Powered by Deep Web Technologies
Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

2

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

3

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

4

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

5

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

6

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

7

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

to Building Energy Management Systems (BEMS) to begin pre-a facility using Energy Management Control Systems (EMCS) orAct of 2007 energy management control systems The Energy

Shen, Bo

2013-01-01T23:59:59.000Z

8

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

services provided to the energy markets, Order 745 advancesin the wholesale energy market (both day-ahead and real-the capacity market is. The energy market does not feature

Shen, Bo

2013-01-01T23:59:59.000Z

9

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

is determined by the market energy price offered by themay be paid the spot market energy price. (e.g. PJM SRM, UKor the wholesale market price for energy. By codifying the

Shen, Bo

2013-01-01T23:59:59.000Z

10

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

- instituted the so-called "Equalisation Incentive" which establishes parity in the treatment of 15 capital and operating expenditures by distribution utilities. Thus, any...

11

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

12

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

13

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

14

IP-Addressable Smart Appliances for Demand Response Applications  

Science Conference Proceedings (OSTI)

This technology brief provides a utility-centric assessment of networked appliances that use the internet protocol (IP). The impetus for this assessment is utility interest in demand-side management, and how residential appliances might participate in the associated utility programs. The residential sector has seen a steady expansion of IP-based connectivity to homes, with 55 of residences in the U.S. currently subscribing to broadband services. Networking appliances in the home using IP-based networks o...

2009-02-26T23:59:59.000Z

15

Coordination of Energy Efficiency and Demand Response  

Science Conference Proceedings (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

16

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

17

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

18

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

19

Energy Demand Staff Scientist  

E-Print Network (OSTI)

consumption per ton steel #12;Industrial Energy EfficiencyIndustrial Energy Efficiency Policy Analysis intensity trends and policy background · Focus on Industrial Energy Efficiency · Policy analysis PrimaryEnergy(Mtce) Commercial Buildings Residential Buildings Transportation Industry China 0 500 1,000 1

Knowles, David William

20

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

Refrigeration systems Elevators Irrigation pumps Water heating Figure 9: Common Examples of Commercial and Industrial

Shen, Bo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

New England 13 and the PJM Interconnection 14 . According toGW. The current size of the PJM system is approximately 165markets, most notably in the PJM Interconnection and ISO-New

Shen, Bo

2013-01-01T23:59:59.000Z

22

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

by the U.S. national Smart Grid activity coordinated by theor occupant comfort. While smart-grid developments may

Shen, Bo

2013-01-01T23:59:59.000Z

23

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

NE market through the Real-Time Price Response and Day-Aheadin the prices they pay and include real-time pricing,on a day-ahead or real-time basis. Prices are higher during

Shen, Bo

2013-01-01T23:59:59.000Z

24

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

25 Metering and ControlSmart Meter and Advanced Metering Infrastructure (AMI) andAMP Auto-DR BRA advanced metering infrastructure C&I CAP CEC

Shen, Bo

2013-01-01T23:59:59.000Z

25

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

26

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

27

Africa - Technical Potential of Solar Energy to Address Energy...  

Open Energy Info (EERE)

- Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Logo: Technical Potential of Solar Energy to Address Energy...

28

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

Demand Management Institute (DMI) Demand Management Institute (DMI) Jump to: navigation, search Name Demand Management Institute (DMI) Address 35 Walnut Street Place Wellesley, Massachusetts Zip 02481 Sector Buildings Product Provides analysis for buildings on reducing energy use Website http://www.dmiinc.com/ Coordinates 42.3256508°, -71.2530294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3256508,"lon":-71.2530294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

30

U.S. Energy Secretary Addresses International Atomic Energy Agency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Addresses International Atomic Energy Agency General Conference U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference September 19, 2011 -...

31

EIA - Annual Energy Outlook 2008 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2008 with Projections to 2030 Energy Demand Figure 40. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 41. Primary energy use by fuel, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Average Energy Use per Person Levels Off Through 2030 Because energy use for housing, services, and travel in the United States is closely linked to population levels, energy use per capita is relatively stable (Figure 40). In addition, the economy is becoming less dependent on energy in general. Energy intensity (energy use per 2000 dollar of GDP) declines by an average

32

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

33

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

34

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

DemandDirect DemandDirect Jump to: navigation, search Name DemandDirect Place Woodbury, Connecticut Zip 6798 Sector Efficiency, Renewable Energy, Services Product DemandDirect provides demand response, energy efficiency, load management, and distributed generation services to end-use electricity customers in order to reduce electricity consumption, improve grid reliability, and promote renewable energy. Coordinates 44.440496°, -72.414991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.440496,"lon":-72.414991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

36

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

37

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

California Energy Demand Scenario Projections to 2050 RyanResearch Program California Energy Commission November 7,Chris Kavalec. California Energy Commission. CEC (2003a)

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

38

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

39

Property:Address | Open Energy Information  

Open Energy Info (EERE)

Address Address Jump to: navigation, search This is a property of type String. Pages using the property "Address" Showing 25 pages using this property. (previous 25) (next 25) 1 1366 Technologies + 45 Hartwell Avenue + 1st Light Energy, Inc. + 3224 McHennry Ave Suite F + 2 21-Century Silicon, Inc. + 1681 Firman Drive, Suite 103 + 3 3Degrees + 2 Embarcadero Center Suite 2950 + 3M + 3M Center + 3TIER + 2001 Sixth Avenue + 4 4th Day Energy + 38886 River Belle + 5 5 boro biofuel + 100 maiden lane + 8 8minutenergy Renewables, LLC + 111 Woodmere Road, Suite 190 + @ @Ventures (California) + 800 Menlo Avenue, Suite 120 + @Ventures (Massachusetts) + 187 Ballardvale Street, Suite A260 + A A.J. Rose Manufacturing Company + 38000 Chester Road + A1 Sun, Inc. + 1435 4th St. +

40

EnergySolve Demand Response | Open Energy Information  

Open Energy Info (EERE)

EnergySolve Demand Response EnergySolve Demand Response Jump to: navigation, search Name EnergySolve Demand Response Place Somerset, New Jersey Product Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee avoidance, and flexible bill payment solutions. Coordinates 45.12402°, -92.675379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.12402,"lon":-92.675379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

42

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and Demand Response Duke Energy is using the name Save-a-Energy Efficiency Division. Duke Energy describes all of itsPresident, and C.E.O. Duke Energy Kateri Callahan President

Goldman, Charles

2010-01-01T23:59:59.000Z

43

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

44

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

45

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

46

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

47

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

48

Demand Response Energy Consulting LLC | Open Energy Information  

Open Energy Info (EERE)

Response Energy Consulting LLC Response Energy Consulting LLC Jump to: navigation, search Name Demand Response & Energy Consulting LLC Place Delanson, New York Zip NY 12053 Sector Efficiency Product Delanson-based demand response and energy efficiency consultants. Coordinates 42.748995°, -74.185794° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.748995,"lon":-74.185794,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

50

Residential sector: the demand for energy services  

Science Conference Proceedings (OSTI)

The purpose of this report is to project the demand for residential services, and, thereby, the demand for energy into the future. The service demands which best represent a complete breakdown of residential energy consumption is identified and estimates of the amount of energy, by fuel type, used to satisfy each service demand for an initial base year (1978) are detailed. These estimates are reported for both gross (or input) energy use and net or useful energy use, in the residential sector. The various factors which affect the consumption level for each type of energy and each identified service demand are discussed. These factors include number of households, appliance penetration, choice of fuel type, technical conversion efficiency of energy using devices, and relative energy efficiency of the building shell (extent of insulation, resistance to air infiltration, etc.). These factors are discussed relative to both the present and expected future values, for the purpose of projections. The importance of the housing stock to service demand estimation and projection and trends in housing in Illinois are discussed. How the housing stock is projected based on population and household projections is explained. The housing projections to the year 2000 are detailed. The projections of energy consumption by service demand and fuel type are contrasted with the various energy demand projections in Illinois Energy Consumption Trends: 1960 to 2000 and explains how and why the two approaches differ. (MCW)

Not Available

1981-01-01T23:59:59.000Z

51

Department of Energy Releases Strategic Plan to Address Energy Challenges |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Releases Strategic Plan to Address Energy Department of Energy Releases Strategic Plan to Address Energy Challenges Department of Energy Releases Strategic Plan to Address Energy Challenges October 2, 2006 - 9:01am Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today released the Department's five-year strategic plan that focuses on the Department's role in powering and securing America's future. The plan addresses overall Department goals for developing and deploying new clean energy technologies, reducing our dependence on foreign energy sources, protecting our nuclear weapons stockpile, and ensuring that America remains competitive in the global marketplace. The Department's plan builds on President Bush's Advanced Energy and American Competitiveness Initiatives, which are increasing America's energy security, spurring scientific

52

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

dependence in natural gas usage. January typically sees theindustrial fuels usage. Natural gas demand has been risinggas demands regionally, to account for variability in energy usage

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

53

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

Total Annual Energy Usage Peak Electric Demand Power UsageSetpoint (C) Peak Electric Demand Power Usage Effective-Total Annual Energy Usage Peak Electric Demand Scenario

Shehabi, Arman

2010-01-01T23:59:59.000Z

54

Abstract This paper addresses the following key questions in the discussion on the integration of renewable energy  

E-Print Network (OSTI)

, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid, NaS battery, Li-Ion battery, pumped-hydro energy storage, demand response, hybrid energy storage turbines (CT), demand response (DR), and pumped hydro energy storage (PH). This paper addresses several key

55

Japan's Residential Energy Demand Outlook to 2030  

E-Print Network (OSTI)

for Energy Efficiency and Renewable Energy, Planning, Analysis, and Evaluation section in the U.S. Department section in the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. #12;ppaappeerr ttoo bbeeLBNL-292E Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards

56

China End-Use Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

57

Renewable Energy, Demand Response, Energy Efficiency, and Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy, Demand Response, Energy Efficiency, and Advanced Energy Storage Infrastructure in UC San Diego's Microgrid Speaker(s): Byron Washom Date: August 14, 2008 -...

58

The Integration of Energy Efficiency, Renewable Energy, Demand...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners Title The Integration of Energy...

59

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast. Miguel Garcia

60

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

62

A residential energy demand system for Spain  

E-Print Network (OSTI)

Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

Labandeira Villot, Xavier

2005-01-01T23:59:59.000Z

63

Keynote Address by David Sandalow, Assistant Secretary of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keynote Address by David Sandalow, Assistant Secretary of Energy for Policy and International Affiars, at the Technology and Rare Earth Metals Conference 2010 Keynote Address by...

64

BRYAN LOVELL Energy supply, demand and impact  

E-Print Network (OSTI)

BRYAN LOVELL Energy supply, demand and impact Now it is Britain's turn to think harder, says Brian both are true. Most predict that fossil fuels must remain a significant part of our energy supply, Britain has had a comfortable and profitable respite from anxieties about security of energy supply. Now

Cambridge, University of

65

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

66

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

step is to calculate energy service demand in each category,mainly determine the energy service demand while pricesthe energy source. In both energy service demand and energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

67

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

68

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

Information Center

2010-05-11T23:59:59.000Z

69

Letters: Energy demand prediction using GMDH networks  

Science Conference Proceedings (OSTI)

The electric power industry is in transition as it moves towards a competitive and deregulated environment. In this emerging market, traditional electric utilities as well as energy traders, power pools and independent system operators (ISOs) need the ... Keywords: Artificial neural networks, Energy demand, Forecasting, Group method of data handling (GMDH) networks, Self-organizing networks

Dipti Srinivasan

2008-12-01T23:59:59.000Z

70

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

off- site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%

Stadler, Michael

2011-01-01T23:59:59.000Z

71

EIA - Annual Energy Outlook 2009 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

demand for renewable fuels increasing the fastestincluding E85 and biodiesel fuels for light-duty vehicles, biomass for co-firing at coal-fired electric power plants, and...

72

Addressing the Grand Challenges in Energy Storage  

SciTech Connect

The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

Liu, Jun

2013-02-25T23:59:59.000Z

73

Managing Energy Demand With Standards and Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Energy Demand With Standards and Information Managing Energy Demand With Standards and Information Speaker(s): Sebastien Houde Date: September 13, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Christopher Payne The goal of this talk is to discuss two interrelated research projects that aim to assess the welfare effects of energy policies that rely on standards and information. The first project focuses on the Energy Star certification program. Using unique micro-data on the US refrigerator market, I first show that consumers respond to certification in different ways. Some consumers appear to rely heavily on Energy Star and pay little attention to electricity costs, others are the reverse, and still others appear to be insensitive to both electricity costs and Energy Star. I then develop a

74

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

75

Opportunities for Energy Efficiency and Demand Response in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement...

76

Response to several FOIA requests - Renewable Energy. Demand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg251500.pdf....

77

Energy Demands and Efficiency Strategies in Data Center Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demands and Efficiency Strategies in Data Center Buildings Title Energy Demands and Efficiency Strategies in Data Center Buildings Publication Type Thesis Year of...

78

South Korea-ANL Distributed Energy Resources and Demand Side...  

Open Energy Info (EERE)

Korea-ANL Distributed Energy Resources and Demand Side Management Jump to: navigation, search Name Distributed Energy Resources and Demand Side Management in South Korea Agency...

79

Modeling the residential demand for energy  

Science Conference Proceedings (OSTI)

Demand for energy is derived from the demand for services that appliances and energy together provide. This raises a number of serious econometric issues when estimating energy-demand functions: delineation of short-run and long-run household responses, specification of the price variable and in particular, the assumption that the model is recursive, or in other words, that the appliance choice equation and the energy consumption equation are uncorrelated. The dissertation utilizes a structural model of energy use whose theoretical underpinnings derive from the conditional logit model and an extension of that model to the joint-discrete/continuous case by Dubin and McFadden (1980). It uses the 1978 to 1979 National Interim Energy Comsumption Survey. Three appliance portfolio choices are analyzed; choice of water and space heating and central air-conditioning; choice of room air conditioners; and choice of clothes dryers, either as multinomial logit or binary probit choices. Results varied widely across the appliance choice considered; use of Hausman's test led to acceptance of the null hypothesis of orthogonality in some cases but not in others. Demand for electricity and natural gas tended to be price inelastic; however, estimated own-price effects differed considerably when disaggregated by appliance categories and across methods of estimation.

Kirby, S.N.

1983-01-01T23:59:59.000Z

80

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Address (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Project Name Address Country Spain Coordinates 40.388397°, -4.526367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.388397,"lon":-4.526367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Addressing the effectiveness of industrial energy efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

incentives certainly played an important role in helping China meet its 11th FYP energy intensity goal, but key questions remain unanswered as to whether the incentive policies...

83

Impact of improved building thermal efficiency on residential energy demand  

SciTech Connect

The impact of improved building shell thermal efficiency on residential energy demand is explored in a theoretical framework. The important economic literature on estimating the price elasticity of residential energy demand is reviewed. The specification of the residential energy demand model is presented. The data used are described. The empirical estimation of the residential energy demand model is described. (MHR)

Adams, R.C.; Rockwood, A.D.

1983-04-01T23:59:59.000Z

84

Comparison of Demand Response Performance with an EnergyPlus...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building Title Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy...

85

Building Energy Software Tools Directory: Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand Modeling Energy Demand Modeling The software is intended to be used for Energy Demand Modeling. This can be utilized from regional to national level. A Graphical User Interface of the software takes the input from the user in a quite logical and sequential manner. These input leads to output in two distinct form, first, it develops a Reference Energy System, which depicts the flow of energy from the source to sink with all the losses incorporated and second, it gives a MATLAB script file for advance post processing like graphs, visualization and optimizations to develop and evaluate the right energy mix policy frame work for a intended region. Keywords Reference Energy System, Software, GUI, Planning, Energy Demand Model EDM, Energy Policy Planning Validation/Testing

86

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

87

Secretary Moniz Addresses Conference on the Caribbean's Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2013 - 2:42pm Addthis Secretary Moniz Addresses Conference on the Caribbeans Energy Future Secretary Moniz joined Inter-American Development Bank President Luis...

88

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Chapter 3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs...

89

Secretary Moniz Addresses Conference on the Caribbean's Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Addresses Conference on the Caribbean's Energy Secretary Moniz Addresses Conference on the Caribbean's Energy Future Secretary Moniz Addresses Conference on the Caribbean's Energy Future December 6, 2013 - 2:42pm Addthis Secretary Moniz Addresses Conference on the Caribbean’s Energy Future Secretary Moniz joined Inter-American Development Bank President Luis Alberto Moreno in welcoming a group of Caribbean ministers who convened to discuss the region's energy future, climate change, and the roles of energy efficiency, renewable energy and natural gas. Addthis Related Articles Secretary Chu's Remarks at the 2012 IAEA General Conference -- As Prepared for Delivery Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy Projects Deputy Secretary Daniel Poneman's Remarks to the Washington Institute for

90

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

91

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

044E 044E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Coordination of Energy Efficiency and Demand Response Charles Goldman, Michael Reid, Roger Levy and Alison Silverstein Environmental Energy Technologies Division January 2010 The work described in this report was funded by the Department of Energy Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes

92

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network (OSTI)

in this report. #12;i ABSTRACT These electricity demand forms and instructions ask load-serving entities and Instructions for Electricity Demand Forecasts. California Energy Commission, Electricity Supply Analysis.................................................................................................................................7 Form 1 Historic and Forecast Electricity Demand

Abdel-Aal, Radwan E.

93

Driving Demand for Home Energy Improvements  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Demand for Home Energy Improvements Driving Demand for Home Energy Improvements Title Driving Demand for Home Energy Improvements Publication Type Report Year of Publication 2010 Authors Fuller, Merrian C., Cathy Kunkel, Mark Zimring, Ian M. Hoffman, Katie L. Soroye, and Charles A. Goldman Tertiary Authors Borgeson, Merrian Pagination 136 Date Published 09/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency-they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars1 flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements2, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula-and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs-there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers-especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

94

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

DX Cooling Total Annual Energy Usage Peak Electric DemandDX Cooling Total Annual Energy Usage Scenario Supply/ ReturnDX Cooling Total Annual Energy Usage Peak Electric Demand

Shehabi, Arman

2010-01-01T23:59:59.000Z

95

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Energy Outlook -A Projection up to 2030 under EnvironmentalEnergy Demand Outlook to 2030 Considering Energy EfficiencyEnergy Demand Outlook to 2030 Considering Energy Efficiency

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

96

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Japan Long-Term Energy Outlook -A Projection up to 2030Residential Energy Demand Outlook to 2030 Considering EnergyResidential Energy Demand Outlook to 2030 Considering Energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

97

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

residential electricity consumption, the flattening of the demand curves (except Maximum demand) reflects decreasing population growth ratesresidential electricity demand are described in Table 11. For simplicity, end use-specific UEC and saturation rates

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

98

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

percent of 2008 summer peak demand (FERC, 2008). Moreover,138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).non-coincident summer peak demand by 157 GW by 2030, or 14

Goldman, Charles

2010-01-01T23:59:59.000Z

99

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

100

Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Assistant Secretary Patricia Hoffman Addresses Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference November 30, 2011 - 1:50pm Addthis WASHINGTON, D.C. - Department of Energy Assistant Secretary for Electricity Delivery and Energy Reliability Patricia Hoffman today addressed the 2011 Federal Energy Regulatory Commission technical conference in Washington, D.C. In remarks prepared for delivery, Assistant Secretary Hoffman discussed recent evaluations of proposed Environmental Protection Agency (EPA) rules and the impact those rules could be expected to have on our nation's electrical grid. Hoffman noted an emerging consensus that the new rules are not expected to create

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

102

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

103

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

104

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

29 5.6. Peak and hourly demand43 6.6. Peak and seasonal demandthe average percent of peak demand) significantly impact the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

105

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities  

E-Print Network (OSTI)

and Demand Response History Energy Management Activities o #and Demand Response History Energy Management Activities

Olsen, Daniel

2013-01-01T23:59:59.000Z

106

Energy Secretary Steven Chu to Address Montana Economic Development Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Address Montana Economic Development Address Montana Economic Development Summit Energy Secretary Steven Chu to Address Montana Economic Development Summit September 13, 2010 - 12:00am Addthis Washington D.C. -Tuesday, September 14, 2010, U.S. Energy Secretary Steven Chu will speak at the 2010 Montana Economic Development Summit. This year's summit will discuss the mechanics of a healthy recovery and how to get workers back into good-paying jobs. At the invitation of Senator Max Baucus, Secretary Chu will discuss how Montana can seize the clean energy opportunity and highlight the investments the administration has made in the state's clean energy sector. The summit will be webcast live. What: U.S. Secretary of Energy Steven Chu to give keynote address at Montana Economic Development Summit

107

Secretary Chu Addresses the International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Addresses the International Atomic Energy Agency Secretary Chu Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference. I extend my thanks and appreciation to Director General Mr. Yukiya Amano for his exemplary leadership in his first year. I especially welcome the Director General's initiative to help fight cancer in developing countries. I am honored to represent the United States today, and I want to share a

108

Secretary Chu Addresses the International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addresses the International Atomic Energy Agency Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference. I extend my thanks and appreciation to Director General Mr. Yukiya Amano for his exemplary leadership in his first year. I especially welcome the Director General's initiative to help fight cancer in developing countries. I am honored to represent the United States today, and I want to share a message from President Barack Obama:

109

Residential Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Residential Demand Module of the National Energy Modeling System: Model Documentation 2013 November 2013 Independent Statistics & Analysis ...

110

Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assistant Secretary Patricia Hoffman Addresses Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference November 30, 2011 - 1:50pm Addthis WASHINGTON, D.C. - Department of Energy Assistant Secretary for Electricity Delivery and Energy Reliability Patricia Hoffman today addressed the 2011 Federal Energy Regulatory Commission technical conference in Washington, D.C. In remarks prepared for delivery, Assistant Secretary Hoffman discussed recent evaluations of proposed Environmental Protection Agency (EPA) rules and the impact those rules could be expected to have on our nation's electrical grid. Hoffman noted an emerging consensus that the new rules are not expected to create

111

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

112

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

113

Addressing the Sputniks of our Generation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addressing the Sputniks of our Generation Addressing the Sputniks of our Generation Addressing the Sputniks of our Generation September 30, 2010 - 5:55pm Addthis Dr. Arun Majumdar Dr. Arun Majumdar Former Director, Advanced Research Projects Agency - Energy Earlier this week, I traveled to Boston to take part in Boston University's Presidential Lecture on Clean Energy and Environmental Sustainability. The purpose of my discussion was to address technology innovations with fierce urgency. To understand what I mean, we must take a quick look back to 1958. In response to the Soviet Union's launch of its first satellite - Sputnik 1, the Department of Defense created DARPA to regain the country's technological lead. Today, we are faced with three similar "Sputnik-like" challenges in the energy sector:

114

NETL's Supercomputer Addresses Energy Issues on Two Fronts | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NETL's Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts September 26, 2013 - 10:42am Addthis The visualization center for the SBEUC (Simulation Based Engineering User Center). Located at the Department’s National Energy Technology Laboratory in Morgantown, W. Va., the SBEUC will be powered by a high performance computer that will allow researchers to simulate phenomena that are difficult or impossible to probe experimentally. The results from simulations will become accessible through user centers that provide advanced visualization capabilities and foster collaboration among researchers. The SBEUC will be used for developing and deploying simulation tools required for overcoming energy technology barriers quickly and reliably.

115

Coordination of Energy Efficiency and Demand Response: A Resource...  

Open Energy Info (EERE)

Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

116

Chapter 3 Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

these resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys...

117

Examining Synergies between Energy Management and Demand Response...  

NLE Websites -- All DOE Office Websites (Extended Search)

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities Title Examining Synergies between Energy Management and...

118

Poster: Thermal Energy Storage for Electricity Peak-demand Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Poster: Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike Title Poster: Thermal Energy Storage for Electricity...

119

Energy Efficiency/Demand Response/Smart Grid/Distribution ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Energy Efficiency/Demand Response/Smart Grid/Distribution ...

120

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solar in Demand | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's...

122

Demand Response - Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

over the last 11 years when interest in demand response increased. Demand response is an electricity tariff or program established to motivate changes in electric use by end-use...

123

Propane Demand by Sector - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In order to understand markets you also have to look at supply and demand. First, demand or who uses propane. For the most part, the major components of propane ...

124

Helping Local Officials Address Fuel Shortages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages November 3, 2012 - 6:30pm Addthis The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Local utilities have restored power to over 6 million customers, but we still have 2.5 million to go. More than 70,000 linemen, technicians and other workers from around the country are working around the clock to turn power back on.

125

Helping Local Officials Address Fuel Shortages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages November 3, 2012 - 6:30pm Addthis The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Local utilities have restored power to over 6 million customers, but we still have 2.5 million to go. More than 70,000 linemen, technicians and other workers from around the country are working around the clock to turn power back on.

126

Reducing Energy Demand in Buildings Through State Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

127

Reducing Energy Demand in Buildings Through State Energy Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

128

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project description * Subdivision energy efficiency features * Home energy monitoring * Demand side management * Feeder loading * Battery Energy Storage System * Future Work Team Members Project Objective and Methodology * The main objective is to reduce peak power demand of a housing subdivision by 65% (compared to housing development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic Diagram Project Physical Location: Las Vegas, NV Red Rock Hotel/Casino

129

Building Energy Software Tools Directory: Demand Response Quick Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Demand Response Quick Assessment Tool Demand response quick assessment tool image The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. This assessment tool will predict the energy and demand savings, the economic savings, and the thermal comfort impact for various demand responsive strategies. Users of the tool will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tool will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points

130

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

for the most natural gas usage (33% and 51% of total demanddependence in natural gas usage, and consequently, Januarygas demand exhibits a strong winter peak in residential usage

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

131

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

In Maximum demand, year 2050 electricity consumption reachesefficiency, year 2050 electricity consumption is 357 TWh,capita electricity consumption increases from 7,421 kWh/year

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

132

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

both types of programs. Xcel Energy markets both energyEnergy Efficiency Marketing Xcel Energy Paul Suskie Chairman

Goldman, Charles

2010-01-01T23:59:59.000Z

133

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

134

Wind versus Biofuels for Addressing Climate, Health, and Energy  

DOE Green Energy (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Jacobson, Mark Z.

2007-01-29T23:59:59.000Z

135

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

USA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Structure of SBEAM Floor-space forecast to 2050 Gross demandUSA, and published in the Conference Proceedings Relative Importance Total off- site energy demand (

Stadler, Michael

2011-01-01T23:59:59.000Z

136

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Total Energy Source Demand Coal, Oil, Gas, Heat, Electricity Demography Japans population, an important factor in predicting residential energy demand as well

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

137

Demand Response and Smart Metering Policy Actions Since the Energy...  

Open Energy Info (EERE)

Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

138

Residential Energy Demand Reduction Analysis and Monitoring Platform...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project...

139

Network-Driven Demand Side Management Website | Open Energy Informatio...  

Open Energy Info (EERE)

Side Management Website Jump to: navigation, search Name Network-Driven Demand Side Management Website Abstract This task of the International Energy Agency is a broad,...

140

1995 Demand-Side Managment - Energy Information Administration  

U.S. Energy Information Administration (EIA)

and more detailed data on energy savings, peak load reductions and costs attributable to DSM. Target Audience ... Profile: U.S. Electric Utility Demand-Side

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Commercial Demand Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

Commercial Demand Module of the National Energy Modeling System: Model Documentation 2012 November 2012 . Independent Statistics & Analysis . www.eia.gov

142

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Renewable energy spillage, operating costs and capacityfocused on renewable energy utilization, cost of operationssystem operating costs, renewable energy utilization,

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

143

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

144

Solar in Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

145

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

Regulatory Commission [FERC] (2008). Assessment of DemandRegulatory Commission [FERC] (2009). A National AssessmentEIS EMCS EMS EPA ESCO ESPC FERC GE HVAC ISO ISO-NE kW kWh MW

Goldman, Charles

2010-01-01T23:59:59.000Z

146

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

function of real-time electricity prices (left) and windinflexible) demand and real-time prices. The case study inas a special case. The real-time price process is modeled as

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

147

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

energy scenarios to explore alternative energy pathways indo not include the alternative energy pathways (such asmodeling to investigate alternative energy supply strategies

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

148

Assisting Mexico in Developing Energy Supply and Demand Projections | Open  

Open Energy Info (EERE)

Assisting Mexico in Developing Energy Supply and Demand Projections Assisting Mexico in Developing Energy Supply and Demand Projections Jump to: navigation, search Name Assisting Mexico in Developing Energy Supply and Demand Projections Agency/Company /Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Software/modeling tools Website http://www.dis.anl.gov/news/Me Country Mexico UN Region Latin America and the Caribbean References Assisting Mexico in Developing Energy Supply and Demand Projections[1] "CEEESA and the team of experts from Mexico analyzed the country's entire energy supply and demand system using CEEESA's latest version of the popular ENPEP-BALANCE software. The team developed a system representation, a so-called energy network, using ENPEP's powerful graphical user

149

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Figure 16 Annual peak electricity demand by sector. Tableincludes an hourly electricity demand (i.e. power) profileof aggregating sectoral electricity demands into a statewide

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

150

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Table 22. Agricultural natural gas demand by planning area.23. Other sector natural gas demand by planning area.Projections Monthly natural gas demands are depicted in

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

151

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

152

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

153

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

154

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

155

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

156

Assessment of Residential Energy Management Systems for Demand Response Applications  

Science Conference Proceedings (OSTI)

This Technical Update provides a description of what a residential energy management system comprises, with a focus on demand response applications. It includes findings from a survey of residential energy management system technology vendors; system pricing and availability; an overview of technology components and features; customer load monitoring and control capabilities; utility demand response control functions; communications protocols and technologies supported; and options for demand response si...

2009-12-22T23:59:59.000Z

157

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

same or better levels of energy services. This definitionSenior Vice President, Energy Services and Technology NewNational Association of Energy Service Companies Chuck Gray

Goldman, Charles

2010-01-01T23:59:59.000Z

158

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

to managing their energy usage. Greater customer willingnessto managing their energy usage. And greater customera net reduction in energy usage. 5 With sufficient advance

Goldman, Charles

2010-01-01T23:59:59.000Z

159

Regulation Services with Demand Response - Energy Innovation ...  

Biomass and Biofuels; Building Energy Efficiency; Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; ... (i.e. target ...

160

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

achieving all cost-effective energy efficiency by 2025. Thisinvestment in cost-effective energy efficiency. Coordinationto achieve all cost-effective energy efficiency by 2025. 1

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

control system energy management system U.S. Environmentalbuilding energy management systems (EMS) can deliversystem; EMS = energy management system; ISO = independent

Goldman, Charles

2010-01-01T23:59:59.000Z

162

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

163

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

Programs Integrated Energy Audit Provide engineeringtechnicians performed energy audits and provided advice to8 PG&Es Integrated Energy Audit, a program for businesses

Goldman, Charles

2010-01-01T23:59:59.000Z

164

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

what if wholesale market energy prices remain low or if CPPwith high prices in the real-time energy market. Nationalmarket prices and reliability circumstances, even though energy

Goldman, Charles

2010-01-01T23:59:59.000Z

165

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

forecasting for wind energy: Temperature dependence andlarge amounts of wind energy with a small electric system.Large scale integration of wind energy in the european power

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

166

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

1.2 Limitations to Large-Scale Renewable EnergyImpacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

167

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the residential sector forecast. Mohsen Abrishami prepared the commercial sector forecast. Lynn

168

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

Director, Energy and Environmental Policy American ForestEnergy Efficiency Partnerships Roger Cooper Executive Vice President, Policy and Planning American

Goldman, Charles

2010-01-01T23:59:59.000Z

169

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

State Energy Research & Development Authority offers incentivesState Energy Research and Development Authority (NYSERDA) Existing Facilities Program offers incentives

Goldman, Charles

2010-01-01T23:59:59.000Z

170

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Energy. Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

171

A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats  

E-Print Network (OSTI)

to everyone at the Demand Response Research Center, theEnergy Efficiency and Demand Response with CommunicatingEnergy Efficiency and Demand Response with Communicating

Herter, Karen

2010-01-01T23:59:59.000Z

172

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

E-Print Network (OSTI)

Energy EfficiencyandDemandResponseintheCalifornia1 4.0 EnergyEfficiencyandDemandResponse5 4.2. DemandResponse

Olsen, Daniel

2012-01-01T23:59:59.000Z

173

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

174

Demand Response and Smart Metering Policy Actions Since the Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

175

Strategies for reducing energy demand in the materials sector  

E-Print Network (OSTI)

This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

Sahni, Sahil

2013-01-01T23:59:59.000Z

176

Response to several FOIA requests - Renewable Energy. Demand for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to several FOIA requests - Renewable Energy. Demand for Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be

177

Indonesia National Action Plan Addressing Climate Change | Open Energy  

Open Energy Info (EERE)

Indonesia National Action Plan Addressing Climate Change Indonesia National Action Plan Addressing Climate Change Jump to: navigation, search Tool Summary Name: Indonesia National Action Plan Addressing Climate Change Agency/Company /Organization: Indonesia State Ministry of Environment Sector: Energy, Land Topics: Background analysis, Low emission development planning Resource Type: Case studies/examples, Publications Website: climatechange.menlh.go.id/index.php?option=com_docman&task=down&bid=17 Country: Indonesia South-Eastern Asia Coordinates: -0.789275°, 113.921327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-0.789275,"lon":113.921327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

new technology and systems integration tools. Energy controland systems that support integration and coordination of energyand systems integration represent key building blocks for enabling greater coordination of energy

Goldman, Charles

2010-01-01T23:59:59.000Z

179

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy challenges the world faces, including cultivating sufficient investment, the development and deployment of new energy technologies, and addressing greenhouse gas emissions from producing and using energy. Our cooperation spans power generation, efficient buildings, sustainable transportation, emissions-free nuclear power, and clean fossil fuels. The U.S. and China are the world's largest energy consumers and are

180

Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S. and China Actions Matter for Global Energy Demand, S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy challenges the world faces, including cultivating sufficient investment, the development and deployment of new energy technologies, and addressing greenhouse gas emissions from producing and using energy. Our cooperation spans power generation, efficient buildings, sustainable transportation, emissions-free nuclear power, and clean fossil fuels. The U.S. and China are the world's largest energy consumers and are

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

182

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

183

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)  

SciTech Connect

This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

2008-05-01T23:59:59.000Z

184

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)  

DOE Green Energy (OSTI)

This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

Not Available

2008-05-01T23:59:59.000Z

185

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Optimal Control of Distributed Energy Resources and DemandRenewable Energy, former Distributed Energy Program of theOptimal Control of Distributed Energy Resources and Demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

186

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

by Sector Residential Peak Demand (MW) Commercial IndustrialTable 16. Non-coincident peak demand by sector. growth Avg.IEPR Projected non-coincident peak demand (MW) 3.1.2. Hourly

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

187

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022  

E-Print Network (OSTI)

PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA or adequacy of the information in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast forecast. Bryan Alcorn and Mehrzad Soltani Nia prepared the industrial forecast. Miguel Garcia- Cerrutti

188

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

189

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

190

Energy Demand Modelling Introduction to the PhD project  

E-Print Network (OSTI)

Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

191

Estimating disaggregated price elasticities in industrial energy demand  

Science Conference Proceedings (OSTI)

Econometric energy models are used to evaluate past policy experiences, assess the impact of future policies and forecast energy demand. This paper estimates an industrial energy demand model for the province of Ontario using a linear-logit specification for fuel type equations which are embedded in an aggregate energy demand equation. Short-term, long-term, own- and cross-price elasticities are estimated for electricity, natural gas, oil and coal. Own- and cross-price elasticities are disaggregated to show that overall price elasticities and the energy-constant price elasticities when aggregate energy use is held unchanged. These disaggregations suggest that a substantial part of energy conservation comes from the higher aggregate price of energy and not from interfuel substitution. 13 refs., 2 tabs.

Elkhafif, M.A.T. (Ontario Ministry of Energy, Toronto (Canada))

1992-01-01T23:59:59.000Z

192

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

L ABORATORY Japans Residential Energy Demand Outlook tol i f o r n i a Japans Residential Energy Demand Outlook toParticularly in Japans residential sector, where energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

193

Estimating Demand Response Market Potential | Open Energy Information  

Open Energy Info (EERE)

Estimating Demand Response Market Potential Estimating Demand Response Market Potential Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Demand Response Market Potential Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.ieadsm.org/Files/Tasks/Task%20XIII%20-%20Demand%20Response%20Resou Equivalent URI: cleanenergysolutions.org/content/estimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Resource Integration Planning This resource presents demand response (DR) potential results from top-performing programs in the United States and Canada, as well as a DR

194

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

195

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

196

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

197

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

198

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

199

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

200

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industrial Demand Module 1999, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

1999-01-01T23:59:59.000Z

202

Industrial Demand Module 2005, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2005-05-01T23:59:59.000Z

203

Industrial Demand Module 2006, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2006-07-01T23:59:59.000Z

204

Industrial Demand Module 2009, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2009-05-20T23:59:59.000Z

205

Industrial Demand Module 2003, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2003-12-01T23:59:59.000Z

206

Industrial Demand Module 2007, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2007-03-21T23:59:59.000Z

207

Industrial Demand Module 2002, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2001-12-01T23:59:59.000Z

208

Industrial Demand Module 2001, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2000-12-01T23:59:59.000Z

209

Industrial Demand Module 2008, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2008-06-01T23:59:59.000Z

210

Industrial Demand Module 2000, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2000-01-01T23:59:59.000Z

211

Industrial Demand Module 2004, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2004-02-01T23:59:59.000Z

212

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

213

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

event by paying higher real-time prices and still receivingvarying prices (e.g. , real-time prices, CPP) facilitatecorrelated with high prices in the real-time energy market.

Goldman, Charles

2010-01-01T23:59:59.000Z

214

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

Lekov, Alex

2009-01-01T23:59:59.000Z

215

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Contribution to Peak Demand?..5 3.potential to reduce peak demand in commercial buildingsbuildings contribution to peak demand and the use of energy

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

216

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

for a large portion of summer peak demand. Research resultspotential to reduce peak demand in commercial buildingsbuildings contribution to peak demand and the use of energy

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

217

Swarm intelligence approaches to estimate electricity energy demand in Turkey  

Science Conference Proceedings (OSTI)

This paper proposes two new models based on artificial bee colony (ABC) and particle swarm optimization (PSO) techniques to estimate electricity energy demand in Turkey. ABC and PSO electricity energy estimation models (ABCEE and PSOEE) are developed ... Keywords: Ant colony optimization, Artificial bee colony, Electricity energy estimation, Particle swarm optimization, Swarm intelligence

Mustafa Servet K?Ran; Eren Zceylan; Mesut GNdZ; Turan Paksoy

2012-12-01T23:59:59.000Z

218

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

E-Print Network (OSTI)

OpportunitiesforEnergy EfficiencyandDemandResponseinAgricultural/WaterEnd?UseEnergyEfficiencyProgram. i1 4.0 EnergyEfficiencyandDemandResponse

Olsen, Daniel

2012-01-01T23:59:59.000Z

219

A study of industrial equipment energy use and demand control  

E-Print Network (OSTI)

Demand and duty factors were measured for selected equipment [air compressors, electric furnaces, injection-molding machines, a welder, a granulator (plastics grinder), a sheet metal press and brake, a lathe, a process chiller, and cooling tower pumps and fans] in two industrial plants. Demand factors for heavily loaded air compressors were found to be near 100 %, for lightly loaded centrifugal equipment (lathe, sheet metal shear and brake, and granulator) near 10 %, and for injection-molding machines near 50 %. The measured demand factors differ from those often estimated during energy surveys. Duty factors for some equipment were found to exceed 100 %, showing that some loads were on for longer periods than that indicated by plant personnel. Comparing a detailed summary of equipment rated loads to annual utility bills, when measurements are not available, can prevent over-estimation of the demand and duty factors for a plant. Raw unadjusted estimates of demand factors of 60 % or higher are often made, yet comparisons of rated loads to utility bills show that some equipment demand factors may be 50 % or less. This project tested a simple beacon alerting system, which used a blue strobe light to alert plant personnel when a preset demand limit had been reached. Tests of load shedding verified that the estimated demand savings of 50 kVA were realized (out of a total demand of almost 1200 kVA) when lighting and air conditioning loads were turned off.

Dooley, Edward Scott

2001-01-01T23:59:59.000Z

220

A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings  

Science Conference Proceedings (OSTI)

This paper addresses the problem of predicting demand for natural gas for the purpose of realizing energy cost savings. Daily monitoring of a rooftop unit wireless sensor system provided feedback for a decision support system that supplied the demand ... Keywords: Artificial neural networks, Decision support system, Energy forecasting, Natural gas demand, Nearest neighbor method, Wireless sensor networks

James A. Rodger

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Global Energy Demand, Supply, Consequences, Opportunities  

E-Print Network (OSTI)

/Joule Population-Energy Equation Power = N x (GDP/N) x (Watts/GDP) C Emission Rate = Power x (Carbon/J) #12;d HVAC Onsite Power & Heat Natural Ventilation, Indoor Environment Building Materials Appliances Thermal · Building Materials Tenants · Lease space from Developer or Property Manager · Professional firms, retailers

Knowles, David William

222

Load Reduction, Demand Response and Energy Efficient Technologies and Strategies  

SciTech Connect

The Department of Energys (DOEs) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

2008-11-19T23:59:59.000Z

223

Assessment of Achievable Potential from Energy Efficiency and Demand  

Open Energy Info (EERE)

Assessment of Achievable Potential from Energy Efficiency and Demand Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the United States (U.S.) (2010-2030) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the United States (U.S.) (2010-2030) Focus Area: Energy Efficiency, - Utility Topics: Policy Impacts Website: www.edisonfoundation.net/IEE/Documents/EPRI_AssessmentAchievableEEPote Equivalent URI: cleanenergysolutions.org/content/assessment-achievable-potential-energ Language: English Policies: Regulations Regulations: Mandates/Targets This report discusses the 2008 U.S. Energy Information Administration statistic that electricity consumption in the United States is predicted to

224

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

225

U.S. Energy Secretary Addresses International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Energy Secretary Addresses International Atomic Energy Agency U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference September 19, 2011 - 2:24pm Addthis VIENNA, AUSTRIA - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's General Conference today in Vienna. Opening with a message from President Barack Obama, Secretary Chu highlighted the importance of safety and security in the nuclear industry in light of the tragic events at Fukushima this year, and outlined the four priorities of President Obama's nuclear agenda: promoting the peaceful use of nuclear energy, strengthening the nuclear proliferation regime, pursuing nuclear disarmament and enhancing nuclear security The following are excerpts of Secretary Chu's remarks as prepared for

226

The Economics of Energy (and Electricity) Demand  

E-Print Network (OSTI)

% electrical efficiency might be able to deliver electrical heat using half the gas of gas fired boiler with 90% efficiency (p.152-153). An electric car uses around 15 kWh per 100 km, around 5 times less than the average fossil fuel car. This implies... that there is always a wide-range of observed efficiencies in the economy, with the average efficiency of the provision of an energy service being significantly less than the efficiency of the most efficient. Current new fossil fuel cars and gas boilers are 50...

Platchkov, Laura M.; Pollitt, Michael G.

227

Tankless or Demand-Type Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How does it work? Tankless water heaters deliver hot water as it is needed, eliminating the need for storage tanks. Tankless water heaters, also known as demand-type or instantaneous water heaters, provide hot water only as it is needed. They don't produce the standby energy losses associated with storage water heaters, which can save you money. Here you'll find basic information about how they work, whether a tankless water heater might be right for your home, and what criteria to use when selecting the right model. Check out the Energy Saver 101: Water Heating infographic to learn if a tankless water heater is right for you.

228

EIA - Annual Energy Outlook 2008 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand Natural Gas Demand Annual Energy Outlook 2008 with Projections to 2030 Natural Gas Demand Figure 72. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 73. Total natural gas consumption, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Fastest Increase in Natural Gas Use Is Expected for the Buildings Sectors In the reference case, total natural gas consumption increases from 21.7 trillion cubic feet in 2006 to a peak value of 23.8 trillion cubic feet in 2016, followed by a decline to 22.7 trillion cubic feet in 2030. The natural gas share of total energy consumption drops from 22 percent in 2006

229

Impact of selected energy conservation technologies on baseline demands  

SciTech Connect

This study is an application of the modeling and demand projection capability existing at Brookhaven National Laboratory to specific options in energy conservation. Baseline energy demands are modified by introducing successively three sets of conservation options. The implementation of improved building standards and the use of co-generation in industry are analyzed in detail and constitute the body of this report. Two further sets of energy demands are presented that complete the view of a low energy use, ''conservation'' scenario. An introduction to the report covers the complexities in evaluating ''conservation'' in view of the ways it is inextricably linked to technology, prices, policy, and the mix of output in the economy. The term as used in this report is narrowly defined, and methodologies are suggested by which these other aspects listed can be studied in the future.

Doernberg, A

1977-09-01T23:59:59.000Z

230

Energy Conservation and Commercialization in Gujarat: Report On Demand Side  

Open Energy Info (EERE)

Energy Conservation and Commercialization in Gujarat: Report On Demand Side Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Focus Area: Crosscutting Topics: Opportunity Assessment & Screening Website: eco3.org/wp-content/plugins/downloads-manager/upload/Report%20on%20Dem Equivalent URI: cleanenergysolutions.org/content/energy-conservation-and-commercializa Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning

231

United States energy supply and demand forecasts 1979-1995  

SciTech Connect

Forecasts of U.S. energy supply and demand by fuel type and economic sector, as well as historical background information, are presented. Discussion and results pertaining to the development of current and projected marginal energy costs, and their comparison with market prices, are also presented.

Walton, H.L.

1979-01-01T23:59:59.000Z

232

Linking Continuous Energy Management and Open Automated Demand Response  

Science Conference Proceedings (OSTI)

Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (Open Auto-DR or OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

2008-10-03T23:59:59.000Z

233

U.S. Energy Secretary Addresses International Atomic Energy Agency General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Addresses International Atomic Energy Agency Secretary Addresses International Atomic Energy Agency General Conference U.S. Energy Secretary Addresses International Atomic Energy Agency General Conference September 19, 2011 - 4:48pm Addthis VIENNA, AUSTRIA - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's General Conference today in Vienna. Opening with a message from President Barack Obama, Secretary Chu highlighted the importance of safety and security in the nuclear industry in light of the tragic events at Fukushima this year, and outlined the four priorities of President Obama's nuclear agenda: promoting the peaceful use of nuclear energy, strengthening the nuclear proliferation regime, pursuing nuclear disarmament and enhancing nuclear security The following are excerpts of Secretary Chu's remarks as prepared for

234

Opportunities for Energy Efficiency and Demand Response in the California  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Publication Type Report LBNL Report Number LBNL-4849E Year of Publication 2010 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2010 Publisher CEC/LBNL Keywords cement industry, cement sector, demand response, electricity use, energy efficiency, market sectors, mineral manufacturing, technologies Abstract This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

235

Secretary Chu Addresses the International Atomic Energy Agency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1929, the strongest and most comprehensive set of sanctions to date to address Iranian non-compliance. While we continue to acknowledge Iran's right to pursue peaceful civilian...

236

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

237

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

238

ADB-Methods and Tools for Energy Demand Projection | Open Energy  

Open Energy Info (EERE)

ADB-Methods and Tools for Energy Demand Projection ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary Name: Methods and Tools for Energy Demand Projection Agency/Company /Organization: Asian Development Bank Sector: Energy Topics: Pathways analysis Resource Type: Presentation, Software/modeling tools Website: cdm-mongolia.com/files/2_Methods_Hoseok_16May2010.pdf Cost: Free Methods and Tools for Energy Demand Projection Screenshot References: Methods and Tools for Energy Demand Projection[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Methods and Tools for Energy Demand Projection" Retrieved from "http://en.openei.org/w/index.php?title=ADB-Methods_and_Tools_for_Energy_Demand_Projection&oldid=398945" Categories:

239

A dynamic model of industrial energy demand in Kenya  

Science Conference Proceedings (OSTI)

This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

Haji, S.H.H. [Gothenburg Univ. (Sweden)

1994-12-31T23:59:59.000Z

240

Energy demand and indoor climate of a traditional low-energy building in a hot climate.  

E-Print Network (OSTI)

?? Energy demand in the built environment is quite important. China holds a large population and the energy use in the building sector is about (more)

Li, Ang

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Energy Software Tools Directory : Demand Response Quick...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Back to Tool Demand response quick assessment tool screenshot Demand response quick assessment tool screenshot Demand response quick...

242

The Challenges and Potential of Nuclear Energy for Addressing Climate Change  

SciTech Connect

The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the worlds electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

Kim, Son H.; Edmonds, James A.

2007-10-24T23:59:59.000Z

243

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

244

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

245

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

246

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

247

U.S. Energy Demand, Offshore Oil Production and  

E-Print Network (OSTI)

;Summary of Conclusions. . . The global rate of production of oil is peaking now, coal will peak in 2U.S. Energy Demand, Offshore Oil Production and BP's Macondo Well Spill Tad Patzek, Petroleum that run the U.S. Complexity, models, risks Gulf of Mexico's oil and gas production Conclusions ­ p.3/4 #12

Patzek, Tadeusz W.

248

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

249

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

rate California electricity consumption (GWh) Over two-thirds of total electricity demand is concentrated in the residential andrate N/A PG&E SMUD SCE LADWP SDGE BGP Other All CA 2005 IEPR Residential electricity

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

250

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

forecast methods report. California Energy Commission, CEC-Chris Kavalec. California Energy Commission. CEC (2005d)Office, 5/12/2006. California Energy Advanced Energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

251

Addressing the Critical Link between Fossil Energy and Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2006 Update Department of EnergyOffice of Fossil Energy's Water-Energy Interface Research Program Thomas J. Feeley, III 1 , Lindsay Green 2 , Andrea McNemar 2 , Barbara A....

252

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

253

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

254

Address (Smart Grid Project) (Switzerland) | Open Energy Information  

Open Energy Info (EERE)

Project Name Address Project Name Address Country Switzerland Coordinates 46.818188°, 8.227512° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.818188,"lon":8.227512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Fusion energy development: Breakeven and beyond: Keynote address  

SciTech Connect

The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

Furth, H.P.

1988-02-01T23:59:59.000Z

256

Energy Efficiency Funds and Demand Response Programs - National Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds and Demand Funds and Demand Response Programs - National Overview Charles Goldman Lawrence Berkeley National Laboratory November 2, 2006 Federal Utility Partnership Working Group San Francisco CA Overview of Talk * National Overview * Energy Efficiency Programs and Funds * Demand Response Programs and Funds * FEMP Resources on Public Benefit Funds *Suggestions for Federal Customers DSM Spending is increasing! * 2006 Utility DSM and Public Benefit spending is ~$2.5B$ - $1B for C&I EE programs * CA utilities account for 35% of total spending 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1994 2000 2005 2006 Costs (in billion $) DSM Costs Load Management Gas EE Other States Electric EE California Electric EE EE Spending in 2006 (by State) $ Million < 1 (23) 1 - 10 (2) 11 - 50 (13) 51 - 100 (7) > 100 (5) 790 101 257

257

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network (OSTI)

Utility managements have two primary responsibilities. They must supply reliable electric service to meet the needs of their customers at the most efficient price possible while at the same time generating the maximum rate of return possible for their shareholders. Regulator hostility towards the addition of generating capacity has made it difficult for utilities to simultaneously satisfy both the needs of their ratepayers and the needs of their shareholders. Recent advances in thermal energy storage may solve the utilities' paradox. Residential thermal energy storage promises to provide the ratepayers significantly lower electricity rates and greater comfort levels. Utilities benefit from improved load factors, peak capacity additions at low cost, improved shareholder value (ie. a better return on assets), improved reliability, and a means of satisfying growing demand without the regulatory and litigious nightmares associated with current supply side solutions. This paper discusses thermal energy storage and its potential impact on the electric utilities and introduces the demand side plant concept.

Michel, M.

1989-01-01T23:59:59.000Z

258

Building Energy Software Tools Directory: Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory Search Search Help Building Energy Software Tools Directory...

259

Addressing the Critical Link between Fossil Energy and Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2005 Department of EnergyOffice of Fossil Energy's Power Plant Water Management R&D Program Thomas J. Feeley, III 1 , Lindsay Green 2 , James T. Murphy 2 , Jeffrey Hoffmann 1...

260

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

U.S. Propane Demand - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

262

Address (Smart Grid Project) (France) | Open Energy Information  

Open Energy Info (EERE)

France) France) Jump to: navigation, search Project Name Address Country France Coordinates 46.073231°, 2.427979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.073231,"lon":2.427979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Address (Smart Grid Project) (Italy) | Open Energy Information  

Open Energy Info (EERE)

Italy) Italy) Jump to: navigation, search Project Name Address Country Italy Coordinates 41.746727°, 12.052002° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.746727,"lon":12.052002,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Address (Smart Grid Project) (SVEZIA) | Open Energy Information  

Open Energy Info (EERE)

SVEZIA) SVEZIA) Jump to: navigation, search Project Name Address Country SVEZIA Coordinates 60.128162°, 18.643501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.128162,"lon":18.643501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

STRATEGIC ENERGY INITIATIVE @ Winter 2005 Precarious energy situation demands strategic  

E-Print Network (OSTI)

energy solutions that could have a significant impact, especially in the southeastern U.S. Blowin of the oil it produced in 1970. -- Georgia Tech Strategic Energy Initiative and U.S. Dept. of Energy's Energy energy. At the U.S.Department of Energy-funded SolarThermal Test Facility on the main campus, Georgia

Sherrill, David

266

Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections  

SciTech Connect

The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

Ayres, R.U.; Ayres, L.W.

1980-03-01T23:59:59.000Z

267

Africa - Technical Potential of Solar Energy to Address Energy Poverty and  

Open Energy Info (EERE)

Africa - Technical Potential of Solar Energy to Address Energy Poverty and Africa - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary Name: Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Resource assessment Website: www.nrel.gov/docs/fy10osti/44259.pdf Coordinates: -8.783195°, 34.508523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-8.783195,"lon":34.508523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

the entire forecast period, primarily because both weather-adjusted peak and electricity consumption were forecast. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, conservation, California Solar Initiative. #12

269

THREE ESSAYS ON ADDRESSING NEW CHALLENGES FOR ENERGY POLICY .  

E-Print Network (OSTI)

??The three papers in this dissertation all deal with new challenges for energy policy. The first paper deals with mitigation of market power in deregulated (more)

Shawhan, Daniel

2008-01-01T23:59:59.000Z

270

Integrating Energy Efficiency and Demand Response into Utility Resource Plans  

Science Conference Proceedings (OSTI)

This report investigates the methods in which utilities integrate their supply-side and demand-side resources to meet their generating resource requirements. The major steps in developing a resource plan are reviewed, including the alternative methods currently employed. Finally, the report presents the results of a short survey that was administered to the advisors in Energy Utilization. The results show that methods are more sophisticated than 20 years ago, but more could be accomplished in ...

2013-01-14T23:59:59.000Z

271

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

272

Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs  

U.S. Energy Information Administration (EIA) Indexed Site

Experts Meeting: Behavioral Economics Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs EIA Office of Energy Consumption and Efficiency Analysis July 17, 2013 | Washington, DC Meeting Agenda Jim Turnure, Director, Office of Energy Consumption and Efficiency Analysis July 17, 2013 2 * EIA WELCOME AND INTRODUCTION (15 minutes) * ORIENTATION/PRESENTATION: OVERVIEW OF EIA RESIDENTIAL AND COMMERCIAL DEMAND MODELS AND CURRENT METHODS FOR INCORPORATING ENERGY EFFICIENCY/EFFICIENCY PROGRAMS (30 minutes) * ORIENTATION/PRESENTATION: BEHAVIORAL ECONOMICS GENERAL OVERVIEW AND DISCUSSION (45 minutes) * EXPERTS ROUNDTABLE DISCUSSION/BRAINSTROMING: HOW CAN EIA BENEFIT FROM APPLICATION OF BEHAVIORAL ECONOMICS TO RESIDENTIAL AND COMMERCIAL ENERGY DEMAND MODELING?

273

Greening Industrial Facilities: A Sustainable Approach to Addressing Energy Concerns  

E-Print Network (OSTI)

The prices for natural gas and oil-based products have risen significantly in recent years, making it more costly for U.S.-based manufacturers to be profitable and compete globally. A poll taken at a recent meeting of the National Association of Manufacturers (NAM) board of directors revealed that 93 percent of directors from small and medium manufacturing companies believe that higher energy prices are having a negative impact on their bottom line. Furthermore, according to a 2006 report from the National Association of Manufacturers (NAM), the domestic environment for manufacturers is dominated by concerns about rising external costs that make manufacturing from a U.S. base difficult. With the cost of oil at or near historic all-time highs, energy efficiency has quickly moved to top priority when analyzing potential savings in manufacturing facilities. The industrial sector currently accounts for about one-third of all U.S. energy consumption at an annual cost of more than $120 billion. NAM says that external outlays related to energy prices (in addition to taxes, litigation, health care, and regulation) have added 22.4 percent to production costs. In addition, according to one analysis, deregulation, security concerns, and a fragile transmission infrastructure are increasing energy price volatility, with negative financial impact on some companies. Those that more tightly control and aggressively reduce energy consumption can minimize exposure to such volatility.

Love, D.

2008-01-01T23:59:59.000Z

274

Best Practices: Energy Savings Efficient energy use reduces Colorado State's total energy demand, decreases harmful  

E-Print Network (OSTI)

square foot on campus has flattened out. Students making a difference In 2004, Colorado State became one, decreases harmful emissions, and minimizes the cost of providing energy to the campus. As a result of energy conservation initiatives that have been implemented over the past 20 years, growth in the average demand per

275

Fuel choice and aggregate energy demand in the commercial sector  

SciTech Connect

This report presents a fuel choice and aggregate-demand model of energy use in the commercial sector of the United States. The model structure is dynamic with short-run fuel-price responses estimated to be close to those of the residential sector. Of the three fuels analyzed, electricity consumption exhibits a greater response to its own price than either natural gas or fuel oil. In addition, electricity price increases have the largest effect on end-use energy conservation in the commercial sector. An improved commercial energy-use data base is developed which removes the residential portion of electricity and natural gas use that traditional energy-consumption data sources assign to the commercial sector. In addition, household and commercial petroleum use is differentiated on a state-by-state basis.

Cohn, S.

1978-12-01T23:59:59.000Z

276

Better Technologies Key to Addressing Climate Change Energy Department official explains U.S. initiatives  

E-Print Network (OSTI)

Better Technologies Key to Addressing Climate Change Energy Department official explains U.S emissions and addressing climate change, according to a U.S. Department of Energy (DOE) official speaking of the DOE statement follows: [U.S. Department of Energy] Intervention by the United States Panel

277

Energy packet networks: smart electricity storage to meet surges in demand  

Science Conference Proceedings (OSTI)

When renewable energy is used either as a primary source, or as a back-up source to meet excess demand, energy storage becomes very useful. Simple examples of energy storage units include electric car batteries and uninterruptible power supplies. More ... Keywords: energy packet networks, network control of energy flow, on-demand energy dispatching, smart grid, store and forward energy, storing renewable energy

Erol Gelenbe

2012-03-01T23:59:59.000Z

278

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

demand shifting are thermal energy storage systems, whichlockout, pre-cooling, thermal energy storage, cooling loadlockout Pre-cooling Thermal energy storage Cooling

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

279

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Solution Procedure for SDP Energy Prices We use electricityLondon for assistance with energy price modeling. Siddiquiof DER under uncertain energy prices with demand response

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

280

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

minimization Monthly peak demand management Daily time-of-Some tariff designs have peak demand charges that apply tothat may result in a peak demand that occurs in one month to

Piette, Mary Ann

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Dryer WH - Clothes Washer Clothes Washer WH - DishwasherDishwasher Water Heating Figure 7 Breakdown of residentialUEC Water Heating (WH) Dishwasher Advanced Energy Pathways -

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

282

EIA - 2010 International Energy Outlook - World Energy Demand...  

Gasoline and Diesel Fuel Update (EIA)

about energy security and greenhouse gas emissions support the development of new nuclear generating capacity. World average capacity utilization rates have continued to rise...

283

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

284

Industrial Demand Module 1998, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description ofthe NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in supportof its models (Public Law 94-385, section 57.b2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

T. Crawford Honeycutt

1998-01-01T23:59:59.000Z

285

Forecasts of intercity passenger demand and energy use through 2000  

SciTech Connect

The development of national travel demand and energy-use forecasts for automobile and common-carrier intercity travel through the year 2000. The forecasts are driven by the POINTS (Passenger Oriented Intercity Network Travel Simulation) model, a model direct-demand model which accounts for competition among modes and destinations. Developed and used to model SMSA-to-SMSA business and nonbusiness travel, POINTS is an improvement over earlier direct demand models because it includes an explicit representation of cities' relative accessibilities and a utility maximizing behavorial multimodal travel function. Within POINTS, pathbuilding algorithms are used to determine city-pair travel times and costs by mode, including intramodal transfer times. Other input data include projections of SMSA population, public and private sector employment, and hotel and other retail receipts. Outputs include forecasts of SMSA-to-SMSA person trips and person-miles of travel by mode. For the national forecasts, these are expanded to represent all intercity travel (trips greater than 100 miles, one way) for two fuel-price cases. Under both cases rising fuel prices, accompanied by substantial reductions in model-energy intensities, result in moderate growth in total intercity passenger travel. Total intercity passenger travel is predicted to grow at approximately one percent per year, slightly fster than population growth, while air travel grows almost twice as fast as population. The net effect of moderate travel growth and substantial reduction in model energy intensities is a reduction of approximately 50 percent in fuel consumption by the intercity passenger travel market.

Kaplan, M.P.; Vyas, A.D.; Millar, M.; Gur, Y.

1982-01-01T23:59:59.000Z

286

ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL  

E-Print Network (OSTI)

of Statistics d) Nairobi, Kenya. See also Estimates ofDEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL LeeDemand and Conservation in Kenya: Initial Appraisal Lee

Schipper, Lee

2013-01-01T23:59:59.000Z

287

Electric grid planners: demand response and energy efficiency to ...  

U.S. Energy Information Administration (EIA)

Source: Form EIA-411, Coordinated Bulk Power Demand and Supply Report Note: All data are reported for time of summer peak, rather than overall demand.

288

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network (OSTI)

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

289

Projecting household energy consumption within a conditional demand framework  

SciTech Connect

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

290

Projecting household energy consumption within a conditional demand framework  

Science Conference Proceedings (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

291

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2009 Chapter 2 - Liquid Fuels World liquids consumption in the IEO2009 reference case increases from 85 million barrels per day in 2006 to 107 million barrels per day in 2030. Unconventional liquids, at 13.4 million barrels per day, make up 12.6 percent of total liquids production in 2030. Figure 25. World Liquids Consumption by Region and Country Group, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 26. World Liquids Supply in Three Cases, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2006-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800.

292

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network (OSTI)

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

293

Japan's Long-term Energy Demand and Supply Scenario to 2050 ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation Title Japan's Long-term Energy Demand and Supply Scenario to 2050 -...

294

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST  

E-Print Network (OSTI)

Policy Report, over the entire forecast period, primarily because both weather-adjusted peak and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, California Solar Initiative. #12;ii #12

295

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities.for Energy Efficiency and Demand Response, Proceedings ofAuthority (NYSERDA), the Demand Response Research Center (

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

296

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

Electrical Peak Demands in Commercial Buildings Center for Analysis and Dissemination of Demonstrated Energy Technologies (CADDET), IEA/OECD Analyses

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

297

Comfort-aware home energy management under market-based demand-response  

Science Conference Proceedings (OSTI)

To regulate energy consumption and enable Demand-Response programs, effective demand-side management at home is key and an integral part of the future Smart Grid. In essence, the home energy management is a mix between discrete appliance scheduling problem ... Keywords: demand-response, energy management, smart grid

Jin Xiao, Jian Li, Raouf Boutaba, James Won-Ki Hong

2012-10-01T23:59:59.000Z

298

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

299

Model for Analysis of Energy Demand (MAED-2) | Open Energy Information  

Open Energy Info (EERE)

Website http:www-pub.iaea.orgMTCDp References MAED 21 "MAED model evaluates future energy demand based on medium- to long-term scenarios of socio-economic,...

300

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3 Demand-Side...

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Residual Fuel Demand - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In the 1986 to 1991 period, residual fuel oil demand declined only slightly both in absolute and as a percent of total product demand. While not shown, residual fuel ...

302

Proceedings of the Chinese-American symposium on energy markets and the future of energy demand  

SciTech Connect

The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

Meyers, S. (ed.)

1988-11-01T23:59:59.000Z

303

Demand Response - Policy: More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response - Policy: More Information Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI's goal was to outline workable market rules, public policies, and regulatory criteria to incorporate customer-based demand response resources into New England's electricity markets and power systems. NEDRI promoted best practices and coordinated

304

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network (OSTI)

Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system. Significant energy usage and demand savings are verified for the retrofitted injection molding machine. The savings are realized by electronically attenuating the torque of a positive displacement pump irrespective of the volumetric flow required by the cycle. With help of a power analyzer, power quality issues are addressed. Some voltage distortion was observed due to the harmonic currents introduced by the control algorithm of the high efficiency hydraulic system. A comparative study of electrical energy and demand savings between an injection molding machine retrofitted with the high efficiency hydraulic pump system or variable frequency drive will also be presented.

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

305

Weekly Address: Time to Create the Energy Security Trust | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weekly Address: Time to Create the Energy Security Trust Weekly Address: Time to Create the Energy Security Trust Weekly Address: Time to Create the Energy Security Trust March 18, 2013 - 3:23pm Addthis Matt Compton Deputy Director of Online Content for the Office of Digital Strategy at the White House. Editor's Note: This blog is cross-posted from WhiteHouse.gov. President Obama discusses the need to harness American energy in order to reduce our dependence on oil and make the United States a magnet for new jobs. He highlights his all-of-the-above approach to American energy -- including a proposal to establish an Energy Security Trust, which invests in research that will help shift our cars and trucks off of oil. Addthis Related Articles National Energy Action Month Photo courtesy of the Pacific Northwest National Laboratory.

306

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

Science Conference Proceedings (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

307

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

and achieve demand response. For example, on a hot August after- noon during the energy crisis, high demand-in trans- former used for everything from cell phones to computers could be up to 50 percent more efficient

308

Driving change : evaluating strategies to control automotive energy demand growth in China  

E-Print Network (OSTI)

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

Bonde kerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

309

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

and Demand Response under Uncertainty F P t : wholesale natural gasdemand response and DER under uncertain electricity and natural gasand Demand Response under Uncertainty Energy Price Models We assume that the logarithms of the deseasonalized electricity and natural gas

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

310

Abstract--This paper addresses the problem of controlling wind energy conversion systems (WECS) which involve  

E-Print Network (OSTI)

Abstract-- This paper addresses the problem of controlling wind energy conversion systems (WECS-inverter. The goal of control is to maximize wind energy extraction and this needs letting the wind turbine rotor wind energy extraction) only for one wind speed value depending on the considered value of turbine

Paris-Sud XI, Université de

311

President Bush Highlights Energy in the State of the Union Address |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Bush Highlights Energy in the State of the Union Address President Bush Highlights Energy in the State of the Union Address President Bush Highlights Energy in the State of the Union Address February 3, 2005 - 10:01am Addthis "To keep our economy growing, we also need reliable supplies of affordable, environmentally responsible energy. Nearly four years ago, I submitted a comprehensive energy strategy that encourages conservation, alternative sources, a modernized electricity grid, and more production here at home -- including safe, clean nuclear energy. My Clear Skies legislation will cut power plant pollution and improve the health of our citizens. And my budget provides strong funding for leading-edge technology -- from hydrogen-fueled cars, to clean coal, to renewable sources such as ethanol. Four years of

312

President Bush Highlights Energy in the State of the Union Address |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

President Bush Highlights Energy in the State of the Union Address President Bush Highlights Energy in the State of the Union Address President Bush Highlights Energy in the State of the Union Address February 3, 2005 - 10:01am Addthis "To keep our economy growing, we also need reliable supplies of affordable, environmentally responsible energy. Nearly four years ago, I submitted a comprehensive energy strategy that encourages conservation, alternative sources, a modernized electricity grid, and more production here at home -- including safe, clean nuclear energy. My Clear Skies legislation will cut power plant pollution and improve the health of our citizens. And my budget provides strong funding for leading-edge technology -- from hydrogen-fueled cars, to clean coal, to renewable sources such as ethanol. Four years of

313

U.S. Regional Energy Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

LBNL-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Jesse A. Cohen, Jennifer L Efficiency and Renewable Energy, Office of Planning, Budget, and Analysis of the U.S. Department of Energy-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Prepared for the Office of Planning

314

demand response - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

EIA Survey Forms Facebook Twitter ... demand response June 14, 2012 California's electric power market faces challenges heading into summer. March 24, ...

315

EU-15 Gasoline & Distillate Demand - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The European refining system is not well matched to its demand slate. Unlike the United States, Europe produces more gasoline than it can use, which ...

316

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

317

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

318

Definition: Interruptible Load Or Interruptible Demand | Open Energy  

Open Energy Info (EERE)

Interruptible Load Or Interruptible Demand Interruptible Load Or Interruptible Demand Jump to: navigation, search Dictionary.png Interruptible Load Or Interruptible Demand Demand that the end-use customer makes available to its Load-Serving Entity via contract or agreement for curtailment.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available. Also Known As non-firm service Related Terms transmission lines, electricity generation, transmission line, firm transmission service, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interruptible_Load_Or_Interruptible_Demand&oldid=502615"

319

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

DATES COVERED (From - To) Renewable Energy and EfficiencyModels Addressed a Common High Renewable Energy PenetrationWood (OnLocation) National Renewable Energy Laboratory 1617

Blair, N.

2010-01-01T23:59:59.000Z

320

Using input-output techniques to address economic and energy issues in Malaysia  

E-Print Network (OSTI)

and gas: Can the result be interpreted as a change in kWh demand? (relative change) Import matrix and natural gas? · Which sectoral splits could be relevant for energy analyses? · Is it possible to identify). · First step is the extension of row dimension by one : The new row 67 is natural gas and rox 66

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks  

Science Conference Proceedings (OSTI)

Neural networks have been widely used for short-term, and to a lesser degree medium and long-term, demand forecasting. In the majority of cases for the latter two applications, multivariate modeling was adopted, where the demand time series is related ... Keywords: Abductive networks, Energy demand, Medium-term load forecasting, Neural networks, Time series forecasting, Univariate time series analysis

R. E. Abdel-Aal

2008-05-01T23:59:59.000Z

322

Survey and Forecast of Marketplace Supply and Demand for Energy-Efficient Lighting Products  

Science Conference Proceedings (OSTI)

Utility incentive programs have placed significant demands on the suppliers of certain types of energy-efficient lighting products--particularly compact fluorescent lamps and electronic ballasts. Two major federal programs may soon place even greater demands on the lighting industry. This report assesses the program-induced demand for efficient lighting products and their likely near-term supply.

1992-12-01T23:59:59.000Z

323

Impacts of Energy Storage Systems in Addressing Regional Wind Penetration: Case Studies in NYISO and ERCOT  

Science Conference Proceedings (OSTI)

Optimal use of electric energy storage systems is expected to play a key role in supporting wind integration, relieving transmission and distribution (T&D) congestion, and improving the balance of supply and demand. However, there have been very limited assessments of what types and sizes of storage systems are optimal and what locations are the most promising. In 2009, an EPRI initial assessment of energy storage in ERCOT (EPRI report 1017824) recommended more regional market simulation studies to furth...

2010-12-23T23:59:59.000Z

324

LBNL/PUB-5482 Energy Efficiency Options for the New England Demand  

E-Print Network (OSTI)

LBNL/PUB-5482 Energy Efficiency Options for the New England Demand Response Initiative (NEDRI://eetd.lbl.gov/EA/EMP/ The work described in this study was funded by the Assistance Secretary of Energy Efficiency and Renewable00098 #12;Energy Efficiency Options for the New England Demand Response Initiative (NEDRI) ­ Framing

325

energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR  

E-Print Network (OSTI)

240 chapter 12 energy: Supply, Demand, and impacts CooRDinATinG LeAD AUThoR Vincent C. Tidwell;energy: supply, demand, and impacts 241 · Delivery of electricity may become more vulnerable) in 2009, equal to 222 million BTUs per person (EIA 2010). Any change or disruption to the supply of energy

Kammen, Daniel M.

326

Large-Scale Integration of Deferrable Demand and Renewable Energy Sources  

E-Print Network (OSTI)

1 Large-Scale Integration of Deferrable Demand and Renewable Energy Sources Anthony Papavasiliou model for assessing the impacts of the large-scale integration of renewable energy sources. In order to accurately assess the impacts of renewable energy integration and demand response integration

Oren, Shmuel S.

327

Retail Demand Response in Southwest Power Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response in Southwest Power Pool Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region.

328

Tankless or Demand-Type Water Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How does it work? Tankless water heaters deliver...

329

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. Chapter 3: Demand-Side Resources More Documents & Publications Draft Chapter 3:...

330

Annual World Oil Demand Growth - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Following relatively small increases of 1.3 million barrels per day in 1999 and 0.8 million barrels per day in 2000, EIA is estimating world demand may grow by 1.5 ...

331

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

332

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

333

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

334

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

Previous papers have discussed definitions of energyThis paper provides a framework linking continuous energyThe paper presents a framework about when energy is used,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

335

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

tech. selection Net energy consumption Service tech. cost &equip. selection Net energy consumption Service tech. cost &tech. selection Net energy consumption Service tech. cost &

Stadler, Michael

2011-01-01T23:59:59.000Z

336

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

Heat DX Cooling Total Annual Energy Usage Peak Electricifier DX Cooling Total Annual Energy Usage Scenario Supply/ifier DX Cooling Total Annual Energy Usage Peak Electric

Shehabi, Arman

2010-01-01T23:59:59.000Z

337

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

and equity, 2005, the Energy and Resources Institute (Tables Figures Figure 1. India Primary Energy Supply by fuel7 Figure 2. Final and Primary Energy (including biomass) by

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

338

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

Commercial Building Energy Consumption Survey (CBECS),7 Figure 3. Energy Consumption in the Agriculture Sector (13 Figure 6. Energy Consumption in the Service

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

339

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, EIAs analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8 percent of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9 percent of annual operating cost, previously have received somewhat less attention, however. In AEO2006, energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50 percent of the projected increase in industrial natural gas consumption from 2004 to 2030.

Information Center

2007-03-11T23:59:59.000Z

340

Supplemental Environmental Projects Using Renewable Energy: A New Approach to Addressing Air Quality Violation Penalties  

Wind Powering America (EERE)

Supplemental environmental projects Supplemental environmental projects can help companies mitigate all or part of penalties imposed as a result of air pollution violations. Supplemental envi- ronmental projects, or SEPs, are environ- mentally beneficial projects that offer pollution prevention, energy efficiency, green energy, and community-based programs that may include investment in cost-effective alternative energy tech- nologies, such as wind energy. In Colorado, one company is successfully mitigating 80% of a penalty through a SEP that takes advantage of the utility's wind energy program by purchasing wind energy for a minimum of 5 years. To meet the additional demand, the util- ity will need to add another turbine to its existing wind farm. The environmental benefits that result from this increased

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

optimized relative to the energy services begin delivered.energy is used, levels of services by energy using systems,energy efficiency and advances in controls and service level

Piette, Mary Ann

2009-01-01T23:59:59.000Z

342

Poster abstract: wireless sensor network characterization - application to demand response energy pricing  

Science Conference Proceedings (OSTI)

This poster presents latency and reliability characterization of wireless sensor network as applied to an advanced building control system for demand response energy pricing. A test network provided the infrastructure to extract round trip time and packet ... Keywords: advanced building control, demand response energy pricing

Nathan Ota; Dan Hooks; Paul Wright; David Auslander; Therese Peffer

2003-11-01T23:59:59.000Z

343

New Zealand Energy Data: Electricity Demand and Consumption | OpenEI  

Open Energy Info (EERE)

Electricity Demand and Consumption Electricity Demand and Consumption Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). The sectors included are: agriculture, forestry and fishing; industrial (mining, food processing, wood and paper, chemicals, basic metals, other minor sectors); commercial; and residential. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago)

344

Modelling the Energy Demand of Households in a Combined  

E-Print Network (OSTI)

. Emissions from passenger transport, households'electricity and heat consumption are growing rapidly despite demand analysis for electricity (e.g. Larsen and Nesbakken, 2004; Holtedahl and Joutz, 2004; Hondroyiannis, 2004) and passenger cars (Meyer et al., 2007). Some recent studies cover the whole residential

Steininger, Karl W.

345

Economic development and the structure of the demand for commerial energy  

E-Print Network (OSTI)

To deepen the understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

Judson, Ruth A.

346

Economic development and the structure of the demand for commerial energy  

E-Print Network (OSTI)

To deepen understanding of the relation between economic development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption in major economic sectors to per-capita GDP. Panel ...

Judson, Ruth A.; Schmalensee, Richard.; Stoker, Thomas M.

347

Residential energy demand modeling and the NIECS data base : an evaluation  

E-Print Network (OSTI)

The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

Cowing, Thomas G.

1982-01-01T23:59:59.000Z

348

Direct address translation for virtual memory in energy-efficient embedded systems  

Science Conference Proceedings (OSTI)

This article presents a methodology for virtual memory support in energy-efficient embedded systems. A holistic approach is proposed, where the combined efforts of compiler, operating system, and hardware architecture achieve a significant system power ... Keywords: Low-power embedded systems, address translation, virtual memory

Xiangrong Zhou; Peter Petrov

2008-12-01T23:59:59.000Z

349

ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL  

E-Print Network (OSTI)

bound up in steel, paper, and other energy intensive goods.and residential energy use in the paper by McGranahan 1 eton energy use and the economy can be found in the paper by

Schipper, Lee

2013-01-01T23:59:59.000Z

350

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

Price, 2008 Sectoral Trends in Global Energy Use and Greenhouse GasTrends in Global Energy Use and Greenhouse Gas Emissions (Price

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

351

Future world energy demand driven by trends in developing ...  

U.S. Energy Information Administration (EIA)

EIA's International Energy Outlook 2013 (IEO2013) projects that growth in world energy use largely comes from countries outside of the Organization ...

352

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

gas oil nuclear hydro Energy output Own Uses Transmissiongas oil nuclear hydro Energy output Own Uses Transmissionenergy equivalence of electricity generated from hydro or

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

353

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

354

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

equipment. Since electricity demand, is projected to exhibitfrom 44% in 2006. In electricity demand, its usage in plugRuns, Average Value) Electricity Demand Power/Electricity

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

355

Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management  

E-Print Network (OSTI)

The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

Koutsopoulos, Iordanis

2010-01-01T23:59:59.000Z

356

DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DIEGO FAZI DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division Bldg 200, Room E105 Argonne National Laboratory 9700 South Cass Ave. Argonne IL 60439-4831 E-mail addresses: dfazi@anl.gov Office Number: 630-252-5796 Fax: 630-252-9289 Personal Pages: http://faculty.wcas.northwestern.edu/diego-fazi/ http://www.fazid.org Research Interests Diego Fazi comes from a theoretical Physics background and he performed research in gravitational-wave astronomy within the project LIGO from 2005 to 2012. In October 2012 Dr. Fazi joined the CSE division at Argonne as a postdoctoral appointee in the Solar Conversion

357

National Action Plan on Demand Response, June 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand Response, June 2010 Action Plan on Demand Response, June 2010 National Action Plan on Demand Response, June 2010 The Federal Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy Independence and Security Act of 2007 (EISA), entitled "Electricity Sector Demand Response." This National Action Plan is designed to meet three objectives: Identify "requirements for technical assistance to States to allow them to maximize the amount of demand response resources that can be developed and deployed." Design and identify "requirements for implementation of a national communications program that includes broad-based customer education and support."

358

Energy and Emissions Long Term Outlook A Detailed Simulation of Energy Supply-Demand  

E-Print Network (OSTI)

The paper presents the results of a detailed, bottom-up modeling exercise of Mexicos energy markets. The Energy and Power Evaluation Program (ENPEP), the Wien Automatic System Planning (WASP) and the Energy Demand Model (MODEMA) were used to develop forecasts to 2025. Primary energy supply is projected to grow from 9,313 PJ (1999) to 13,130 PJ (2025). Mexicos crude oil production is expected to increase by 1 % annually to 8,230 PJ. As its domestic crude refining capacity becomes unable to meet the rising demand for petroleum products, imports of oil products will become increasingly important. The Mexican natural gas markets are driven by the strong demand for gas in the power generating and manufacturing industries which significantly outpaces projected domestic production. The result is a potential need for large natural gas imports that may reach approximately 46 % of total gas supplies by 2025. The long-term market outlook for Mexicos electricity industry shows a heavy reliance on naturalgas based generating technologies. Gas-fired generation is forecast to increase 26-fold eventually accounting for over 80 % of total generation by 2025. Alternative results for a constrained-gas scenario show a substantial shift to coal-based generation and the associated effects on the natural gas market. A renewables scenario investigates impacts of additional renewables for power generation (primarily wind plus some solar-photovoltaic). A nuclear scenario analyzes the impacts of additional nuclear power

Juan Quintanilla Martnez; Autnoma Mxico; Centro Mario Molina; Juan Quintanilla Martnez

2005-01-01T23:59:59.000Z

359

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

Science Conference Proceedings (OSTI)

This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

2009-05-11T23:59:59.000Z

360

2012 End-Use Energy Efficiency and Demand Response, EPRI Program 170: Summary of Deliverables  

Science Conference Proceedings (OSTI)

The EPRI research program on End-Use Energy Efficiency and Demand Response (Program 170) is focused on the assessment, testing, and demonstration of energy-efficient and intelligent end-use devices, as well as analytical studies of the economic, environmental, and behavioral aspects of energy efficiency and demand response. The 2012 reports, tools and resources produced in this program are available to employees of funding companies, and can be accessed by clicking on the product number link listed after ..

2013-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assessment of Commercial Building Automation and Energy Management Systems for Demand Response Applications  

Science Conference Proceedings (OSTI)

This Technical Update is an overview of commercial building automation and energy management systems with a focus on their capabilities (current and future), especially in support of demand response (DR). The report includes background on commercial building automation and energy management systems; a discussion of demand response applications in commercial buildings, including building loads and control strategies; and a review of suppliers building automation and energy management systems to support d...

2009-12-14T23:59:59.000Z

362

Keynote Address to the American Council on Renewable Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Keynote Address to the American Council on Renewable Energy Keynote Address to the American Council on Renewable Energy Keynote Address to the American Council on Renewable Energy June 20, 2007 - 2:07pm Addthis Remarks Prepared for Energy Secretary Samuel W. Bodman Thank you, Michael, for that introduction and thank you all for coming. It is good to be in New York, back among the financial community. For those of you who don't know, when I left M.I.T - where I taught chemical engineering - to enter the business world I started out as a venture capitalist. It's an industry, though we didn't call it that then, I have now been associated with for 45 years. I say this only to let you know I understand the challenges before you. Had my life taken a different course, had I not had the blazing insight that I should go to Washington to help run the government, I might be

363

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Electricity and Natural Gas Demand in Japanese ResidentialWater Heating Natural Gas Demand Mtoe Actual Projection Mtoe

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

364

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

water (3%). Finally oil is a source of energy for theOil Diesel Oil LPG Electricity Source: CEA, 2006; MOSPI,countries, oil remains an important source of energy for

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

365

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

lower RH upper RH UPS Waste Heat Humid- ifier DX Cooling Total Annual Energy Usage Peak Electriclower RH upper RH UPS Waste Heat Humid- ifier DX Cooling Total Annual Energy Usage Peak Electric

Shehabi, Arman

2010-01-01T23:59:59.000Z

366

Commercial Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey ... space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The market segment ...

367

ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL  

E-Print Network (OSTI)

plants, at what energy intensity? hotel in a given year? toenergy use for key kinds of buildings; major tals. hotels~

Schipper, Lee

2013-01-01T23:59:59.000Z

368

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

DOE Green Energy (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

369

Energy demand and conservation in Kenya: initial appraisal  

SciTech Connect

Ongoing research into the use and conservation of energy in Kenya is reported briefly. A partial accounting of energy use in Kenya is presented, and evidence that some energy conservation has been taking place is discussed. A fuller accounting for all commercial energy flows is both possible and desirable. The work presented should serve as a basis for further data collection and analysis in Kenya, and can be used as a model for similar efforts in other countries. The author intends to continue much of this energy accounting in Kenya in the latter half of 1980.

Schipper, L.

1980-03-01T23:59:59.000Z

370

Agent-based coordination techniques for matching supply and demand in energy networks  

Science Conference Proceedings (OSTI)

There is a lot of effort directed toward realizing the power network of the future. The future power network is expected to depend on a large number of renewable energy resources connected directly to the low and medium voltage power network. Demand ... Keywords: Supply and demand matching, market and non-market algorithms, multi-agent systems

Rashad Badawy; Benjamin Hirsch; Sahin Albayrak

2010-12-01T23:59:59.000Z

371

THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION  

E-Print Network (OSTI)

1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION Wanda Reder, S & C Electric Company, 6601 North Ridge Blvd., Chicago, IL 60626- 3997, USA Vahid, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand

372

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

373

Coordination of Energy Efficiency and Demand Response: A Resource of the  

Open Energy Info (EERE)

Coordination of Energy Efficiency and Demand Response: A Resource of the Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Focus Area: Energy Efficiency Topics: Policy, Deployment, & Program Impact Website: www.epa.gov/cleanenergy/documents/suca/ee_and_dr.pdf Equivalent URI: cleanenergysolutions.org/content/coordination-energy-efficiency-and-de Language: English Policies: "Regulations,Deployment Programs" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Retrofits Regulations: Energy Standards

374

Addressing Barriers to Wind Energy by Creating Consensus through Information Dissemination and Outreach: Final Report  

Science Conference Proceedings (OSTI)

OAK B188 The sixteen month project to address barriers to the development of VT wind energy was successful. The project built consensus on wind energy siting issues through four stakeholder workshops and engaged Vermonters on wind energy issues with a wind energy information dissemination and outreach campaign. There is still a great need for more outreach and accurate wind energy information dissemination on the local level where informed discussion on the cost and benefits of wind energy projects needs to be held. The stakeholder workshop framework and outreach tools that were created by this project will be helpful tools as state agencies, wind developers, non-profit organizations and concerned citizens (in Vermont and around the country) continue to discuss wind energy projects and the role of wind energy in comprehensive energy plans. Given the success of this project it is recommended that other states replicate this project as a way to help overcome the barriers to win d energy development. This report provides: an overview of the project accomplishments, detailed quarter by quarter descriptions of the project activities, activities spawned by the project, conclusions, and copies of all the documents created during the project as attachments (No.1-8).

Andrew Perchlik

2003-02-28T23:59:59.000Z

375

Experts Meeting: Behavioral Economics as Applied to Energy Demand...  

U.S. Energy Information Administration (EIA) Indexed Site

methods associated with the modeling of changing energy markets for purposes of public information and policy analysis. - EIA uses the NEMS tool, a computer-based,...

376

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network (OSTI)

of electricity consumption reported by utility n in year telectricity consumption due to energy e?ciency DSM expenditures across utilities and years

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

377

Determining energy requirement for future water supply and demand alternatives.  

E-Print Network (OSTI)

??Water and energy are two inextricably linked resources. Each has the potential to limit the development of the other. There is a substantial body of (more)

Larsen, Sara Gaye

2010-01-01T23:59:59.000Z

378

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand...  

Annual Energy Outlook 2012 (EIA)

household.gif (5637 bytes) The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

379

Property:FlatDemandStructure | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:FlatDemandStructure Jump to: navigation, search This is a property of type Page. Pages using the property "FlatDemandStructure" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 0000827d-84d0-453d-b659-b86869323897 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 00101108-073b-4503-9cd4-01769611c26f + 00101108-073b-4503-9cd4-01769611c26f + 001361ca-50d2-49bc-b331-08755a2c7c7d + 001361ca-50d2-49bc-b331-08755a2c7c7d + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 001d1952-955c-411b-8ce4-3d146852a75e + 001d1952-955c-411b-8ce4-3d146852a75e +

380

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Discussion Paper Prepared for: Deploying Demand Side Energy Technologies workshop  

E-Print Network (OSTI)

The IEA study Energy Technology Perspectives 2006 (ETP 2006) demonstrates how energy technologies can contribute to a stabilization of CO2 emissions at todays level by 2050. The results of the scenario analysis showed that no fundamental technology breakthroughs are needed. Technologies that are available today or that are under development today will

Cecilia Tam; Dolf Gielen

2007-01-01T23:59:59.000Z

382

Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)  

Science Conference Proceedings (OSTI)

Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several grand challenges and use-inspired basic research needs recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Chu, Steven (DOE Secretary of Energy)

2011-05-25T23:59:59.000Z

383

Demand Response and Smart Metering Policy Actions Since the Energy Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Smart Metering Policy Actions Since the Energy and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating Committ ee (DRCC) for the National Council on Electricity Policy (NCEP). The report focuses on State and Federal policy developments during the period from 2005 to mid-year 2008. It is an att empt to catalogue information on policy developments at both the federal and state level, both in the legislative and regulatory arenas. Demand Response and Smart Metering Policy Actions Since the Energy Policy

384

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

385

Saving Energy and Enabling Auto-Demand Response in Existing Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy and Enabling Auto-Demand Response in Existing Buildings and Plants Using Non-Invasive Retrofit Technologies Speaker(s): Harry Sim Date: April 7, 2011 - 12:00pm...

386

ZigBee Smart Energy Application Profile for Demand Response/Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

ZigBee Smart Energy Application Profile for Demand ResponseLoad Control and its implementation on a JAVA-based platform Speaker(s): John Lin Date: April 23, 2009 - 12:00pm...

387

UNITED STATES OF AMERICA DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges The National Association of Regulatory Utility Commissioners (NARUC) appreciates the opportunity to provide comments to the Department of Energy (DOE) on this Request for Information (RFI) regarding the policy and logistical challenges of the smart grid. 75 Fed. Reg. 57006 (Sept. 17, 2010). INTRODUCTION NARUC is the national organization of State commissions responsible for economic and safety regulation of utilities. Our members in the fifty States, the District of Columbia, Puerto Rico, and the Virgin Islands have the obligation under State law to ensure the establishment and maintenance of such energy utility services as may be required by the public convenience and

388

India Energy Outlook: End Use Demand in India to 2020  

SciTech Connect

Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

2009-03-30T23:59:59.000Z

389

An overview of energy supply and demand in China  

DOE Green Energy (OSTI)

Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

Liu, F.; Davis, W.B.; Levine, M.D.

1992-05-01T23:59:59.000Z

390

An overview of energy supply and demand in China  

DOE Green Energy (OSTI)

Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

Liu, F.; Davis, W.B.; Levine, M.D.

1992-05-01T23:59:59.000Z

391

EIA - Annual Energy Outlook 2009 - Natural Gas Demand  

Annual Energy Outlook 2012 (EIA)

at 202-586-8800. figure data Figure 72. Liquids production from gasification and oil shale, 2007-2030 (thousand barrels per day). Need help, contact the National Energy...

392

Power Sector Reforms in India: Demand Side and Renewable Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

with EETD scientists on cooperative research? Get a job in EETD? Make my home more energy-efficient? Find a source within EETD for a news story I'm writing, shooting, or...

393

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

Past Trend and Future Outlook",LBNL forthcoming. de la Rue2006. Building up India: Outlook for Indias real estate,2006a. World Energy Outlook, IEA/OECD, Paris, France.

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

394

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

trends in the iron and steel industry Energy Policy 30 (user is the iron and steel industry representing almost halfTable 9). The Indian steel industry is slowly shifting from

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

395

Comfort-Aware Home Energy Management Under Market-Based Demand-Response  

E-Print Network (OSTI)

pricing and consumption data in South Korea. Index Terms--smart grid, demand-response, energy management I-based pricing. In peak capping, each home is allocated an energy quota. In market-based pricing, the price-term viable way of regulating energy consumptions. We work with day-ahead market pricing in this paper

Boutaba, Raouf

396

A Successful Case Study of Small Business Energy Efficiency and Demand  

Open Energy Info (EERE)

A Successful Case Study of Small Business Energy Efficiency and Demand A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats Focus Area: Energy Efficiency Topics: Socio-Economic Website: drrc.lbl.gov/sites/drrc.lbl.gov/files/lbnl-2743e.pdf Equivalent URI: cleanenergysolutions.org/content/successful-case-study-small-business- Language: English Policies: Financial Incentives This report presents the results of a pilot study of 78 small commercial customers in the Sacramento Municipal Utility District. Participants were given a participation incentive and provided with both help in implementing energy efficiency measures for their buildings and an array of energy

397

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

398

Retrofitting Existing Buildings for Demand Response & Energy Efficiency  

E-Print Network (OSTI)

heating or cooling load, and enables existing Building Management Systems to control fan speed) · Lighting ­ 20% (solution: Adura ALPS partnership) · Plug loads, data centers ­ remainder (solution: WTR partnership) · Plug loads, data centers ­ remainder (solution: WTR, WBM) Source: US Energy Information

California at Los Angeles, University of

399

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

400

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results  

E-Print Network (OSTI)

This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation potentials were calculated relative to frozen energy efficiency stock growth over the 1980-2000 period. The application of conservation supply methodology to Texas utilities is outlined, and then the energy use and peak demand savings, and their associated costs, are calculated using a prototypical building technique. Representative results are presented, for residential and commercial building types, as conservation supply curves for several end use categories; complete results of the study are presented in Ref. 1.

Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

1985-01-01T23:59:59.000Z

402

Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

Piette, Mary Ann; Kiliccote, Sila

2006-09-01T23:59:59.000Z

403

The asymmetric effects of changes in price and income on energy and oil demand. Energy Journal 23(1  

E-Print Network (OSTI)

This paper estimates the effects on energy and oil demand of changes in income and oil prices, for 96 of the worlds largest countries, in per-capita terms. We examine three important issues: the asymmetric effects on demand of increases and decreases in oil prices; the asymmetric effects on demand of increases and decreases in income; and the different speeds of demand adjustment to changes in price and in income. Its main conclusions are the following: (1) OECD demand responds much more to increases in oil prices than to decreases; ignoring this asymmetric price response will bias downward the estimated response to income changes; (2) demands response to income decreases in many Non-OECD countries is not necessarily symmetric to its response to income increases; ignoring this asymmetric income response will bias the estimated response to income changes; (3) the speed of demand adjustment is faster to changes in income than to changes in price; ignoring this difference will bias upward the estimated response to income changes. Using correctly specified equations for energy and oil demand, the long-run response in demand for income growth is about 1.0 for Non-OECD Oil Exporters, Income Growers and perhaps all Non-OECD countries, and about 0.55 for OECD countries. These estimates for developing countries are significantly higher than current estimates used by the US Department of Energy. Our estimates for the OECD countries are also higher than those estimated recently by Schmalensee-Stoker-Judson (1998) and Holtz-Eakin and Selden (1995), who ignore the (asymmetric) effects of prices on demand. Higher responses to income changes, of course, will increase projections of energy and oil demand, and of carbon dioxide emissions.

Dermot Gately; Hillard G. Huntington; Dermot Gately; Hillard G. Huntington; Joyce Dargay; Lawrence Goulder; Mary Riddel; Shane Streifel

2002-01-01T23:59:59.000Z

404

Celebration of DOE's 35th Anniversary and the Secretary of Energy's Honor Awards, Keynote Address: Energy Secretary, Dr. Steven Chu  

Science Conference Proceedings (OSTI)

Dr. Steven Chu gives a keynote address marking the thirty-fifth anniversary of the Department of Energy (DOE). He highlights outstanding achievements of the Department and its scientists. Several of the Department's many Nobel Prize winners over the years are mentioned.

Chu, Steven (U.S. Energy Secretary)

2012-10-04T23:59:59.000Z

405

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network (OSTI)

Tomato processing is a major component of California's food industry. Tomato processing is extremely energy intensive, with the processing season coinciding with the local electrical utility peak period. Significant savings are possible in the electrical energy, peak demand, natural gas consumption, and water consumption of facilities. The electrical and natural gas energy usage and efficiency measures will be presented for a sample of California tomato plants. A typical end-use distribution of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation measures and the associated savings will be presented. It is shown that an estimated electrical energy savings of 12.5%, electrical demand reduction of 17.2%, natural gas savings of 6.0%, and a fresh water usage reduction of 15.6% are achievable on a facility-wide basis.

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

406

Identification of Changes Needed in Supermarket Design for Energy Demand Reduction  

E-Print Network (OSTI)

Supermarkets use 3 percent of UK energy. To satisfy building regulations supermarket buildings are modeled in considerable detail. Lighting, occupancy, and small electrical energy impacts are included in this modeling. However, refrigeration energy is not, as it is classified as process energy rather than building related. Refrigeration energy, which can be very significant, is therefore currently unregulated and as a result, heat transfers related to refrigeration cabinets are typically not incorporated in modeling of the building at design stage. This paper explores the comparative energy demands of supermarket stores modeled, using a simple first order dynamic model, executed on Excel, and optimized firstly with, and secondly without, the cooling effect of refrigeration cabinets included in the model. A recently built supermarket is modeled. Results suggest that the energy demand of a new store could be reduced by 15 to 25 percent by improvement of the building envelope design with process energy included in the modeling.

Hill, F.; Edwards, R.; Levermore, G.

2012-01-01T23:59:59.000Z

407

Model documentation report: Residential sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

NONE

1998-01-01T23:59:59.000Z

408

Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)  

Reports and Publications (EIA)

In the residential and commercial sectors, heating and cooling account for more than 40 percent of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

Information Center

2005-04-01T23:59:59.000Z

409

Modeling, Estimation, and Control in Energy Systems: Batteries & Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Modeling, Estimation, and Control in Energy Systems: Batteries & Demand Response Scott Moura Assistant Professor Civl & Environmental Engineering University of California, Berkeley EETD | LBNL Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 1 Source: Vaclav Smil Estimates from Energy Transitions Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 2 Energy Initiatives Denmark 50% wind penetration by 2025 Brazil uses 86% renewables China's aggressive energy/carbon intensity reduction EV Everywhere SunShot Green Button Zero emissions vehicle (ZEV) 33% renewables by 2020 Go Solar California Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 3 Energy Systems of Interest Energy storage Smart Grids (e.g., batteries) (e.g., demand response) Scott Moura | UC Berkeley Control, Batts, DR December 4, 2013 | Slide 4 Energy

410

Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa (Poster)  

DOE Green Energy (OSTI)

Approximately 1.6 billion people worldwide do not have access to electricity, and roughly 2.4 billion people rely on traditional biomass fuels to meet their heating and cooking needs. Lack of access to and use of energy - or energy poverty - has been recognized as a barrier to reaching the Millennium Development Goals (MDGs) and other targeted efforts to improve health and quality of life. Reducing reliance on traditional biomass can substantially reduce indoor air pollution-related morbidity and mortality; increasing access to lighting and refrigeration can improve educational and economic opportunities. Though targeted electrification efforts have had success within Latin America and East Asia (reaching electrification rates above 85%), sub-Saharan Africa has maintained electrification rates below 25% (IEA 2004).

Cowlin, S.; Heimiller, D.; Bilello, D.; Renne, D.

2008-10-01T23:59:59.000Z

411

Regional Differences in the Price-Elasticity of Demand for Energy  

DOE Green Energy (OSTI)

At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

Bernstein, M. A.; Griffin, J.

2006-02-01T23:59:59.000Z

412

Demand Response and Smart Metering Policy Actions Since the Energy Policy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.demandresponsesmartgrid.org/Resources/Documents/Final_NCEP_Report_ Equivalent URI: cleanenergysolutions.org/content/demand-response-and-smart-metering-po Language: English Policies: Regulations

413

Consensus forecast of U. S. energy supply and demand to the year 2000  

DOE Green Energy (OSTI)

Methods used in forecasting energy supply and demand are described, and recent forecasts are reviewed briefly. Forecasts to the year 2000 are displayed in tables and graphs and are used to prepare consensus forecasts for each form of fuel and energy supply. Fuel demand and energy use by consuming sector are tabulated for 1972 and 1975 for the various fuel forms. The distribution of energy consumption by use sector, as projected for the years 1985 and 2000 in the ERDA-48 planning report (Scenario V), is normalized to match the consensus energy supply forecasts. The results are tabulated listing future demand for each fuel and energy form by each major energy-use category. Recent estimates of U.S. energy resources are also reviewed briefly and are presented in tables for each fuel and energy form. The outlook for fossil fuel resources to the year 2040, as developed by the Institute for Energy Analysis at the Oak Ridge Associated Universities, is also presented.

Lane, J.A.

1976-02-01T23:59:59.000Z

414

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

415

Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)  

Reports and Publications (EIA)

Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

Information Center

2007-03-11T23:59:59.000Z

416

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents (OSTI)

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2006-12-12T23:59:59.000Z

417

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices  

DOE Patents (OSTI)

Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

2011-12-06T23:59:59.000Z

418

Utilization of Energy Efficiency and Demand Response as Resources for Transmission and Distribution Planning  

Science Conference Proceedings (OSTI)

EPRI began its Energy Efficiency Initiative in early 2007. Initiative research, which covers numerous topics associated with energy efficiency and demand management, is categorized into three areas: analytics, infrastructure, and devices. The project described in this report details the Initiatives analytics element, which deals with methods and tools for analyzing aspects of the use of energy efficiency as supply resource, including measurement and verification, inclusion in generation planning, emissi...

2008-02-05T23:59:59.000Z

419

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

follows: EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) HRDCost:maximum fraction of electricity demand to be met by demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

420

Vision for cross-layer optimization to address the dual challenges of energy and reliability  

Science Conference Proceedings (OSTI)

We are rapidly approaching an inflection point where the conventional target of producing perfect, identical transistors that operate without upset can no longer be maintained while continuing to reduce the energy per operation. With power requirements already limiting chip performance, continuing to demand perfect, upset-free transistors would mean the end of scaling benefits. The big challenges in device variability and reliability are driven by uncommon tails in distributions, infrequent upsets, one-size-fits-all technology requirements, and a lack of information about the context of each operation. Solutions co-designed across traditional layer boundaries in our system stack can change the game, allowing architecture and software (a) to compensate for uncommon variation, environments, and events, (b) to pass down invariants and requirements for the computation, and (c) to monitor the health of collections of deVices. Cross-layer codesign provides a path to continue extracting benefits from further scaled technologies despite the fact that they may be less predictable and more variable. While some limited multi-layer mitigation strategies do exist, to move forward redefining traditional layer abstractions and developing a framework that facilitates cross-layer collaboration is necessary.

Quinn, Heather M [Los Alamos National Laboratory; Dehon, Andre [U. PENN; Carter, Nicholas P [INTEL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration  

SciTech Connect

The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

1992-09-01T23:59:59.000Z

422

A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of  

NLE Websites -- All DOE Office Websites (Extended Search)

Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year ActualWeather Data Title A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year ActualWeather Data Publication Type Journal Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Buildings consume more than one third of the world's total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

423

Wind Energy Research Penn State has the broad multi-disciplinary expertise needed to address the interwoven  

E-Print Network (OSTI)

Wind Energy Research Penn State has the broad multi-disciplinary expertise needed to address the interwoven technological, economic, environmental, and societal barriers associated with wind energy and needs and have the capabilities required to conceptualize, develop and evaluate wind energy systems

Lee, Dongwon

424

Survey and forecast of marketplace supply and demand for energy- efficient lighting products  

SciTech Connect

The rapid growth in demand for energy-efficient lighting products has led to supply shortages for certain products. To understand the near-term (1- to 5-year) market for energy-efficient lighting products, a selected set of utilities and lighting product manufacturers were surveyed in early 1991. Two major U. S. government programs, EPA's Green Lights and DOE's Federal Relighting Initiative, were also examined to assess their effect on product demand. Lighting product manufacturers predicted significant growth through 1995. Lamp manufacturers indicated that compact fluorescent lamp shipments tripled between 1988 and 1991, and predicted that shipments would again triple, rising from 25 million units in 1991 to 72 million units in 1995. Ballast manufacturers predicted that demand for power-factorcorrected ballasts (both magnetic and electronic) would grow from 59.4 million units in 1991 to 71.1 million units in 1995. Electronic ballasts were predicted to grow from 11% of ballast demand in 1991 to 40% in 1995. Manufacturers projected that electronic ballast supply shortages would continue until late 1992. Lamp and ballast producers indicated that they had difficulty in determining what additional supply requirements might result due to demand created by utility programs. Using forecasts from 27 surveyed utilities and assumptions regarding the growth of U. S. utility lighting DSM programs, low, median, and high forecasts were developed for utility expenditures for lighting incentives through 1994. The projected median figure for 1992 was $316 million, while for 1994, the projected median figure was $547 million. The allocation of incentive dollars to various products and the number of units needed to meet utility-stimulated demand were also projected. To provide a better connection between future supply and demand, a common database is needed that captures detailed DSM program information including incentive dollars and unit-volume mix by product type.

Gough, A. (Lighting Research Inst., New York, NY (United States)); Blevins, R. (Plexus Research, Inc., Donegal, PA (United States))

1992-12-01T23:59:59.000Z

425

Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya  

E-Print Network (OSTI)

Analysis Water flows, energy demand, and market analysis of the informal water sector in Kisumu Available online xxxx Keywords: Informal water sector Water flows Developing countries Water market analysis to cope with popu- lation growth. Informal water businesses fulfill unmet water supply needs, yet little

Elimelech, Menachem

426

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

than relying on central-station electricity generation and purchase of natural gas for heating and DER under uncertain electricity and natural gas prices · Section 5 summarizes the findings Control of Distributed Energy Resources and Demand Response under Uncertainty 3 · FPt: wholesale natural

427

Barriers to reducing energy demand in existing building stock -a perspective based on  

E-Print Network (OSTI)

Barriers to reducing energy demand in existing building stock - a perspective based on observation incentives for replacing the worst boilers, installing insulation funding for businesses and charities to push incentives, offer advice, develop new interventions building regs that apply to new boilers

Carletta, Jean

428

U-051: Skype Discloses IP Addresses to Remote Users | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51: Skype Discloses IP Addresses to Remote Users 51: Skype Discloses IP Addresses to Remote Users U-051: Skype Discloses IP Addresses to Remote Users December 5, 2011 - 7:00am Addthis PROBLEM: A remote user can determine the IP address of a Skype user. PLATFORM: Skype application ABSTRACT: Skype Discloses IP Addresses to Remote Users reference LINKS: SecurityTracker Alert ID: 1026370 Forbes: Skype Flaw IMPACT ASSESSMENT: High Discussion: A remote user can initiate a Skype call to a target user to determine the target user's IP address and then terminate the call before the target user's Skype application has indicated an incoming call. The remote user does not need to be on the target user's contact list. Armed with an IP address, hackers can uncover specific information about victims, including who they chat with, what they download while online, and

429

Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the U.S. (2010 - 2030)  

Science Conference Proceedings (OSTI)

This report documents the results of an exhaustive study to assess the achievable potential for electricity energy savings and peak demand reduction from energy efficiency and demand response programs through 2030. This achievable potential represents an estimated range of savings attainable through programs that encourage adoption of energy-efficient technologies, taking into consideration technical, economic, and market constraints.

2009-01-14T23:59:59.000Z

430

Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study  

E-Print Network (OSTI)

A load research project by the Florida Power Corporation (FPC) is monitoring 200 residences in Central Florida, collecting detailed end-use load data. The monitoring is being performed to better estimate the impact of FPC's load control program, as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis.

Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

2000-01-01T23:59:59.000Z

431

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

download EMCS download Sub-metering Real-time Connectivityof diagnostic testing, sub-metering, and performancecoincident demand at sub-metering S Compare to historical

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

432

Energy Demand and Emissions in Building in China: Scenarios and Policy Options  

E-Print Network (OSTI)

Recent rapid growth of energy use in China exerts great pressure on the energy supply and environment. This study provides scenarios of future energy development in buildings, including urban residential, rural residential and service sectors (not including transport), taking into account the most up-to-date data and recent policy discussions that will affect future economic, population, and energy supply trends. To understand the role of policy options including technology options and countermeasures, two scenarios were defined, which represent the range of plausible futures for energy development in buildings. This is also part of an energy and emission scenario study for the IPAC (Integrated Policy Assessment Model for China) modeling team. The results from quantitative analysis show that energy demand in buildings in China could increase quickly, as high as 666 million in 2030. However, policies and technologies could contribute a lot to energy demand savings, which could be 28% energy savings compared with the baseline scenario. There is still space for further energy savings if more advanced technologies could be fully diffused.

Kejun, J.; Xiulian, H.

2006-01-01T23:59:59.000Z

433

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network (OSTI)

transporation fuels. Currently, biofuels such as ethanol areefficiency of starch-based biofuels is however not optimal,address these roadblocks in biofuels production. JBEI draws

Blanch, Harvey

2010-01-01T23:59:59.000Z

434

Kitchen Table Strategy: Home Inspectors Driving Demand for Home Energy Upgrades  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20/2012 20/2012 1 Benjamin Gromicko, InterNACHI "Kitchen Table" Strategy: Home Inspectors Driving Demand for Home Energy Upgrades 3/20/2012 2 Benjamin Gromicko, InterNACHI "Although the home performance industry's delivery of comprehensive energy and comfort improvements has been growing across the country, it continues to struggle in creating consumer attention and demand. Our industry's delivery timing is off. We are not yet engaging the homeowner at their sweet spot of making improvements -- right after they purchase a home! This is when they move most aggressively with all sorts of home improvement projects -- and, unfortunately, seldom with any concerns of energy use. I strongly believe the home inspection industry is in a prime position to educate new homeowners on the long-term

435

Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Victoria High School in Victoria, Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit period. Moreover, retrofit savings calculation was complex since pre-retrofit data consisted of only monthly utility data while hourly monitored data are available for the post-retrofit period. This report describes the method in which we have performed retrofit energy and demand savings in Victoria High School. A previous report described the procedure adopted when no pre-retrofit data are available. We have only used Unnormalized Utility Bills Comparison ,or the Level-0 approach to determine electricity (energy and demand) and gas energy savings for VHS.

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

436

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

Science Conference Proceedings (OSTI)

The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

2009-05-26T23:59:59.000Z

437

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

New challenges of Japanese energy efficiency program by Topto 2030 Considering Energy Efficiency Standards Top-Runnerof Energy for Energy Efficiency and Renewable Energy,

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

438

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilities.also provided through the Demand Response Research Center (of Fully Automated Demand Response in Large Facilities

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

439

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large FacilitiesNYSERDA) and the Demand Response Research Center (LLC Working Group 2 Demand Response Program Evaluation

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

440

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

442

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network (OSTI)

Fuels: The Joint BioEnergy Institute Harvey W. Blanch ,,,, * Joint BioEnergy Institute, Department of Chemicalbiomass monomers. The Joint BioEnergy Institute (JBEI) is a

Blanch, Harvey

2010-01-01T23:59:59.000Z

443

Program Strategies and Results for Californias Energy Efficiency and Demand Response Markets  

E-Print Network (OSTI)

Global Energy Partners provides a review of Californias strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC), is presented along with special efforts being made in support of industrial end users. The interrelationship between the CEC and the California Public Utility Commission (CPUC) with regard to advancing demand side programs is highlighted. The specific cost recovery mechanisms put in place by the CPUC is discussed, including Californias experience with revenue decoupling, public purpose funds, and avoided cost calculations. Next, the role as energy efficiency (EE) and demand response (DR) program implementer played by each of the state Investor Owned Utilities (IOUs) is outlined. Each utility is responsible for serving major end use market segments with target programs designed to provide unique value. Within the industrial sector, there is special attention paid to the needs of the various sub-markets such as oil refining, agriculture, food processing, water and wastewater, manufacturing, and others. A review is presented of how EE and DR measures are selected, how incentive values are determined, which customers are eligible for programs, and how programs are evaluated to gage effectiveness. Lastly, mechanisms used by the IOUs to deliver industrial EE and DR incentive programs are discussed. This includes a review of core programs administered by the utilities as well as subcontracted programs administered by third party implementers and local government partners. Global Energy Partners will offer specific examples of program experience in the oil & gas, agriculture, and food processing sectors, and will also highlight program success within the emerging automated demand response market.

Ehrhard, R.; Hamilton, G.

2008-01-01T23:59:59.000Z

444

Address List  

NLE Websites -- All DOE Office Websites (Extended Search)

Address List for 2 nd U.S.-China Symposium on CO 2 Emissions Control Science & Technology Participants No. Name Sex Title Organization Address Phone E-Mail 1 Ah-Hyung Alissa Park F...

445

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

all the test days and maximum demand savings for the bestin Table 4. Average Maximum Demand Demand Savings SavingsTable 4. Average and maximum demand savings results from

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

446

Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs for the Tennessee Valley Authority  

Science Conference Proceedings (OSTI)

This report documents the results of a study to assess the achievable potential for electricity energy savings and peak demand reductions for the Tennessee Valley Authority (TVA) for 2010-2030. The approach involved applying the methodology and technology data developed for the Electric Power Research Institute (EPRI) National Study on the same subject (product number 1016987), adapted to the specific market sector characteristics of the Tennessee Valley. The efficient technologies and measures considere...

2010-03-24T23:59:59.000Z

447

Policy implications of the GRI Baseline Projection of US Energy Supply and Demand to 2010; 1991  

Science Conference Proceedings (OSTI)

The 1991 edition of the GRI Baseline Projection of U.S. Energy Supply and Demand is summarized. Three broad implications for the future of the natural gas industry are highlighted: the impact of the Middle East turmoil on the expected price of crude oil and the potentional for increased interfuel price competition between natural gas and petroleum in the mid-1990s if world oil prices return to lower levels.

Not Available

1990-12-01T23:59:59.000Z

448

ORNL Residential Reference House Energy Demand model (ORNL-RRHED). Volume 4. Case studies  

Science Conference Proceedings (OSTI)

This report describes the use and structure of the ORNL Residential Reference House Energy Demand Model (RRHED). RRHED is a computer-based engineering-economic end-use simulation model which forecasts energy demand based on a detailed evaluation of how households use energy for particular appliances. The report is organized into four volumes. The first volume provides an overview of the modeling approach and gives a short summary of the material presented in the other three volumes. The second volume is a user reference guide which provides the details necessary for users of the model to run the code and make changes to fit their particular application. Volume 3 presents the basic theoretical rationale for the RRHED model structure. The last volume reports on the application of the model to the analysis of two different kinds of issues: one is the examination of conservation policy impacts and the other is the forecasting of electricity demand in a need for power assessment. The report has two major objectives. The first is to provide a reader with little background in end-use modeling with an introduction to how the RRHED model works. The second is to provide the details needed by a user of the model to understand not only the theory behind the model specification, but also the structure of the code. This information will allow for the modification of subroutines to fit particular applications.

Hamblin, D.M.; Thomas, B. Jr.; Maddigan, R.J.; Forman, C.W. Jr.; Bibo, L.J.; McKeehan, K.M.

1986-02-01T23:59:59.000Z

449

Demand Side Energy Saving though Proper Construction Practices and Materials Selection  

E-Print Network (OSTI)

Energy consumed during the construction of buildings and structures, including the embodied energy of the concrete and other construction materials, represent a considerable percentage that may reach 40% of the total energy consumed during the whole service life of the structure. Reducing energy consumed in the construction practices along with reducing the embodied energy of concrete and building materials, therefore, are of major importance. Reducing concrete's embodied energy represents one of the major green features of buildings and an important tool to improve sustainability, save resources for coming generations and reduce greenhouse gas emissions. In this paper, different methods to reduce concrete's embodied energy are discussed and their effect on demand side energy are assessed. Using local materials, pozzolanic blended cements, fillers, along with specifying 56 days strength in design are discussed and assessed. Proper mix design, quality control and proper architectural design also affect and reduce embodied energy. Improving durability, regular maintenance and scheduled repair are essential to increase the expected service life of buildings and hence reduce overall resources consumption and reduce energy. These effects are discussed and quantified. Construction practices also consume considerable amount of energy. The effect of transporting, conveying, pouring, finishing and curing concrete on energy consumption are also discussed.

El-Hawary, M.

2010-01-01T23:59:59.000Z

450

The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market  

Science Conference Proceedings (OSTI)

This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

Baek, Young Sun [ORNL; Hadley, Stanton W [ORNL

2012-01-01T23:59:59.000Z

451

A Successful Case Study of Small Business Energy Efficiency and Demand Response with Communicating Thermostats  

Science Conference Proceedings (OSTI)

This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. Overall results show that pilot participants had energy savings of 20%, and the potential for an additional 14% to 20% load drop during a 100 F demand response event. In addition to the efficiency-related bill savings, participants on the dynamic rate saved an estimated 5% on their energy costs compared to the standard rate. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

Herter, Karen; Wayland, Seth; Rasin, Josh

2009-08-12T23:59:59.000Z

452

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

453

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

market Energy providers Target users Program manager (energy provider), energy manager (customer) Commercialization Data Access Trendmarket Energy service providers, utilities Target users Energy manager, operator Commercialization Data Access Trend

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

454

Policy implications of the GRI baseline projection of US energy supply and demand to 2015, 1997  

SciTech Connect

The summary of the 1997 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand discusses the implications of the projection that are important for GRI strategic planning and scenario development, and for the gas industry. The projection indicates that with adequate technology advances, natural gas will play a major role in an increasingly competitive energy mix well into the next century. It is expected that the expansion in gas markets experienced over the last decade will continue over the long term.

NONE

1997-03-01T23:59:59.000Z

455

Event:GGKP-Green Growth: Addressing the Knowledge Gaps Day 1 | Open Energy  

Open Energy Info (EERE)

GGKP-Green Growth: Addressing the Knowledge Gaps: on 2012/01/12 GGKP-Green Growth: Addressing the Knowledge Gaps: on 2012/01/12 The Green Growth Knowledge Platform (GGKP) will hold its inaugural conference, "Green Growth: Addressing the Knowledge Gaps," January 12-13, 2012, in Mexico City Mexico. The conference aims to take stock of the current understanding of the economics of green growth; engage researchers and practitioners in an ongoing dialogue to increase understanding of how green growth approaches can be applied in the field; identify knowledge gaps and establish priorities for knowledge-building work and implementation; and launch follow-on efforts. The conference location will allow attendees to benefit from Mexico's experiences from taking a leading role internationally in advocating pathways to green development.

456

Supplemental Environmental Projects Using Renewable Energy: A New Approach to Addressing Air Quality Violation Penalties  

DOE Green Energy (OSTI)

Supplemental environmental projects, or SEPs, are environmentally beneficial projects that offer pollution prevention, energy efficiency, green energy, and community-based programs that may include investment in cost-effective alternative energy technologies, such as wind energy. This fact sheet explains how SEPs can help companies mitigate all or part of penalties imposed as a result of air pollution violations.

Sinclair, K.

2001-08-09T23:59:59.000Z

457

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

E-Print Network (OSTI)

research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric,

Blanch, Harvey

2010-01-01T23:59:59.000Z

458

The Window Market in Texas: Opportunities for Energy Savings and Demand Reduction  

E-Print Network (OSTI)

The use of high performance windows represents a promising opportunity to reduce energy consumption and summer electrical demand in homes and commercial buildings in Texas and neighboring states. While low-e glass coatings and other energy efficiency features have become standard features in windows in states with building energy codes, their sales in the Texas market remain limited. This paper presents findings from a pilot energy efficiency program sponsored by American Electric Power Company (AEP). The Texas Window Initiative (TWI) has conducted over 160 on-site training sessions for hardware store sales personnel and builders across the AEP service areas in Texas over the past two years. Companion promotional activities have also been completed. The past one and a half years have witnessed a very significant increase in the market penetration of energy efficient windows in the AEP service area; from about 2.5% of total window sales in early 2000 to roughly 25% (according to preliminary data) by the end of 2001.1 Some of this increase is attributable to TWI's activities, although other factors may be responsible for a portion of this increase as well. The market for windows in Texas is described. TWI's approach to promoting energy efficient windows is reviewed. Initial impact estimates from TWI's activities are presented. The technical potential for energy savings and utility peak demand reduction from the installation of energy efficient windows in Texas is presented. The paper also provides some speculation on how the window market might be impacted by the adoption of building energy codes in Texas.

Zarnikau, J.; Campbell, L.

2002-01-01T23:59:59.000Z

459

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

2002). 2. Market Categorization Energy Information Systemsincreasing market for energy-related information services (Information Service area Allover US Service started Cost Target market Energy

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

460

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

economy, demography and energy prices, which implies thatgrowth, demography, energy prices, and climate on the futuredemand is determined by energy price indicators, taking into

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program, of theprogram managers and building energy managers by allowing

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

462

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

also known as EMS (Energy Management Systems), BMS (Buildingfacility operator or energy management systems, often wasteand Control Systems Energy Management Systems Environmental

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

463

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

464

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

465

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand: 2010 Year in Review U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Introduction Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption increased in all sectors except commercial and institutional while total coal stocks fell slightly for the year. Coal consumption in the electric power sector in 2010 was higher by 4.5 percent, while coking coal consumption increased by 37.9 percent and the other industrial sector increased by 7.1 percent. The commercial and

466

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

467

Model documentation report: Residential sector demand module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1997-01-01T23:59:59.000Z

468

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

and benchmark energy use among a portfolio of sites by plotting energy-use data for multiple buildings and

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

469

Optimal energy management of a micro-grid with renewable energy resources and demand response  

Science Conference Proceedings (OSTI)

With the introduction of smart energy grids and extensive penetration of renewable energy resources in distribution networks

2013-01-01T23:59:59.000Z

470

Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA  

SciTech Connect

At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

Shonder, J.A.; Hughes, P.J.

1997-06-01T23:59:59.000Z

471

ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit  

E-Print Network (OSTI)

ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand savings from energy management projects applied to residential, commercial or industrial buildings. Such measurements can serve as the basis for commercial transactions between Energy Service Companies (ESCOs) and their customers, or other energy conservation providers that rely on energy savings as the basis for repayment of the costs of the retrofit. When applied properly, ASHRAE Guideline 14 is expected to provide adequate assurance for the payment of services by allowing for well specified measurement methods that provide reasonably accurate savings calculations. ASHRAE Guideline 14 may also be used by governments to calculate pollution reductions from energy efficiency activities. Since Guideline 14 is intended to be applied to an individual building, or a few buildings served by a utility meter, large scale utility energy conservation programs, such as those involving statistical sampling, are not addressed by the current version of Guideline 14. Furthermore, metering standards and procedures for calculating savings from modifications to major industrial process loads are also not covered. This paper presents an overview of the measurement methods contained in ASHRAE Guideline 14 , including a discussion about how they were developed, and their intended relationship with other national protocols for measuring savings from energy conservation programs, such as the USDOE's International Performance Measurement and Verification Protocols (IPMVP).

Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

2001-01-01T23:59:59.000Z

472

Event:GGKP-Green Growth: Addressing the Knowledge Gaps Day 2 | Open Energy  

Open Energy Info (EERE)

3 3 The Green Growth Knowledge Platform (GGKP) will hold its inaugural conference, "Green Growth: Addressing the Knowledge Gaps," January 12-13, 2012, in Mexico City Mexico. The conference aims to take stock of the current understanding of the economics of green growth; engage researchers and practitioners in an ongoing dialogue to increase understanding of how green growth approaches can be applied in the field; identify knowledge gaps and establish priorities for knowledge-building work and implementation; and launch follow-on efforts. The conference location will allow attendees to benefit from Mexico's experiences from taking a leading role internationally in advocating pathways to green development. Event Details Name GGKP-Green Growth: Addressing the Knowledge Gaps

473

Chapter 10, Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Peak Demand and 0: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 10 - 1 Chapter 10 - Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy Savings .......................................3 3 Key Concepts ..........................................................................................................................5 4 Methods of Determining Peak Demand and Time-Differentiated Energy Impacts ...............7

474

Global Energy Technology Strategy: Addressing Climate Change Phase 2 Findings from an international Public-Private Sponsored Research Program  

DOE Green Energy (OSTI)

This book examines the role of global energy technology in addressing climate change. The book considers the nature of the climate change challenge and the role of energy in the issue. It goes on to consider the implications for the evolution of the global energy system and the potential value of technology availability, development and deployment. Six technology systems are identified for special consideration: CO2 capture and storage, Biotechnology, Hydrogen systems, Nuclear energy, Wind and solar energy, and End-use energy technologies. In addition, consideration is given to the role of non-CO2 gases in climate change as well as the potential of technology development and deployment to reduce non-CO2 emissions. Present trends in energy R&D are examined and potentially fruitful avenues for research. The book concludes with a set of key findings.

Edmonds, James A.; Wise, Marshall A.; Dooley, James J.; Kim, Son H.; Smith, Steven J.; Runci, Paul J.; Clarke, Leon E.; Malone, Elizabeth L.; Stokes, Gerald M.

2007-05-01T23:59:59.000Z

475

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

476

Intelligent energy management: impact of demand response and plug-in electric vehicles in a smart grid environment  

Science Conference Proceedings (OSTI)

Modernization of the power grid to meet the growing demand requires significant amount of operational, technological, and infrastructural overhaul. The Department of Energy's "Grid 2030" strategic vision outlines the action plan to alleviate the concerns ... Keywords: controlled charging, demand response, plug in hybrid electric vehicles, smart grid

Seshadri Srinivasa Raghavan; Alireza Khaligh

2012-03-01T23:59:59.000Z

477

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

12 Table 4. Average and Maximum Demand Savings Results fromall the test days and maximum demand savings for the best4. Table 4. Average and Maximum Demand Savings Results from

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

478

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

and M.A. Piette, J. Braun Peak Demand Reduction from Pre-to reduce Electrical Peak Demands in Commercial BuildingsManagement (Daily) - TOU - Peak Demand Charges - Grid Peak -

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

479

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

electricity ($/kWh) demand ($/kW) natural gas 0.035 forelectricity ($/kWh) demand ($/kW) natural gas $/kWh $/thermnatural gas tariff combined with the almost constant demand

Stadler, Michael

2009-01-01T23:59:59.000Z

480

Opportunities for Energy Efficiency and Demand Response in Corrugated Cardboard Manufacturing Facilities  

E-Print Network (OSTI)

Corrugated cardboard manufacturing is an energy intensive process, in both electric power and steam. Based on the US Census Bureau, there are approximately 1,733 corrugated and solid fiber box manufacturing facilities in the United States. The corrugated and solid fiber box manufacturing enjoyed a growth in number of plants of 4.9% between 1992 and 1997 (U.S. Census, 1997). In this paper, details of the processes in corrugated cardboard production from an energy consumption viewpoint will be discussed, current prevalent practices in the industry will be elaborated and potential measures for energy use and cost savings will be outlined. The results from detailed energy audits of 12 large corrugated cardboard production plants in California will be discussed, their energy consumption will be compared, and potential savings on the national scale will be addressed.

Chow, S.; Hackett, B.; Ganji, A. R.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "addressing energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

482

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-08-01T23:59:59.000Z

483

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-01-01T23:59:59.000Z

484

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

485

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

Science Conference Proceedings (OSTI)

We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

2010-06-01T23:59:59.000Z

486

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

Science Conference Proceedings (OSTI)

This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

2010-12-22T23:59:59.000Z

487

Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program  

Science Conference Proceedings (OSTI)

OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

Woods, Michael; /SLAC

2012-02-15T23:59:59.000Z

488