Powered by Deep Web Technologies
Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Students Innovate to Address Gas Shortages Following Hurricane Sandy |  

Broader source: Energy.gov (indexed) [DOE]

Innovate to Address Gas Shortages Following Hurricane Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Bob Brese Bob Brese Chief Information Officer Ian Kalin Director of the Energy Data Initiative What are the key facts? Students in New Jersey are using open data and online maps to support their community in the aftermath of Hurricane Sandy. As part of our efforts in helping with Hurricane Sandy restoration efforts, the Energy Department is working closely with other federal partners, state

2

Students Innovate to Address Gas Shortages Following Hurricane Sandy |  

Broader source: Energy.gov (indexed) [DOE]

Students Innovate to Address Gas Shortages Following Hurricane Students Innovate to Address Gas Shortages Following Hurricane Sandy Students Innovate to Address Gas Shortages Following Hurricane Sandy November 9, 2012 - 3:43pm Addthis Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Franklin High School students working on their online map of gas and charging stations. | Photo courtesy Dayana Bustamante Bob Brese Bob Brese Chief Information Officer Ian Kalin Director of the Energy Data Initiative What are the key facts? Students in New Jersey are using open data and online maps to support their community in the aftermath of Hurricane Sandy. As part of our efforts in helping with Hurricane Sandy restoration efforts, the Energy Department is working closely with other federal partners, state

3

The Domestic Natural Gas Shortage in China.  

E-Print Network [OSTI]

?? This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fastů (more)

Guo, Ting

2014-01-01T23:59:59.000Z

4

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

5

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

6

Helping Local Officials Address Fuel Shortages | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages November 3, 2012 - 6:30pm Addthis The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Local utilities have restored power to over 6 million customers, but we still have 2.5 million to go. More than 70,000 linemen, technicians and other workers from around the country are working around the clock to turn power back on.

7

Helping Local Officials Address Fuel Shortages | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages Helping Local Officials Address Fuel Shortages November 3, 2012 - 6:30pm Addthis The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. The Energy Department continues to work with its federal and state partners to restore critical energy infrastructure throughout the region affected by Hurricane Sandy. Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Local utilities have restored power to over 6 million customers, but we still have 2.5 million to go. More than 70,000 linemen, technicians and other workers from around the country are working around the clock to turn power back on.

8

Ames Laboratory to Lead New Research Effort to Address Shortages in Rare  

Broader source: Energy.gov (indexed) [DOE]

Laboratory to Lead New Research Effort to Address Shortages in Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials Ames Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials January 9, 2013 - 12:13pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy announced today that a team led by Ames Laboratory in Ames, Iowa, has been selected for an award of up to $120 million over five years to establish an Energy Innovation Hub that will develop solutions to the domestic shortages of rare earth metals and other materials critical for U.S. energy security. The new research center, which will be named the Critical Materials Institute (CMI), will bring together leading researchers from academia, four Department of Energy

9

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Electricity Shortage in Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in the summer of 2001 during the peak afternoon demand hours. These outages are expected to affect almost all sectors of the State's economy, including crude oil and natural gas producers, petroleum refineries, and pipelines. This report addresses the potential impact of rotating electrical

10

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Reports and Publications (EIA)

This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

2001-01-01T23:59:59.000Z

11

Natural Gas: From Shortages to Abundance in the U.S.  

E-Print Network [OSTI]

The recent dramatic and largely unanticipated growth in the current and expected future production of shale gas, and the related developments in the production of shale oil, have dramatically changed the energy future of the U.S. and potentially of the world compared to what experts were forecasting only a few years ago. These changes would not have been realized as quickly and efficiently absent deregulation of the wellhead price of natural gas, unbundling of gas supplies from pipeline transportation services, the associated development of efficient liquid markets for natural gas, and reforms to the licensing and regulation of prices for gas pipelines charge to move gas from where it is produced to where it is consumed. This economic platform supported the integration of technological advances in vertical drilling, downhole telemetry, horizontal drilling, monitoring and control of deep drilling equipment, and hydraulic fracturing to exploit economically shale gas deposits that were identified long ago, but considered to be uneconomical until recently. I. Natural Gas Wellhead Price and Pipeline Regulation Federal regulation of the natural gas industry began with the Natural Gas Act of 1938 (NGA). The NGA gave the Federal Power Commission (FPC), later the Federal Energy Regulatory Commission (FERC), the authority to license the construction and expansion of new interstate natural gas pipelines, to ensure that they are operated safely, and to regulate the prices 1

Paul L. Joskow

2012-01-01T23:59:59.000Z

12

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical  

Broader source: Energy.gov (indexed) [DOE]

Okaloosa Gas District Smart Grid RFI: Addressing Policy and Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District (The District) an Independent Special District of the State of Florida is appreciative of the opportunity to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability's Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75 Fed. Reg. 57,006 (Sep. 17, 2010). Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation More Documents & Publications

13

Interagency Collaboration to Address Environmental Impacts of Shale Gas  

Broader source: Energy.gov (indexed) [DOE]

Interagency Collaboration to Address Environmental Impacts of Shale Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling April 23, 2013 - 12:06pm Addthis Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Washington, DC - A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy's National

14

Interagency Collaboration to Address Environmental Impacts of Shale Gas  

Broader source: Energy.gov (indexed) [DOE]

Interagency Collaboration to Address Environmental Impacts of Shale Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling April 23, 2013 - 12:06pm Addthis Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Dr. John Howard (right), Director of NIOSH and Dr. Anthony Cugini (left), Director of NETL announced the establishment of a research partnership to evaluate the environmental impacts of shale gas drilling. Washington, DC - A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy's National

15

State Oil and Gas Board State Oil and Gas Board Address Place...  

Open Energy Info (EERE)

Board State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Alabama http www gsa state al us ogb ogb html Alaska...

16

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition Secretary Bodman Addresses Turkmenistan Industrial Oil and Gas Exhibition November 16, 2007 - 4:31pm Addthis Holds Bilateral Discussion with President of Turkmenistan on Opening of Markets, Increased Investment, and Multiple Trade Routes ASHGABAT, TURKMENISTAN - U.S. Secretary of Energy Samuel W. Bodman today held bilateral energy discussions with the President of Turkmenistan and other senior Turkmenistan officials and delivered remarks to the Turkmenistan Industrial Oil and Gas Exhibition. Secretary Bodman highlighted the role of international investment in developing Turkmenistan's vast resources and expanding infrastructure. He also discussed the importance of establishing a stable and transparent

17

NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect (OSTI)

Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

Watkins, R; Leduc, D; Askew, N

2009-06-25T23:59:59.000Z

18

State Oil and Gas Board State Oil and Gas Board Address Place Zip Website  

Open Energy Info (EERE)

State Oil and Gas Board Address Place Zip Website State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Tuscaloosa Alabama http www gsa state al us ogb ogb html Alaska Division of Oil and Gas Alaska Division of Oil and Gas W th Ave Suite Anchorage Alaska http dog dnr alaska gov Alaska Oil and Gas Conservation Commission Alaska Oil and Gas Conservation Commission W th Ave Ste Anchorage Alaska http doa alaska gov ogc Arizona Oil and Gas Commission Arizona Oil and Gas Commission W Congress Street Suite Tucson Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Little Rock Arkansas http www aogc state ar us JDesignerPro JDPArkansas AR Welcome html California Division of Oil Gas and Geothermal Resources California

19

Conservation Before Shortage Proposed Shortage Criteria for  

E-Print Network [OSTI]

Conservation Before Shortage Proposed Shortage Criteria for Colorado River Operations I. Background, projects that reservoir levels at Lake Powell could head quickly towards the minimum power pool continued development of water supplies in the Upper Basin will further shrink available supplies

20

Oil and Gas Company Oil and Gas Company Address Place Zip Website  

Open Energy Info (EERE)

Company Oil and Gas Company Address Place Zip Website Company Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat Petroleum Company Damascus Syria http www afpc sy com new history htm Dolphin Energy Dolphin Energy Abu Dhabi Trade Center Building Abu Dhabi United Arab Emirates http www dolphinenergy com Public default index htm ExxonMobil ExxonMobil Las Colinas Boulevard Irving Texas http www exxonmobil com Corporate Gazprom Gazprom Nametkina St Moscow Russia http www gazprom com Gulfsands Petroleum Gulfsands Petroleum Cork Street London United Kingdom W1S LG http www gulfsands com s Home asp Kuwait Petroleum Corporation Kuwait Petroleum Corporation Safat Kuwait http www kpc com kw default aspx

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling  

Broader source: Energy.gov [DOE]

A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energyĺs National Energy Technology Laboratory and the National Institute for Occupational Safety and Health.

22

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid The undersigned members of the natural gas industry are pleased to submit for your consideration the following comments in response to the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability's Request for Information Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75 Fed. Reg. 57,006 (Sep. 17, 2010). The Request seeks comment on challenges that confront smart grid implementation and recommendations on how best to overcome those challenges. We believe abundant, domestic, low-carbon natural gas resources along with

23

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network [OSTI]

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have, that using natural gas for electricity generation is better than coal for the long-term healthSpeaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power

Boyer, Elizabeth W.

24

Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE  

Broader source: Energy.gov [DOE]

Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks, have been selected to receive a total of $28 million in funding from the U.S. Department of Energyĺs Office of Fossil Energy.

25

Ames Laboratory to Lead New Research Effort to Address Shortages...  

Energy Savers [EERE]

"Rare earth metals and other critical materials are essential to manufacturing wind turbines, electric vehicles, advanced batteries and a host of other products that are...

26

Native Village of Teller Addresses Heating Fuel Shortage, Improves...  

Broader source: Energy.gov (indexed) [DOE]

amounts of heating oil back to Teller. Brevig Mission, which was also running low on fuel, had plans to increase the price per gallon, thus raising the cost for Teller...

27

Homeowners: Respond to Fuel Shortages | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

are buying more fuel to power backup generators during electrical outages. All these factors may lead to fuel shortages, which will prompt local authorities and fuel suppliers...

28

Homeowners: Respond to Fuel Shortages | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Natural disasters and other hazards can impact the energy industry's ability to produce and distribute petroleum products, including gasoline, diesel fuel, and heating oil. At the same time, the demand for fuel may spike due to evacuations, or because consumers are buying more fuel to power backup generators during electrical outages. All these factors may lead to fuel shortages, which will prompt local authorities and fuel suppliers to prioritize getting fuel to key assets such as emergency operations centers, hospitals, food supply dealers, water supply plants, and telecommunication networks. Homeowners should keep the following tips in mind:

29

Business Owners: Prepare for Fuel Shortages | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Shortages Fuel Shortages Business Owners: Prepare for Fuel Shortages Business Owners: Prepare for Fuel Shortages You may need fuel for vehicles, generators, and other equipment to continue operating your business during an emergency. During a shortage, local authorities and fuel suppliers will prioritize getting fuel to key assets such as emergency operations centers, hospitals, food supply dealers, water supply plants, and telecommunication networks. Plan ahead to help make sure you have adequate supplies. Review your fuel supply contracts-Arrange priority contacts with fuel suppliers, including an out-of-region supplier, and include language for providing fuel supplies during an emergency. Can your fuel suppliers operate with no power? Do they have gravity-fed systems? What if your fuel

30

Densified Biomass Can Cost-Effectively Mitigate Greenhouse Gas Emissions and Address Energy Security in Thermal Applications  

Science Journals Connector (OSTI)

Total switchgrass production costs at the farm gate were $79.31/Mg (see SI for production cost detail). ... Replacing natural gas with biomass produces high, positive abatement costs and is not deemed to be a viable alternative. ... Zhang, Y.; McKechnie, J.; Cormier, D.; Lyng, R.; Mabee, W.; Ogino, A.; MacLean, H. L.Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada Environ. ...

Thomas O. Wilson; Frederick M. McNeal; Sabrina Spatari; David G. Abler; Paul R. Adler

2011-11-22T23:59:59.000Z

31

Oil shortages, climate change and collective action  

Science Journals Connector (OSTI)

...reality-such as market power and the difficulty of...of conventional oil, gas and coal reserves are...or 25- MW1 for coal-fired generation. Politicians might naively...carbon-efficient plant (e.g. gas fired) would have made more...

2011-01-01T23:59:59.000Z

32

The New Zealand Tourism Sector Skill Shortages and Training Needs  

E-Print Network [OSTI]

2 2009 The New Zealand Tourism Sector Skill Shortages and Training Needs Summary of findingS Extracts from the report for Projects International as consultant to the Aviation, Tourism and Travel Training Organisation (ATTTO) The New Zealand Tourism Research Institute AUT University, Auckland, New

33

STABILITY OF PRODUCTION-INVENTORY CONTROL SYSTEMS CONSIDERING INVENTORY SHORTAGES  

E-Print Network [OSTI]

STABILITY OF PRODUCTION-INVENTORY CONTROL SYSTEMS CONSIDERING INVENTORY SHORTAGES Jayendran@iitb.ac.in) Extended Abstract The modelling and analysis of the production-inventory control systems of manufacturing to examine the production and inventory dynamics is the application of system dynamics and control theoretic

Venkateswaran, Jayendran

34

Work Address:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BO SAULSBURY BO SAULSBURY Work Address: Home Address: Oak Ridge National Laboratory 12952 Buckley Road National Transportation Research Center Knoxville, TN 37934 Building NTRC-2, Room 118 (865) 288-0750 Oak Ridge, TN 37831-6479 (865) 574-4694 saulsburyjw@ornl.gov Technical Specialties: Land use planning Environmental and socioeconomic impact assessment National Environmental Policy Act (NEPA) project management Vehicle fuel economy Education: 1986 B. A., History (minors in English and Business), The University of Tennessee 1989 M. S., Planning, The University of Tennessee (Thesis title: Land Use Compatibility Planning for Airfield Environs: Intergovernmental Cooperation to Protect Land Users From the Effects of Aircraft Operations)

35

NATURAL GAS: Diversity for Profit  

Science Journals Connector (OSTI)

NATURAL GAS: Diversity for Profit ... "The current and future natural gas shortage may be a blessing in disguise. ... Getting involved will mean increased profitability by becoming an integrated total energy company and not just a marketer of natural gas, was the repeated message of the Institute of Gas Technology. ...

1969-12-01T23:59:59.000Z

36

Energy Shortage of Nonthermal Electrons in Powering a Solar  

Science Journals Connector (OSTI)

Within a deka-keV energy range, the power-law electron beams interacting with the solar atmosphere also result in the power-law bremsstrahlung of hard X-rays. The energy spectrum of electrons can thus be deduced from the observed hard X-ray spectrum, and the total energy carried by accelerated electrons can then be estimated. For quite a long time, one has always assumed the lower energy cutoff (Ec) of the power-law electron beams to be around 20 keV, an assumption that constitutes a main ingredient of the so-called standard picture of a solar flare, since the nonthermal electrons are substantial in powering a solar flare. However, there is in fact no solid observational basis for Ec = 20 keV. Here we present a quantitative method to determine Ec and its application to 14 BATSE/Compton Gamma Ray Observatory hard X-ray events. We find that Ec, varying from 47 to 141 keV in our samples, is on average 76.4 keV. The total energy carried by nonthermal electrons is therefore shown to be at least 1 order of magnitude lower than that derived by taking Ec = 20 keV. This energy shortage of nonthermal electrons in our sample hard X-ray events conflicts with the widely accepted scenario of a solar flare.

W. Q. Gan; Y. P. Li; J. Chang

2001-01-01T23:59:59.000Z

37

Research Projects to Address Technical Challenges Facing Small...  

Energy Savers [EERE]

Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Research Projects to Address Technical...

38

Local Leaders: Respond to Fuel Shortages | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the petroleum industry, and seek out information from industry associations like the Automobile Association of America and GasBuddy.com. Stay tuned also to local media reports, and...

39

Technological Insurance Against Shortages in Minerals and Metals  

Science Journals Connector (OSTI)

...un-touched. 3) We import 85 percent of our...than we use. 4) We import about 70 percent...VANADIUM 40 GYPSUM 37 PETROLEUM lInc Nat Gas 11 35...AFRICA MEXICO P R CHINA BOLIVIA PERU, CANADA...IMNPORTS Fig. 1. Imports supplied a significant...order that they may export inter-mediate or...

Ralph C. Kirby; Andrew S. Prokopovitsh

1976-02-20T23:59:59.000Z

40

change_address_111609  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHANGE OF ADDRESS and EMERGENCY NOTIFICATION CHANGE OF ADDRESS and EMERGENCY NOTIFICATION TO: HUMAN RESOURCES DATE: Z# Social Security # Print First Name Print Middle Name or Initial Print Last Name (Currently in Payroll System) Complete appropriate changes: NAME CHANGE: Print Name Change to ADDRESS CHANGE: Mailing Address City State Zip

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

World War II Fuel Shortages Spur Veteran into Action | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

World War II Fuel Shortages Spur Veteran into Action World War II Fuel Shortages Spur Veteran into Action World War II Fuel Shortages Spur Veteran into Action December 16, 2011 - 3:19pm Addthis Dr. Green (top row, third from the right) with his B-29 crew members in Xian, China. | Image courtesy of Dr. Alex Green. Dr. Green (top row, third from the right) with his B-29 crew members in Xian, China. | Image courtesy of Dr. Alex Green. Howard S. Marks Program Analyst On March 12, 1945, the newly-minted U.S. Army Air Corps Operations Analyst Alex E. S. Green was 28,000 feet above Kure Anchorage and nearby Hiroshima Bay. The Brooklyn, New York, native was serving aboard a B-29 reconnaissance aircraft. The crew's assigned mission was to find enemy ships before the planned U.S. invasion of Okinawa. During this time, now

42

World War II Fuel Shortages Spur Veteran into Action | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

World War II Fuel Shortages Spur Veteran into Action World War II Fuel Shortages Spur Veteran into Action World War II Fuel Shortages Spur Veteran into Action December 16, 2011 - 3:19pm Addthis Dr. Green (top row, third from the right) with his B-29 crew members in Xian, China. | Image courtesy of Dr. Alex Green. Dr. Green (top row, third from the right) with his B-29 crew members in Xian, China. | Image courtesy of Dr. Alex Green. Howard S. Marks Program Analyst On March 12, 1945, the newly-minted U.S. Army Air Corps Operations Analyst Alex E. S. Green was 28,000 feet above Kure Anchorage and nearby Hiroshima Bay. The Brooklyn, New York, native was serving aboard a B-29 reconnaissance aircraft. The crew's assigned mission was to find enemy ships before the planned U.S. invasion of Okinawa. During this time, now

43

An EOQ model for rebate value and selling-price-dependent demand rate with shortages  

Science Journals Connector (OSTI)

In this paper, we develop a deterministic purchasing inventory model for a single item over an infinite horizon. In addition, shortages are allowed and the unsatisfied demand is partially backlogged. The model is studied under the replenishment policy, shortages followed by inventory. The backlogging rate is any non-increasing function of the waiting time up to the next replenishment. The objective of this model is to maximise the Total Profit (TP), which includes sales revenue, purchase cost, the set-up cost, holding cost, rebate redemption cost, shortage cost and opportunity cost due to lost sales. Here, demand varies with price and rebate value. The existence and uniqueness of the proposed systems are examined. Finally, numerical examples are presented to determine the developed model and the solution procedure. Sensitivity analysis of the optimal solution with respect to major parameters is carried out. We propose a solution procedure to find the solution and obtain some managerial results by using sensitivity analysis.

M. Valliathal; R. Uthayakumar

2011-01-01T23:59:59.000Z

44

EIS-0065: Review & Establishment of Natural Gas Curtailment Priorities  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this statement as part of a comprehensive programmatic review of alternatives to existing federal policy on curtailment of natural gas deliveries during periods of shortage.

45

Ducklings Exhibit Substantial Energy-Saving Mechanisms as a Response to Short-Term Food Shortage  

E-Print Network [OSTI]

90 Ducklings Exhibit Substantial Energy-Saving Mechanisms as a Response to Short-Term Food Shortage platyrhyncos domesticus) exhibited any energy-saving mechanisms that could lessen the detrimental effects ex- hibited substantial energy-saving mechanisms as a response to diet restriction. After 5 d of diet

Bech, Claus

46

Architecture AddressingModes  

E-Print Network [OSTI]

MIPS R2000 Architecture and Assembly (Part 1) 1. CPU Registers 2. Byte Order 3. AddressingModes 4┬şendian byte order 3 2 1 0 0 1 2 3 Or Byte number #12; AddressingModes . MIPS is a load/store architecture . RICS -- Load/Store architecture -- All instructions have equal length of 4 bytes -- Every register can

Nguyen, Dat H.

47

Addressing Common Subsurface Challenges  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the President's Climate Action Plan, necessary to meet the 2050 greenhouse gas (GHG) emissions reduction target. Increasing domestic energy supply from greater hydrocarbon...

48

Addressing Missclassified Positions  

Broader source: Energy.gov (indexed) [DOE]

2 2009 2 2009 MEMORANDUM FOR HUMAN RESOURCE DIRECTORS FROM: CAPITAL OFFICER SUBJECT: GULDANCE MEMORANDUM #3: Addressing Misclassified Positions This memorandum provides policy guidance on how to consistently address misclassified positions within the Department and is effective immediately. There are several different circumstances that affect how a misclassified position will be addressed. These are discussed below: If it is determined that a position is classified to the wrong title, then the classification must be corrected immediately. If it is determined that a position is classified to the wrong series, then the classification must be corrected immediately. Note: The series determination involves distinguishing between one-grade interval work and two-grade interval

49

Addressing Genetics Delivering Health  

E-Print Network [OSTI]

Addressing Genetics Delivering Health A strategy for advancing the dissemination and application of genetics knowledge throughout our health professions Funded by Hilary Burton September 2003 Executive education of health workers q providing strategic overview of education programme q collaborating

Rambaut, Andrew

50

Name * First Last Address Street Address Address Line 2 City State ...  

E-Print Network [OSTI]

Name * First Last; Address. Street Address Address Line 2. City State / Province / Region Postal / Zip Code. United States, United Kingdom, Australia, Canadaá...

51

Moulinath Banerjee Work Address  

E-Print Network [OSTI]

.Stat.(Honors) 1995, in First Division with Distinction. Employment Associate Professor of Statistics, UniversityMoulinath Banerjee Work Address University of Michigan Department of Statistics 439, West Hall 1085 estimation, Statistical Methods in Astronomy, Biomedical studies and Epidemiology, Threshold and boundary

Banerjee, Moulinath

52

Moulinath Banerjee Work Address  

E-Print Network [OSTI]

.Stat.(Honors) 1995, in First Division with Distinction. Employment Associate Professor of Statistics, University Methods in Non┬şstandard Problems. Currently employed as Tenure-track Assistant Professor of StatisticsMoulinath Banerjee Work Address University of Michigan Department of Statistics 439, West Hall 1085

Banerjee, Moulinath

53

Current address: Samuel Johnson  

E-Print Network [OSTI]

CV: E-mail : Homepage: Current address: Samuel Johnson samuel.johnson@imperial.ac.uk www. #12;Submitted work 1. The meaning of niche: Cause or consequence of food-web structure?, S. Johnson, V learning, S. Johnson, J. Marro, and J.J. Torres, PLoS ONE 8(1): e50276 (2013) 3. Enhancing neural network

Johnson, Samuel

54

Investigating possible wind energy potential to meet the power shortage in Karachi  

Science Journals Connector (OSTI)

Electricity is always considered as an important ingredient for development of a country. Energy deficit affects the growth rate of the country and causes discomfort to the consumer. The power shortage in Karachi, the largest city and economical hub of Pakistan, is highly hampering the progress of the city. Presently the energy deficit in the city is around 328áMW. This paper presents an analytical analysis of incorporation of small residential windmills to reduce the power shortage in Karachi. To estimate the wind energy potential in the city, four years wind data is collected from Pakistan Metrological Department (PMD) at various heights (10ám, 30ám, 50ám, 75ám and 100ám). The statistical calculations on wind data using SPSS software show that the city has an enormous wind potential available. A case study is also carried to show the effect of incorporation of small residential wind mills in power system. The results shows 1678áMWáh of energy could be saved if 50% of residential consumers are equipped with small windmills. The paper also discusses the possible resistance in the introduction of small residential windmills in domestic sector. The potential benefits to the utility and consumers are also presented in this paper.

M.M. Aman; G.B. Jasmon; A. Ghufran; A.H.A. Bakar; H. Mokhlis

2013-01-01T23:59:59.000Z

55

Reduce, reuse and recycle: A green solution to Canada's medical isotope shortage  

Science Journals Connector (OSTI)

Abstract Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRCĺs involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage.

R. Galea; C. Ross; R.G. Wells

2014-01-01T23:59:59.000Z

56

Address EJ Conference  

Broader source: Energy.gov (indexed) [DOE]

Congressman Clyburn to Congressman Clyburn to Address EJ Conference Congressman Clyburn has graciously agreed to speak at The State of Environmental Justice in America 2011 Conference. Congressman Clyburn (D - SC) has been a member of the U.S. House of Congress since 1993. He has held the positions of Chairman of the Democratic Black Caucus, House Democratic Caucus Vice Chair, Chair of the Democratic Caucus and from 2006 until January 2011, was the House Majority Whip. Currently, as Assistant Democratic Leader in the 112th Congress and the number three Democrat in the House, James E. Clyburn will be the leadership liaison to the Appropriations Committee and one of the Democratic Caucus' primary liaisons to the White House. Congressman Clyburn has been a life long champion and has worked diligently

57

Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities  

Broader source: Energy.gov [DOE]

Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on ôEnhancing Resilience in Energy Infrastructure and Addressing Vulnerabilitiesö On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nationĺs energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session. The meeting will be livestreamed at energy.gov/live

58

How urban societies can adapt to resource shortage and climate change  

Science Journals Connector (OSTI)

...have for reducing greenhouse gas emissions Many sources...coming from energy supply...of water-related hazards and...Bonjour2009 The energy access situation...pressCities and greenhouse gas emissions: challenges...footprint: reducing human impact...Steinberger2010Reducing energy and materials...

2011-01-01T23:59:59.000Z

59

Comments of Baltimore Gas & Electric Company | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Gas & Electric Company Comments of Baltimore Gas & Electric Company BGE comments to DOE addressing policy and logistical challenges Comments of Baltimore Gas & Electric...

60

CHRISTOPHER JOHN LOBB ADDRESS: Office  

E-Print Network [OSTI]

CHRISTOPHER JOHN LOBB ADDRESS: Office: Center for Superconductivity Research Department of Physics. Proc. No. 58 (AIP, New York, 1980), p. 308. 7. C. J. Lobb and Keith R. Karasek, A Monte Carlo

Lathrop, Daniel P.

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

47 Natural Gas Market Trends NATURAL GAS MARKET TRENDS  

E-Print Network [OSTI]

47 Natural Gas Market Trends Chapter 5 NATURAL GAS MARKET TRENDS INTRODUCTION Natural gas discusses current natural gas market conditions in California and the rest of North America, followed on the outlook for demand, supply, and price of natural gas for the forecasted 20-year horizon. It also addresses

62

Greenhouse Gas Emissions from Building and Operating Electric  

E-Print Network [OSTI]

Greenhouse Gas Emissions from Building and Operating Electric Power Plants in the Upper Colorado-1712 As demand for electricity increases, investments into new generation capacity from renewable,CaliforniaandtherestoftheWestCoastoftheUnited States started to experience severe shortages of electricity. Investments

Kammen, Daniel M.

63

POLICY GUIDANCE MEMORANDUM #03 Addressing Missclassified Positions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Addressing Missclassified Positions POLICY GUIDANCE MEMORANDUM 03 Addressing Missclassified Positions This memorandum provides policy guidance on how to consistently address...

64

Analysis of the UHV Tie Line Active Power Peak Value of Weak Interconnected Grids Following Power Shortage Disturbance in China Power System  

Science Journals Connector (OSTI)

An ultra high voltage (UHV) AC tie line that connects North China ... peak value of active power oscillation of the UHV AC tie line following power shortage disturbance. ... The typical process of the oscillation...

Feng Hong; Jinfu Chen; Xianzhong Duan

2012-01-01T23:59:59.000Z

65

at Western University With escalating concerns about global energy shortages and the impact of  

E-Print Network [OSTI]

of knowledge related to renewable forms of energy, including solar and wind power, and biofuels. Western siting, terrain effects and wake array effects ┬Ě Helps address multi-faceted energy problems, including grid connectivity and solar- and wind-distributed nodes, as well as green energy policy

Denham, Graham

66

Telecommunications Account/Address Change  

E-Print Network [OSTI]

Telecommunications Account/Address Change Fax the completed form to 979.847.1111. If you do will be effective within 30 days from the date the work order is received by Telecommunications. Refer to http Departmental Approval Print Name Signature Date Telecommunications Office Use Only Date completed: Completed by

67

BICYCLE URBANISM SYMPOSIUM KEYNOTE ADDRESS  

E-Print Network [OSTI]

for expanding their cycling networks, combined with a range of complementary programs such as bike sharing, bikeBICYCLE URBANISM SYMPOSIUM KEYNOTE ADDRESS Cycling to the Future: Lessons from Cities across the Globe In this talk, John Pucher documents the boom in cycling in both European and North American cities

Hochberg, Michael

68

A cryogenic data addressed memory  

Science Journals Connector (OSTI)

A computer storage system which is addressed by content rather than location is described. The design has been verified by constructing and successfully operating a three-word module consisting of 81 crossed-film cryotrons on a 6-inch by 3-inch substrate.

V. L. Newhouse; R. E. Fruin

1962-05-01T23:59:59.000Z

69

Building Address Locations -Assumes entire  

E-Print Network [OSTI]

Housman Building 80 E. Concord St R BU School of Medicine, Instructional Building 80 E. Concord St L BU JBuilding Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC

Guenther, Frank

70

Large power users and capacity shortages in developing countries: the role of innovative pricing  

Science Journals Connector (OSTI)

This paper addresses innovative electricity pricing as a strategy for managing electric load, offering pricing as an alternative to building generating capacity to meet electric load commitments in the developing world. Drawing upon the Western experience with pricing as a demand-side management strategy, three questions are addressed: (i) Do innovative pricing strategies alter the amount and pattern of electricity consumption for high-voltage users? (ii) What are future directions in electricity pricing for industrial users? and (iii) Are these strategies relevant for power systems in the developing world? The most widely adopted innovative pricing strategies by Western utilities are variants of time-of-use (TOU) pricing, which have generally been effective in reducing load during peak periods. More recently, technological advances have allowed utilities to experiment with aligning electricity prices more closely with actual power delivery costs. While temporal aspects of these innovative pricing strategies have general applicability as a load management strategy, the power systems in many developing countries have more urgent pricing priorities than adopting the most recent strategies of Western utilities.

Lawrence J. Hill

1991-01-01T23:59:59.000Z

71

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

Leonard Bond; Kevin Kostelnik; Richard Holman

2006-11-01T23:59:59.000Z

72

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need. (authors)

Bond, L.; Kostelnik, K.; Holman, R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3898 (United States)

2006-07-01T23:59:59.000Z

73

Secretary Moniz Addresses Conference on the Caribbean's Energy Future |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Moniz Addresses Conference on the Caribbean's Energy Secretary Moniz Addresses Conference on the Caribbean's Energy Future Secretary Moniz Addresses Conference on the Caribbean's Energy Future December 6, 2013 - 2:42pm Addthis Secretary Moniz Addresses Conference on the Caribbean’s Energy Future Secretary Moniz joined Inter-American Development Bank President Luis Alberto Moreno in welcoming a group of Caribbean ministers who convened to discuss the region's energy future, climate change, and the roles of energy efficiency, renewable energy and natural gas. Addthis Related Articles Secretary Chu's Remarks at the 2012 IAEA General Conference -- As Prepared for Delivery Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy Projects Deputy Secretary Daniel Poneman's Remarks to the Washington Institute for

74

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

75

EPA -- Addressing Children's Health through Reviews Conducted...  

Broader source: Energy.gov (indexed) [DOE]

Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health...

76

Addressing Wind Turbine Tribological Challenges with Surface...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addressing Wind Turbine Tribological Challenges with Surface Engineering Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Addressing...

77

Avoiding shortage of radio-chemists with the NAMP radiochemistry webinars  

SciTech Connect (OSTI)

The U.S. Department of Energy originally created the National Analytical Management Program (NAMP) to help coordinate its analytical capabilities and to address national needs in technology and resources. In support of this mission, the NAMP established a subcommittee to promote training and education in radiochemistry to avert the predicted loss in expertise. In cooperation with the U.S. Environmental Protection Agency and university partners, the NAMP developed a series of two-hour webinar presentations by experts on different topics relevant to radiochemistry. These webinars are intended to be of interest to those already in the workforce who may need a refresher course or a better understanding of specific radiochemistry topics. The live webinars include slides presentation, and engage the attendees by giving them the opportunity to ask questions during the live event through the web-cast interface. Certificates may be given for attendance during the live webinar. The success of these webinars relies not only on the presenters who are internationally recognized experts but also on how we promote them: we advertised them through a dedicated web site, social networks or flyers. Another important point is that they are free are accessible online in 2 formats: audio-video recording and pdf files. Recorded and archived versions comprise a library vital to future generations of radio-chemists and scientists interested in radiochemistry. The first webinar, An Overview of Actinide Chemistry, was presented on April 20, 2012. The overwhelmingly positive feedback from participants clearly demonstrates that the NAMP webinars are making a difference by providing unique educational opportunities in radiochemistry.

Paviet-Hartmann, P. [Idaho National Laboratory, 995 University Blvd, Idaho Falls, ID 83402 (United States); Akbarzadeh, M. [Nuclear Waste Partnership, LLC, 1400 university Dr, Carlsbad, NM 88220 (United States); Griggs, J. [US Environmental Protection Agency, NAREL, 540 S. Morris Ave, Montgomery, AL 36115-2601 (United States)

2013-07-01T23:59:59.000Z

78

Addressing Policy and Logistical Challenges to Smart Grid Implementation  

Broader source: Energy.gov (indexed) [DOE]

Before the Before the Department of Energy Washington, D.C. 20585 In the Matter of Addressing Policy and Logistical Challenges to Smart Grid Implementation Smart Grid RFI: Addressing Policy and Logistical Challenges COMMENTS OF BALTIMORE GAS & ELECTRIC COMPANY I. Introduction BGE is the nation's oldest utility company. It has met the energy needs of Central Maryland for nearly 200 years. Today, it serves more than 1.2 million business and residential electric customers and approximately 650,000 gas customers in an economically diverse, 2,300- square-mile area encompassing Baltimore City and all or part of 10 central Maryland counties. BGE already has many systems that it considers to be "smart." For example:

79

Recommendations to Address Power Reliability Concerns Raised as a Result of  

Broader source: Energy.gov (indexed) [DOE]

to Address Power Reliability Concerns Raised as a to Address Power Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Recommendations to Address Power Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant Secretary Patricia Hoffman on recommendations to address power reliability concerns raised as a result of pending environmental regulations for electric generation stations. Recommendations to Address Power Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations More Documents & Publications DOE Response to EAC Recommendations - March 2012 Interdependence of Electricity System Infrastructure and Natural Gas

80

Keynote Address: Future Vision | Department of Energy  

Office of Environmental Management (EM)

Future Vision Keynote Address: Future Vision May 20, 2014 1:00PM to 1:30PM PDT Pacific Ballroom Tuesday's keynote address by Raffi Garabedian, Chief Technology Officer, First Solar...

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Addressing Climate Change in Environmental Impact Analysis  

E-Print Network [OSTI]

Addressing Climate Change in Environmental Impact Analysis 2010 CTS Research Conference Carissa impact analysis (EIA) as a tool to address climate change ┬Ě! Consider approaches to measuring and addressing climate change at the project scale #12;Purpose ┬Ě! Funded by U of M Institute on the Environment

Minnesota, University of

82

Oil and Gas General Provisions (Montana)  

Broader source: Energy.gov [DOE]

This chapter describes general provisions for the exploration and development of oil and gas resources in Montana. The chapter addresses royalty interests, regulations for the lease of local...

83

Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities  

Broader source: Energy.gov [DOE]

Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on ôEnhancing Resilience in Energy Infrastructure and Addressing Vulnerabilitiesö On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nationĺs energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session.

84

International Oil and Gas Board International Oil and Gas Board...  

Open Energy Info (EERE)

Oil and Gas Board Address Place Zip Website Abu Dhabi Supreme Petroleum Council Abu Dhabi Supreme Petroleum Council Abu Dhabi http www abudhabi ae egovPoolPortal WAR appmanager...

85

KEYNOTE ADDRESS ECONOMIES IN TRANSITION: SOME ASPECTS  

E-Print Network [OSTI]

couple of days, with my focus on transition economies and environmental management in this neighborhoodKEYNOTE ADDRESS ECONOMIES IN TRANSITION: SOME ASPECTS OF ENVIRONMENTAL POLICY Jeffrey Sachs. Tel: (617) 495-5999. Fax: (617) 495-0527. #12;2 Keynote Address Economies in Transition: Some Aspects

86

Oil and Gas Company Oil and Gas Company Address Place Zip Website  

Open Energy Info (EERE)

Irving Texas http www exxonmobil com Corporate Gazprom Gazprom Nametkina St Moscow Russia http www gazprom com Gulfsands Petroleum Gulfsands Petroleum Cork Street London United...

87

Interagency Collaboration to Address Environmental Impacts of...  

Energy Savers [EERE]

to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy's National...

88

Addressing an Uncertain Future Using Scenario Analysis  

E-Print Network [OSTI]

and unpredictable fuel prices, should be truly worth moreNatural Gas Generation Fuel Price The history shown in theuncertain electricity and fuel prices. In other words, a

Siddiqui, Afzal S.; Marnay, Chris

2008-01-01T23:59:59.000Z

89

Opening Address CNR Programme for Photovoltaics  

Science Journals Connector (OSTI)

Ladies and Gentlemen, In my short address, I would like to say a few words only about the Energy Project (PPE) of the National Research Council of Italy in general, and about its activity in the field of Prope...

Prof. G. Elias

1982-01-01T23:59:59.000Z

90

Increasing Gas Prices: Good Economics, but Bad Public Relations Rising gasoline prices captured the attention of the press and politicians in recent months,  

E-Print Network [OSTI]

Increasing Gas Prices: Good Economics, but Bad Public Relations Rising gasoline prices captured interest during our current gasoline shortage. That is, a higher price rations the product to the best use the supply of gasoline become relatively scarcer? First, the growth of the Chinese and Indian economies

Ahmad, Sajjad

91

Technological Options to Address Global Climate Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2K-2854 RAB 4/01 2K-2854 RAB 4/01 Hydro 8% Coal 22% Coal 22% Other 1% Gas 23% Gas 23% Coal 19% Coal 19% Gas 28% Gas 28% Fossil Fuels Will Continue as Key to World Economy 1999 data from International Energy Annual 1999 (February 2001) 2020 data from International Energy Outlook 2001 (March 2001) + 6 0 % Oil 40% Hydro 7% Other 0.7% Nuclear 7% 1999 85% Fossil Energy 382 Qbtu / yr 2020 85% Fossil Energy 607 Qbtu / yr Oil 40% Nuclear 4% 2K-2854 RAB 4/01 World Energy Demand Growing Dramatically 0 2 4 6 8 12 2000 2050 2100 0 200 400 600 800 1000 1200 1400 Population (Billions) Energy Consumption (Qbtu / yr) Population Projections: United Nations "Long-Range World Population Projections: Based on the 1998 Revision" Energy Projections: "Global Energy Perspectives" ITASA / WEC World Population Population of

92

Assessing what to address in science communication  

Science Journals Connector (OSTI)

...changesŚsuch as gas prices...emissions from coal-fired power plants by putting...low-carbon electricity generation portfolio aiming...2 and that solar power is free (90...low-carbon electricity generation portfolio that involves...

Wńndi Bruine de Bruin; Ann Bostrom

2013-01-01T23:59:59.000Z

93

Property:Address | Open Energy Information  

Open Energy Info (EERE)

Address Address Jump to: navigation, search This is a property of type String. Pages using the property "Address" Showing 25 pages using this property. (previous 25) (next 25) 1 1366 Technologies + 45 Hartwell Avenue + 1st Light Energy, Inc. + 3224 McHennry Ave Suite F + 2 21-Century Silicon, Inc. + 1681 Firman Drive, Suite 103 + 3 3Degrees + 2 Embarcadero Center Suite 2950 + 3M + 3M Center + 3TIER + 2001 Sixth Avenue + 4 4th Day Energy + 38886 River Belle + 5 5 boro biofuel + 100 maiden lane + 8 8minutenergy Renewables, LLC + 111 Woodmere Road, Suite 190 + @ @Ventures (California) + 800 Menlo Avenue, Suite 120 + @Ventures (Massachusetts) + 187 Ballardvale Street, Suite A260 + A A.J. Rose Manufacturing Company + 38000 Chester Road + A1 Sun, Inc. + 1435 4th St. +

94

Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using CRiSP  

E-Print Network [OSTI]

Gas Saturation and Sensitivity Analysis Using CRiSP 1 Gas Saturation and Sensitivity Analysis Using of Engineers began the Gas Abatement Study in order to address the problem of gas and its effects on the Snake and Columbia Rivers. One important question is how much gas reductions caused by structural changes at a few

Washington at Seattle, University of

95

Shared address collectives using counter mechanisms  

DOE Patents [OSTI]

A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

2014-02-18T23:59:59.000Z

96

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect (OSTI)

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

97

Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests  

DOE Patents [OSTI]

A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

Gala, Alan; Ohmacht, Martin

2014-09-02T23:59:59.000Z

98

Response to Request for Information titled "Addressing Policy and  

Broader source: Energy.gov (indexed) [DOE]

to Request for Information titled "Addressing Policy and to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" Response to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" Response to Request for Information titled "Addressing Policy and Logistical Challenges to Smart Grid Implementation." urrent smart grid initiatives are occurring in a largely uncoordinated fashion and tend to increase near-term energy costs. Meanwhile, Renewable Portfolio Standards are also expected to increase near- term costs. The lack of a comprehensive energy and climate policy reduces the likelihood of a significant reduction in greenhouse gas emissions or energy imports. Response to Request for Information titled "Addressing Policy and

99

Curriculum Vita of Moulinath Banerjee Work Address  

E-Print Network [OSTI]

Statistical Institute, Calcutta, India. B.Stat.(Honors) 1995, in First Division with Distinction. Employment. Currently employed as Associate Professor of Statistics, Columbia University, New York City. Jayanta KumarCurriculum Vita of Moulinath Banerjee Work Address University of Michigan Department of Statistics

Banerjee, Moulinath

100

Ranking users for intelligent message addressing  

Science Journals Connector (OSTI)

Finding persons who are knowledgeable on a given topic (i.e. Expert Search) has become an active area of recent research [1, 2, 3]. In this paper we investigate the related task of Intelligent Message Addressing, i.e., finding persons who are potential ...

Vitor R. Carvalho; William W. Cohen

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Addressable Advertising on Digital Television Vincent Dureau  

E-Print Network [OSTI]

Addressable Advertising on Digital Television Vincent Dureau Chief Technology Officer, OpenTV 275 of digital technology is having a profound effect on television advertising. While television advertising costs are increasing, its efficiency is decreasing. The traditional models for advertising on television

Masthoff, Judith

102

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

103

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

104

15/11/2012Vacancy Data -12-13 ADDRESS TOWN CONTACT PHONE NO EMAIL RENT FACILITIES Year  

E-Print Network [OSTI]

15/11/2012Vacancy Data - 12-13 Page 1 ADDRESS TOWN CONTACT PHONE NO EMAIL RENT FACILITIES Year High except electric (no gas supply). 12/13 #12;15/11/2012Vacancy Data - 12-13 Page 2 ADDRESS TOWN CONTACT. 12/13 #12;15/11/2012Vacancy Data - 12-13 Page 3 ADDRESS TOWN CONTACT PHONE NO EMAIL RENT FACILITIES

Wirosoetisno, Djoko

105

From an IP address to a street address: using wireless signals to locate a target  

Science Journals Connector (OSTI)

How quickly can somebody convert an IP address of a target into a real-word street address? Law enforcement regularly has need to determine a suspect's exact location when investigating crimes on the Internet. They first use geolocation software and ...

Craig A. Shue; Nathanael Paul; Curtis R. Taylor

2013-08-01T23:59:59.000Z

106

SOCIAL SECURITY ADMINISTRATION in JUPITER Office Address  

E-Print Network [OSTI]

Parkside Dr, Take the 1st right onto Donald Ross Rd, Continue straight to stay on Donald Ross Rd. Turn left. The office sits between okeechobee blvd and belvedere rd, behind chevron gas station. The office is north: 1. Fau Svc Rd @ Se Quad Stop ID: 1743, Bus towards Rt 10 Southbound 2. Military Trl & Johnson Dairy

Fernandez, Eduardo

107

Address (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Project Name Address Country Spain Coordinates 40.388397┬░, -4.526367┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.388397,"lon":-4.526367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

109

Natural Gas_v2 (9764 - Activated, Traditional).xps  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas usage for this service address between September 2008 and April 2010. Billing Period Enter End Date for each billing period MMDDYY Amount used was: AActual...

110

Pacific Gas and Electric Company | Open Energy Information  

Open Energy Info (EERE)

Company Jump to: navigation, search Name: Pacific Gas and Electric Company Address: PO Box 770000 Place: San Francisco Zip: 94177 Region: United States Sector: Marine and...

111

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 20, 2012 Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Nine new research projects aimed...

112

Natural Gas Utility Restructuring and Customer Choice Act (Montana)  

Broader source: Energy.gov [DOE]

These regulations apply to natural gas utilities that have restructured in order to acquire rate-based facilities. The regulations address customer choice offerings by natural gas utilities, which...

113

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Departmentĺs action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

114

ADDRESSABLE PRINTHEADS Addressable printhead structures were designed and fabricated on 3" Si wafers. Fig 1  

E-Print Network [OSTI]

doping level and profile we ran simulations in Silvaco® ATHENA process simulation software. Considering for isolation Figure 1. 3D schematics of addressable printheads. #12;Figure 2 Sample output plot for Silvaco

Pala, Nezih

115

Dynamic address allocation protocols for Mobile ad hoc networks  

E-Print Network [OSTI]

Address allocation is an important issue in Mobile ad hoc networks. This thesis proposes solutions to assign unique IP addresses to nodes participating in Mobile ad hoc networks and evaluates the proposed solutions. Address allocation protocols...

Patchipulusu, Praveena

2001-01-01T23:59:59.000Z

116

Assistant Secretary Patricia Hoffman to Deliver Keynote Address...  

Energy Savers [EERE]

Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Assistant Secretary Patricia Hoffman to Deliver Keynote Address at...

117

ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...  

Broader source: Energy.gov (indexed) [DOE]

ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges The American...

118

DOE Convenes Multi-stakeholder Process to Address Privacy for...  

Energy Savers [EERE]

Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by Smart Grid Technologies DOE Convenes Multi-stakeholder Process to Address Privacy for Data Enabled by...

119

Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing...  

Broader source: Energy.gov (indexed) [DOE]

Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges...

120

Progress Energy draft regarding Smart Grid RFI: Addressing Policy...  

Broader source: Energy.gov (indexed) [DOE]

Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges Progress Energy draft regarding Smart Grid RFI: Addressing Policy and Logistical...

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

122

Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc....

123

New York Independent System Operator, Smart Grid RFI: Addressing...  

Broader source: Energy.gov (indexed) [DOE]

York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical Challenges. New York Independent System Operator, Smart Grid RFI: Addressing Policy and...

124

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...  

Broader source: Energy.gov (indexed) [DOE]

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE...

125

Exploring the Utilization of Complex Algal Communities to Address...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash...

126

DOE to Address Small Businesses Barriers in Government Contracting...  

Broader source: Energy.gov (indexed) [DOE]

to Address Small Businesses Barriers in Government Contracting at Waste Management Conference DOE to Address Small Businesses Barriers in Government Contracting at Waste Management...

127

Energy Department Addresses Largest Gathering of Geothermal Energy...  

Broader source: Energy.gov (indexed) [DOE]

Addresses Largest Gathering of Geothermal Energy Stakeholders Energy Department Addresses Largest Gathering of Geothermal Energy Stakeholders October 4, 2012 - 1:00pm Addthis Photo...

128

New safety valve addresses environmental concerns  

SciTech Connect (OSTI)

This paper reports that Conoco Pipeline is using a unique relief valve to reduce costs while improving environmental protection at its facilities. Conoco Pipeline Co. Inc. began testing new relief valves in 1987 to present over-pressuring its pipelines while enhancing the safety, environmental integrity and profitability of its pipelines. Conoco worked jointly with Rupture Pin Technology Inc., Oklahoma City, to seek a solution to a series of safety, environmental, and operational risks in the transportation of crude oil and refined products through pipelines. Several of the identified problems were traced to a single equipment source: the reliability of rupture discs used at pipeline stations to relieve pressure by diverting flow to tanks during over-pressure conditions. Conoco's corporate safety and environmental policies requires solving problems that deal with exposure to hydrocarbon vapors, chemical spills or the atmospheric release of fugitive emissions, such as during rupture disc maintenance. The company had used rupture pin valves as vent relief devices in conjunction with development by Rick Austin of inert gas methods to protect the inner casing wall and outer carrier pipeline wall in pipeline road crossings. The design relies on rupture pin valves set at 5 psi to isolate vent openings from the atmosphere prior to purging the annular space between the pipeline and casing with inert gas to prevent corrosion. Speciality Pipeline Inspection and Engineering Inc., Houston, is licensed to distribute the equipment for the new cased-crossing procedure.

Taylor, J. (Rupture Pin Technology, Inc. Oklahoma City, OK (United States)); Austin, R. (Conoco Pipeline Co., Hennessey, OK (United States))

1992-10-01T23:59:59.000Z

129

Laboratory or Facility Representative Email Addresses Phone #  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory Stacy Joiner joiner@ameslab.gov 515-294-5932 Argonne National Laboratory Connie Cleary ccleary@anl.gov 630-252-8111 Brookhaven National Laboratory Walter Copan wcopan@bnl.gov 631-344-3035 Fermi National Acclerator Laboratory Bruce Chrisman chrisman@fnal.gov 630-840-6657 Idaho National Laboratory Steven McMaster steven.mcmaster@inl.gov 208-526-1340 Kansas City Plant Caron O'Dower codower@kcp.com 816-997-2645 Lawrence Berkeley National Laboratory Viviana Wolinsky viwolinsky@lbl.gov 510-486-6463 Lawrence Livermore National Laboratory Roger Werne werne1@llnl.gov 925-423-9353 Los Alamos National Laboratory John Mott jmott@lanl.gov 505-665-0883 National Energy Technology Laboratory Jessica Sosenko jessica.sosenko@netl.doe.gov 412-386-7417

130

Optoelectronic switching of addressable molecular crossbar junctions  

E-Print Network [OSTI]

This letter reports on the observation of optoelectronic switching in addressable molecular crossbar junctions fabricated using polymer stamp-printing method. The active medium in the junction is a molecular self-assembled monolayer softly sandwiched between gold electrodes. The molecular junctions are investigated through currentvoltage measurements at varied temperature (from 95 to 300 K) in high vacuum condition. The junctions show reversible optoelectronic switching with the highest on/off ratio of 3 orders of magnitude at 95 K. The switching behavior is independent of both optical wavelength and molecular structure, while it strongly depends on the temperature. Initial analysis indicates that the distinct binding nature of the molecule/electrode interfaces play a dominant role in the switching performance.

J. C. Li

2006-11-22T23:59:59.000Z

131

Verification Checklist Home Address: City: State: Zip:  

Broader source: Energy.gov (indexed) [DOE]

Indoor airPLUS Version 1 (Rev. 01) Verification Checklist Home Address: City: State: Zip: Section Requirements (Refer to full Indoor airPLUS Construction Specifications for details) Must Correct Builder Verified Rater Verified N/A Note: The Rev. 01 checklist has been modified to reflect only the additional Indoor airPLUS requirements and their corresponding section numbers that must be met after completing the ENERGY STAR checklists. ENERGY STAR remains a prerequisite for Indoor airPLUS certification. ENERGY STAR V3 Checklists Thermal Enclosure System Rater Checklist completed. o o Water Management System Builder Checklist completed. o o HVAC System Quality Installation Contractor Checklist completed. o o HVAC System Quality Installation Rater Checklist completed. o o

132

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 27, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 19, 2009) Natural gas spot prices declined this report week (August 12-19), with the largest decreases generally occurring in the western half of the country. The Henry Hub spot price decreased by $0.34 to $3.02 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased as supplies continued to be viewed as more than adequate to address near-term demand, including heating-related demand increases this winter. The futures contract for September delivery decreased by $0.36 on the week to $3.12 per MMBtu. Working gas in underground storage as of last Friday is estimated to

133

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

134

Keynote Address: Ali Zaidi, the White House Domestic Policy Council  

Broader source: Energy.gov [DOE]

Keynote address by Ali Zaidi, Deputy Director for Energy Policy, the White House Domestic Policy Council.

135

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

136

Addressing an Uncertain Future Using Scenario Analysis  

SciTech Connect (OSTI)

The Office of Energy Efficiency and Renewable Energy (EERE) has had a longstanding goal of introducing uncertainty into the analysis it routinely conducts in compliance with the Government Performance and Results Act (GPRA) and for strategic management purposes. The need to introduce some treatment of uncertainty arises both because it would be good general management practice, and because intuitively many of the technologies under development by EERE have a considerable advantage in an uncertain world. For example, an expected kWh output from a wind generator in a future year, which is not exposed to volatile and unpredictable fuel prices, should be truly worth more than an equivalent kWh from an alternative fossil fuel fired technology. Indeed, analysts have attempted to measure this value by comparing the prices observed in fixed-price natural gas contracts compared to ones in which buyers are exposed to market prices (see Bolinger, Wiser, and Golove and (2004)). In addition to the routine reasons for exploring uncertainty given above, the history of energy markets appears to have exhibited infrequent, but troubling, regime shifts, i.e., historic turning points at which the center of gravity or fundamental nature of the system appears to have abruptly shifted. Figure 1 below shows an estimate of how the history of natural gas fired generating costs has evolved over the last three decades. The costs shown incorporate both the well-head gas price and an estimate of how improving generation technology has gradually tended to lower costs. The purpose of this paper is to explore scenario analysis as a method for introducing uncertainty into EERE's forecasting in a manner consistent with the preceding observation. The two questions are how could it be done, and what is its academic basis, if any. Despite the interest in uncertainty methods, applying them poses some major hurdles because of the heavy reliance of EERE on forecasting tools that are deterministic in nature, such as the Energy Information Administration's (EIA's) National Energy Modeling System (NEMS). NEMS is the source of the influential Annual Energy Outlook whose business-as-usual (BAU) case, the Reference Case, forms the baseline for most of the U.S. energy policy discussion. NEMS is an optimizing model because: 1. it iterates to an equilibrium among modules representing the supply, demand, and energy conversion subsectors; and 2. several subsectoral models are individually solved using linear programs (LP). Consequently, it is deeply rooted in the recent past and any effort to simulate the consequences of a major regime shift as depicted in Figure 1 must come by applying an exogenously specified scenario. And, more generally, simulating futures that lie outside of our recent historic experience, even if they do not include regime switches suggest some form of scenario approach. At the same time, the statistical validity of scenarios that deviate significantly outside the ranges of historic inputs should be questioned.

Siddiqui, Afzal S.; Marnay, Chris

2006-12-15T23:59:59.000Z

137

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

138

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

No. 1905-0205 No. 1905-0205 Expiration Date: 05/31/2015 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1:

139

Final Report on Internet Addressable Lightswitch  

SciTech Connect (OSTI)

This report describes the work performed to develop and test a new switching system and communications network that is useful for economically switching lighting circuits in existing commercial buildings. The first section of the report provides the general background of the IBECS (Integrated Building Environmental Communications System) research and development work as well as the context for the development of the new switching system. The research and development effort that went into producing the first proof-of-concept (the IBECS Addressable Power Switch or APS) and the physical prototype of that concept is detailed in the second section. In the third section of the report, we detail the refined Powerline Carrier Based IBECS Title 24 Wall Switch system that evolved from the APS prototype. The refined system provided a path for installing IBECS switching technology in existing buildings that may not be already wired for light level switching control. The final section of the report describes the performance of the IBECS Title 24 Switch system as applied to a small demonstration in two offices at LBNL's Building 90. We learned that the new Powerline Carrier control systems (A-10 technology) that have evolved from the early X-10 systems have solved most of the noise problems that dogged the successful application of X-10 technologies in commercial buildings. We found that the new A-10 powerline carrier control technology can be reliable and effective for switching lighting circuits even in electrically noisy office environments like LBNL. Thus we successfully completed the task objectives by designing, building and demonstrating a new switching system that can provide multiple levels of light which can be triggered either from specially designed wall switches or from a digital communications network. By applying commercially available powerline carrier based technologies that communicate over the in-place lighting wiring system, this type of control can be economi cally installed even in existing buildings that were not wired for dual-level lighting.

Rubinstein, Francis; Pettler, Peter

2001-08-27T23:59:59.000Z

140

1 - Introduction to gas turbines  

Science Journals Connector (OSTI)

Abstract: This chapter provides an overview of the importance of gas turbines for the power generation and oil and gas sector and ľ in less detail ľ the aviation sector. Worldwide trends in power generation and electricity conversion processes and the role of gas turbines to minimise CO2 emissions are addressed. Gas turbines are essential and crucial to reduce emissions both in aviation and in power production. Technologies for improving gas turbine and system efficiency, through higher turbine inlet temperatures, improved materials, cooling methods and thermal barrier coatings are described. New thermodynamic approaches, including intercooling, water and steam injection and hybrid cycles are addressed. Major issues are also fuel and operational flexibility, reliability and availability, cost reduction and power density, especially for the offshore sector. Market trends have been sketched. In the coming decades, gas turbines will be one of the major technologies for CO2 emission reductions in the power generation, aviation, oil and gas exploration and transport sectors. This prognosis is based on their high current efficiency and further efficiency improvement potential, both for simple cycle as for combined-cycle applications.

A.J.A. Mom

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

142

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

143

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

144

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

145

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

146

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

147

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

148

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

149

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

150

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

151

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

152

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

153

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

154

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

155

PRODUCTION FACILITY SPILL CONTINGENCY PLAN Operator Name, Address, Phone, Contact Facility Name, Address, Phone, Contact  

E-Print Network [OSTI]

of Oil, Gas and Geothermal Resources 8 Department of Fish and Game (OSPR) 800-852-7550 or 800-OILS-911 9 provide resources and liaison fuctions during oil spills. Page 3 of 9 #12;PRODUCTION FACILITY SPILL the Location and Labeling of: 1 Permanent Tanks 7 Tank & Storage Container Volumes with Contents Storedg 2

156

Compressed natural gas measurement issues  

SciTech Connect (OSTI)

The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

1993-12-31T23:59:59.000Z

157

Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy  

Broader source: Energy.gov (indexed) [DOE]

Comments on Smart Grid RFI: Addressing Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative is a generation and transmission cooperative (G&T) that provides the wholesale electrical requirements and other services for 25 electric distribution cooperatives and 16 municipal utilities in the Upper Midwest. Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & Publications AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges Florida Power and Light Comments on Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges.

158

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

205 205 Expiration Date: 09/20/2012 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1: Address 2: Questions? Contact Name: Phone No.: Email: If this is a resubmission, enter an "X" in the box: This form may be submitted to the EIA by mail, fax, e-mail, or secure file transfer. Should you choose to submit your data via e-mail, we must advise you that e-mail is an insecure means of transmission because the data are not encrypted, and there is

159

DOE Action Plan Addressing the Electricity Distribution System  

Broader source: Energy.gov (indexed) [DOE]

ACTION PLAN ACTION PLAN ADDRESSING THE ELECTRICITY DISTRIBUTION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Distribution System 1 Table of Contents INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ................................................................................................ 2 Focus on Distribution .............................................................................................. 3 Roadmap Goals ....................................................................................................... 3 PROCESS OVERVIEW ........................................................................................................... 4

160

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

162

Alternative Fuels Data Center: State Agency Coordination to Address Climate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Agency State Agency Coordination to Address Climate Change to someone by E-mail Share Alternative Fuels Data Center: State Agency Coordination to Address Climate Change on Facebook Tweet about Alternative Fuels Data Center: State Agency Coordination to Address Climate Change on Twitter Bookmark Alternative Fuels Data Center: State Agency Coordination to Address Climate Change on Google Bookmark Alternative Fuels Data Center: State Agency Coordination to Address Climate Change on Delicious Rank Alternative Fuels Data Center: State Agency Coordination to Address Climate Change on Digg Find More places to share Alternative Fuels Data Center: State Agency Coordination to Address Climate Change on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

163

Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical  

Broader source: Energy.gov (indexed) [DOE]

Holdings, Inc. Smart Grid RFI: Addressing Policy and Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges. Pepco Holdings, Inc. (PHI) is pleased to respond to the US Department of Energy (DOE) request for information regarding addressing policy and logistical challenges to smart grid implementation. This follows on the heels of PHI's responses to two other DOE RFls on data access and communications requirements. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges More Documents & Publications DC OPC Comments. September 17, 2010 Addressing Policy and Logistical Challenges to smart grid Implementation:

164

Development of natural gas as a vehicular fuel in Pakistan: Issues and prospects  

Science Journals Connector (OSTI)

Abstract In a step towards adopting environment friendly fuel and to save foreign exchange, Compressed Natural Gas (CNG) was introduced by the Government of Pakistan in the country in 1992. Due to available price differential between CNG and gasoline/diesel and investor friendly policy and regulatory framework, CNG sector has shown tremendous growth over the last ten year in the country. This growing demand of natural gas by CNG sector, results in gas shortages in the country. This paper describes the key steps in the development of CNG as transportation fuel in Pakistan. The present scenario of the CNG industry including the natural gas vehicles (NGVs) population growth and the expansion of CNG refilling stations are discussed. Various aspects of the CNG program in Pakistan, for example environmental benefits, economic benefits and problems associated with CNG industry of Pakistan are illustrated.

Muhammad Imran Khan; Tabassum Yasmin

2014-01-01T23:59:59.000Z

165

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

166

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

167

Liquefied Natural Gas Safety Research  

Broader source: Energy.gov (indexed) [DOE]

| May 2012 | May 2012 Liquefied Natural Gas (LNG) Safety Research | Page 1 Liquefied Natural Gas Safety Research Report to Congress May 2012 United States Department of Energy Washington, DC 20585 Department of Energy | May 2012 Liquefied Natural Gas (LNG) Safety Research | Page i Message from the Assistant Secretary for Fossil Energy The Explanatory Statement accompanying the Consolidated Appropriations Act, 2008 1 and the House Report on the House of Representatives version of the related bill 2 requested the Department of Energy to submit a report to Congress addressing several key liquefied natural gas (LNG) research priorities. These issues are identified in the February 2007 Government Accountability Office Report (GAO Report 07-316), Public Safety Consequences of a Terrorist

168

Determining the economic consequences of natural gas substitution  

Science Journals Connector (OSTI)

Abstract Resource depletion is a key aspect of sustainability, because the consumption of finite resources impacts on their availability for future generations. There are many proposed methods for accounting for the depletion of a particular resource, amongst which include the proportion of the resource depleted, the rate of resource depletion, and the energy, exergy, or monetary cost of extraction as the resource becomes harder to find or extract. This paper is part of a wider study to measure resource depletion using its environmental and economic impacts for the case of natural gas, where depletion of natural gas requires substitution by black coal or coal seam gas. The capital and operating costs are estimated both for upstream fuel extraction and purification and downstream use of the fuel to produce electricity, hydrogen and ammonia. These costs are based on a commercial scale of operation, using the same basis for economic modelling in each case. Black coal was found to have the lowest transfer price from upstream to downstream processing among the three feedstocks, but the highest capital and operating costs in the downstream processes. Conventional gas produced slightly higher transfer prices and downstream processing costs compared to coal seam gas. The favourable economic and environmental indicators for natural gas and coal seam gas are expected to lead to increased demand for these resources over coal, running the risk of a gas shortage. The economic consequence of a scarcity of either gas resource will be a penalty in capital and operating costs to produce the three products should gas be substituted with black coal.

Shaun Rimos; Andrew F.A. Hoadley; David J. Brennan

2014-01-01T23:59:59.000Z

169

NETL: News Release - Projects Selected to Address Challenges of Large-Scale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3, 2008 3, 2008 Projects Selected to Address Challenges of Large-Scale Hydrogen Production from Coal and Coal-Biomass WASHINGTON, D. C. - The U.S. Department of Energy (DOE) announced today the selection of six projects that will address challenges facing the large-scale production of hydrogen from coal and coal-biomass mixtures. The ability of hydrogen to fuel transportation, power generation and industrial processes with only water as a by-product makes it an efficient and clean fuel to meet growing U.S. energy demands while assuring energy security. The National Academies affirmed in a 2004 report that hydrogen could fundamentally transform U.S. energy systems, but coal must be a significant component for making very large amounts of the gas. To address the challenges of large-scale production of hydrogen from coal, the Hydrogen Fuel Initiative was launched in 2003, announcing a $1.2 billion commitment to a hydrogen economy that minimizes America's dependence on foreign oil and reduces greenhouse gas emissions. The Presidential initiative also provides funding for hydrogen research and development (R&D).

170

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

171

Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical  

Broader source: Energy.gov (indexed) [DOE]

Southern Company: DOE Smart Grid RFI Addressing Policy and Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges. Southern recognizes that many policy and logistical concerns must be addressed for the promises of smart grid technologies and applications to be fully realized in ways that are beneficial, secure, and cost-effective lor utility customers. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges More Documents & Publications Re: DOE Request for Information - Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy

172

NNSA Administrator Addresses Next Generation of Computational Scientists |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addresses Next Generation of Computational Scientists | Addresses Next Generation of Computational Scientists | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > NNSA Administrator Addresses Next Generation of Computational ... Speech NNSA Administrator Addresses Next Generation of Computational Scientists Jun 22, 2010

173

Addressing Policy and Logistical Challenges to Smart Grid Implementati...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Implementation: Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 Addressing Policy and Logistical Challenges to Smart Grid Implementation: Federal Register...

174

Addressing Policy and Logistical Challenges to Smart Grid Implementati...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of...

175

Addressing Biomass Supply Chain Challenges With AFEXÖ Technology  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksŚFrom Field to Fuel Addressing Biomass Supply Chain Challenges With AFEXÖ Technology Allen Julian, Chief Business Officer, MBI

176

Africa - Technical Potential of Solar Energy to Address Energy...  

Open Energy Info (EERE)

Africa - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical Potential of...

177

Moving North Texas Forward by Addressing Alternative Fuel Barriers...  

Broader source: Energy.gov (indexed) [DOE]

MOVING NORTH TEXAS FORWARD BY ADDRESSING ALTERANATIVE FUEL BARRIERS Presenter: Pamela Burns North Central Texas Council of Governments June 20, 2014 P.I. Mindy Mize Project ID...

178

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

179

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

180

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

182

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

183

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

184

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

185

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

186

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

187

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

188

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

189

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

190

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

191

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

192

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

193

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

194

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

195

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

196

The 2006 Russia-Ukraine Natural Gas Dispute: A mechanisms based approach.  

E-Print Network [OSTI]

??This thesis addresses the factors which lead the Russian government to increase natural gas prices for Ukraine in 2006. Through the use of methodological individualism,ů (more)

Daley, Stephen

2009-01-01T23:59:59.000Z

197

Non-contact gas turbine blade vibration monitoring using internal pressure and casing response measurements.  

E-Print Network [OSTI]

??This thesis addresses the non-contact measurement of rotor blade vibrations in gas turbines. Specifically, use is made of internal casing wall pressure, and external casingů (more)

Forbes, Gareth Llewellyn

2010-01-01T23:59:59.000Z

198

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

199

Metalorganic frameworks Gas-Sorption Properties of Cobalt(II)Carborane-Based  

E-Print Network [OSTI]

Metal´┐Żorganic frameworks Gas-Sorption Properties of Cobalt(II)´┐ŻCarborane-Based Coordination materials, and nanostructures. Interestingly however, none of these studies address how the gas-sorption

200

Report Period: EIA ID NUMBER: Appendix A: Mailing Address: Appendix B:  

U.S. Energy Information Administration (EIA) Indexed Site

Report Period: Report Period: EIA ID NUMBER: Appendix A: Mailing Address: Appendix B: Zip Code - Secure File Transfer option available at: - - - - Email form to: OOG.SURVEYS@eia.doe.gov Fax form to: (202) 586-9772 Email address: Oil & Gas Survey U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 1. Total Acquisitions (Enter the total volume of foreign crude oil acquired during the report month for importation into the United States. This is the sum of column (l), Part III, excluding resubmission.) 2. Offshore Inventories (Enter the total volume of foreign oil owned by the firm, for eventual importation into the United States which is held in storage outside the United States and/or is enroute to the United States as of the

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE Action Plan Addressing the Electricity Transmission System  

Broader source: Energy.gov (indexed) [DOE]

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY ACTION PLAN ADDRESSING THE ELECTRICITY TRANSMISSION SYSTEM ~DRAFT~ DOE Action Plan Addressing the Electricity Transmission System 1 Table of Contents * INTRODUCTION ................................................................................................................... 2 The Grid Tech Team ...................................................................................................... 2 Focus on Transmission .................................................................................................. 3 Roadmap Goals ............................................................................................................. 4 * PROCESS OVERVIEW ........................................................................................................... 5

202

Address for applications only: International School for Graduate Studies  

E-Print Network [OSTI]

of Birth Place of Birth Citizenship Male Female dd/mm/yy 3 CORRESPONDENCE ADDRESS (Address to which/ attested certificates and documents and officially certified/ attested German or English translations! Please do not send the originals of the Certificates! 5.1 School Education What is the highest level

Pinnau, Ren├ę

203

Scalable Address Allocation Protocol for Mobile Ad Hoc Networks  

E-Print Network [OSTI]

Scalable Address Allocation Protocol for Mobile Ad Hoc Networks Yu Chen Google, UK chenyu in ad hoc networks. In our protocol, each node that has been assigned an address manages a disjoint of node's degree, regardless of the network size. I. INTRODUCTION A wireless mobile ad hoc network

Paris-Sud XI, Universit├ę de

204

Keynote Address National Seminar on Alternative Energy Sources  

E-Print Network [OSTI]

Keynote Address National Seminar on Alternative Energy Sources Prof. Rangan Banerjee Energy Systems that there is a real need for alternative energy sources. What do we understand by Alternative Energy Sources? In order Consumption 1997-98 Keynote address at Two days National Seminar on Alternative Energy Sources, 27-28 Aug

Banerjee, Rangan

205

Executive Order 12898: Federal Actions to Address Environmental Justice in  

Broader source: Energy.gov (indexed) [DOE]

2898: Federal Actions to Address Environmental 2898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994) Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994) Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994). Directs each federal agency to make environmental justice part of its mission, and sets responsibilities for agencies including developing a strategy to identify and address "disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations." This applies equally to Native American programs. This EO also directs "after consultation with tribal

206

Secretary Chu Announces Latest Efforts to Address Cybersecurity |  

Broader source: Energy.gov (indexed) [DOE]

Latest Efforts to Address Cybersecurity Latest Efforts to Address Cybersecurity Secretary Chu Announces Latest Efforts to Address Cybersecurity September 23, 2010 - 12:00am Addthis Washington, D.C. - Speaking at the inaugural GridWise Global Forum, U.S. Energy Secretary Steven Chu today announced the investment of more than $30 million for ten projects that will address cybersecurity issues facing the nation's electric grid. Together, these projects represent a significant investment in addressing cybersecurity issues in the nation's electric infrastructure. Today's announcement supports the Administration's goal of building a 21st Century clean energy economy supported by a secure, reliable, electricity system delivering power to American homes and businesses. "These awards help us make a significant leap forward to strengthen the

207

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

208

Addressing Kitchen Contaminants for Healthy, Low-Energy Homes  

E-Print Network [OSTI]

induction instead of electric resistance or natural gasthan natural gas or electric resistance cooktops; however,et al. 1998). Electric coil resistance burners produce UFP (

Stratton, J. Chris

2014-01-01T23:59:59.000Z

209

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

210

Iran Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Iran Oil and Gas Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Country Iran Name Iran Oil and Gas Address Unit #16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. City Tehran, Iran Website http://www.iranoilgas.com/news Coordinates 35.6961111┬░, 51.4230556┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6961111,"lon":51.4230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Smart Grid RFI: Addressing Policy and Logistical Challenges, Comments from  

Broader source: Energy.gov (indexed) [DOE]

RFI: Addressing Policy and Logistical Challenges, RFI: Addressing Policy and Logistical Challenges, Comments from the Edison Electric Institute Smart Grid RFI: Addressing Policy and Logistical Challenges, Comments from the Edison Electric Institute The Edison Electric Institute ("EEI"), on behalf of its member companies, hereby submits the following comments in response to the request by the Department of Energy ("DOE" or "Department") for information on a wide range of issues dealing with Smart Grid technology, applications, consumer interaction, policy initiatives and economic impacts, including the definition of Smart Grid; interactions with and implications for residential, commercial and industrial customers; Smart Grid costs and benefits; collaboration between utilities, device manufacturers and energy

212

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

213

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

214

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

215

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

216

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

217

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

218

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

219

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

220

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

222

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

223

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

224

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

225

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

226

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

227

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

228

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

229

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

230

Energy Secretary Steven Chu to Address Montana Economic Development Summit  

Broader source: Energy.gov (indexed) [DOE]

Address Montana Economic Development Address Montana Economic Development Summit Energy Secretary Steven Chu to Address Montana Economic Development Summit September 13, 2010 - 12:00am Addthis Washington D.C. -Tuesday, September 14, 2010, U.S. Energy Secretary Steven Chu will speak at the 2010 Montana Economic Development Summit. This year's summit will discuss the mechanics of a healthy recovery and how to get workers back into good-paying jobs. At the invitation of Senator Max Baucus, Secretary Chu will discuss how Montana can seize the clean energy opportunity and highlight the investments the administration has made in the state's clean energy sector. The summit will be webcast live. What: U.S. Secretary of Energy Steven Chu to give keynote address at Montana Economic Development Summit

231

Abraham Calls on Global Community to Aggressively Address Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Abraham Calls on Global Community to Aggressively Address Nuclear Abraham Calls on Global Community to Aggressively Address Nuclear Nonproliferation Abraham Calls on Global Community to Aggressively Address Nuclear Nonproliferation January 13, 2005 - 9:49am Addthis WASHINGTON, DC - In a lunchtime speech to the Council on Foreign Relations in Washington, DC, Energy Secretary Spencer Abraham called on the global community to join in implementing a comprehensive nuclear nonproliferation strategy to address 21st century challenges. Outlining his vision for dealing with constantly evolving proliferation threats in an age of terrorism, Secretary Abraham said the international community must play a greater role in future efforts. "Terrorists have struck not just Washington, New York, Moscow, and Beslan," he said. "The challenge of confronting terrorism falls to every nation. .

232

Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and  

Broader source: Energy.gov (indexed) [DOE]

Ambient Corporation's Reply comments to DOE RFI: Addressing Policy Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation submits the following comments to the US Department of Energy (DOE) in hopes that their contribution can highlight and further the understanding of the DOE on the key role that integrated communications will play ineneabling utilities to deploy cost-effective long-term smart grid benefits. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation More Documents & Publications Comments of Tendril Networks Inc Technical Standards Newsletter - September 2001

233

EPA -- Addressing Children's Health through Reviews Conducted Pursuant to  

Broader source: Energy.gov (indexed) [DOE]

EPA -- Addressing Children's Health through Reviews Conducted EPA -- Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act Executive Order 13045, "Protection of Children from Environmental Health Risks and Safety Risks " (April 21, 1997), directs Federal agencies, to the extent permitted by law and appropriate, to make it a high priority to identify and assess environmental health and safety risks that may disproportionately affect children and to ensure that policies, programs,

234

DOE Seeks Input On Addressing Contractor Pension and Medical Benefits  

Broader source: Energy.gov (indexed) [DOE]

Input On Addressing Contractor Pension and Medical Input On Addressing Contractor Pension and Medical Benefits Liabilities DOE Seeks Input On Addressing Contractor Pension and Medical Benefits Liabilities March 27, 2007 - 12:10pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced in the Federal Register that it is seeking public comment on how to address the increasing costs and liabilities of contractor employee pension and medical benefits. Under the Department of Energy's unique Management and Operating and other site management contracts, DOE reimburses its contractors for allowable costs incurred in providing contractor employee pension and medical benefits to current employees and retirees. In FY2006, these costs reached approximately $1.1 billion - a more than 226 percent increase since FY2000 - and are expected to grow in future years.

235

Secretary Chu Addresses the International Atomic Energy Agency General  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Addresses the International Atomic Energy Agency Secretary Chu Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference. I extend my thanks and appreciation to Director General Mr. Yukiya Amano for his exemplary leadership in his first year. I especially welcome the Director General's initiative to help fight cancer in developing countries. I am honored to represent the United States today, and I want to share a

236

EPA -- Addressing Children's Health through Reviews Conducted Pursuant to  

Broader source: Energy.gov (indexed) [DOE]

EPA -- Addressing Children's Health through Reviews Conducted EPA -- Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act Executive Order 13045, "Protection of Children from Environmental Health Risks and Safety Risks " (April 21, 1997), directs Federal agencies, to the extent permitted by law and appropriate, to make it a high priority to identify and assess environmental health and safety risks that may disproportionately affect children and to ensure that policies, programs,

237

Secretary Chu Addresses the International Atomic Energy Agency General  

Broader source: Energy.gov (indexed) [DOE]

Addresses the International Atomic Energy Agency Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference. I extend my thanks and appreciation to Director General Mr. Yukiya Amano for his exemplary leadership in his first year. I especially welcome the Director General's initiative to help fight cancer in developing countries. I am honored to represent the United States today, and I want to share a message from President Barack Obama:

238

Department of Energy Releases Strategic Plan to Address Energy Challenges |  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Releases Strategic Plan to Address Energy Department of Energy Releases Strategic Plan to Address Energy Challenges Department of Energy Releases Strategic Plan to Address Energy Challenges October 2, 2006 - 9:01am Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today released the Department's five-year strategic plan that focuses on the Department's role in powering and securing America's future. The plan addresses overall Department goals for developing and deploying new clean energy technologies, reducing our dependence on foreign energy sources, protecting our nuclear weapons stockpile, and ensuring that America remains competitive in the global marketplace. The Department's plan builds on President Bush's Advanced Energy and American Competitiveness Initiatives, which are increasing America's energy security, spurring scientific

239

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical  

Broader source: Energy.gov (indexed) [DOE]

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation The NAP Coalition is a "Coalition of Coalitions" that has been formed for the purpose of implementing the National Action Plan released by FERC in cooperation with DOE in June of 2010. Organizations working together on NAP implementation in include EEI, APPA, NRECA, ASE, ACEEE, NASUCA, NARUC, NASEO, DRSG, DRCC and EDF. The NAP Coalition submits a response in this RFI only to question #14 in Section II of the RFI. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation More Documents & Publications

240

Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC  

Broader source: Energy.gov (indexed) [DOE]

Assistant Secretary Patricia Hoffman Addresses Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference November 30, 2011 - 1:50pm Addthis WASHINGTON, D.C. - Department of Energy Assistant Secretary for Electricity Delivery and Energy Reliability Patricia Hoffman today addressed the 2011 Federal Energy Regulatory Commission technical conference in Washington, D.C. In remarks prepared for delivery, Assistant Secretary Hoffman discussed recent evaluations of proposed Environmental Protection Agency (EPA) rules and the impact those rules could be expected to have on our nation's electrical grid. Hoffman noted an emerging consensus that the new rules are not expected to create

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical  

Broader source: Energy.gov (indexed) [DOE]

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation The NAP Coalition is a "Coalition of Coalitions" that has been formed for the purpose of implementing the National Action Plan released by FERC in cooperation with DOE in June of 2010. Organizations working together on NAP implementation in include EEI, APPA, NRECA, ASE, ACEEE, NASUCA, NARUC, NASEO, DRSG, DRCC and EDF. The NAP Coalition submits a response in this RFI only to question #14 in Section II of the RFI. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation More Documents & Publications

242

Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid RFI: Addressing Policy and Logistical Challenges. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. The Alliance to Save Energy is a coalition of prominent business, government, environmental, and consumer leaders who promote the efficient use of energy worldwide to benefit consumers, the environment, economy, and national security. The Alliance to Save Energy (the Alliance) thanks the Department of Energy for the opportunity to comment on broad issues of policy and logistical challenges faced in smart grid implementation. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. More Documents & Publications

243

Addressing the Sputniks of our Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Addressing the Sputniks of our Generation Addressing the Sputniks of our Generation Addressing the Sputniks of our Generation September 30, 2010 - 5:55pm Addthis Dr. Arun Majumdar Dr. Arun Majumdar Former Director, Advanced Research Projects Agency - Energy Earlier this week, I traveled to Boston to take part in Boston University's Presidential Lecture on Clean Energy and Environmental Sustainability. The purpose of my discussion was to address technology innovations with fierce urgency. To understand what I mean, we must take a quick look back to 1958. In response to the Soviet Union's launch of its first satellite - Sputnik 1, the Department of Defense created DARPA to regain the country's technological lead. Today, we are faced with three similar "Sputnik-like" challenges in the energy sector:

244

Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Assistant Secretary Patricia Hoffman Addresses Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference Energy Department Assistant Secretary Patricia Hoffman Addresses 2011 FERC Reliability Technical Conference November 30, 2011 - 1:50pm Addthis WASHINGTON, D.C. - Department of Energy Assistant Secretary for Electricity Delivery and Energy Reliability Patricia Hoffman today addressed the 2011 Federal Energy Regulatory Commission technical conference in Washington, D.C. In remarks prepared for delivery, Assistant Secretary Hoffman discussed recent evaluations of proposed Environmental Protection Agency (EPA) rules and the impact those rules could be expected to have on our nation's electrical grid. Hoffman noted an emerging consensus that the new rules are not expected to create

245

Deputy Secretary Poneman Addresses Nuclear Deterrence Summit | Department  

Broader source: Energy.gov (indexed) [DOE]

Addresses Nuclear Deterrence Summit Addresses Nuclear Deterrence Summit Deputy Secretary Poneman Addresses Nuclear Deterrence Summit February 17, 2010 - 12:00am Addthis Alexandria, VA - U.S. Deputy Secretary of Energy Daniel Poneman today addressed the opening session of the second annual Nuclear Deterrence Summit and discussed the Department of Energy's commitment to helping achieve the President's goals of reducing nuclear dangers and expanding the use of nuclear energy in a manner that minimizes the risks of proliferation. The Deputy Secretary also spoke about the Department's commitment to management excellence. Read the Deputy Secretary's full remarks. Excerpts from his remarks as prepared for delivery are below. On the Department of Energy's Role in our Nuclear Energy Future: "As we consider our nuclear energy future, all three program areas of the

246

Neile Miller addresses DOE/NNSA intergovernmental meeting | National  

National Nuclear Security Administration (NNSA)

Neile Miller addresses DOE/NNSA intergovernmental meeting | National Neile Miller addresses DOE/NNSA intergovernmental meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Neile Miller addresses DOE/NNSA intergovernmental meeting Neile Miller addresses DOE/NNSA intergovernmental meeting Posted By Office of Public Affairs NNSA Blog

247

Constraints to addressing food insecurity in protracted crises  

Science Journals Connector (OSTI)

...idiosyncratic risk. Also, risk management approaches...addressed conflict or political risk more generally. Rights-based approaches...remains a challenge. Risk transfer interventions, such as rainfall index insurance, have proven feasible...

Daniel Maxwell; Luca Russo; Luca Alinovi

2012-01-01T23:59:59.000Z

248

The State of the Ames Laboratory Address 2011  

ScienceCinema (OSTI)

Alex King, director of The Ames Laboratory, discusses the budget situation, improvements at Ames Lab and infrastructure improvements during the State of the Lab address on Tuesday, May 24, 2011.

King, Alex

2013-03-01T23:59:59.000Z

249

United Indigenous Voices Address Sustainability: Climate Change and Traditional Places  

Office of Energy Efficiency and Renewable Energy (EERE)

At the First Stewards Symposium, over 300 industry and policy leaders from around the nation will discuss four main themes generated from the 2012 First Stewards Symposium that address issues...

250

Keynote Address: Cristin Dorgelo, White House Office of Science...  

Energy Savers [EERE]

Cristin Dorgelo, White House Office of Science and Technology Policy Keynote Address: Cristin Dorgelo, White House Office of Science and Technology Policy May 21, 2014 2:20PM to...

251

Synthetic Generation of Events for Address-Event-Representation Communications  

Science Journals Connector (OSTI)

Address-Event-Representation (AER) is a communications protocol for transferring images between chips, originally developed for bio-inspired image processing systems. Such systems may consist of a complicated hierarchical structure with many chips that ...

Alejandro Linares-Barranco; Gabriel JimÚnez; Antˇn Civit; BernabÚ Linares-Barranco

2002-09-01T23:59:59.000Z

252

Keynote Address: Ali Zaidi, the White House Domestic Policy Council...  

Energy Savers [EERE]

Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote...

253

Bush Administration Plays Leading Role in Studying and Addressing Global  

Broader source: Energy.gov (indexed) [DOE]

Plays Leading Role in Studying and Addressing Plays Leading Role in Studying and Addressing Global Climate Change Bush Administration Plays Leading Role in Studying and Addressing Global Climate Change February 27, 2007 - 3:49pm Addthis Washington, DC - Continuing to take the lead in addressing global climate change, Energy Secretary Samuel Bodman, Environmental Protection Agency (EPA) Administrator Stephen Johnson, and National Oceanic and Atmospheric Administration (NOAA) Administrator Vice Admiral Conrad Lautenbacher discussed Working Group I's contribution to the Fourth Assessment Report released today by the Intergovernmental Panel on Climate Change (IPCC). The report confirms what President Bush has said about the nature of climate change and it reaffirms the need for continued U.S. leadership in

254

Enabling a Highly-Scalable Global Address Space Model for Petascale Computing  

SciTech Connect (OSTI)

Over the past decade, the trajectory to the petascale has been built on increased complexity and scale of the underlying parallel architectures. Meanwhile, software de- velopers have struggled to provide tools that maintain the productivity of computational science teams using these new systems. In this regard, Global Address Space (GAS) programming models provide a straightforward and easy to use addressing model, which can lead to improved produc- tivity. However, the scalability of GAS depends directly on the design and implementation of the runtime system on the target petascale distributed-memory architecture. In this paper, we describe the design, implementation, and optimization of the Aggregate Remote Memory Copy Interface (ARMCI) runtime library on the Cray XT5 2.3 PetaFLOPs computer at Oak Ridge National Laboratory. We optimized our implementation with the flow intimation technique that we have introduced in this paper. Our optimized ARMCI implementation improves scalability of both the Global Arrays (GA) programming model and a real-world chemistry application NWChem from small jobs up through 180,000 cores.

Apra, Edoardo [ORNL; Vetter, Jeffrey S [ORNL; Yu, Weikuan [ORNL

2010-01-01T23:59:59.000Z

255

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

256

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

257

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

258

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

259

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

260

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Engine Development Gaps (Presentation)  

SciTech Connect (OSTI)

A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

Zigler, B.T.

2014-03-01T23:59:59.000Z

262

Protocol for Addressing Induced Seismicity Associated with Enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

number of human activities such as, miningrock removal (McGarr, 1976, Richardson and Jordan, 2002), fluid extraction in oil and gas (e.g Grasso, 1992; Segall, 1989; Segall et...

263

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

gas http www afpc sy com new history htm Al Husseini Amelio JV Al Husseini Amelio JV Jordan Solar JV company to develop a GW solar plant in Jordan and an integrated MW thin film...

264

NETL: News Release - Ohio State Develops Game-Changing CO Carbon Storage Partner Completes First Year of CO Research Projects Addressing Technical Challenges to Environmentally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection Operations in Illinois 2 Capture Membranes in DOE-Funded Injection Operations in Illinois 2 Capture Membranes in DOE-Funded Project Publications News Release Release Date: November 28, 2012 Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE Washington, D.C. - Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks, have been selected to receive a total of $28 million in funding from the U.S. Department of Energy's Office of Fossil Energy (FE). The projects, valued at just over $36.6 million over two years, add to the research portfolio for FE's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, which develops technologies and strategies to improve the safety and minimize the environmental impacts of oil and natural gas exploration and production.

265

Development of Novel Water-Gas-Shift Membrane Reactor  

E-Print Network [OSTI]

Development of Novel Water- Gas-Shift Membrane Reactor Addressing Barrier L: H2 Purification-22, 2003 #12;Water-Gas-Shift Membrane Reactor ┬Ě Relevance/Objectives - Produce Enhanced H2 Product with ppm CO at High Pressure Used for Reforming - Overcome Barrier L: H2 Purification/CO Clean-up - Achieve

266

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

267

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

268

Headquarters Program & Staff Office Mailing Addresses | Department of  

Broader source: Energy.gov (indexed) [DOE]

Headquarters Program & Staff Office Mailing Headquarters Program & Staff Office Mailing Addresses Headquarters Program & Staff Office Mailing Addresses The following addresses are for delivery of regular mail and small packages: Delivery to the Headquarters buildings in Washington, DC: Name of Individual Title Routing Symbol/Forrestal Building U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Name of Individual Title Routing Symbol/L'Enfant Plaza Building U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585-1615 Delivery to the Headquarters buildings in Germantown, MD: Name of Individual Title Routing Symbol/Germantown Building U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585-1290 Name of Individual Title Routing Symbol/Cloverleaf Building

269

Address (Smart Grid Project) (Switzerland) | Open Energy Information  

Open Energy Info (EERE)

Project Name Address Project Name Address Country Switzerland Coordinates 46.818188┬░, 8.227512┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.818188,"lon":8.227512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Snir gives keynote address at distributed computing conference | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snir gives keynote address at distributed computing conference Snir gives keynote address at distributed computing conference August 14, 2013 Tweet EmailPrint Marc Snir, director of Argonne's Mathematics and Computer Science Division and Argonne Distinguished Fellow, delivered a keynote address at the joint PODC/SPAA symposium held in Montreal, Canada, July 22-24, 2013. The PODC (Principles of Distributed Computing) symposium was collocated this year with SPAA (Symposium on Parallelism in Algorithms and Architectures). Both annual conferences are sponsored by the Association for Computer Machinery. Snir's presentation, titled "Supercomputing: Technical Evolution and Programming Models," began with a description of punctuated equilibrium and three technological (r)evolutionary developments in high-performance

271

Secretary Bodman Addresses IAEA General Conference in Vienna | Department  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman Addresses IAEA General Conference in Vienna Secretary Bodman Addresses IAEA General Conference in Vienna Secretary Bodman Addresses IAEA General Conference in Vienna September 18, 2006 - 8:53am Addthis Highlights President Bush's global initiatives to expand international access to nuclear energy and promote nonproliferation VIENNA, AUSTRIA - U.S. Secretary of Energy Samuel W. Bodman today discussed the need to further expand international cooperative work in safely expanding the use of nuclear energy as a clean and affordable energy source while strengthening nuclear nonproliferation in remarks he delivered to the 50th Annual International Atomic Energy Agency (IAEA) General Conference in Vienna, Austria. "As an international community, we must work together to globally expand clean, reliable, and affordable nuclear energy in ways that reduce

272

DOE Awards Over a Billion Supercomputing Hours to Address Scientific  

Broader source: Energy.gov (indexed) [DOE]

Over a Billion Supercomputing Hours to Address Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The INCITE program provides powerful resources to enable scientists and engineers to conduct cutting-edge research in just weeks or months rather than the years or decades needed previously. This facilitates scientific breakthroughs in areas such as climate change, alternative energy, life sciences, and materials science.

273

NETL's Supercomputer Addresses Energy Issues on Two Fronts | Department of  

Broader source: Energy.gov (indexed) [DOE]

NETL's Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts September 26, 2013 - 10:42am Addthis The visualization center for the SBEUC (Simulation Based Engineering User Center). Located at the Department’s National Energy Technology Laboratory in Morgantown, W. Va., the SBEUC will be powered by a high performance computer that will allow researchers to simulate phenomena that are difficult or impossible to probe experimentally. The results from simulations will become accessible through user centers that provide advanced visualization capabilities and foster collaboration among researchers. The SBEUC will be used for developing and deploying simulation tools required for overcoming energy technology barriers quickly and reliably.

274

DOE Awards Over a Billion Supercomputing Hours to Address Scientific  

Broader source: Energy.gov (indexed) [DOE]

DOE Awards Over a Billion Supercomputing Hours to Address DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The INCITE program provides powerful resources to enable scientists and engineers to conduct cutting-edge research in just weeks or months rather than the years or decades needed previously. This facilitates scientific breakthroughs in areas such as climate change, alternative energy, life

275

Mailing Addresses and Information Numbers for Operations, Field, and Site  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov ┬╗ Mailing Addresses and Information Numbers for About Energy.gov ┬╗ Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 510-486-5784 U.S. Department of Energy Bonneville Power Administration P.O. Box 3621 905 NE 11th Avenue Portland, OR 97232 Bonneville Power Administration General and Regional Offices 503-230-3000 U.S. Department of Energy Brookhaven Site Office Upton, NY 11973 631-344-5050

276

Wind versus Biofuels for Addressing Climate, Health, and Energy  

SciTech Connect (OSTI)

The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

Jacobson, Mark Z.

2007-01-29T23:59:59.000Z

277

Mailing Addresses for National Laboratories and Technology Centers |  

Broader source: Energy.gov (indexed) [DOE]

Mailing Addresses for National Laboratories and Mailing Addresses for National Laboratories and Technology Centers Mailing Addresses for National Laboratories and Technology Centers Name Telephone Number U.S. Department of Energy Albany Research Center 1450 Queen Ave. SW Albany, OR 97321-2198 541-967-5892 U.S. Department of Energy Ames Laboratory #311 TASF, Iowa State University Ames, Iowa 50011 515-294-2680 U.S. Department of Energy Argonne National Laboratory (East) 9700 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Argonne National Laboratory (West) P.O. Box 2528 Idaho Fall, ID 83403-2528 208-533-7341 U.S. Department of Energy Bettis Atomic Power Laboratory, Bechtel Bettis, Inc. 814 Pittsburgh McKeesport Boulevard West Mifflin, PA 15122-0079 412-476-5000 U.S. Department of Energy

278

Secretary Bodman Addresses IAEA General Conference in Vienna | Department  

Broader source: Energy.gov (indexed) [DOE]

Secretary Bodman Addresses IAEA General Conference in Vienna Secretary Bodman Addresses IAEA General Conference in Vienna Secretary Bodman Addresses IAEA General Conference in Vienna September 18, 2006 - 8:53am Addthis Highlights President Bush's global initiatives to expand international access to nuclear energy and promote nonproliferation VIENNA, AUSTRIA - U.S. Secretary of Energy Samuel W. Bodman today discussed the need to further expand international cooperative work in safely expanding the use of nuclear energy as a clean and affordable energy source while strengthening nuclear nonproliferation in remarks he delivered to the 50th Annual International Atomic Energy Agency (IAEA) General Conference in Vienna, Austria. "As an international community, we must work together to globally expand clean, reliable, and affordable nuclear energy in ways that reduce

279

Policy Agenda for Addressing Climate Change in Bangladesh: Copenhagen and  

Open Energy Info (EERE)

for Addressing Climate Change in Bangladesh: Copenhagen and for Addressing Climate Change in Bangladesh: Copenhagen and Beyond Jump to: navigation, search Name Policy Agenda for Addressing Climate Change in Bangladesh: Copenhagen and Beyond Agency/Company /Organization United Nations Environment Programme, Centre for Policy Dialogue Sector Energy, Land Topics Implementation, GHG inventory, Policies/deployment programs, Pathways analysis, Background analysis Resource Type Presentation Website http://www.indiaenvironmentpor Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Policy Agenda: Bangladesh[1] Overview "Dialogue and carbon dioxide from the atmosphere The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change(IPCC) gives detailed projections for the 21st century These

280

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

282

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Programmable Thermostat: 1 per address Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Programmable Thermostat: $20 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a rebate incentive if the

283

The density profiles of hot galactic halo gas  

E-Print Network [OSTI]

Extended gas haloes around galaxies are a ubiquitous prediction of galaxy formation scenarios. However, the density profiles of this hot halo gas is virtually unknown, although various profiles have been suggested on theoretical grounds. In order to quantitatively address the gas profile, we compare galaxies from direct cosmological simulations with analytical solutions of the underlying gas equations. We find remarkable agreement between simulations and theoretical predictions. We present an expression for this gas profile with a non-trivial dependence on the total mass profile. This expression is useful when setting up equilibrium galaxy models for numerical experiments.

Steen H. Hansen; Jesper Sommer-Larsen

2006-06-13T23:59:59.000Z

284

Addressing Policy and Logistical Challenges to Smart Grid Implementation:  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel The Office of the Ohio Consumers' Counsel ("OCC") hereby submits the following comments in response to the United States Department of Energy ("DOE") Request for Information ("RFI") entitled "Addressing Policy and Logistical Challenges to Smart Grid Implementation" See 75 Fed. Reg. 57006 (September 17, 201 0). The RFI requests comments and information from interested parties to assist DOE in understanding "policy and logistical challenges that confront smart grid implementation, as well as recommendations on how to best overcome those challenges."

285

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

286

Indonesia National Action Plan Addressing Climate Change | Open Energy  

Open Energy Info (EERE)

Indonesia National Action Plan Addressing Climate Change Indonesia National Action Plan Addressing Climate Change Jump to: navigation, search Tool Summary Name: Indonesia National Action Plan Addressing Climate Change Agency/Company /Organization: Indonesia State Ministry of Environment Sector: Energy, Land Topics: Background analysis, Low emission development planning Resource Type: Case studies/examples, Publications Website: climatechange.menlh.go.id/index.php?option=com_docman&task=down&bid=17 Country: Indonesia South-Eastern Asia Coordinates: -0.789275┬░, 113.921327┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-0.789275,"lon":113.921327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Early Restoration Plan Repositories STATE LIBRARY ADDRESS CITY ZIP  

E-Print Network [OSTI]

Calcasieu Parish Public Library Central Branch 301 W. Claude St. Lake Charles 70605 #12;STATE LIBRARYEarly Restoration Plan Repositories STATE LIBRARY ADDRESS CITY ZIP AL Dauphin Island Sea Laboratory. Walton 32548 FL Panama City Beach Public Library 125000 Hutchison Blvd Panama City Beach 32407 FL

288

JOHN KORMENDY ADDRESS AND TELEPHONE NUMBER: Department of Astronomy  

E-Print Network [OSTI]

VITA JOHN KORMENDY ADDRESS AND TELEPHONE NUMBER: Department of Astronomy University of Texas@astro.as.utexas.edu (email) EDUCATION: B. Sc. 1970, Honours Mathematics, Physics and Chemistry (Astronomy Division), University of Toronto Ph. D. 1976, Astronomy, California Institute of Technology, Pasadena, CA POSITIONS: Apr

Kormendy, John

289

Addressing the Level of Florida's Electricity Prices Theodore Kury1  

E-Print Network [OSTI]

Addressing the Level of Florida's Electricity Prices Theodore Kury1 Public of electricity prices by state changes over time due to a number of factors: ┬Ě Investment decisions ratepayers; ┬Ě Electric utilities also buy on the spot market and prices can fluctuate quickly when

Jawitz, James W.

290

Life Science Proposals State of the University Address  

E-Print Network [OSTI]

Life Science Proposals From the State of the University Address September 10, 2009 In March 2009 of the life sciences at UNL. Subsequently, consultants advising the university regarding the development successful involve research in the life sciences. The central theme of the review team's report

Farritor, Shane

291

A Temporal Calculus for GIS using Tesseral Addressing  

E-Print Network [OSTI]

maps onto a raster grid. A a result the calculus is precisely compati┬ş ble with raster based GIS┬ş┬ş ┬ş┬ş A Temporal Calculus for GIS using Tesseral Addressing Frans Coenen, Bridget Beattie, Bernard Informa┬ş tion Systems (GIS) based on raster representations. In this paper we describe a temporal

Atkinson, Katie

292

November 2013 ANALYSIS OF RAW ACTIONS ADDRESSING RFS  

E-Print Network [OSTI]

environmental resource areas for the proposed RAW actions associated with RFS contamination described in SectionNovember 2013 5-1 CHAPTER 5 ANALYSIS OF RAW ACTIONS ADDRESSING RFS CONTAMINATION This chapter discusses the environmental setting, impacts, and mitigation measures for the 14 fully evaluated

Lee, Jason R.

293

Problems addressed in this course Teaching methodology, material, exams, contacts  

E-Print Network [OSTI]

. The first look at a genome - Sequence analysis Bioinformatics - Lecture 1 Louis Wehenkel Department. The first look at a genome - Sequence analysis Problems addressed in this course Teaching methodology, material, exams, contacts Chapter 1. The first look at a genome - Sequence analysis Introduction

Wehenkel, Louis

294

Gender: Male Address: The State Key Laboratory of Fluid Power  

E-Print Network [OSTI]

of this simulation system at the first two years. My works focused on the design of power conversion and mechanical, Canjun Yang, Dejun Li, Bo Jin, Ying Chen. Study on 10kVDC powered junction box for cabled oceanYanHu Chen Gender: Male Address: The State Key Laboratory of Fluid Power Transmission and Control

Frandsen, Jannette B.

295

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

296

Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite)  

U.S. Energy Information Administration (EIA) Indexed Site

Report Period: Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite) Secure File Transfer option available at: (e.g., PO Box, RR) Electronic Transmission: The PC Electronic Data Reporting Option (PEDRO) is available. Zip Code: - If interested in software, call (202) 586-9659. Email form to: Fax form to: (202) 586-9772 - - Mail form to: Oil & Gas Survey - - U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 OOG.SURVEYS@eia.doe.gov Contact Name: Version No.: 2013.01 Date of this Report: Mo Day State: Year Phone No.: DOMESTIC CRUDE OIL FIRST PURCHASE REPORT Company Name: A completed form must be filed by the 30th calendar day following the end of the report

297

Greening Industrial Facilities: A Sustainable Approach to Addressing Energy Concerns  

E-Print Network [OSTI]

The prices for natural gas and oil-based products have risen significantly in recent years, making it more costly for U.S.-based manufacturers to be profitable and compete globally. A poll taken at a recent meeting of the National Association...

Love, D.

2008-01-01T23:59:59.000Z

298

SSEELLFF--CCHHEECCKK HHOOMMEE IINNVVEENNTTOORRYY Name: _____________________________ Address: ___________________________________ Phone: _________________________  

E-Print Network [OSTI]

kind of heating system do you have? (Please circle) Oil Gas Electric How old is the heating unit typically keep your thermostat(s) set to? What kind of distribution system heats your home? (Please circle in your home: Please estimate the number of each type of light bulb you have in your home: Heating

Kammen, Daniel M.

299

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena  

E-Print Network [OSTI]

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena , Sigurd little attention. this paper addresses optimal operation of a simple natural gas liquefaction process at all times. Keywords: Self-optimizing control, liquefied natural gas, LNG, PRICO, disturbances, optimal

Skogestad, Sigurd

300

Strategic Planning, Design and Development of the Shale Gas Supply Chain Network  

E-Print Network [OSTI]

1 Strategic Planning, Design and Development of the Shale Gas Supply Chain Network Diego C. Cafaro1-term planning of the shale gas supply chain is a relevant problem that has not been addressed before Shale gas, supply chain, strategic planning, MINLP, solution algorithm * Corresponding author. Tel.: +1

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure  

E-Print Network [OSTI]

1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field, Houston, TX 77098 Abstract The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this paper. The main uncertainties considered are in the initial maximum oil or gas flowrate

Grossmann, Ignacio E.

302

Addressing Policy and Logistical Challenges to smart grid Implementation:  

Broader source: Energy.gov (indexed) [DOE]

smart grid smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI eMeter is a smart grid software company that provides smart network application platform (SNAP) software to integrate smart meters and smart grid communications networks and devices with utility IT systems. eMeter also provides smart grid application software such as meter data management (MDM) and consumer engagement software. Being vendor-neutral toward all meter, hardware, and legacy utility software systems (e.g. CIS and Billing), eMeter has a unique, unbiased and global perspective on smart grid IT issues. Addressing Policy and Logistical Challenges to smart grid Implementation:

303

Addressing Complexity In Laboratory Experiments- The Scaling Of Dilute  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon ┬╗ Addressing Complexity In Laboratory Experiments- The Scaling Of Dilute Multiphase Flows In Magmatic Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Addressing Complexity In Laboratory Experiments- The Scaling Of Dilute Multiphase Flows In Magmatic Systems Details Activities (0) Areas (0) Regions (0) Abstract: The kinematic and dynamic scaling of dilute multiphase mixtures in magmatic systems is the only guarantee for the geological verisimilitude of laboratory experiments. We present scaling relations that can provide a more complete framework to scale dilute magmatic systems because they

304

Address (Smart Grid Project) (France) | Open Energy Information  

Open Energy Info (EERE)

France) France) Jump to: navigation, search Project Name Address Country France Coordinates 46.073231┬░, 2.427979┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.073231,"lon":2.427979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Address (Smart Grid Project) (Italy) | Open Energy Information  

Open Energy Info (EERE)

Italy) Italy) Jump to: navigation, search Project Name Address Country Italy Coordinates 41.746727┬░, 12.052002┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.746727,"lon":12.052002,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Secretary Chu's Nobel Prize Winning Research Unexpectedly Addressing  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu's Nobel Prize Winning Research Unexpectedly Secretary Chu's Nobel Prize Winning Research Unexpectedly Addressing Global Water Challenge Secretary Chu's Nobel Prize Winning Research Unexpectedly Addressing Global Water Challenge September 22, 2011 - 2:41pm Addthis Secretary Chu participating at the recent International Atomic Energy Agency (IAEA) Scientific Forum in Vienna, Austria | Photo courtesy of Dean Calma/IAEA Secretary Chu participating at the recent International Atomic Energy Agency (IAEA) Scientific Forum in Vienna, Austria | Photo courtesy of Dean Calma/IAEA Keri Fulton Public Affairs Specialist, Office of Public Affairs Decades ago, Steven Chu, a young researcher at Bell Labs working on atomic physics, developed a method to use lasers to trap individual atoms. In 1997, he was awarded the Nobel Prize in Physics for this research.

307

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Organization Organization Address Place Zip Notes Website Region Organization Organization Address Place Zip Notes Website Region Adirondack North Country Association Adirondack North Country Association Main Street Suite Saranac Lake New York http www adirondack org Northeast NY NJ CT PA Area African Renewable Energy Alliance AREA African Renewable Energy Alliance AREA Online http area network ning com xg source msg mes network Alliance for Sustainable Colorado Alliance for Sustainable Colorado Wynkoop Street Denver Colorado Mission of is to catalyze the shift to a truly sustainable world by fostering collaboration among nonprofits businesses governments and academia http www sustainablecolorado org Rockies Area American Clean Skies Foundation American Clean Skies Foundation st Street NE Suite Washington District of Columbia http www cleanskies

308

Secretary Chu's Nobel Prize Winning Research Unexpectedly Addressing  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu's Nobel Prize Winning Research Unexpectedly Secretary Chu's Nobel Prize Winning Research Unexpectedly Addressing Global Water Challenge Secretary Chu's Nobel Prize Winning Research Unexpectedly Addressing Global Water Challenge September 22, 2011 - 2:41pm Addthis Secretary Chu participating at the recent International Atomic Energy Agency (IAEA) Scientific Forum in Vienna, Austria | Photo courtesy of Dean Calma/IAEA Secretary Chu participating at the recent International Atomic Energy Agency (IAEA) Scientific Forum in Vienna, Austria | Photo courtesy of Dean Calma/IAEA Keri Fulton Public Affairs Specialist, Office of Public Affairs Decades ago, Steven Chu, a young researcher at Bell Labs working on atomic physics, developed a method to use lasers to trap individual atoms. In 1997, he was awarded the Nobel Prize in Physics for this research.

309

Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of  

Broader source: Energy.gov (indexed) [DOE]

Challenges. Challenges. Comments of the Alliance to Save Energy. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. The Alliance to Save Energy is a coalition of prominent business, government, environmental, and consumer leaders who promote the efficient use of energy worldwide to benefit consumers, the environment, economy, and national security. The Alliance to Save Energy (the Alliance) thanks the Department of Energy for the opportunity to comment on broad issues of policy and logistical challenges faced in smart grid implementation. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of the Alliance to Save Energy. More Documents & Publications DC OPC Comments. September 17, 2010 Comments of the National Rural Electric Cooperative Association, Request

310

Plan for addressing issues relating to oil shale plant siting  

SciTech Connect (OSTI)

The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

1987-09-01T23:59:59.000Z

311

Address (Smart Grid Project) (SVEZIA) | Open Energy Information  

Open Energy Info (EERE)

SVEZIA) SVEZIA) Jump to: navigation, search Project Name Address Country SVEZIA Coordinates 60.128162┬░, 18.643501┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.128162,"lon":18.643501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Institution Name Institution Name Address Place Zip Notes Website Region Institution Name Institution Name Address Place Zip Notes Website Region ARCH Venture Partners Texas ARCH Venture Partners Texas Bridgepoint Parkway Bldg Suite Austin Texas http www archventure com Texas Area ARCH Venture Partners Washington ARCH Venture Partners Washington Second Avenue Suite Seattle Washington http www archventure com Pacific Northwest Area African Wind Energy Association South Africa African Wind Energy Association South Africa South Africa http www afriwea org en south africa htm Alternative Energy Institute Alternative Energy Institute russell long blvd Canyon Texas http www windenergy org Texas Area Applied Process Engineering Laboratory Applied Process Engineering Laboratory Hills Street Suite Richland Washington http www apel org

313

Energy Department Addresses Largest Gathering of Geothermal Energy Stakeholders  

Broader source: Energy.gov [DOE]

U.S. Department of Energy investments are tapping a vast resource of clean, baseload energy from the earth's heat, according to Douglas Hollett, Program Manager for the Department's Geothermal Technologies Office. Hollett addressed over 1,000 this week at the annual conference of the Geothermal Resources Council (GRC) in Reno, NevadaŚthe industry's largest annual gathering of geothermal energy stakeholders in the nation.

314

Gas Feedback on Stellar Bar Evolution  

E-Print Network [OSTI]

We analyze evolution of live disk-halo systems in the presence of various gas fractions, f_gas less than 8% in the disk. We addressed the issue of angular momentum (J) transfer from the gas to the bar and its effect on the bar evolution. We find that the weakening of the bar, reported in the literature, is not related to the J-exchange with the gas, but is caused by the vertical buckling instability in the gas-poor disks and by a steep heating of a stellar velocity dispersion by the central mass concentration (CMC) in the gas-rich disks. The gas has a profound effect on the onset of the buckling -- larger f_gas brings it forth due to the more massive CMCs. The former process leads to the well-known formation of the peanut-shaped bulges, while the latter results in the formation of progressively more elliptical bulges, for larger f_gas. The subsequent (secular) evolution of the bar differs -- the gas-poor models exhibit a growing bar while gas-rich models show a declining bar whose vertical swelling is driven by a secular resonance heating. The border line between the gas-poor and -rich models lies at f_gas ~ 3% in our models, but is model-dependent and will be affected by additional processes, like star formation and feedback from stellar evolution. The overall effect of the gas on the evolution of the bar is not in a direct J transfer to the stars, but in the loss of J by the gas and its influx to the center that increases the CMC. The more massive CMC damps the vertical buckling instability and depopulates orbits responsible for the appearance of peanut-shaped bulges. The action of resonant and non-resonant processes in gas-poor and gas-rich disks leads to a converging evolution in the vertical extent of the bar and its stellar dispersion velocities, and to a diverging evolution in the bulge properties.

Ingo Berentzen; Isaac Shlosman; Inma Martinez-Valpuesta; Clayton Heller

2007-05-27T23:59:59.000Z

315

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

316

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

317

Gas Kick Mechanistic Model  

E-Print Network [OSTI]

Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial loss and possible injury...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

318

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

319

Internet Dial-In Infodisk E-Mail Diskette Natural Gas Annual,  

Gasoline and Diesel Fuel Update (EIA)

Internet Internet Dial-In Infodisk E-Mail Diskette Natural Gas Annual, 1996 Provides information on supply and disposition of natural gas in the United States. Information is provided nationally, regionally, and by State for 1996. Historical Natural Gas Annual, 1930 through 1996 Contains historical information about supply and disposition of natural gas at the national, regional, and State level, as well as prices at selected points in the flow of gas from wellhead to burnertip. Natural Gas 1996: Issues and Trends Examines how industry restructuring continues to expand choices, and challenges, for industry, participants, and natural gas customers. Natural Gas 1995: Issues and Trends Addresses current issues affecting the natural gas industry and markets, and analyzes trends in the most recent natural gas data. Natural Gas 1994: Issues and Trends Provides an overview of the natural

320

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

322

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

323

Future of Natural Gas  

Office of Environmental Management (EM)

technology is improving - Producers are drilling in liquids rich gas and crude oil shale plays due to lower returns on dry gas production - Improved well completion time...

324

Natural Gas Industrial Price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

325

Greenhouse Gas Management Institute (GHGMI) | Open Energy Information  

Open Energy Info (EERE)

Institute (GHGMI) Institute (GHGMI) Jump to: navigation, search Logo: Greenhouse Gas Management Institute (GHGMI) Name Greenhouse Gas Management Institute (GHGMI) Address Washington, D.C. Place Washington, District of Columbia Phone number 1-888-778-1972 Website http://ghginstitute.org/housek References http://ghginstitute.org/housekeeping/contact-us/ No information has been entered for this organization. Add Organization The Greenhouse Gas Management Institute (GHGMI) was founded in response to the growing demand for qualified greenhouse gas (GHG) professionals. Just as engineering and financial accounting rely on certified professionals, GHG emissions management requires a highly competent and ethical professional class to undertake measurement, reporting, auditing, and

326

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

327

Compensated individually addressable array technology for human breast imaging  

DOE Patents [OSTI]

A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

Lewis, D. Kent (San Francisco, CA)

2003-01-01T23:59:59.000Z

328

Water and Energy Issues in Gas-to-Liquid Processes: Assessment and Integration of Different Gas-Reforming Alternatives  

Science Journals Connector (OSTI)

Energy and water management effects are analyzed for the development of syngas processes under the integration of three gas reforming alternatives ... Gandrick et al.(9) considered the recycling of the light gas from FT synthesis and refining areas to fire gas turbines to produce electricity and the reuse of the gas turbines to produce superheated steam. ... We address in this paper several aspects related to such issues: (a) A comparative analysis is developed for assesing the impact of the use of different reforming technologies on energy and water usage. ...

Diana Yered MartÝnez; Arturo JimÚnez-GutiÚrrez; Patrick Linke; Kerron J. Gabriel; Mohamed M. B. Noureldin; Mahmoud M. El-Halwagi

2013-10-24T23:59:59.000Z

329

Natural Gas Technologies Center | Open Energy Information  

Open Energy Info (EERE)

Technologies Center Technologies Center Jump to: navigation, search Logo: Natural Gas Technologies Center Name Natural Gas Technologies Center Address 1350, Nobel, Boucherville, Quebec, Canada Place Montreal, Quebec Zip J4B 5H3 Number of employees 11-50 Year founded 1992 Phone number 1.450.449.4774 Coordinates 45.5678623┬░, -73.4186892┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5678623,"lon":-73.4186892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

E-Print Network 3.0 - addressing cancer clusters Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

addressing cancer clusters Search Powered by Explorit Topic List Advanced Search Sample search results for: addressing cancer clusters Page: << < 1 2 3 4 5 > >> 1 THE PUBLIC HEALTH...

331

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosovů

2013-03-01T23:59:59.000Z

332

Noble gas magnetic resonator  

DOE Patents [OSTI]

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

333

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

334

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

335

NETL: News Release - Fuel Cell Projects Address Barriers to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 1, 2006 June 1, 2006 Fuel Cell Projects Address Barriers to Commercialization Six Projects Focus on Improvements to Materials, Key Components WASHINGTON, DC - The Department of Energy today announced the selection of six research and development (R&D) projects expected to further enhance solid-oxide fuel cell (SOFC) technology, moving it one step closer to commercialization. These projects, part of DOE's Solid State Energy Conversion Alliance (SECA), build upon earlier Phase I research to support the development of efficient, low-cost and near-zero emissions SOFC power systems. "The projects selected reflect yet another step forward in the President's Hydrogen and Climate Initiatives, which envision a key role for fuel cells," said Jeffrey Jarrett, Assistant Secretary for Fossil Energy. "These projects are expected to further push fuel cell technology toward the ultimate application of fuel cells in FutureGen, the zero-emissions coal-fired plant of the future."

336

Smart Grid RFI: Addressing Policy and Logistical Challenges  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 Submitted electronically via smartgridpolicy@hq.doe.gov Smart Grid Request for Information: Addressing Policy and Logistical Challenges Comments of the Alliance to Save Energy The Alliance to Save Energy (the Alliance) thanks the Department of Energy for the opportunity to comment on broad issues of policy and logistical challenges faced in smart grid implementation. The Alliance to Save Energy is a coalition of prominent business, government, environmental, and consumer leaders who promote the efficient use of energy worldwide to benefit consumers, the environment, economy, and national security. The Alliance is a nonprofit 501 (c) (3) organization.

337

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology┬ĺs Impact on Production: Developing Environmental Solutions at the State and National Level Technology┬ĺs Impact on Production: Developing Environmental Solutions at the State and National Level DE-FC26-06NT15567 Goal The goal of the project is to assist State governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil through specific project efforts to address current issues. The issues addressed are national in scope. However, significant regional differences among States make ┬ôone-size-fits-all┬ö programs unacceptable. One of the strengths of IOGCC is its ability to address these national issues while maintaining more local flexibility. There are two basic thrusts of these efforts: 1) research and 2) transfer of findings to appropriate constituencies. IOGCC is carrying out three projects consistent with the overarching strategies:

338

The Challenges and Potential of Nuclear Energy for Addressing Climate Change  

SciTech Connect (OSTI)

The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the worldĺs electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

Kim, Son H.; Edmonds, James A.

2007-10-24T23:59:59.000Z

339

Arizona Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Commission Oil and Gas Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission State Arizona Name Arizona Oil and Gas Commission Address 416 W. Congress Street, Suite 100 City, State Tucson, Arizona Zip 85701 Website http://www.azogcc.az.gov/ Coordinates 32.221642┬░, -110.977439┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221642,"lon":-110.977439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Bahrain National Gas and Oil Authority | Open Energy Information  

Open Energy Info (EERE)

Bahrain National Gas and Oil Authority Bahrain National Gas and Oil Authority Jump to: navigation, search Logo: Bahrain National Gas and Oil Authority Country Bahrain Name Bahrain National Gas and Oil Authority Address 1435 Manama-Bahrain City Manama, Bahrain Website http://www.noga.gov.bh/en/defa Coordinates 26.231155┬░, 50.5705391┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.231155,"lon":50.5705391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oman Ministry of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Oman Ministry of Oil and Gas Oman Ministry of Oil and Gas Jump to: navigation, search Logo: Oman Ministry of Oil and Gas Country Oman Name Oman Ministry of Oil and Gas Address Al-Khuwair, Ministry Streets, Opposite Sultan Qaboos Street City Muscat Website http://www.mog.gov.om/english/ Coordinates 23.6138199┬░, 58.5922413┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.6138199,"lon":58.5922413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Natural Gas: Dry Wells Yield Gas  

Science Journals Connector (OSTI)

... THE Gas Council and Home Oil of Canada have announced plans for developing two ... Council and Home Oil of Canada have announced plans for developing two natural ...

1969-04-26T23:59:59.000Z

343

Oil and Gas Production (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production (Missouri) Production (Missouri) Oil and Gas Production (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This legislation contains additional information about the permitting, establishment, and operation of oil and gas wells, while additional regulations address oil and gas drilling and production and well spacing and unitization

344

Summaries of Addresses of Presidents of Sections: High-Voltage Insulation  

Science Journals Connector (OSTI)

... subject of his presidential address to Section A (Mathematics and Physics) *'High-voltage Insulation".

1963-08-31T23:59:59.000Z

345

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

346

South Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

347

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

348

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

349

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

350

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

351

New York Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) New York Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

352

West Virginia Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

353

North Dakota Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

354

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

355

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

356

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

357

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

358

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

359

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

360

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

362

Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses  

E-Print Network [OSTI]

The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

Vera Rosales, Fabian 1986-

2012-12-11T23:59:59.000Z

363

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production  

E-Print Network [OSTI]

Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

364

Development and assessment of a soot emissions model for aircraft gas turbine engines  

E-Print Network [OSTI]

Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

Martini, Bastien

2008-01-01T23:59:59.000Z

365

Quantitation by Gas Chromatography-Chemical Ionization-Mass Spectrometry of Phenylalanine Mustard in Plasma of Patients  

Science Journals Connector (OSTI)

...1980 research-article Quantification by Gas Chromatography of N,N-Di-(2-chloroethyl...addressed. A sensitive method, based on gas chromatography using a phosphorus-specific...derivatization process has been elucidated using gas chromatography-electron impact mass spectrometry...

Sharon L. Pallante; Catherine Fenselau; Robert G. Mennel; Robert B. Brundrett; Mark Appler; Neil B. Rosenshein; Michael Colvin

1980-07-01T23:59:59.000Z

366

Abstract IA12: Translation of an OX40 agonist: Putting a foot on an immunologic gas pedal.  

Science Journals Connector (OSTI)

...Identification of Benzo(a)pyrene Metabolites by Gas Chromatograph-Mass Spectrometer Gonya...requests for reprints should be addressed. A gas chromatograph-mass spectrometer was used...Identification of benzo(a)pyrene metabolites by gas chromatograph-mass spectrometer. | A...

Andrew D. Weinberg

2013-01-01T23:59:59.000Z

367

Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure under Decision-Dependent Uncertainty  

Science Journals Connector (OSTI)

Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure under Decision-Dependent Uncertainty ... The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this article. ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

Bora Tarhan; Ignacio E. Grossmann; Vikas Goel

2009-02-23T23:59:59.000Z

368

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Instrumented Pipeline Initiative The Instrumented Pipeline Initiative DE-NT-0004654 Goal The goal of the Instrumented Pipeline Initiative (IPI) is to address sensor system needs for low-cost monitoring and inspection as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap. This project intends to develop a new sensing and continuous monitoring system with alternative use as an inspection method. Performers Concurrent Technologies Corporation (CTC), Johnstown, PA 15213 Carnegie Melon University (CMU), Pittsburgh, PA 15904 Background Pie Chart showing Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines Figure 1. Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines

369

Addressing the susceptibility of digital systems to electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a verification and validation (V&V) program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate acceptance criteria to ensure that the circuit or system under test meets the recommended guidelines. V&V should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation susceptibility attributable to EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (US); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (US). Office of Nuclear Regulatory Research

1993-06-01T23:59:59.000Z

370

Addressing the susceptibility of digital systems to electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a verification and validation (V V) program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate acceptance criteria to ensure that the circuit or system under test meets the recommended guidelines. V V should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation susceptibility attributable to EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. (Oak Ridge National Lab., TN (United States)); Antonescu, C. (Nuclear Regulatory Commission, Rockville, MD (United States). Office of Nuclear Regulatory Research)

1993-01-01T23:59:59.000Z

371

Chapter Nine - Gas Sweetening  

Science Journals Connector (OSTI)

Abstract This chapter begins by reviewing the processing of natural gas to meet gas sales contract specifications. It then describes acid gas limitations for pipelines and gas plants, before detailing the most common acid gas removal processes, such as solid-bed, chemical solvent processes, physical solvent processes, direct conversion processes, distillation process, and gas permeation processes. The chapter discusses the selection of the appropriate removal process for a given situation, and it provides a detailed design procedure for a solid-bed and chemical solvent process. The chapter ends by supplying a sample design for a solid-bed and chemical solvent process.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

372

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

373

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

374

Integrated Strategy to Address Hanfordĺs Deep Vadose Zone Remediation Challenges  

SciTech Connect (OSTI)

A vast majority of Hanfordĺs remaining in-ground contaminants reside in the vadose zone of the Central Plateau, where reprocessing operations occurred. The vadose zone is comprised of about 75 meters of water-unsaturated sediments above groundwater. These contaminants have, and continue to release into groundwater that discharges to the Columbia River. If left untreated, these contaminants could remain a threat for centuries. Much of this contamination resides deep in the vadose zone, below the effective depth of tradition surface remedy influence. In 2008, the Department of Energy initiated deep vadose zone treatability testing to seek remedies for technetium-99 and uranium contamination. These tests include the application of desiccation for technetium-99 and reactive gas technologies for uranium. To complement these efforts, the Department of Energy has initiated a ôdefense-in-depthö approach to address the unique challenges for characterization and remediation of the deep vadose zone. This defense-in-depth approach will implement multiple approaches to understand and control contaminant flux from the deep vadose zone to the groundwater. Among these approaches is an increased investment in science and technology solutions to resolve deep vadose zone challenges including characterization, prediction, remediation, and monitoring.

Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Wellman, Dawn M.; Gerdes, Kurt D.; Charboneau, Briant L.; Morse, John G.; Lober, Robert W.; Chronister, Glen B.

2010-10-03T23:59:59.000Z

375

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

376

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

377

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

"N3050MS3","N3010MS3","N3020MS3","N3035MS3","NA1570SMS3","N3045MS3" "Date","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

378

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

379

Microminiature gas chromatograph  

DOE Patents [OSTI]

A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

Yu, Conrad M. (Antioch, CA)

1996-01-01T23:59:59.000Z

380

Natural gas annual 1996  

SciTech Connect (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

382

Gas-Turbine Cycles  

Science Journals Connector (OSTI)

This book focuses on the design of regenerators for high-performance regenerative gas turbines. The ways in which gas-turbine regenerators can be designed for high system performance can be understood by studying...

Douglas Stephen Beck; David Gordon Wilson

1996-01-01T23:59:59.000Z

383

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

384

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3010CT3","N3020CT3","N3035CT3","N3045CT3" "Date","Natural Gas Citygate Price in Connecticut (Dollars per Thousand Cubic Feet)","Connecticut Price of Natural Gas Delivered to...

385

Natural Gas in Britain  

Science Journals Connector (OSTI)

... AT a recent meeting of the Institution of Gas Engineers, Sir Harold Smith, chairman ofthe ... Engineers, Sir Harold Smith, chairman ofthe Gas Council, stated that an intensive, large-scale search for ...

1953-06-13T23:59:59.000Z

386

Natural Gas Weekly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Rotary Rig Count Rises to Highest Level since February 2009. The natural gas rotary rig count was 992 as of Friday, August 13, according to data released by Baker...

387

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

388

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

389

Energy efficient node addressing scheme in self-organised sensor networks  

Science Journals Connector (OSTI)

Sensor networks are envisioned to support autonomous and spontaneous networking for a wide range of applications such as environment monitoring. Due to energy constraints, it is difficult for wireless sensor nodes to handle heavy protocol stacks with a large protocol overhead. In this paper, we present a novel address auto configuration scheme, which we call SMallest-size sensor AddRess auToconfiguration scheme (SMART), to configure potential shortest-size local unique addresses for sensor networks with energy efficiency. SMART achieves energy efficiency in three ways. First, it automatically configures node address within a potential smallest address space for a number of sensor nodes, in order to achieve the small address size. Second, it avoids address conflicts during the address configuration. Third, it configures addresses with a small configuration overhead and achieves load balance among sensor nodes.

Rui Teng

2009-01-01T23:59:59.000Z

390

Compressed Gas Cylinder Policy  

E-Print Network [OSTI]

storage rack, a wall mounted cylinder rack, anchored to a fixed bench top, vented gas cabinet, or other

391

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

392

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

393

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

394

Residual gas analysis device  

DOE Patents [OSTI]

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

395

Oil shortages, climate change and collective action  

Science Journals Connector (OSTI)

...levy imposed on the carbon content of all fuel, with rebates equal to the EUA price for the covered sector. 4...this could change with a shift to road pricing and electric vehicles). If fiscal self-interest is not sufficient to...

2011-01-01T23:59:59.000Z

396

The liability of carbon dioxide shortage  

E-Print Network [OSTI]

This research examines the liability of storing CO2 in geological formations. There is a potential tortious and contractual liability exposure if stored CO2 is not fully contained by the geological formation. Using a ...

De Figueiredo, Mark A. (Mark Anthony), 1978-

2007-01-01T23:59:59.000Z

397

Energy: Shortages Loom, but Conservation Lags  

Science Journals Connector (OSTI)

...new facility than by buying power from another com-pany for...their monopolistic hold 1158 on power supply in many parts of the...Val-ley Authority and the Bonneville Power Administration. Representative Ken Hechler...

Constance Holden

1973-06-15T23:59:59.000Z

398

Water shortage pits man against nature  

Science Journals Connector (OSTI)

... have begun to look toward a source of almost unlimited water: the sea. Although desalination plants have operated for years in Middle Eastern coun-tries, and even in Florida ... reservoirs are just 12 and 14 per cent full, officials say con-struction of a desalination plant will begin by midsummer. The city currently delivers water to its customers for ...

Elizabeth Schaefer

1991-03-21T23:59:59.000Z

399

Natural Gas Reforming  

Broader source: Energy.gov [DOE]

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

400

Fuel: Bargain Gas  

Science Journals Connector (OSTI)

... THE Gas Council has done well to agree on low prices for North Sea Gas with the Shell and Esso companies. The ... for North Sea Gas with the Shell and Esso companies. The price finally agreed is both much less than the two companies wanted and much less than ...

1968-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas Cylinders: Proper Management  

E-Print Network [OSTI]

Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

Boyer, Elizabeth W.

402

Gas Chromatography -Mass Spectrometry  

E-Print Network [OSTI]

GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

Nizkorodov, Sergey

403

Static gas expansion cooler  

DOE Patents [OSTI]

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

404

Valve for gas centrifuges  

DOE Patents [OSTI]

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

405

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WORKSHOP OBJECTIVES: * Convene industry and other stakeholders to share current status/state-of-the art for natural gas and hydrogen infrastructure. * Identify key challenges (both technical and non-technical, such as permitting, installation, codes and standards) preventing or delaying the widespread deployment of natural gas and hydrogen infrastructure. Identify synergies between natural gas and hydrogen fuels. * Identify and prioritize opportunities to address the challenges reported above, and determine roles and opportunities for both government and industry stakeholders. TUESDAY, OCTOBER 18, 2011 9:00-10:00 AM Registration and Continental Breakfast 10:00-10:15 AM Welcome n´ü« Dr. Peter Littlewood, Argonne Associate Laboratory Director for

406

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

407

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

408

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

409

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

410

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

411

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

412

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

413

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

414

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

415

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

416

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

417

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

418

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

419

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

420

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

422

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

423

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

424

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

425

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

426

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

427

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

428

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

429

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

430

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

431

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

432

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

433

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

434

2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory  

E-Print Network [OSTI]

2011 & 2012 Queen's University Greenhouse Gas (GHG) Inventory Summary Queen's University completes annual GHG inventories as part of the ongoing commitment to reduce GHG emissions and address climate in 2010. This is the fourth inventory report. This inventory report accounts for GHG emissions from

Abolmaesumi, Purang

435

ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions  

SciTech Connect (OSTI)

Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

Boysen, Dane; Loukus, Josh; Hansen, Rita

2014-02-24T23:59:59.000Z

436

ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions  

ScienceCinema (OSTI)

Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

Boysen, Dane; Loukus, Josh; Hansen, Rita

2014-03-13T23:59:59.000Z

437

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

438

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

439

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

440

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural gas leak mapper  

DOE Patents [OSTI]

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

442

Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and...  

Broader source: Energy.gov (indexed) [DOE]

DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges In light of the fact...

443

RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical...  

Broader source: Energy.gov (indexed) [DOE]

RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments...

444

E-Print Network 3.0 - addressing medical coding Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summer Camp Registration Form Child's Name Date of Birth Sex Summary: Phone Work or Cell Phone Address Address City, ST ZIP Code City, ST ZIP Code Medical Information... 's...

445

E-Print Network 3.0 - addressing college student Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

college student Search Powered by Explorit Topic List Advanced Search Sample search results for: addressing college student Page: << < 1 2 3 4 5 > >> 1 The post office address of...

446

E-Print Network 3.0 - air pollution address Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

address Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution address Page: << < 1 2 3 4 5 > >> 1 Daniel Poleschook Jr. and Ginger Gumm The...

447

E-Print Network 3.0 - addressing health disparities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SympoSium Summary: C: improving Quality and Achieving equity: Addressing Disparities in Health Care Keynote Speaker: Joseph r... of this multi-site component is to address health...

448

E-Print Network 3.0 - address health disparities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SympoSium Summary: C: improving Quality and Achieving equity: Addressing Disparities in Health Care Keynote Speaker: Joseph r... of this multi-site component is to address health...

449

Title: Family Given Name: Affiliation: Mailing Address 1: Mailing Address 2: Postcode: Country: Mr AKINNIRAN AKINSOLA ABRAHAM ADENIRAN OGUNSANYA COLLEGE 4 LAKETU STREET, IKORODU LAGOS 23401 NIGERIA  

E-Print Network [OSTI]

Title: Family Given Name: Affiliation: Mailing Address 1: Mailing Address 2: Postcode: Country: Mr BLANGAH RISE #06-28 90043 SINGAPORE Mr CHEN JU NATIONAL UNIVERSITY OF SINGAPORE COM1, LAW LINK 117590 UNIVERSITY OF SINGAPORE COM1, LAW LINK 117590 SINGAPORE Mr CHOO KHAR HENG I2R 21 HENG MUI KENG TERRACE 119613

Wong, Limsoon

450

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821┬░, -118.1122679┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Altamont Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Altamont Gas Recovery Biomass Facility Altamont Gas Recovery Biomass Facility Jump to: navigation, search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates 37.6016892┬░, -121.7195459┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

CSL Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

CSL Gas Recovery Biomass Facility CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location Broward County, Florida Coordinates 26.190096┬░, -80.365865┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.190096,"lon":-80.365865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Lake Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Gas Recovery Biomass Facility Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587┬░, -87.697554┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler This invention disclosure describes a system for gas compression to ultra-high pressures, which is required in many industrial and automotive processes. Gas compression, to pressures above about 100 psig, generally requires cooling to remove heat of compression and may require many stages of compression for efficient operation. Also most piston-type compressors require lubrication between the piston and cylinder, and lubricant may be entrained in the compressed gas, thereby requiring efficient oil removal means downstream of the compressor. This invention describes a system that addresses these requirements in a cost effective system suitable for residential and light industrial applications.

455

CID Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

CID Gas Recovery Biomass Facility CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587┬░, -87.697554┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Chestnut Ridge Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Ridge Gas Recovery Biomass Facility Ridge Gas Recovery Biomass Facility Jump to: navigation, search Name Chestnut Ridge Gas Recovery Biomass Facility Facility Chestnut Ridge Gas Recovery Sector Biomass Facility Type Landfill Gas Location Anderson County, Tennessee Coordinates 36.0809574┬░, -84.2278796┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0809574,"lon":-84.2278796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762┬░, -74.07701┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Palos Verdes Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Verdes Gas to Energy Biomass Facility Verdes Gas to Energy Biomass Facility Jump to: navigation, search Name Palos Verdes Gas to Energy Biomass Facility Facility Palos Verdes Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821┬░, -118.1122679┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708┬░, -117.8311428┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

BJ Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BJ Gas Recovery Biomass Facility BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location Gwinnett County, Georgia Coordinates 33.9190653┬░, -84.0167423┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9190653,"lon":-84.0167423,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821┬░, -118.1122679┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343┬░, -72.8042797┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Settlers Hill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Settlers Hill Gas Recovery Biomass Facility Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884┬░, -88.4016041┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Greene Valley Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Greene Valley Gas Recovery Biomass Facility Greene Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type Landfill Gas Location Du Page County, Illinois Coordinates 41.8243831┬░, -88.0900762┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8243831,"lon":-88.0900762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884┬░, -88.4016041┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Prairie View Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prairie View Gas Recovery Biomass Facility Prairie View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type Landfill Gas Location St. Joseph County, Indiana Coordinates 41.6228085┬░, -86.3376761┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6228085,"lon":-86.3376761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

DFW Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

DFW Gas Recovery Biomass Facility DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location Denton County, Texas Coordinates 33.1418611┬░, -97.179026┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1418611,"lon":-97.179026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges  

Broader source: Energy.gov [DOE]

City Utilities of Springfield Missouri provides comments in response to the Smart Grid RFI: Addressing Policy and Logistical Challenges

469

Expansion of the internet protocol address space with "minor" disruption of current hardware or software  

E-Print Network [OSTI]

Currently, the Internet suite of protocols uses a 32 bit network layer address and requires that each machine have a unique address. The problem: 32 bits only distinguishes 2 32 or 4,294,967,296 machines. Even with four billion addresses, experts...

Wheatley, Philip Stephen

2012-06-07T23:59:59.000Z

470

Erlang-based dimensioning for IPv4 Address+Port translation  

E-Print Network [OSTI]

Erlang-based dimensioning for IPv4 Address+Port translation Florent Fourcot, Bertrand Grelot, or to reduce the use of IPv4 addresses. In this paper, we discuss a strategy known as "Address + Port of port numbers. Of critical importance for the feasibility of such a mechanism is the knowledge

Paris-Sud XI, Universit├ę de

471

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

472

U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

473

U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

474

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

475

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

476

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

477

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

478

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

479

BioGas Energy Inc | Open Energy Information  

Open Energy Info (EERE)

BioGas Energy Inc BioGas Energy Inc Jump to: navigation, search Name BioGas Energy Inc Address 4509 Interlake Ave N # 222 Place Seattle, Washington Zip 98103 Sector Biomass Product Makes anaerobic digesters that convert manure into methane for fuel Website http://www.biogas-energy.com/s Coordinates 47.6163159┬░, -122.3463563┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6163159,"lon":-122.3463563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Mississippi State Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Mississippi Name Mississippi State Oil and Gas Board Address 500 Greymont Ave., Suite E City, State Jackson, MS Zip 39202-3446 Website http://www.ogb.state.ms.us/ Coordinates 32.304339┬░, -90.169735┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.304339,"lon":-90.169735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "address gas shortages" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Railroad Commission of Texas, Oil and Gas Division | Open Energy  

Open Energy Info (EERE)

Railroad Commission of Texas, Oil and Gas Division Railroad Commission of Texas, Oil and Gas Division Jump to: navigation, search State Texas Name Texas Railroad Commission, Oil and Gas Division Address 1701 N. Congress City, State Austin, Texas Zip 78711-2967 Website http://www.rrc.state.tx.us/dat Coordinates 30.2759689┬░, -97.7359951┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2759689,"lon":-97.7359951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Pennsylvania Bureau of Oil and Gas Management | Open Energy Information  

Open Energy Info (EERE)

Bureau of Oil and Gas Management Bureau of Oil and Gas Management Jump to: navigation, search State Pennsylvania Name Pennsylvania Bureau of Oil and Gas Management Address Rachel Carson State Office Building City, State Harrisburg, PA Zip 17105-8765 Website http://www.dep.state.pa.us/dep Coordinates 40.267244┬░, -76.886214┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.267244,"lon":-76.886214,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Louisiana DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Louisiana Name Louisiana DNR Oil and Gas Division Address P.O. Box 94396 City, State Baton Rouge, LA Zip 70804-9396 Website http://dnr.louisiana.gov/index Coordinates 30.45┬░, -91.15┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.45,"lon":-91.15,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Arkansas Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Jump to: navigation, search State Arkansas Name Arkansas Oil and Gas Commission Address 301 Natural Resources Dr. Ste 102 City, State Little Rock, AR Zip 72205 Website http://www.aogc.state.ar.us/JD Coordinates 34.7586275┬░, -92.3894219┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7586275,"lon":-92.3894219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Alaska Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Alaska Name Alaska Division of Oil and Gas Address 550 W. 7th Ave., Suite 1100 City, State Anchorage, Alaska Zip 99501 Website http://dog.dnr.alaska.gov/ Coordinates 61.2154607┬░, -149.8928599┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Montana Board of Oil and Gas Conservation | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Oil and Gas Conservation Jump to: navigation, search State Montana Name Montana Board of Oil and Gas Conservation Address 2535 St. Johns Avenue City, State Billings, Montana Zip 59102 Website http://bogc.dnrc.mt.gov/defaul Coordinates 45.772091┬░, -108.580921┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.772091,"lon":-108.580921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Wyoming Oil and Gas Conservation Commission Wyoming Oil and Gas Conservation Commission Jump to: navigation, search State Wyoming Name Wyoming Oil and Gas Conservation Commission Address 2211 King Blvd City, State Casper, Wyoming Zip 82602 Website http://wogcc.state.wy.us/ Coordinates 42.8433001┬░, -106.3511243┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8433001,"lon":-106.3511243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

488

Virginia Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Virginia Name Virginia Division of Oil and Gas Address 1100 Bank Street City, State Richmond, Virginia Zip 23219 Website http://www.dmme.virginia.gov/d Coordinates 37.5373074┬░, -77.4334187┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5373074,"lon":-77.4334187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

West Virginia Office of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Virginia Office of Oil and Gas Virginia Office of Oil and Gas Jump to: navigation, search State West Virginia Name West Virginia Office of Oil and Gas Address 601 57th Street, SE City, State Charleston, West Virginia Zip 25304-2345 Website http://www.dep.wv.gov/oil-and- Coordinates 38.31256┬░, -81.570616┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.31256,"lon":-81.570616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Kentucky DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Kentucky Name Kentucky DNR Oil and Gas Division Address 1025 Capital Center Drive City, State Frankfort, KY Zip 40601 Website http://oilandgas.ky.gov/Pages/ Coordinates 38.1819649┬░, -84.8153457┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1819649,"lon":-84.8153457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Utah Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Utah Name Utah Oil and Gas Board Address 1594 West North Temple City, State Salt Lake City, Utah Zip 84116 Website http://oilgas.ogm.utah.gov/ Coordinates 40.7721389┬░, -111.9374208┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7721389,"lon":-111.9374208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIA┬ĺs Weekly Natural Gas Storage Report.

493

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIA┬ĺs Weekly Natural Gas Storage

494

Chapter 8 - Natural Gas  

Science Journals Connector (OSTI)

Although natural gas is a nonrenewable resource, it is included for discussion because its sudden growth from fracking will impact the development and use of renewable fuels. Firms who are engaged in the development of processes that employ synthesis gas as an intermediate have concluded that the synthesis gas is more economically obtainable by steam reforming of natural gas than by gasification of waste cellulose. In some instances, firms have largely abandoned the effort to produce a renewable fuel as such, and in others firms are developing hybrid processes that employ natural gas in combination with a fermentation system. Moreover, natural gas itself is an attractive fuel for internal combustion engines since it can be the least expensive option on a cost per joule basis. It is also aided by its high octane number of 130.

Arthur M. Brownstein

2015-01-01T23:59:59.000Z

495

Gas shielding apparatus  

DOE Patents [OSTI]

An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

Brandt, D.

1984-06-05T23:59:59.000Z

496

Rochester Gas and Electric | Open Energy Information  

Open Energy Info (EERE)

and Electric and Electric Jump to: navigation, search Name Rochester Gas and Electric Address 89 East Avenue Place Rochester, New York Zip 14649 Sector Services Product Green Power Marketer Website http://www.rge.com/ Coordinates 43.156495┬░, -77.602118┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.156495,"lon":-77.602118,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Thermodynamics of Chaplygin gas  

E-Print Network [OSTI]

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Yun Soo Myung

2011-05-11T23:59:59.000Z

498

U-051: Skype Discloses IP Addresses to Remote Users | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51: Skype Discloses IP Addresses to Remote Users 51: Skype Discloses IP Addresses to Remote Users U-051: Skype Discloses IP Addresses to Remote Users December 5, 2011 - 7:00am Addthis PROBLEM: A remote user can determine the IP address of a Skype user. PLATFORM: Skype application ABSTRACT: Skype Discloses IP Addresses to Remote Users reference LINKS: SecurityTracker Alert ID: 1026370 Forbes: Skype Flaw IMPACT ASSESSMENT: High Discussion: A remote user can initiate a Skype call to a target user to determine the target user's IP address and then terminate the call before the target user's Skype application has indicated an incoming call. The remote user does not need to be on the target user's contact list. Armed with an IP address, hackers can uncover specific information about victims, including who they chat with, what they download while online, and

499

Gas Filter Testing Methods  

Science Journals Connector (OSTI)

Gas filtration of air in the cleanroom is carried out with HEPA (high- ... filter. The ambient air filters for the cleanroom are relatively fragile and require great care...

Alvin Lieberman

1992-01-01T23:59:59.000Z

500

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...