, data, and/or automation. In the first, "Ideation" phase of the initiative, those
Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu
2010-04-30
Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).
ISTUM PC: industrial sector technology use model for the IBM-PC
Roop, J.M.; Kaplan, D.T.
1984-09-01
A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.
Broader source: Energy.gov [DOE]
Stack-based buffer overflow in oninit in IBM Informix Dynamic Server (IDS) 11.50 allows remote execution attackers to execute arbitrary code via crafted arguments in the USELASTCOMMITTED session environment option in a SQL SET ENVIRONMENT statement
Study of Even-Even/Odd-Even/Odd-Odd Nuclei in Zn-Ga-Ge Region in the Proton-Neutron IBM/IBFM/IBFFM
Yoshida, N.; Brant, S.; Zuffi, L.
2009-08-26
We study the even-even, odd-even and odd-odd nuclei in the region including Zn-Ga-Ge in the proton-neutron IBM and the models derived from it: IBM2, IBFM2, IBFFM2. We describe {sup 67}Ga, {sup 65}Zn, and {sup 68}Ga by coupling odd particles to a boson core {sup 66}Zn. We also calculate the beta{sup +}-decay rates among {sup 68}Ge, {sup 68}Ga and {sup 68}Zn.
Open Problems, Solved Problems !
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Problems, Solved Problems and Non-Problems in DOE's Big Data Kathy Y elick Professor o f E lectrical E ngineering a nd C omputer S ciences University o f C alifornia a t B...
Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Failures | Department of Energy Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures September 17, 2015 - 12:29pm Addthis In the past, the wind energy industry has been relatively conservative in terms of data sharing, especially with the general public, which has inhibited the research community's efforts to identify and mitigate the premature failures of wind turbine
Tackling Energy Problems For America's Tribal Nations | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy Energy Problems For America's Tribal Nations Tackling Energy Problems For America's Tribal Nations June 20, 2012 - 6:07pm Addthis Julia Bovey, First Wind; Tracey LeBeau; Neil Kiely, First Wind; and Bob Springer (NREL) at First Wind's new Rollins project near Lincoln, Maine. Julia Bovey, First Wind; Tracey LeBeau; Neil Kiely, First Wind; and Bob Springer (NREL) at First Wind's new Rollins project near Lincoln, Maine. Tracey A. LeBeau Former Director, Office of Indian Energy Policy
Not Available
1990-01-01
The interactive computer program was developed to make a user friendly procedure for the personal computer for calculations and guidance to make estimations of pollutant loadings and impacts from highway stormwater runoff which are presented in the Publication FHWA-RD-88-006, Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume I: Design Procedure. The computer program is for the evaluation of the water quality impact from highway stormwater runoff to a lake or a stream from a specific highway site considering the necessary rainfall data and geographic site situation. The evaluation considers whether or not the resulting water quality conditions can cause a problem as indicated by the violations of water quality criteria or objectives.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Known Problems Known Problems No Open Issues There are currently no open issues with Euclid. Read the full post Subscribe via RSS Subscribe Browse by Date January 2016 Last edited: 2016-04-29 11:34:51
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Problems Known Problems Viewing entries posted in 2001 There are no blog entries Subscribe via RSS Subscribe Browse by Date January 2016 Last edited: 2016-04-29 11:34:51
Zhou, Shujia; Duffy, Daniel; Clune, Thomas; Suarez, Max; Williams, Samuel; Halem, Milton
2009-01-10
The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratio of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.
Not Available
1986-10-30
This study involves a concept developed by the Fairchild Space Company which is directly applicable to the Strategic Defense Initiative (SDI) Program as well as other national security programs requiring reliable, secure and survivable telecommunications systems. The overall objective of this study program was to determine the feasibility of combining and integrating long-lived, compact, autonomous isotope power sources with fiber optic and other types of ground segments of the SDI communications, command, control and intelligence/battle management (C/sup 3/I/BM) system in order to significantly enhance the survivability of those critical systems, especially against the potential threats of electromagnetic pulse(s) (EMP) resulting from high altitude nuclear weapon explosion(s). 28 figs., 2 tabs.
V-215: NetworkMiner Directory Traversal and Insecure Library...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Addthis Related Articles U-198: IBM Lotus Expeditor Multiple Vulnerabilities U-146: Adobe ReaderAcrobat Multiple Vulnerabilities T-542: SAP Crystal Reports Server Multiple...
Expert systems applied to two problems in nuclear power plants
Kim, K.Y.
1988-01-01
This dissertation describes two prototype expert systems applied to two problems in nuclear power plants. One problem is spare parts inventory control, and the other one is radionuclide release from containment during severe accident. The expert system for spare parts inventory control can handle spare parts requirements not only in corrective, preventive, or predictive maintenance, but also when failure rates of components or parts are updated by new data. Costs and benefits of spare parts inventory acquisition are evaluated with qualitative attributes such as spare part availability to provide the inventory manager with an improved basis for decision making. The expert system is implemented with Intelligence/Compiler on an IBM-AT. The other expert system for radionuclide release from containment can estimate magnitude, type, location, and time of release of radioactive materials from containment during a severe accident nearly on line, based on the actual measured physical parameters such as temperature and pressure inside the containment. The expert system has a function to check the validation of sensor data. The expert system is implemented with KEE on a Symbolics LISP machine.
U007_Plateau_Training_Records_System-PIA.pdf
Supercomputing Technology | Department of Energy IBM to Collaborate in Advancing Supercomputing Technology U.S. Department of Energy and IBM to Collaborate in Advancing Supercomputing Technology November 15, 2006 - 9:25am Addthis Lawrence Livermore and Argonne National Lab Scientists to Work with IBM Designers WASHINGTON, DC -- The U.S. Department of Energy (DOE) announced today that its Office of Science, the National Nuclear Security Administration (NNSA) and IBM will share the cost of a
The Guderley problem revisited
Ramsey, Scott D [Los Alamos National Laboratory; Kamm, James R [Los Alamos National Laboratory; Bolstad, John H [NON LANL
2009-01-01
The self-similar converging-diverging shock wave problem introduced by Guderley in 1942 has been the source of numerous investigations since its publication. In this paper, we review the simplifications and group invariance properties that lead to a self-similar formulation of this problem from the compressible flow equations for a polytropic gas. The complete solution to the self-similar problem reduces to two coupled nonlinear eigenvalue problems: the eigenvalue of the first is the so-called similarity exponent for the converging flow, and that of the second is a trajectory multiplier for the diverging regime. We provide a clear exposition concerning the reflected shock configuration. Additionally, we introduce a new approximation for the similarity exponent, which we compare with other estimates and numerically computed values. Lastly, we use the Guderley problem as the basis of a quantitative verification analysis of a cell-centered, finite volume, Eulerian compressible flow algorithm.
Sandia National Laboratories Problem
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Problem Natural disasters such as Hurricane Katrina in New Orleans and the tsunami in Japan in 2011 create emergency situations that must be dealt with quickly and effectively in...
Solar Forecasting Gets a Boost from Watson, Accuracy Improved...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM ...
Bicriteria network design problems
Marathe, M.V.; Ravi, R.; Sundaram, R.; Ravi, S.S.; Rosenkrantz, D.J.; Hunt, H.B. III
1997-11-20
The authors study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a subgraph from a given subgraph class that minimizes the second objective subject to the budget on the first. They consider three different criteria -- the total edge cost, the diameter and the maximum degree of the network. Here, they present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, they develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same they present a black box parametric search technique. This black box takes in as input an (approximation) algorithm for the criterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs they use a cluster based approach to devise approximation algorithms. The solutions violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, they provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. The authors show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.
Emery, V.J.; Kivelson, S.A.
1993-12-31
In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.
The inhibiting bisection problem.
Pinar, Ali
2010-11-01
Given a graph where each vertex is assigned a generation or consumption volume, we try to bisect the graph so that each part has a significant generation/consumption mismatch, and the cutsize of the bisection is small. Our motivation comes from the vulnerability analysis of distribution systems such as the electric power system. We show that the constrained version of the problem, where we place either the cutsize or the mismatch significance as a constraint and optimize the other, is NP-complete, and provide an integer programming formulation. We also propose an alternative relaxed formulation, which can trade-off between the two objectives and show that the alternative formulation of the problem can be solved in polynomial time by a maximum flow solver. Our experiments with benchmark electric power systems validate the effectiveness of our methods.
Sandia National Laboratories Problem
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Sandia National Laboratories Problem Natural disasters such as Hurricane Katrina in New Orleans and the tsunami in Japan in 2011 create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can help emergency responders fine-tune their preparations. To create the most accurate modeling scenarios, exercise planners need to know critical details of the event, such as infrastructure damage and
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
GRAND CHALLENGE PROBLEMS Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or to
The Inhibiting Bisection Problem
Pinar, Ali; Fogel, Yonatan; Lesieutre, Bernard
2006-12-18
Given a graph where each vertex is assigned a generation orconsumption volume, we try to bisect the graph so that each part has asignificant generation/consumption mismatch, and the cutsize of thebisection is small. Our motivation comes from the vulnerability analysisof distribution systems such as the electric power system. We show thatthe constrained version of the problem, where we place either the cutsizeor the mismatch significance as a constraint and optimize the other, isNP-complete, and provide an integer programming formulation. We alsopropose an alternative relaxed formulation, which can trade-off betweenthe two objectives and show that the alternative formulation of theproblem can be solved in polynomial time by a maximum flow solver. Ourexperiments with benchmark electric power systems validate theeffectiveness of our methods.
Kovac, F.M.
1995-12-31
The 21PF overpack has had severe metal corrosion and stress corrosion cracking (SCC) for many years. The US Department of Transportation (DOT) and the US Nuclear Regulatory Commission (NRC) have disallowed the use of overpacks containing high chloride foam. Corrosion and SCC of 21PF overpacks have been documented and papers have been presented at conferences about these issues. Regulatory agencies have restricted 21PF overpack use and have requested data to determine if phenolic foam overpacks not meeting original design specifications will be authorized for continued use. This paper details some of the problems experienced by users and relates actions of the DOT and NRC concerning these packages. Industry is working to correct deficiencies, but if they are not successful, the entire uranium enrichment industry will be severely impacted.
IBM Probes Material Capabilities at the ALS
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and temperature-dependent x-ray absorption spectroscopy experiments, in conjunction with x-ray diffraction and electrical transport measurements. The researchers were able to...
U-179: IBM Java 7 Multiple Vulnerabilities
Broader source: Energy.gov [DOE]
Vulnerabilities can be exploited by malicious users to disclose certain information and by malicious people to disclose potentially sensitive information, hijack a user's session, conduct DNS cache poisoning attacks, manipulate certain data, cause a DoS (Denial of Service), and compromise a vulnerable system.
Smoothing of mixed complementarity problems
Gabriel, S.A.; More, J.J.
1995-09-01
The authors introduce a smoothing approach to the mixed complementarity problem, and study the limiting behavior of a path defined by approximate minimizers of a nonlinear least squares problem. The main result guarantees that, under a mild regularity condition, limit points of the iterates are solutions to the mixed complementarity problem. The analysis is applicable to a wide variety of algorithms suitable for large-scale mixed complementarity problems.
About an Optimal Visiting Problem
Bagagiolo, Fabio Benetton, Michela
2012-02-15
In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous 'Traveling Salesman Problem' and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton-Jacobi equation. We introduce some 'external' variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton-Jacobi equation turns out to be discontinuous.
EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Improved by 30% | Department of Energy Forecasting Gets a Boost from Watson, Accuracy Improved by 30% EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM Youtube Video | Courtesy of IBM Remember when IBM's super computer Watson defeated Jeopardy! champions Ken Jennings and Brad Rutter? With funding from the U.S. Department of Energy SunShot Initiative, IBM researchers are using Watson-like technology to improve solar
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
They can reduce the size and weight of existing next-generation smart grid power electronics systems, allowing greater application in such areas as weapons systems and pulsed...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
In addition, Sandia's method is compatible with conventional spray processing and, ... process include high-definition flat panel displays, sensor coatings for both ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
energy solutions, Sandia and Princeton Power Systems have teamed up to develop the Demand Response Inverter (DRI). Innovative Edge The DRI is a power flow control system...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
But what if the batteries had the ability to recharge themselves? What if they were covered by a thin photovoltaic (PV) film that could harvest energy from the sun? Just as on ...
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2009-09-01
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Surrogate Guderley Test Problem Definition
Ramsey, Scott D.; Shashkov, Mikhail J.
2012-07-06
The surrogate Guderley problem (SGP) is a 'spherical shock tube' (or 'spherical driven implosion') designed to ease the notoriously subtle initialization of the true Guderley problem, while still maintaining a high degree of fidelity. In this problem (similar to the Guderley problem), an infinitely strong shock wave forms and converges in one-dimensional (1D) cylindrical or spherical symmetry through a polytropic gas with arbitrary adiabatic index {gamma}, uniform density {rho}{sub 0}, zero velocity, and negligible pre-shock pressure and specific internal energy (SIE). This shock proceeds to focus on the point or axis of symmetry at r = 0 (resulting in ostensibly infinite pressure, velocity, etc.) and reflect back out into the incoming perturbed gas.
Challenge problems for artificial intelligence
Selman, B.; Brooks, R.A.; Dean, T.
1996-12-31
AI textbooks and papers of ten discuss the big questions, such as {open_quotes}how to reason with uncertainty{close_quotes}, {open_quotes}how to reason efficiently{close_quotes}, or {open_quotes}how to improve performance through learning.{close_quotes} It is more difficult, however, to find descriptions of concrete problems or challenges that are still ambitious and interesting, yet not so open-ended. The goal of this panel is to formulate a set of such challenge problems for the field. Each panelist was asked to formulate one or more challenges. The emphasis is on problems for which there is a good chance that they will be resolved within the next five to ten years.
Sour landfill gas problem solved
Nagl, G.; Cantrall, R.
1996-05-01
In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.
Substation automation problems and possibilities
Smith, H.L.
1996-10-01
The evolutionary growth in the use and application of microprocessors in substations has brought the industry to the point of considering integrated substation protection, control, and monitoring systems. An integrated system holds the promise of greatly reducing the design, documentation, and implementation cost for the substation control, protection, and monitoring systems. This article examines the technical development path and the present implementation problems.
Retrofitting and the mu Problem
Green, Daniel; Weigand, Timo; /SLAC /Stanford U., Phys. Dept.
2010-08-26
One of the challenges of supersymmetry (SUSY) breaking and mediation is generating a {mu} term consistent with the requirements of electro-weak symmetry breaking. The most common approach to the problem is to generate the {mu} term through a SUSY breaking F-term. Often these models produce unacceptably large B{mu} terms as a result. We will present an alternate approach, where the {mu} term is generated directly by non-perturtative effects. The same non-perturbative effect will also retrofit the model of SUSY breaking in such a way that {mu} is at the same scale as masses of the Standard Model superpartners. Because the {mu} term is not directly generated by SUSY breaking effects, there is no associated B{mu} problem. These results are demonstrated in a toy model where a stringy instanton generates {mu}.
INCITE Program Doles Out Hours on Supercomputers | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
INCITE Program Doles Out Hours on Supercomputers INCITE Program Doles Out Hours on Supercomputers November 5, 2012 - 1:30pm Addthis Mira, the 10-petaflop IBM Blue Gene/Q system at Argonne National Laboratory, is capable of carrying out 10 quadrillion calculations per second. Each year researchers apply to the INCITE program to get to use this machine's incredible computing power. | Photo courtesy of Argonne National Lab. Mira, the 10-petaflop IBM Blue Gene/Q system at Argonne National
Solving the Dark Matter Problem
Baltz, Ted
2009-09-01
Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.
Common Air Conditioner Problems | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of Ã‚Â©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of Â©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of
Quantum simulations of physics problems
Somma, R. D.; Ortiz, G.; Knill, E. H.; Gubernatis, J. E.
2003-01-01
If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.
Inconsistent Investment and Consumption Problems
Kronborg, Morten Tolver; Steffensen, Mogens
2015-06-15
In a traditional Blackâ€“Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamiltonâ€“Jacobiâ€“Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bang strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.
Student's algorithm solves real-world problem
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Student's algorithm solves real-world problem Supercomputing Challenge: student's algorithm solves real-world problem Students learn how to use powerful computers to analyze, model, and solve real-world problems. April 3, 2012 Jordon Medlock of Albuquerque's Manzano High School won the 2012 Lab-sponsored Supercomputing Challenge Jordon Medlock of Albuquerque's Manzano High School won the 2012 Lab-sponsored Supercomputing Challenge by creating a computer algorithm that automates the process of
design problem | OpenEI Community
design problem Home Dc's picture Submitted by Dc(266) Contributor 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu...
PCx: Optimization Problem Solver | Argonne National Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
programming problems. Windows 95 version includes a user-friendly graphical interface Java graphical interface is available for all environments Source code is available and...
Statewide Power Problems May Affect SSRL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Statewide Power Problems May Affect SSRL The power crisis affecting California and the northwestern US may have some implication for SSRL users during the current run. As the...
Engineering report standard hydrogen monitoring system problems
Golberg, R.L.
1996-09-25
Engineering Report to document moisture problems found during the sampling of the vapors in the dome space for hydrogen in the storage tanks and a recommended solution.
Approximate resolution of hard numbering problems
Bailleux, O.; Chabrier, J.J.
1996-12-31
We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.
Frequency Instability Problems in North American Interconnections
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Instability Problems in North American Interconnections Prepared by: Energy Sector Planning and Analysis (ESPA) ... would make the situation worse during an emergency event. ...
Integrated network design and scheduling problems :
Nurre, Sarah G.; Carlson, Jeffrey J.
2014-01-01
We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.
AMRH and High Energy Reinicke Problem
Shestakov, A I; Greenough, J A
2001-05-14
The authors describe AMRH results on a version of the Reinicke problem specified by the V and V group of LLNL's A-Div. The simulation models a point explosion with heat conduction. The problem specification requires that the heat conduction be replaced with diffusive radiation transport. The matter and radiation energy densities are tightly coupled.
U-139: IBM Tivoli Directory Server Input Validation Flaw
Broader source: Energy.gov [DOE]
The Web Admin Tool does not properly filter HTML code from user-supplied input before displaying the input.
V-161: IBM Maximo Asset Management Products Java Multiple Vulnerabilities
Broader source: Energy.gov [DOE]
Asset and Service Mgmt Products - Potential security exposure when using JavaTM based applications due to vulnerabilities in Java Software Developer Kits.
T-694: IBM Tivoli Federated Identity Manager Products Multiple Vulnerabilities
Broader source: Energy.gov [DOE]
This Security Alert addresses a serious security issue CVE-2010-4476 (Java Runtime Environment hangs when converting "2.2250738585072012e-308" to a binary floating-point number). This vulnerability might cause the Java Runtime Environment to hang, be in infinite loop, and/or crash resulting in a denial of service exposure. This same hang might occur if the number is written without scientific notation (324 decimal places). In addition to the Application Server being exposed to this attack, any Java program using the Double.parseDouble method is also at risk of this exposure including any customer written application or third party written application.
Mitigating PQ Problems in Legacy Data Centers
Ilinets, Boris; /SLAC
2011-06-01
The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.
SIENA Customer Problem Statement and Requirements
L. Sauer; R. Clay; C. Adams; H. Walther; B. Allan; R. Mariano; C. Poore; B. Whiteside; B. Boughton; J. Dike; E. Hoffman; R. Hogan; C. LeGall
2000-08-01
This document describes the problem domain and functional requirements of the SIENA framework. The software requirements and system architecture of SIENA are specified in separate documents (called SIENA Software Requirement Specification and SIENA Software Architecture, respectively). While currently this version of the document describes the problems and captures the requirements within the Analysis domain (concentrating on finite element models), it is our intention to subsequent y expand this document to describe problems and capture requirements from the Design and Manufacturing domains. In addition, SIENA is designed to be extendible to support and integrate elements from the other domains (see SIENA Software Architecture document).
Creative problem solving at Rocky Reach
Bickford, B.M.; Garrison, D.H.
1997-04-01
Tainter gate inspection and thrust bearing cooling system problems at the 1287-MW Rocky Reach hydroelectric project on the Columbia River in Washington are described. Gate inspection was initiated in response to a failure of similar gates at Folsom Dam. The approach involved measuring the actual forces on the gates and comparing them to original model study parameters, rather than the traditional method of building a hydraulic model. Measurement and visual inspection was completed in one day and had no effect on migration flows. Two problems with the thrust bearing cooling system are described. First, whenever a generating unit was taken off line, cooling water continued circulating and lowered oil temperatures. The second problem involved silt buildup in flow measuring device tubes on the cooling water system. Modifications to correct cooling system problems and associated costs are outlined.
Modeling the black hole excision problem
Szilagyi, B.; Winicour, J.; Kreiss, H.-O.
2005-05-15
We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasilinear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite-difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasilinear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.
Frequency Instability Problems in North American Interconnections
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Frequency Instability Problems in North American Interconnections May 1, 2011 DOE/NETL-2011/1473 Frequency Instability Problems in North American Interconnections Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
Geological problems in radioactive waste isolation
Witherspoon, P.A.
1991-01-01
The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.
Thick diffusion limit boundary layer test problems
Bailey, T. S.; Warsa, J. S.; Chang, J. H.; Adams, M. L.
2013-07-01
We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)
Lovejoy, S.C.; Whirley, R.G.
1990-10-10
This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.
Particle physics confronts the solar neutrino problem
Pal, P.B.
1991-06-01
This review has four parts. In Part I, we describe the reactions that produce neutrinos in the sun and the expected flux of those neutrinos on the earth. We then discuss the detection of these neutrinos, and how the results obtained differ from the theoretical expectations, leading to what is known as the solar neutrino problem. In Part II, we show how neutrino oscillations can provide a solution to the solar neutrino problem. This includes vacuum oscillations, as well as matter enhanced oscillations. In Part III, we discuss the possibility of time variation of the neutrino flux and how a magnetic moment of the neutrino can solve the problem. WE also discuss particle physics models which can give rise to the required values of magnetic moments. In Part IV, we present some concluding remarks and outlook for the recent future.
Transport Test Problems for Hybrid Methods Development
Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.
2011-12-28
This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.
Motor operated valves problems tests and simulations
Pinier, D.; Haas, J.L.
1996-12-01
An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.
Solving the problems of infectious waste disposal
Hoffman, S.L.; Cabral, N.J. )
1989-06-01
Lawmakers are increasing pressures to ensure safe, appropriate disposal of infectious waste. This article discusses the problems, the regulatory climate, innovative approaches, and how to pay for them. The paper discusses the regulatory definition of infectious waste, federal and state regulations, and project finance.
The scattering problem for nonlocal potentials
Zolotarev, V A
2014-11-30
We solve the direct and inverse scattering problems for integro-differential operators which are one-dimensional perturbations of the self-adjoint second derivative operator on the half-axis. We also describe the scattering data for this class of operators. Bibliography: 28 titles.
Aleph Field Solver Challenge Problem Results Summary.
Hooper, Russell; Moore, Stan Gerald
2015-01-01
Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched mod- eling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challeng- ing problems important to Sandia's mission that Aleph was specifically designed to address.
Heavy crudes, stocks pose desalting problems
Bartley, D.
1982-02-02
The design of electrostatic desalters for crudes lighter than 30 API is well established and is no longer considered a problem. However, since 1970, the number of desalting applications involving heavy crudes (less than 20 API), syncrudes, and residual fuels has increased markedly. These stocks present unique problems that require additional design considerations. All produced crude oils, including synthetic crude from shale, tar sands, and coal liquefaction, contain impurities that adversely affect production and refining processes, the equipment used in these processes, and the final products. The most common of these impurities are water, salt, solids, metals, and sulfur. The desalting process consists of (1) adding water with a low salt content (preferably fresh) to the feedstock; (2) adequately mixing this added water with the feedstock, which already contains some quantities of salty water, sediment, and/or crystalline salt; and (3) extracting as much water as possible from the feedstock.
Scalable Adaptive Multilevel Solvers for Multiphysics Problems
Xu, Jinchao
2014-12-01
In this project, we investigated adaptive, parallel, and multilevel methods for numerical modeling of various real-world applications, including Magnetohydrodynamics (MHD), complex fluids, Electromagnetism, Navier-Stokes equations, and reservoir simulation. First, we have designed improved mathematical models and numerical discretizaitons for viscoelastic fluids and MHD. Second, we have derived new a posteriori error estimators and extended the applicability of adaptivity to various problems. Third, we have developed multilevel solvers for solving scalar partial differential equations (PDEs) as well as coupled systems of PDEs, especially on unstructured grids. Moreover, we have integrated the study between adaptive method and multilevel methods, and made significant efforts and advances in adaptive multilevel methods of the multi-physics problems.
Are shorted pipeline casings a problem
Gibson, W.F. )
1994-11-01
The pipeline industry has many road and railroad crossings with casings which have been in service for more than 50 years without exhibiting any major problems, regardless of whether the casing is shorted to or isolated from the carrier pipe. The use of smart pigging and continual visual inspection when retrieving a cased pipeline segment have shown that whether shorted or isolated, casings have no significant bearing on the presence or absence of corrosion on the carrier pipe.
Ergonomics problems and solutions in biotechnology laboratories
Coward, T.W.; Stengel, J.W.; Fellingham-Gilbert, P.
1995-03-01
The multi-functional successful ergonomics program currently implemented at Lawrence Livermore National Laboratory (LLNL) will be presented with special emphasis on recent findings in the Biotechnology laboratory environment. In addition to a discussion of more traditional computer-related repetitive stress injuries and associated statistics, the presentation will cover identification of ergonomic problems in laboratory functions such as pipetting, radiation shielding, and microscope work. Techniques to alleviate symptoms and prevent future injuries will be presented.
Diabaticity of nuclear motion: problems and perspectives
Nazarewicz, W [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)] [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)
1992-12-31
The assumption of adiabatic motion lies in foundations of many models of nuclear collective motion. To what extend can nuclear modes be treated adiabatically? Due to the richness and complexity of the nuclear many-body problem there is no unique answer to this question. The challenges of nuclear collective dynamics invite exciting interactions between several areas of physics such as nuclear structure, field theory, nonlinear dynamics, transport theory, and quantum chaos.
CMI Grand Challenge Problems | Critical Materials Institute
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CMI Grand Challenge Problems Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or
Riemke, Richard Allan
2001-09-01
The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.
Riemke, Richard Allan
2002-09-01
The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.
Exact Overlaps in the Kondo Problem (Journal Article) | DOE PAGES
Office of Scientific and Technical Information (OSTI)
Exact Overlaps in the Kondo Problem Prev Next Title: Exact Overlaps in the Kondo Problem Authors: Lukyanov, Sergei L. ; Saleur, Hubert ; Jacobsen, Jesper L. ; Vasseur, Romain ...
Approaching Problems in Particle and Nuclear Physics with Time...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Approaching Problems in Particle and Nuclear Physics with Time-Dependent Quantum Mechanics (Wednesday, Jan 20) Approaching Problems in Particle and Nuclear Physics with...
Statistics Show Bearing Problems Cause the Majority of Wind Turbine...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures September ...
Solving a Class of Nonlinear Eigenvalue Problems by Newton's...
Office of Scientific and Technical Information (OSTI)
We examine the possibility of using the standard Newton's method for solving a class of ... NONLINEAR PROBLEMS nonlinear eigenvalue problem, Newton's method Word Cloud More Like ...
Problems with propagation and time evolution in f ( T ) gravity...
Office of Scientific and Technical Information (OSTI)
Problems with propagation and time evolution in f ( T ) gravity Citation Details In-Document Search Title: Problems with propagation and time evolution in f ( T ) gravity Authors: ...
CrowdPhase: crowdsourcing the phase problem
Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.
2014-06-01
The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as â€˜crowdsourcingâ€™. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of â€˜individualsâ€™, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30Â° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it
Studies in nonlinear problems of energy
Matkowsky, B.J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.
PCI Capability Development and Challenge Problem Progress
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
6-000 PCI Capability Development and Challenge Problem Progress Joe Rashid 1 , Brian D. Wirth 2 , Rich Williamson 3 1 ANATECH Corp 2 University of Tennessee 3 Idaho National Laboratory 2 CASL-U-2016-1086-000 Outline * State of the art of PCI & Fuel Performance Codes (FPCs) * FPCs compatibility with Utilities needs - what are the gaps? Can BISON close these gaps? * PCI Capability Development: BISON progress to-date * BISON as a Phase-2 product - will it fulfill its promise? 3
Analytical solutions to matrix diffusion problems
Kekäläinen, Pekka
2014-10-06
We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.
Public problems: Still waiting on the marketplace for solutions
Gover, J.; Carayannis, E.; Huray, P.
1997-10-01
This report addresses the need for government sponsored R and D to address real public problems. The motivation is that a public benefit of the money spent must be demonstrated. The areas identified as not having appropriate attention resulting in unmet public needs include healthcare cost, cost and benefits of regulations, infrastructure problems, defense spending misaligned with foreign policy objectives, the crime problem, energy impact on the environment, the education problem, low productivity growth industry sectors, the income distribution problem, the aging problem, the propagation of disease and policy changes needed to address the solution of these problems.
DYNA3D Non-reflecting Boundary Conditions - Test Problems
Zywicz, E
2006-09-28
Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.
Engineering problems of tandem-mirror reactors
Moir, R.W.; Barr, W.L.; Boghosian, B.M.
1981-10-22
We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.
The PHEV Charging Infrastructure Planning (PCIP) Problem
Dashora, Yogesh; Barnes, J. Wesley; Pillai, Rekha S; Combs, Todd E; Hilliard, Michael R; Chinthavali, Madhu Sudhan
2010-01-01
Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.
Permafrost problems as they affect gas pipelines (the frost heave problem)
Lipsett, G.B.
1980-01-01
The major problems associated with the construction of a large diameter gas pipeline in a permafrost region are outlined in this presentation. Data pertains to the design and construction of the Alaska Highway Gas Pipeline Project. One of the main problems is maintaining the permafrost in its frozen state. Large diameter pipelines operating at high capacity are heat generators. Therefore, it is necessary to refrigerate the gas to ensure that it remains below 0/sup 0/C at all points in the pipeline system. The pipeline also passes through unfrozen ground where the potential for frost heave exists. The conditions under which frost heave occurs are listed. The extent and location of potential frost heave problem areas must be determined and a frost heave prediction method must be established before construction begins. Another task involves development of design criteria for the pipeline/soil interaction analysis. Remedial methods for use during the operational phase are also discussed. (DMC)
Current problems in plasma spray processing
Berndt, C.C.; Brindley, W.; Goland, A.N.; Herman, H.; Houck, D.L.; Jones, K.; Miller, R.A.; Neiser, R.; Riggs, W.; Sampath, S.; Smith, M.; Spanne, P.
1991-12-31
This detailed report summarizes 8 contributions from a thermal spray conference that was held in late 1991 at Brookhaven National Laboratory (Upton, Long Island, NY, USA). The subject of ``Plasma Spray Processing`` is presented under subject headings of Plasma-particle interactions, Deposit formation dynamics, Thermal properties of thermal barrier coatings, Mechanical properties of coatings, Feed stock materials, Porosity: An integrated approach, Manufacture of intermetallic coatings, and Synchrotron x-ray microtomographic methods for thermal spray materials. Each section is intended to present a concise statement of a specific practical and/or scientific problem, then describe current work that is being performed to investigate this area, and finally to suggest areas of research that may be fertile for future activity.
Current problems in plasma spray processing
Berndt, C.C.; Brindley, W.; Goland, A.N.; Herman, H.; Houck, D.L.; Jones, K.; Miller, R.A.; Neiser, R.; Riggs, W.; Sampath, S.; Smith, M.; Spanne, P. . Thermal Spray Lab.)
1991-01-01
This detailed report summarizes 8 contributions from a thermal spray conference that was held in late 1991 at Brookhaven National Laboratory (Upton, Long Island, NY, USA). The subject of Plasma Spray Processing'' is presented under subject headings of Plasma-particle interactions, Deposit formation dynamics, Thermal properties of thermal barrier coatings, Mechanical properties of coatings, Feed stock materials, Porosity: An integrated approach, Manufacture of intermetallic coatings, and Synchrotron x-ray microtomographic methods for thermal spray materials. Each section is intended to present a concise statement of a specific practical and/or scientific problem, then describe current work that is being performed to investigate this area, and finally to suggest areas of research that may be fertile for future activity.
Municipal solid waste (garbage): problems and benefits
Stillman, G.I.
1983-05-01
The average person in the USA generates from 3 1/2 to 7 lb of garbage/day. The combustible portion of garbage consists primarily of paper products, plastics, textiles, and wood. Problems connected with energy production from municipal solid waste (garbage), and the social, economic, and environmental factors associated with this technology are discussed. The methods for using garbage as a fuel for a combustion process are discussed. One method processes the garbage to produce a fuel that is superior to raw garbage, the other method of using garbage as a fuel is to burn it directly - the mass burning approach. The involvement of the Power Authority of the State of New York in garbage-to-energy technology is discussed.
New tools attack Permian basin stimulation problems
Ely, J.W.; Schubarth, S.K.; Wolters, B.C.; Kromer, C. )
1992-06-08
This paper reports that profitable stimulation treatments in the Permian basin of the southwestern U.S. combine new tools with technology and fluids previously available. This paper reports that a wide selection of fracturing fluids and techniques needs to be considered to solve the varied problems associated with stimulating hydrocarbon reservoirs that are at diverse depths, temperatures, pressures, and lithologies. The Permian basin of West Texas and New Mexico is the most fertile ground in the U.S. for some of the newer stimulation technologies. In this basin, these new tools and techniques have been applied in many older producing areas that previously were treated with more conventional stimulation techniques, including acidizing and conventional fracturing procedures.
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-31
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3DÂ®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
U-082: McAfee SaaS 'myCIOScn.dll' ActiveX Control Lets Remote...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Lets Remote Users Execute Arbitrary Code January 17, 2012 - 1:00pm Addthis PROBLEM: PHP Null Pointer Dereference in zendstrndup() Lets Local Users Deny Service PLATFORM: PHP...
V-224: Google Chrome Multiple Vulnerabilities | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
4: Google Chrome Multiple Vulnerabilities V-224: Google Chrome Multiple Vulnerabilities August 22, 2013 - 1:05am Addthis PROBLEM: Multiple vulnerabilities have been reported in...
V-121: Google Chrome Multiple Vulnerabilities | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
1: Google Chrome Multiple Vulnerabilities V-121: Google Chrome Multiple Vulnerabilities March 28, 2013 - 12:29am Addthis PROBLEM: Google Chrome Multiple Vulnerabilities PLATFORM:...
V-207: Wireshark Multiple Denial of Service Vulnerabilities ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
7: Wireshark Multiple Denial of Service Vulnerabilities V-207: Wireshark Multiple Denial of Service Vulnerabilities July 31, 2013 - 1:59am Addthis PROBLEM: Multiple vulnerabilities...
U-228: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Addthis PROBLEM: BlackBerry Tablet OS Flash Player Multiple Vulnerabilities PLATFORM: Adobe Flash Player versions included with BlackBerry PlayBook tablet software versions...
U-277: Google Chrome Multiple Flaws Let Remote Users Execute...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Addthis PROBLEM: Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code PLATFORM: Version(s): prior to 22.0.1229.92 ABSTRACT: Several vulnerabilities were...
U-237: Mozilla Firefox CVE-2012-1950 Address Bar URI Spoofing...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Addthis PROBLEM: Mozilla Firefox CVE-2012-1950 Address Bar URI Spoofing Vulnerability PLATFORM: Version(s): Mozilla Firefox 6 - 12 ABSTRACT: To exploit this issue, an attacker...
Open problems in condensed matter physics, 1987 (Conference)...
Office of Scientific and Technical Information (OSTI)
Conference: Open problems in condensed matter physics, 1987 Citation Details In-Document Search Title: Open problems in condensed matter physics, 1987 The 1970's and 1980's can be ...
Quantum mechanics problems in observer's mathematics
Khots, Boris; Khots, Dmitriy
2012-11-06
This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, and {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.
Fundamental Scientific Problems in Magnetic Recording
Schulthess, T.C.; Miller, M.K.
2007-06-27
Magnetic data storage technology is presently leading the high tech industry in advancing device integration--doubling the storage density every 12 months. To continue these advancements and to achieve terra bit per inch squared recording densities, new approaches to store and access data will be needed in about 3-5 years. In this project, collaboration between Oak Ridge National Laboratory (ORNL), Center for Materials for Information Technology (MINT) at University of Alabama (UA), Imago Scientific Instruments, and Seagate Technologies, was undertaken to address the fundamental scientific problems confronted by the industry in meeting the upcoming challenges. The areas that were the focus of this study were to: (1) develop atom probe tomography for atomic scale imaging of magnetic heterostructures used in magnetic data storage technology; (2) develop a first principles based tools for the study of exchange bias aimed at finding new anti-ferromagnetic materials to reduce the thickness of the pinning layer in the read head; (3) develop high moment magnetic materials and tools to study magnetic switching in nanostructures aimed at developing improved writers of high anisotropy magnetic storage media.
Possible problems in ENDF/B-VI.r8
Brown, D; Hedstrom, G
2003-10-30
This document lists the problems that we encountered in processing ENDF/B-VI.r8 that we suspect are problems with ENDF/B-VI.r8 itself. It also contains a comparison of linear interpolation methods. Finally, this documents proposes an alternative to the current scheme of reporting problems to the ENDF community.
A class of ejecta transport test problems
Hammerberg, James E; Buttler, William T; Oro, David M; Rousculp, Christopher L; Morris, Christopher; Mariam, Fesseha G
2011-01-31
Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function ofparticulate masses and velocities, f{sub 0}(m, v;t). Some of the properties of this source distribution function have been determined from extensive Taylor and supported wave experiments on shock loaded Sn interfaces of varying surface and subsurface morphology. Such experiments measure the mass moment of f{sub o} under vacuum conditions assuming weak particle-particle interaction and, usually, fully inelastic capture by piezo-electric diagnostic probes. Recently, planar Sn experiments in He, Ar, and Kr gas atmospheres have been carried out to provide transport data both for machined surfaces and for coated surfaces. A hydro code model of ejecta transport usually specifies a criterion for the instantaneous temporal appearance of ejecta with source distribution f{sub 0}(m, v;t{sub 0}). Under the further assumption of separability, f{sub 0}(m,v;t{sub 0}) = f{sub 1}(m)f{sub 2}(v), the motion of particles under the influence of gas dynamic forces is calculated. For the situation of non-interacting particulates, interacting with a gas via drag forces, with the assumption of separability and simplified approximations to the Reynolds number dependence of the drag coefficient, the dynamical equation for the time evolution of the distribution function, f(r,v,m;t), can be resolved as a one-dimensional integral which can be compared to a direct hydro simulation as a test problem. Such solutions can also be used for preliminary analysis of experimental data. We report solutions for several shape dependent drag coefficients and analyze the results of recent planar dsh experiments in Ar and Xe.
Numerical solution of control problems governed by nonlinear differential equations
Heinkenschloss, M.
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
On the computational complexity of sequence design problems
Hart, W.E. [Sandia National Labs., Albuquerque, NM (United States)
1997-12-01
Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparant difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. We evaluate the practical relevance of two sequence design problems by analyzing their computational complexity. We show that the canonical method of sequence design is intractable and describe approximation algorithms for this problem. We also describe an efficient algorithm that exactly solves the grand canonical method. Our analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem and highlights the need to analyze these problems to evaluate their practical relevance. 10 refs., 8 figs.
On the computational complexity of sequence design problems
Hart, W.E. [Sandia National Labs., Albuquerque, NM (United States). Algorithms and Discrete Mathematics Dept.
1996-12-31
Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparent difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. The authors evaluate the practical relevance of two sequence design problems by analyzing their computation complexity. They show that the canonical method of sequence design is intractable, and describe approximation algorithms for this problem. The authors also describe an efficient algorithm that exactly solves the grand canonical method. The analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem, and highlights the need to analyze these problems to evaluate their practical relevance.
On parameterization of the inverse problem for estimating aquifer...
Office of Scientific and Technical Information (OSTI)
Title: On parameterization of the inverse problem for estimating aquifer properties using tracer data Authors: Kowalsky, M. B. ; Finsterle, S. ; Commer, M. ; Williams, K. H. ; ...
FELIX: advances in modeling forward and inverse icesheet problems...
Office of Scientific and Technical Information (OSTI)
icesheet problems. Authors: Perego, Mauro ; Eldred, Michael S. ; Gunazburger, Max ; Salinger, Andrew G. ; Kalashnikova, Irina ; Ju, L. ; Hoffman, M. ; Leng, W. ; Price, S ;...
Crowdsourcing Initiative Seeks Buildings-Related Problems to...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
The Building Technologies Office is partnering with the successful SunShot Catalyst crowdsourcing initiative to identify and solve problems related to software development, data, ...
European Geothermal Drilling Experience-Problem Areas and Case...
Office of Scientific and Technical Information (OSTI)
Drilling Experience-Problem Areas and Case Studies Baron, G.; Ungemach, P. 15 GEOTHERMAL ENERGY; BOREHOLES; DRILLING; EVALUATION; EXPLORATION; GEOTHERMAL RESOURCES; ITALY;...
Tesla Tackling Problem of Power Storage: Chamberlain - Joint...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
May 1, 2015, Videos Tesla Tackling Problem of Power Storage: Chamberlain Jeff Chamberlain and Bloomberg's David Gura speak on Bloomberg West discussing the potential global impact ...
History, Applications, Numerical Values and Problems with the...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Numerical Values and Problems with the Calculation of EROI (Energy Return on Energy Investment) Professor Charles Hall State University of NY College of Environmental Science and...
Synthetic fossil fuel technologies: health problems and intersociety...
Office of Scientific and Technical Information (OSTI)
Conference: Synthetic fossil fuel technologies: health problems and intersociety cooperation Citation Details In-Document Search Title: Synthetic fossil fuel technologies: health ...
Trending and root cause analysis of TWRS radiological problem reports
Brown, R.L.
1997-07-31
This document provides a uniform method for trending and performing root cause analysis for radiological problem reports at Tank Waste Remediation System (TWRS).
Using Energy-Filtered TEM to Solve Practical Materials Problems...
Office of Scientific and Technical Information (OSTI)
Title: Using Energy-Filtered TEM to Solve Practical Materials Problems With Inspirations from Gareth Thomas. Abstract not provided. Authors: Sugar, Joshua Daniel ; El Gabaly ...
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Di Donato, Daniela; Mugnai, Dimitri
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
Domain wall and isocurvature perturbation problems in axion models
Kawasaki, Masahiro; Yoshino, Kazuyoshi; Yanagida, Tsutomu T. E-mail: tsutomu.tyanagida@ipmu.jp
2013-11-01
Axion models have two serious cosmological problems, domain wall and isocurvature perturbation problems. In order to solve these problems we investigate the Linde's model in which the field value of the Peccei-Quinn (PQ) scalar is large during inflation. In this model the fluctuations of the PQ field grow after inflation through the parametric resonance and stable axionic strings may be produced, which results in the domain wall problem. We study formation of axionic strings using lattice simulations. It is found that in chaotic inflation the axion model is free from both the domain wall and the isocurvature perturbation problems if the initial misalignment angle ?{sub a} is smaller than O(10{sup ?2}). Furthermore, axions can also account for the dark matter for the breaking scale v ? 10{sup 12?16} GeV and the Hubble parameter during inflation H{sub inf}?<10{sup 11?12} GeV in general inflation models.
Shell Element Verification & Regression Problems for DYNA3D
Zywicz, E
2008-02-01
A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.
Russian Doll Search for solving Constraint Optimization problems
Verfaillie, G.; Lemaitre, M.
1996-12-31
If the Constraint Satisfaction framework has been extended to deal with Constraint Optimization problems, it appears that optimization is far more complex than satisfaction. One of the causes of the inefficiency of complete tree search methods, like Depth First Branch and Bound, lies in the poor quality of the lower bound on the global valuation of a partial assignment, even when using Forward Checking techniques. In this paper, we introduce the Russian Doll Search algorithm which replaces one search by n successive searches on nested subproblems (n being the number of problem variables), records the results of each search and uses them later, when solving larger subproblems, in order to improve the lower bound on the global valuation of any partial assignment. On small random problems and on large real scheduling problems, this algorithm yields surprisingly good results, which greatly improve as the problems get more constrained and the bandwidth of the used variable ordering diminishes.
Workshops and problems for benchmarking eddy current codes
Turner, L.R.; Davey, K.; Ida, N.; Rodger, D.; Kameari, A.; Bossavit, A.; Emson, C.R.I.
1988-08-01
A series of six workshops was held in 1986 and 1987 to compare eddy current codes, using six benchmark problems. The problems included transient and steady-state ac magnetic fields, close and far boundary conditions, magnetic and non-magnetic materials. All the problems were based either on experiments or on geometries that can be solved analytically. The workshops and solutions to the problems are described. Results show that many different methods and formulations give satisfactory solutions, and that in many cases reduced dimensionality or coarse discretization can give acceptable results while reducing the computer time required. A second two-year series of TEAM (Testing Electromagnetic Analysis Methods) workshops, using six more problems, is underway. 12 refs., 15 figs., 4 tabs.
Various forms of indexing HDMR for modelling multivariate classification problems
Aksu, Ça?r?; Tunga, M. Alper
2014-12-10
The Indexing HDMR method was recently developed for modelling multivariate interpolation problems. The method uses the Plain HDMR philosophy in partitioning the given multivariate data set into less variate data sets and then constructing an analytical structure through these partitioned data sets to represent the given multidimensional problem. Indexing HDMR makes HDMR be applicable to classification problems having real world data. Mostly, we do not know all possible class values in the domain of the given problem, that is, we have a non-orthogonal data structure. However, Plain HDMR needs an orthogonal data structure in the given problem to be modelled. In this sense, the main idea of this work is to offer various forms of Indexing HDMR to successfully model these real life classification problems. To test these different forms, several well-known multivariate classification problems given in UCI Machine Learning Repository were used and it was observed that the accuracy results lie between 80% and 95% which are very satisfactory.
Nonlinear eigenvalue problems in Density Functional Theory calculations
Fattebert, J
2009-08-28
Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.
Robust Consumption-Investment Problem on Infinite Horizon
Zawisza, Dariusz
2015-12-15
In our paper we consider an infinite horizon consumption-investment problem under a model misspecification in a general stochastic factor model. We formulate the problem as a stochastic game and finally characterize the saddle point and the value function of that game using an ODE of semilinear type, for which we provide a proof of an existence and uniqueness theorem for its solution. Such equation is interested on its own right, since it generalizes many other equations arising in various infinite horizon optimization problems.
A Schwarz alternating procedure for singular perturbation problems
Garbey, M.; Kaper, H.G.
1994-12-31
The authors show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and transition layers. They give sharp estimates for the optimal position of the domain boundaries and present convergence rates of the algorithm for various second-order singular perturbation problems. The splitting of the operator is domain-dependent, and the iterative solution of each subproblem is based on a modified asymptotic expansion of the operator. They show that this asymptotic-induced method leads to a family of efficient massively parallel algorithms and report on implementation results for a turning-point problem and a combustion problem.
Domain decomposition methods for solving an image problem
Tsui, W.K.; Tong, C.S.
1994-12-31
The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.
ALCF's new data science program targets "big data" problems ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ALCF's new data science program targets "big data" problems Author: Laura Wolf April 1, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version The Argonne Leadership ...
Accelerating PDE-Constrained Optimization Problems using Adaptive...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Accelerating PDE-Constrained Optimization Problems using Adaptive Reduced-Order Models January 15, 2016 10:30AM to 11:30AM Presenter Matthew Zahr, Wilkinson Interviewee Location...
Simulation and Analysis of Converging Shock Wave Test Problems
Ramsey, Scott D.; Shashkov, Mikhail J.
2012-06-21
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.
"Upcycling": A Green Solution to the Problem of Plastic - Energy...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Find More Like This Return to Search "Upcycling": A Green Solution to the Problem of ... At Argonne, chemist Vilas Pol has devised an environmentally green method that breaks down ...
The problem of living in a world contaminated with chemicals
Metcalf, R.L.
1990-12-31
The proliferation of xenobiotic chemicals in the global environment poses living problems for each of us aboard {open_quotes}spaceship earth.{close_quotes} Seven case studies are presented that illustrate the magnitude of the problem that can result from waiting to identify toxic hazards until there have been decades of {open_quotes}human guinea pig{close_quotes} exposure. 25 refs., 5 tabs.
Capacitated arc routing problem and its extensions in waste collection
Fadzli, Mohammad; Najwa, Nurul; Luis, Martino
2015-05-15
Capacitated arc routing problem (CARP) is the youngest generation of graph theory that focuses on solving the edge/arc routing for optimality. Since many years, operational research devoted to CARP counterpart, known as vehicle routing problem (VRP), which does not fit to several real cases such like waste collection problem and road maintenance. In this paper, we highlighted several extensions of capacitated arc routing problem (CARP) that represents the real-life problem of vehicle operation in waste collection. By purpose, CARP is designed to find a set of routes for vehicles that satisfies all pre-setting constraints in such that all vehicles must start and end at a depot, service a set of demands on edges (or arcs) exactly once without exceeding the capacity, thus the total fleet cost is minimized. We also addressed the differentiation between CARP and VRP in waste collection. Several issues have been discussed including stochastic demands and time window problems in order to show the complexity and importance of CARP in the related industry. A mathematical model of CARP and its new version is presented by considering several factors such like delivery cost, lateness penalty and delivery time.
Geothermal drilling problems and their impact on cost
Carson, C.C.
1982-01-01
Historical data are presented that demonstrate the significance of unexpected problems. In extreme cases, trouble costs are the largest component of well costs or severe troubles can lead to abandonment of a hole. Drilling experiences from US geothermal areas are used to analyze the frequency and severity of various problems. In addition, average trouble costs are estimated based on this analysis and the relationship between trouble and depth is discussed. The most frequent drilling and completion problem in geothermal wells is lost circulation. This is especially true for resources in underpressured, fractured formations. Serious loss of circulation can occur during drilling - because of this, the producing portions of many wells are drilled with air or aerated drilling fluid and the resulting corrosion/erosion problems are tolerated - but it can also affect the cementing of well casing. Problems in bonding the casing to the formation result from many other causes as well, and are common in geothermal wells. Good bonds are essential because of the possibility of casing collapse due to thermal cycling during the life of the well. Several other problems are identified and their impacts are quantified and discussed.
Bhardwaj, M.; Day, D.; Farhat, C.; Lesoinne, M; Pierson, K.; Rixen, D.
1999-04-01
We report on the application of the one-level FETI method to the solution of a class of substructural problems associated with the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). We focus on numerical and parallel scalability issues, and on preliminary performance results obtained on the ASCI Option Red supercomputer configured with as many as one thousand processors, for problems with as many as 5 million degrees of freedom.
COMPLEXITY & APPROXIMABILITY OF QUANTIFIED & STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS
H. B. HUNT; M. V. MARATHE; R. E. STEARNS
2001-06-01
Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C,S,T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic representability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94] Our techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-Q-SAT(S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93, CF+94, Cr95, KSW97]. Keywords: NP-hardness; Approximation Algorithms; PSPACE-hardness; Quantified and Stochastic Constraint Satisfaction Problems.
The inverse problems of wing panel manufacture processes
Oleinikov, A. I.; Bormotin, K. S.
2013-12-16
It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.
Real time detection and correction of distribution feeder operational problems
Subramanian, A.K.; Huang, J.C.
1995-12-31
The paper presents a new technique that detects and corrects distribution operational problems using closed loop control of substation transformers, capacitors and reactors by an online computer. This allows the distribution system to be operated close to its capacity without sacrificing the quality of power supply. Such operations help defer the additional cost of installing new substations. The technique integrates the Distribution Feeder Analysis (DFA) and the Distribution Substation Control (DSC) functions to achieve this. The DFA function provides the topology and power flow results for the feeders using the substation real time measurements. It does not require feeder section measurements. The realtime feeder results are used in detecting any currently existing feeder operational problems such as feeder section voltages and currents outside their limits. The detected feeder problems are transformed into substation distribution bus objectives and then corrected by the DSC function using controls available at the substation. The DSC function has been performing successfully for several years at Potomac Electric Power Company (PEPCO) in Washington, D.C. It uses a closed loop control scheme that controls the substation transformer taps and shunt capacitor and reactor breakers and optimizes the substation operation. By combining the DFA and DSC functions into a single function and with proper transformation of feeder problems into substation objectives, a new closed loop control scheme for the substation controls is achieved. This scheme corrects the detected feeder problems and optimizes the substation operation. This technique is implemented and tested using the actual substation and feeder models of PEPCO.
Economic penalties of problems and errors in solar energy systems
Raman, K.; Sparkes, H.R.
1983-01-01
Experience with a large number of installed solar energy systems in the HUD Solar Program has shown that a variety of problems and design/installation errors have occurred in many solar systems, sometimes resulting in substantial additional costs for repair and/or replacement. In this paper, the effect of problems and errors on the economics of solar energy systems is examined. A method is outlined for doing this in terms of selected economic indicators. The method is illustrated by a simple example of a residential solar DHW system. An example of an installed, instrumented solar energy system in the HUD Solar Program is then discussed. Detailed results are given for the effects of the problems and errors on the cash flow, cost of delivered heat, discounted payback period, and life-cycle cost of the solar energy system. Conclusions are drawn regarding the most suitable economic indicators for showing the effects of problems and errors in solar energy systems. A method is outlined for deciding on the maximum justifiable expenditure for maintenance on a solar energy system with problems or errors.
Cosmological moduli problem in large volume scenario and thermal inflation
Choi, Kiwoon; Park, Wan-Il; Shin, Chang Sub E-mail: wipark@kias.re.kr
2013-03-01
We show that in a large volume scenario of type IIB string or F-theory compactifications, single thermal inflation provides only a partial solution to the cosmological problem of the light volume modulus. We then clarify the conditions for double thermal inflation, being a simple extension of the usual single thermal inflation scenario, to solve the cosmological moduli problem in the case of relatively light moduli masses. Using a specific example, we demonstrate that double thermal inflation can be realized in large volume scenario in a natural manner, and the problem of the light volume modulus can be solved for the whole relevant mass range. We also find that right amount of baryon asymmetry and dark matter can be obtained via a late-time Affleck-Dine mechanism and the decays of the visible sector NLSP to flatino LSP.
A survey of problems in divertor and edge plasma theory
Boozer, A. ); Braams, B.; Weitzner, H. . Courant Inst. of Mathematical Sciences); Cohen, R. ); Hazeltine, R. . Inst. for Fusion Studies); Hinton, F. ); Houlberg, W. (Oak
1992-12-22
Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.
A survey of problems in divertor and edge plasma theory
Boozer, A.; Braams, B.; Weitzner, H.; Cohen, R.; Hazeltine, R.; Hinton, F.; Houlberg, W.; Oktay, E.; Sadowski, W.; Post, D.; Sigmar, D.; Wootton, A.
1992-12-22
Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician`s point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.
Operating experience review of service water system problems
Lam, P.
1989-01-01
In a recent paper, selected results of a comprehensive review and evaluation of service water system problems conducted by the Office for Analysis and Evaluation of Operational Data (AEOD) of the US Nuclear Regulatory Commission (NRC) were presented. The results of this review and evaluation indicated that service water system problems have significant safety implications. These system problems are attributable to a great variety of causes and have adverse impacts on a large number of safety-related systems and components. To provide additional feedback of operating experience, this paper presents an overview of the dominant mechanisms leading to service water system degradations and failures. The failures and degradations of service water systems observed in the 276 operating events are grouped into six general categories. The six general categories are (1) fouling due to various mechanisms, (2) single-failure and other design deficiencies, (3) flooding, (4) equipment failures, (5) personnel and procedural errors, and (6) seismic deficiencies.
Rekindle the Fire: Building Supercomputers to Solve Dynamic Problems
Studham, Scott S. )
2004-02-16
Seymour Cray had a Lets go to the moon attitude when it came to building high-performance computers. His drive was to create architectures designed to solve the most challenging problems. Modern high-performance computer architects, however, seem to be focusing on building the largest floating-point-generation machines by using truckloads of commodity parts. Don't get me wrong; current clusters can solve a class of problems that are untouchable by any other system in the world, including the supercomputers of yesteryear. Many of the worlds fastest clusters provide new insights into weather forecasting, our understanding of fundamental sciences and provide the ability to model our nuclear stockpiles. Lets call this class of problem a first-principles simulation because the simulations are based on a fundamental physical understanding or model.
COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS
Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson
2001-04-01
The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.
COMPLEXITY&APPROXIMABILITY OF QUANTIFIED&STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS
Hunt, H. B.; Marathe, M. V.; Stearns, R. E.
2001-01-01
Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C ,S, T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic represent ability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94O]u r techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-&-SAT( S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93,CF+94,Cr95,KSW97
Simple methods solve vacuum column problems using plant data
Golden, S.W.; Sloley, A.W. )
1992-09-14
This paper reports that simple methods can be used to evaluate common vacuum column problems using actual field measurements. All that is required is an enthalpy table, a calculator, and an absolute pressure manometer, which can be purchased for about $100. The key to troubleshooting refinery crude or lube vacuum columns is basic plant data. Although many techniques may be used to increase cutpoint, many times the largest yield improvements can be achieved on existing units simply by eliminating such problems, as leaking collector trays or overflowing liquid distributors.
Tabu search techniques for large high-school timetabling problems
Schaerf, A.
1996-12-31
The high-school timetabling problem consists in assigning all the lectures of a high school to the time periods in such a way that no teacher (or class) is involved in more than one lecture at a time and other side constraints are satisfied. The problem is NP-complete and is usually tackled using heuristic methods. This paper describes a solution algorithm (and its implementation) based on Tabu Search. The algorithm interleaves different types of moves and makes use of an adaptive relaxation of the hard constraints. The implementation of the algorithm has been successfully experimented in some large high schools with various kinds of side constraints.
Channeling problem for charged particles produced by confining environment
Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.
2009-05-15
Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.
How to Solve Schroedinger Problems by Approximating the Potential Function
Ledoux, Veerle; Van Daele, Marnix
2010-09-30
We give a survey over the efforts in the direction of solving the Schroedinger equation by using piecewise approximations of the potential function. Two types of approximating potentials have been considered in the literature, that is piecewise constant and piecewise linear functions. For polynomials of higher degree the approximating problem is not so easy to integrate analytically. This obstacle can be circumvented by using a perturbative approach to construct the solution of the approximating problem, leading to the so-called piecewise perturbation methods (PPM). We discuss the construction of a PPM in its most convenient form for applications and show that different PPM versions (CPM,LPM) are in fact equivalent.
National Energy Software Center: benchmark problem book. Revision
none,
1985-12-01
Computational benchmarks are given for the following problems: (1) Finite-difference, diffusion theory calculation of a highly nonseparable reactor, (2) Iterative solutions for multigroup two-dimensional neutron diffusion HTGR problem, (3) Reference solution to the two-group diffusion equation, (4) One-dimensional neutron transport transient solutions, (5) To provide a test of the capabilities of multi-group multidimensional kinetics codes in a heavy water reactor, (6) Test of capabilities of multigroup neutron diffusion in LMFBR, and (7) Two-dimensional PWR models.
Problems of millipound thrust measurement. The "Hansen Suspension"
Carta, David G.
2014-03-31
Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.
Navier-Stokes Solvers and Generalizations for Reacting Flow Problems
Elman, Howard C
2013-01-27
This is an overview of our accomplishments during the final term of this grant (1 September 2008 -- 30 June 2012). These fall mainly into three categories: fast algorithms for linear eigenvalue problems; solution algorithms and modeling methods for partial differential equations with uncertain coefficients; and preconditioning methods and solvers for models of computational fluid dynamics (CFD).
On the RA research reactor fuel management problems
Matausek, M.V.; Marinkovic, N.
1997-12-01
After 25 yr of operation, the Soviet-origin 6.5-MW heavy water RA research reactor was shut down in 1984. Basic facts about RA reactor operation, aging, reconstruction, and spent-fuel disposal have been presented and discussed in earlier papers. The following paragraphs present recent activities and results related to important fuel management problems.
DYNA3D Material Model 71 - Solid Element Test Problem
Zywicz, E
2008-01-24
A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.
Practical control strategy eliminates FCCU compressor surge problems
Campos, M.C.M.M.; Rodriques, P.S.B. )
1993-01-11
This paper reports that the control system originally designed for the fluid catalytic cracking unit (FCCU) compressor at Petroleo Brasileiro SA's (Petrobras) Presidente Bernardes refinery, in Sao Paulo, Brazil, was inadequate. The system required almost permanent flow recirculation to prevent surge. An improved antisurge control strategy was implemented in mid-1990. Since then, the unit has operated without the former surge problems.
A VLSI structure for the deadlock avoidance problem
Bertolazzi, P.; Bongiovanni, G.
1985-11-01
In this paper the authors present two VLSI structures implementing the banker's algorithm for the deadlock avoidance problem, and we derive the area x (time)/sup 2/ lower bound for such an algorithm. The first structure is based on the VLSI mesh of trees. The second structure is a modification of the first one, and it approaches more closely the theoretical lower bound.
EPA Environmental Justice Collaborative Problem-Solving Cooperative Agreement RFP
Broader source: Energy.gov [DOE]
The U.S. Environmental Protection Agency (EPA) issued a request for proposals for the Environmental Justice Collaborative Problem-Solving (EJCPS) Cooperative Agreement to support community-based organization to collaborate and partner with industry, government, academia, and other stakeholders to develop and implement solutions that address local environmental and public health issues.
Waste site characterization and remediation: Problems in developing countries
Kalavapudi, M.; Iyengar, V.
1996-12-31
Increased industrial activities in developing countries have degraded the environment, and the impact on the environment is further magnified because of an ever-increasing population, the prime receptors. Independent of the geographical location, it is possible to adopt effective strategies to solve environmental problems. In the United States, waste characterization and remediation practices are commonly used for quantifying toxic contaminants in air, water, and soil. Previously, such procedures were extraneous, ineffective, and cost-intensive. Reconciliation between the government and stakeholders, reinforced by valid data analysis and environmental exposure assessments, has allowed the {open_quotes}Brownfields{close_quotes} to be a successful approach. Certified reference materials and standard reference materials from the National Institute of Standards (NIST) are indispensable tools for solving environmental problems and help to validate data quality and the demands of legal metrology. Certified reference materials are commonly available, essential tools for developing good quality secondary and in-house reference materials that also enhance analytical quality. This paper cites examples of environmental conditions in developing countries, i.e., industrial pollution problems in India, polluted beaches in Brazil, and deteriorating air quality in countries, such as Korea, China, and Japan. The paper also highlights practical and effective approaches for remediating these problems. 23 refs., 7 figs., 1 tab.
Genetic algorithms and their use in Geophysical Problems
Parker, Paul B.
1999-04-01
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free
Complexity analysis of pipeline mapping problems in distributed heterogeneous networks
Lin, Ying; Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S
2009-04-01
Largescale scientific applications require using various system resources to execute complex computing pipelines in distributed networks to support collaborative research. System resources are typically shared in the Internet or over dedicated connections based on their location, availability, capability, and capacity. Optimizing the network performance of computing pipelines in such distributed environments is critical to the success of these applications. We consider two types of largescale distributed applications: (1) interactive applications where a single dataset is sequentially processed along a pipeline; and (2) streaming applications where a series of datasets continuously flow through a pipeline. The computing pipelines of these applications consist of a number of modules executed in a linear order in network environments with heterogeneous resources under different constraints. Our goal is to find an efficient mapping scheme that allocates the modules of a pipeline to network nodes for minimum endtoend delay or maximum frame rate. We formulate the pipeline mappings in distributed environments as optimization problems and categorize them into six classes with different optimization goals and mapping constraints: (1) Minimum Endtoend Delay with No Node Reuse (MEDNNR), (2) Minimum Endtoend Delay with Contiguous Node Reuse (MEDCNR), (3) Minimum Endtoend Delay with Arbitrary Node Reuse (MEDANR), (4) Maximum Frame Rate with No Node Reuse or Share (MFRNNRS), (5) Maximum Frame Rate with Contiguous Node Reuse and Share (MFRCNRS), and (6) Maximum Frame Rate with Arbitrary Node Reuse and Share (MFRANRS). Here, 'contiguous node reuse' means that multiple contiguous modules along the pipeline may run on the same node and 'arbitrary node reuse' imposes no restriction on node reuse. Note that in interactive applications, a node can be reused but its resource is not shared. We prove that MEDANR is polynomially solvable and the rest are NP-complete. MEDANR, where either
Progress on PRONGHORN Application to NGNP Related Problems
Dana A. Knoll
2009-08-01
We are developing a multiphysics simulation tool for Very High-Temperature gascooled Reactors (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly in parallel. Expensive Jacobian matrix formation is alleviated by the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to improve the convergence. The initial development of PRONGHORN has been focused on the pebble bed corec concept. However, extensions required to simulate prismatic cores are underway. In this progress report we highlight progress on application of PRONGHORN to PBMR400 benchmark problems, extension and application of PRONGHORN to prismatic core reactors, and progress on simulations of 3-D transients.
MODEL 9975 SHIPPING PACKAGE FABRICATION PROBLEMS AND SOLUTIONS
May, C; Allen Smith, A
2008-05-07
The Model 9975 Shipping Package is the latest in a series (9965, 9968, etc.) of radioactive material shipping packages that have been the mainstay for shipping radioactive materials for several years. The double containment vessels are relatively simple designs using pipe and pipe cap in conjunction with the Chalfont closure to provide a leak-tight vessel. The fabrication appears simple in nature, but the history of fabrication tells us there are pitfalls in the different fabrication methods and sequences. This paper will review the problems that have arisen during fabrication and precautions that should be taken to meet specifications and tolerances. The problems and precautions can also be applied to the Models 9977 and 9978 Shipping Packages.
Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)
Sowell, E.F. . Dept. of Computer Science); Buhl, W.F. )
1988-07-15
The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed and an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.
Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Raymond Davis, Jr., Solar Neutrinos, and the Solar Neutrino Problem Resources with Additional Information Raymond Davis, Jr. Photo Courtesy of Brookhaven National Laboratory (BNL) Raymond Davis, Jr., who conducted research in the Chemistry Department at Brookhaven National Laboratory (BNL) from 1948 through 1984, was awarded the 2002 Nobel Prize in Physics "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." Dr. Davis is also a recipient
A Lie algebraic approach to the Kondo problem
Rajeev, S.G.
2010-04-15
The Kondo problem is approached using the unitary Lie algebra of spin-singlet fermion bilinears. In the limit when the number of values of the spin N goes to infinity the theory approaches a classical limit, which still requires a renormalization. We determine the ground state of this renormalized theory. Then we construct a quantum theory around this classical limit, which amounts to recovering the case of finite N.
Exascale Computing Allows Scientists to Approach New Class of Problems |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Princeton Plasma Physics Lab Exascale Computing Allows Scientists to Approach New Class of Problems By Gale Scott March 19, 2012 Tweet Widget Google Plus One Share on Facebook From left are Venkatramani Balaji, Jeroen Tromp, and Bill Tang at the Visualization Laboratory, created by the Princeton Institute for Computational Science and Engineering (PICSciE), in the Lewis Library on main campus. (Photo by Elle Starkman, PPPL Office of Communications) From left are Venkatramani Balaji, Jeroen
Combined approach to the inverse protein folding problem. Final report
Ruben A. Abagyan
2000-06-01
The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).
Adaptive domain decomposition methods for advection-diffusion problems
Carlenzoli, C.; Quarteroni, A.
1995-12-31
Domain decomposition methods can perform poorly on advection-diffusion equations if diffusion is dominated by advection. Indeed, the hyperpolic part of the equations could affect the behavior of iterative schemes among subdomains slowing down dramatically their rate of convergence. Taking into account the direction of the characteristic lines we introduce suitable adaptive algorithms which are stable with respect to the magnitude of the convective field in the equations and very effective on bear boundary value problems.
Tensile strengths of problem shales and clays. Master's thesis
Rechner, F.J.
1990-01-01
The greatest single expense faced by oil companies involved in the exploration for crude oil is that of drilling wells. The most abundant rock drilled is shale. Some of these shales cause wellbore stability problems during the drilling process. These can range from slow rate of penetration and high torque up to stuck pipe and hole abandonment. The mechanical integrity of the shale must be known when the shalers are subjected to drilling fluids to develop an effective drilling plan.
Quality problems in waters used for drinking purposes in Italy
Funari, E.; Bastone, A.; Bottoni, P.; De Donno, D.; Donati, L. )
1991-12-01
With a grant from the Italian Ministry of the Environment, the National Institute of Health (Istituto Superiore di Sanita) promoted and coordinated some activities aimed at determining the extent and the intensity of contamination of waters used for human consumption by some chemical agents, and describing causes and modalities of contamination and human health implications. The chemical agents examined were herbicides, nitrates, trihalomethanes, asbestos, manganese and fluoride. In this paper a first nationwide picture of these problems is reported.
Solving Petascale Public Health and Safety Problems Using Uintah | Argonne
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Leadership Computing Facility Pressure profile of a deflagration to detonation transition in an array of tightly packed PBX9501 cylinders confined by symmetric boundaries on all sides. Pressure profile of a deflagration to detonation transition in an array of tightly packed PBX9501 cylinders confined by symmetric boundaries on all sides. Detonation can be seen in red. Solving Petascale Public Health and Safety Problems Using Uintah PI Name: Martin Berzins PI Email: mb@sci.utah.edu
COLLOQUIUM: History, Applications, Numerical Values and Problems with the
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculation of EROI - Energy Return on (Energy) Investment | Princeton Plasma Physics Lab March 2, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: History, Applications, Numerical Values and Problems with the Calculation of EROI - Energy Return on (Energy) Investment Professor Charles Hall State University of NY College of Environmental Science and Forestry Plants and animals are subjected to fierce selective pressure to do the "right thing" energetically, that is to
General Solution of the Kenamond HE Problem 3
Kaul, Ann
2015-12-15
A general solution for programmed burn calculations of the light times produced by a singlepoint initiation of a single HE region surrounding an inert region has been developed. In contrast to the original solutions proposed in References 1 and 2, the detonator is no longer restricted to a location on a Cartesian axis and can be located at any point inside the HE region. This general solution has been implemented in the ExactPack suite of exact solvers for verification problems.
Geological problems in radioactive waste isolation - A world wide review
Witherspoon, P.A.
1991-06-01
The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.