National Library of Energy BETA

Sample records for actual projected quadrillion

  1. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  2. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  3. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  4. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  5. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO

  6. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1

  7. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  8. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 29.4 29.6

  9. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 29.3

  10. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.31,10.36,10.36,10.37,10.38,10.4,10.4,10.41,10.43,10.43,10.44,10.45,10.46,10.49,10.51,10.53,10.56,10.6 "AEO 1995",,10.96,10.8,10.81,10.81,10.79,10.77,10.75,10.73,10.72,10.7,10.7,10.69,10.7,10.72,10.75,10.8,10.85 "AEO

  11. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO

  12. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO

  13. Table 10. Natural Gas Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012...

  14. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO

  15. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ...

  16. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 1094 1103 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041

  17. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 999 1021 1041 1051 1056 1066 1073 1081 1087 1098 1107 1122 1121 1128 1143 1173 1201 1223 AEO 1995 1006 1010 1011 1016 1017 1021 1027 1033 1040 1051 1066 1076 1083 1090 1108 1122 1137 AEO 1996 1037 1044 1041 1045 1061 1070 1086 1100 1112 1121 1135 1156 1161 1167 1173 1184 1190 1203 1215 AEO 1997 1028 1052 1072 1088

  18. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual Projected (billion kilowatt-hours) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2843 2891 2928 2962 3004 3039 3071 3112 3148 3185 3228 3263 3298 3332 3371 3406 3433 3469 AEO 1995 2951 2967 2983 3026 3058 3085 3108 3134 3166 3204 3248 3285 3321 3357 3396 3433 3475 AEO 1996 2973 2998 3039 3074 3106 3137 3173 3215 3262 3317 3363 3409 3454 3505 3553 3604 3660 3722 3775 AEO 1997 3075

  19. Table 6. Petroleum Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 4347 4344 AEO 1997 3099 3245 3497

  20. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  1. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 ...

  2. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  3. Table 10. Natural Gas Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,...

  4. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68

  5. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 19.87 20.21 20.64 20.99 ...

  6. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO

  7. Table 6. Petroleum Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2934.6,3201.05,3361.65,3504,3657.3,3737.6,3879.95,3993.1,4098.95,4212.1,4303.35,4398.25,4474.9,4540.6,4584.4,4639.15,4668.35,4672 "AEO

  8. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO

  9. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual" "Projected" " (billion kilowatt-hours)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2843,2891,2928,2962,3004,3039,3071,3112,3148,3185,3228,3263,3298,3332,3371,3406,3433,3469 "AEO 1995",,2951,2967,2983,3026,3058,3085,3108,3134,3166,3204,3248,3285,3321,3357,3396,3433,3475 "AEO

  10. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 7632 7676 AEO 1997 6636 6694

  11. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO

  12. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  13. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",19.87,20.21,20.64,20.99,21.2,21.42,21.6,21.99,22.37,22.63,22.95,23.22,23.58,23.82,24.09,24.13,24.02,24.14 "AEO 1995",,20.82,20.66,20.85,21.21,21.65,21.95,22.12,22.25,22.43,22.62,22.87,23.08,23.36,23.61,24.08,24.23,24.59 "AEO

  14. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  15. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    U.S. Energy Information Administration (EIA) Indexed Site

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  16. "Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " (cumulative average percent growth in projected real GDP from first year shown for each AEO)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  17. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  18. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per barrel)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  19. Appendix A: Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent ...

  20. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO

  1. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 5984 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441 5489 5551 5621 5680 5727 5775 5841 5889 5944 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 6087 6142 6203

  2. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per barrel in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,16.69,16.42999,16.9899,17.66,18.28,19.0599,19.89,20.72,21.65,22.61,23.51,24.29,24.9,25.6,26.3,27,27.64,28.16

  3. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,1.4699,1.4799,1.53,1.57,1.58,1.57,1.61,1.63,1.68,1.69,1.7,1.72,1.7,1.76,1.79,1.81,1.88,1.92 "AEO

  4. Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47

  5. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63

  6. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59

  7. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  8. "Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,2.44,2.48,2.57,2.66,2.7,2.79,2.84,2.92,3.04,3.16,3.25,3.36,3.51,3.6,3.77,3.91,3.97,4.08 "AEO

  9. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  10. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1.50 1.55 1.64 1.73 1.78 1.82 1.92 2.01 2.13 2.22 2.30 2.41 2.46 2.64 2.78 2.90 3.12 3.30 AEO 1995 1.42 1.46 1.49 1.55 1.59 1.62 1.67 1.76 1.80 1.89 1.97 2.05 2.13 2.21 2.28 2.38 2.50 AEO 1996 1.35 1.35 1.37 1.39 1.42 1.46 1.50 1.56 1.62 1.67 1.75

  11. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  12. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and 2006 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  13. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and 2007 Base Year)",,,,,,,,,,,," " ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.)

  14. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and 2009 Base Year)",,,,,,,,,,,," " ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.)

  15. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  16. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,," " ,"Projected Year Base","Year",,"FRCC","MRO (U.S.)

  17. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  18. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  19. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  20. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC"," MRO (U.S.) ","NPCC (U.S.)

  1. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    5" ,"Released: January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected

  2. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    Jaunary 2010" ,"Next Update: October 2010" ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Thousands of Megawatthours and 2008 Base Year)",,,,,,,,,,,," " ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  3. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    8" ,"Released: February 2010" ,"Next Update: October 2010" ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,,"

  4. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    9" ,"Released: December 2010" ,"Next Update: December 2011" ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,,"

  5. Next Update: December 2011 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2009 and Projected 2010 through 2014 2009 3,832,180 225,966 213,797 285,625 880,377 997,142 202,301 308,278 718,694 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 3,969,750 223,174 225,167 291,540 961,436 1,027,470 211,438 310,444 719,081 4,084,175 225,498 229,258 292,816 1,024,183 1,051,645 215,333 316,194 729,248 4,203,875 229,393 240,817 295,623 1,081,320 1,072,124

  6. Next Update: October 2009 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2008 through 2012 2007 4,012,728 232,405 217,602 301,766 954,700 1,049,298 210,875 307,064 739,018 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE (ERCOT) WECC (U.S.) 4,085,683 242,923 225,058 301,767 973,800 1,073,081 208,532 313,946 746,575 4,149,201 248,996 230,745 305,223 984,000 1,086,304 212,884 319,355 761,694 4,226,516 255,216 239,483 308,534 999,200

  7. Next Update: October 2010 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    Jaunary 2010 Next Update: October 2010 Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2008 and Projected 2009 through 2013 2008 3,989,058 226,874 227,536 297,362 936,201 1,035,390 207,603 312,401 745,691 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 4,025,705 227,690 233,519 295,883 958,792 1,051,350 207,850 312,205 738,416 4,076,698 228,579 239,702 295,753 967,962 1,067,893 211,343 315,065 750,401

  8. Appendix A: Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2011-40 (quadrillion Btu) Sector...

  9. Appendix A. Reference case projections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by region and end-use sector, High Oil Price case, 2010-40 (quadrillion Btu) Region History Projections Average annual percent change, 2010-40 2010 2020 2025 2030 2035 2040 OECD...

  10. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2010" ,"Next Update: October 2010" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2010 " ,"(Megawatts and 2008 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  11. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"1996 through 2003 and Projected 2004 through 2005 " ,"(Megawatts and 2003 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  12. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  13. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area," ,"1990-2010 Actual, 2011-2015 Projected" ,"(Thousands of Megawatthours)" ,"Interconnection","NERC Regional Assesment Area" ,,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"2011E","2012E","2013E","2014E","2015E" ,"Eastern

  14. Table 2.4 Household Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3 2.47 2.42 2.48 2.42 2.35 2.48 2.76 3.03 3.28 3.54 3.89 4.35 4.39 Distillate Fuel Oil and Kerosene 2.19

  15. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    DOE Patents [OSTI]

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  16. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  17. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    7" ,"Released: February 2009" ,"Next Update: October 2009" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2009 " ,"(Megawatts and 2007 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  18. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Thousands of Megawatthours and 2003 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP (U.S.) ","NPCC (U.S.)

  19. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Thousands of Megawatthours and 2004 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.)

  20. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Thousands of Megawatthours and 2005 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","ERCOT","WECC (U.S.) "

  1. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Megawatts and 2003 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP (U.S.) ","NPCC (U.S.)

  2. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Megawatts and 2004 Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.)

  3. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.) ","RFC","SERC","SPP","ERCOT","WECC (U.S.) "

  4. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Megawatts and 2003 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP (U.S.) ","NPCC (U.S.) ","SERC","SPP","ERCOT","WECC (U.S.)

  5. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Megawatts and 2004 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.) ","SERC","SPP","ERCOT","WECC (U.S.)

  6. Next Update: December 2011 Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    Released: December 2010 Next Update: December 2011 Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2009 and Projected 2010 through 2014 (Megawatts and 2009 Base Year) 2009 725,958 46,550 37,963 55,944 161,241 191,032 41,465 63,518 128,245 Contiguou s U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 772,089 46,006 42,240 60,215 177,688 201,350 43,395 63,810 137,385 785,069 46,124 42,733 60,820 181,867 205,351

  7. Next Update: December 2011 Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region,

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, 2009 and Projected 2010 through 2014 (Megawatts and 2009 Base Year) 2009/2010 668,818 53,022 35,351 44,864 143,827 193,135 32,863 56,191 109,565 Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP TRE WECC (U.S.) 639,073 46,235 35,722 46,374 143,040 183,614 31,415 43,823 108,850 646,845 46,821 36,816 46,529 146,591 186,364 33,047 43,823 106,854 657,839 47,558 37,359 46,753

  8. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    E Low Oil Price case projections This page inTenTionally lefT blank 57 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-s40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 126.5 129.2 131.8 135.0 138.9 0.6 United States a 96.8 94.4 101.2 102.7 103.6 104.6

  10. How People Actually Use Thermostats

    SciTech Connect (OSTI)

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  11. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.7 128.1 130.7 133.8 138.1 0.6 United States a 96.8 94.4 100.8 102.0 102.9 103.8 105.7 0.4 Canada 14.5 14.5 15.1 15.6 16.3 17.1 18.1 0.8 Mexico and Chile 9.3

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 123.3 123.9 124.7 126.3 128.8 0.3 United States a 96.8 94.4 98.7 98.1 97.5 97.4 98.0 0.1 Canada 14.5 14.5 15.0 15.4 15.9 16.6 17.3 0.6 Mexico

  13. Could Material Defects Actually Improve Solar Cells?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Material Defects Actually Improve Solar Cells? Could Material Defects Actually Improve Solar Cells? March 21, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 NRELsolarcell Scientists at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) are using supercomputers to study what may seem paradoxical: certain defects in silicon solar cells may actually improve their performance. The findings, published January 11, 2016 in Applied Physics Letters,

  14. Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds a wide variety of renewable energy and energy efficiency projects in an effort to assist tribes in realizing their energy visions.

  15. Projecting

    U.S. Energy Information Administration (EIA) Indexed Site

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS infrastructure development Matthew Tanner Office of Petroleum, Gas, & Biofuels Analysis U.S. Energy Information Administration October 25, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions ex- pressed here are those of the author and not necessarily those of the U.S. Energy Information Administration. Author: Matthew Tanner, matthew.tanner@eia.gov

  16. FY 2013 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY ...

  17. FY 2012 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY ...

  18. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect (OSTI)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  19. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Appendix A Table A2. World total energy consumption by region and fuel, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.3 44.6 46.4 46.1 46.0 46.2 46.7 0.2 Natural gas 31.8 32.8 33.9 35.5 37.7 39.5 41.4 0.8 Coal 21.0 18.7 20.3 20.5 20.1 20.0 20.0 0.2 Nuclear 9.4 9.2 9.5 9.4 9.5 9.5 9.7 0.2 Other 13.1 12.9 15.6 16.6 17.5 18.6 20.3 1.6 Total 120.6 118.1 125.7 128.1 130.7

  20. FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting

    Energy Savers [EERE]

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY 2012 DARM Transmittal Letter and Attachment Final.pdf More Documents & Publications FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement Real Property Maintenance Reporting Requirement Memorandum (July 13, 2010)

  1. Contract/Project Management

    Energy Savers [EERE]

    Fourth Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics 1 Contract/Project Management Performance Metric FY 2013 Target FY 2013 Actual FY 2013 Pre- & Post-CAP* Actual Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% 83% Construction 84% Cleanup 82% 70% Pre-CAP 84% Post-CAP Based on 3-year rolling period (FY11 to FY13) of 93 projects. TPC is Total Project Cost.

  2. Contract/Project Management

    Energy Savers [EERE]

    Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual FY 2011 Pre- & Post-CAP Actual Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 77% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is

  3. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & Post-CAP Comment 1a. ...

  4. FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting

    Energy Savers [EERE]

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement PDF icon FY 2013 DARM Transmittal Letter and Attachment Final.pdf More Documents & Publications FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY_09_DM_RM_AM_Reporting_Memo_and_attachment_072009.pdf Real Property Maintenance Reporting Requirement

  5. Contract/Project Management

    Energy Savers [EERE]

    2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - Two projects completed in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects

  6. EC-Web Project Plan | Department of Energy

    Energy Savers [EERE]

    EC-Web Project Plan EC-Web Project Plan The Electronic Commerce World Wide Web (EC-WEB) Project Plan, from an actual DOE software engineering project, can be used as a template to...

  7. CITSS Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CITSS Project Plan CITSS Project Plan The Customer Information Technology Support System (CITSS) Training Plan, from an actual DOE Commercial Off-The-Shelf (COTS) software integration project, can be used as a template to facilitate the creation of the training plan for your particular project. PDF icon CITSS Project Plan More Documents & Publications CITSS Project Plan Software Configuration Management Plan Training Plan

  8. Contract/Project Management

    Energy Savers [EERE]

    8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2008 Target FY 2008 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 75% 76% This is a 3-year rolling average Data includes FY06 to FY08. (37/48) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete

  9. Contract/Project Management

    Energy Savers [EERE]

    1 st Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - No 1 st Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of

  10. Contract/Project Management

    Energy Savers [EERE]

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 72% This is a 3-year rolling average (FY07 to FY09). No 3 rd qtr FY09 completions. 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of

  11. Contract/Project Management

    Energy Savers [EERE]

    Second Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 73% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10).

  12. Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources

    SciTech Connect (OSTI)

    Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

    1993-03-15

    To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

  13. Contract/Project Management

    Energy Savers [EERE]

    Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 69% Line Item 67% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total

  14. Contract/Project Management

    Energy Savers [EERE]

    First Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 79% Line Item 71% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total

  15. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  16. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  17. CITSS Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Plan CITSS Project Plan The Customer Information Technology Support System (CITSS) Project Plan, from an actual DOE Commercial Off-The-Shelf (COTS) software integration project, can be used as a template to facilitate the creation of the project plan for your particular proje PDF icon CITSS Project Plan More Documents & Publications Software Configuration Management Plan CITSS Project Plan CITSS Configurable Item List: COTS Software

  18. Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

    2012-10-01

    Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

  19. Completed Projects Table 2015-08-21.xlsx

    Office of Environmental Management (EM)

    Completed Projects 2005-Present Approved Actual Soil and Water Remediation Soil and Water Remediation ANLE-0030 a 28 30 2007 2007 Yes Yes Yes Nuclear Facility Deactivation and...

  20. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  1. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In this project, the Building America CARB team evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  2. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect (OSTI)

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  3. Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

    SciTech Connect (OSTI)

    John Smart; Thomas Bradley; Stephen Schey

    2014-04-01

    In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

  4. C:\\Work 102004\\2006 Projections\\NV Projections Review 2008 v45...

    National Nuclear Security Administration (NNSA)

    ... Solar projects in Clark County. The biggest gain will come if Nevada can become a center ... due to the calculations in the model and how much of it is predictive of an actual future. ...

  5. FRACTIONAL CRYSTALLIZATION LABORATORY TESTING FOR INCLUSION & COPRECIPITATION WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    WARRANT, R.W.

    2006-12-11

    Fractional crystallization is being considered as a pretreatment method to support supplemental treatment of retrieved single-shell tank (SST) saltcake waste at the Hanford Site. The goal of the fractional crystallization process is to optimize the separation of the radioactivity (radionuclides) from the saltcake waste and send it to the Waste Treatment and Immobilization Plant and send the bulk of the saltcake to the supplemental treatment plant (bulk vitrification). The primary factors that influence the separation efficiency are (1) solid/liquid separation efficiency, (2) contaminant inclusions, and (3) co-precipitation. This is a report of testing for factors (2) and (3) with actual tank waste samples. For the purposes of this report, contaminant inclusions are defined as the inclusion of supernatant, containing contaminating radionuclides, in a pocket within the precipitating saltcake crystals. Co-precipitation is defined as the simultaneous precipitation of a saltcake crystal with a contaminating radionuclide. These two factors were tested for various potential fractional crystallization product salts by spiking the composite tank waste samples (SST Early or SST Late, external letter CH2M-0600248, ''Preparation of Composite Tank Waste Samples for ME-21 Project'') with the desired target salt and then evaporating to precipitate that salt. SST Early represents the typical composition of dissolved saltcake early in the retrieval process, and SST Late represents the typical composition during the later stages of retrieval.

  6. Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado

    SciTech Connect (OSTI)

    Arena, L.; Williamson, J.

    2013-11-01

    To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

  7. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  8. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  9. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  10. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961...

  11. Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Project Management MaRIE is the experimental facility needed to control the time-dependent properties of materials for national security science missions. It ...

  12. Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accounts Project Accounts A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:50

  13. ALARA Activities at DOE Submitting ALARA Project Descriptions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concerns: Total collective dose for the project *Pre-job collective dose estimate: person-mrem *Actual collective dose measured: person-mrem Effect on dose rates, airborne and...

  14. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  15. EC-Web Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EC-Web Project Plan EC-Web Project Plan The Electronic Commerce World Wide Web (EC-WEB) Project Plan, from an actual DOE software engineering project, can be used as a template to facilitate the creation of the project plan for your particular project. EC-WEB is a Lotus Notes based DOE business application. PDF icon EC-Web Project Plan More Documents & Publications Audit Report: AP-FS-97-02 CITSS Project Plan CITSS Configurable Item List: COTS Software

  16. Project Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-RIC REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory FE0027167 High Yield and Economical

  17. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  18. Project Benefits

    Broader source: Energy.gov [DOE]

    Benefits of the Guidelines for Home Energy Professionals project including reducing energy upgrade costs for consumers, employers, and program administrators.

  19. Hydropower Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

  20. (SSS)Project Dashboard.xls

    Office of Environmental Management (EM)

    Second Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics No. Contract/Project Management Performance Metrics FY 2015 Target FY 2015 Pre- & Post- CAP* Forecast Comment 1 Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% 100% Pre-CAP 77% Post-CAP Based on 3-year rolling period (FY13 to FY15). TPC is Total Project Cost. No. FY 2015 Target FY 2015 2nd Qtr Actual 2 95% 85% 3 95% 98% 4

  1. Making appropriate comparisons of estimated and actual costs of reducing SO{sub 2} emissions under Title IV

    SciTech Connect (OSTI)

    Smith, A.E.

    1998-12-31

    A current sentiment within some parts of the environmental policy community is that market-based regulatory approaches such as emissions trading have proven so effective that actual costs will be only a small fraction of what ex ante cost estimation procedures would project. With this line of reasoning, some have dismissed available cost estimates for major proposed new regulations, such as the new PM and ozone NAAQS, as not meaningful for policy decisions. The most commonly used evidence in support of this position is the experience with SO{sub 2} reductions under Title IV of the 1990 Clean Air Act Amendments. In Title IV, a market for emissions allowances has been used to achieve reductions in sulfur dioxides (SO{sub 2}) to ameliorate acid rain. It is commonly asserted today that the cost of achieving the SO{sub 2} emissions reductions has been only one-tenth or less of what Title IV was originally expected to cost. This paper demonstrates that, to the contrary, actual costs for SO{sub 2} reductions remain roughly in line with original estimates associated with Title IV. Erroneous conclusions about Title IV`s costs are due to inappropriate comparisons of a variety of different measures that appear to be comparable only because they are all stated in dollars per ton. Program cost estimates include the total costs of a fully-implemented regulatory program. The very low costs of Title IV that are commonly cited today are neither directly reflective of a fully implemented Title IV, (which is still many years away) nor reflective of all the costs already incurred. Further, a careful review of history finds that the initial cost estimates that many cite were never associated with Title IV. Technically speaking, people are comparing the estimated control costs for the most-costly power plant associated with earlier acid rain regulatory proposals with prices from a market that do not directly reflect total costs.

  2. Annual Energy Review 1999

    SciTech Connect (OSTI)

    Seiferlein, Katherine E.

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn, to the end of the century? What happened to the relationship between growth and energy consumption? How did the fuel mix change over this period? What are the effects of energy usage on our environment? What level of consumption will the United States—and the world—record in the Annual Energy Review 2025? We present this edition of the Annual Energy Review to help investigate these important questions and to stimulate and inform our thinking about what the future holds.

  3. Project Construction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  4. Discontinued Projects

    Broader source: Energy.gov [DOE]

    Discontinued projects received a loan or a loan guarantee from DOE, but that are considered discontinued by LPO for one of several reasons.

  5. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure whose behavior is fundamentally nonlinear. Thus, the students assigned to this project will develop control techniques that will allow an electrodynamic shake table to...

  6. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  7. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...

  8. Project Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Tour Transportation Transportation to the tour will be provided from Hilton Santa Fe Buffalo Thunder to Los Alamos National Laboratory, Technical Area 55. After the...

  9. project management

    National Nuclear Security Administration (NNSA)

    %2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  10. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  11. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment ... engineering programs and the pit manufacturing program. STUDENT RESOURCES Precollege ...

  12. Awarded projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects Awarded projects 2016 Allocation Awards This page lists the allocation awards for NERSC for the 2016 allocation year (Jan 12, 2016 through Jan 09, 2017). Read More » Previous Year Awards Last edited: 2016-04-29 11:35:1

  13. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    SciTech Connect (OSTI)

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  14. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  15. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-05-06

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

  16. EGS Projects

    Broader source: Energy.gov [DOE]

    EGS projects span research, development, and demonstration. Unlike traditional hydrothermal systems, EGS capture heat from areas that traditional geothermal energy cannot—where fluid and/or...

  17. RENOTER Project

    Broader source: Energy.gov [DOE]

    Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.

  18. Project Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The purpose of this project is to develop improved heat transfer fluids, thermal storage ... The majority of the current R&D effort is focused on parabolic trough facilities. Sandia ...

  19. Project 1027697

    Office of Scientific and Technical Information (OSTI)

    05 ERSD Annual Report Project #1027697 Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive.... Principal Investigator: Gerlach, Robin Organization: Montana State University Results To Date 1. MOST RECENT RESULTS TO DATE This project report addresses one part of a 3-way collaboration between researchers (Drs. Robin Gerlach and Al Cunningham) at Montana State University's (MSU's) Center for

  20. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  1. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect (OSTI)

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  2. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOE Patents [OSTI]

    Spalding, Richard E. (Albuquerque, NM); Grotbeck, Carter L. (Albuquerque, NM)

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  3. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect (OSTI)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: ? Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. ? Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.

  4. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  5. Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

    2009-02-20

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

  6. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  7. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  8. DOE Project Scorecards

    Broader source: Energy.gov [DOE]

    DOE Project Scorecards DOE project scorecards summarize capital asset project performance compared to the current approved baseline. 

  9. DOE Project Scorecards

    Broader source: Energy.gov [DOE]

    DOE Project Scorecards DOEproject scorecards summarize capital asset project performance compared to the current approved baseline.

  10. An insight into actual energy use and its drivers in high-performance buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are intended to help architects, engineers, operators, and policy makers improve the design and operation of HPBs.« less

  11. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect (OSTI)

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are intended to help architects, engineers, operators, and policy makers improve the design and operation of HPBs.

  12. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  13. NESAP Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESAP Projects NESAP Roles and Liaisons NERSC-8 Procurement Programming models File Storage and I/O Edison PDSF Genepool Testbeds Retired Systems Storage & File Systems Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application Performance Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option

  14. Hallmark Project

    Energy Savers [EERE]

    Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity,

  15. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate Students Professor

  16. Project Financing

    Office of Environmental Management (EM)

    Columbus HTS Power Cable Superconductivity Partnerships with Industry www.oe.energy.gov Phone: 202 \ 586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power This project involves field-testing of a long-length high-temperature superconducting (HTS) cable under real environmental stresses and real electrical loads. The cable system forms an important electrical

  17. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  18. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Office of Environmental Management (EM)

    Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four

  19. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

  20. MHK Projects/Manchac Point Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  1. MHK Projects/Claiborne Island Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  2. MHK Projects/Point Pleasant Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  3. MHK Projects/College Point Project | Open Energy Information

    Open Energy Info (EERE)

    bel":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St James, LA Project StateProvince Louisiana Project Country United States Project Resource...

  4. FUSRAP Project

    Office of Legacy Management (LM)

    Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited

  5. Relationship between self-reported activity levels and actual heart rates in teenagers

    SciTech Connect (OSTI)

    Terblanche, A.P.S.; Ozkaynak, H.; Spengler, J.D.; Butler, D.A. )

    1991-08-01

    A study was designed to explore the relationship between self-reported activity levels and actual heart rate (HR) as measured by a portable heart rate monitor. Twenty-two teenagers (8 boys, 14 girls, median age of 16) from Watertown High School, Massachusetts participated in this pilot study which involved continuous monitoring of HR during normal daily activities and simultaneous completion of a time-activity diary. There were 31 successful monitoring sessions ranging from 1.9 to 17 hours with a median monitoring time of 12.6 hours. Four unsuccessful monitoring sessions were experienced due to equipment failure. Apart from participant cooperation, the single most important factor affecting the feasibility of continuous heart rate monitoring was found to be equipment design. Th overall average heart rate observed was 88.4 bpm (SD = 24.3). An individual's correlation coefficient for perceived activity level (documented in half-hour intervals) and heart rate (averaged over the half-hour intervals) varied from 0.24 to 0.89. More than half of the correlation coefficients were below 0.40. There was a significant difference between average heart rate for time spent indoors (90 bpm) versus outdoors (103 bpm) even after correcting for sleeping time. It is concluded that continuous HR monitoring with simultaneous completion of a time/activity dairy is feasible and is a promising source of information for studies on exposure to air pollutants.

  6. PORTNUS Project

    SciTech Connect (OSTI)

    Loyal, Rebecca E.

    2015-07-14

    The objective of the Portunus Project is to create large, automated offshore ports that will the pace and scale of international trade. Additionally, these ports would increase the number of U.S. domestic trade vessels needed, as the imported goods would need to be transported from these offshore platforms to land-based ports such as Boston, Los Angeles, and Newark. Currently, domestic trade in the United States can only be conducted by vessels that abide by the Merchant Marine Act of 1920 – also referred to as the Jones Act. The Jones Act stipulates that vessels involved in domestic trade must be U.S. owned, U.S. built, and manned by a crew made up of U.S. citizens. The Portunus Project would increase the number of Jones Act vessels needed, which raises an interesting economic concern. Are Jones Act ships more expensive to operate than foreign vessels? Would it be more economically efficient to modify the Jones Act and allow vessels manned by foreign crews to engage in U.S. domestic trade? While opposition to altering the Jones Act is strong, it is important to consider the possibility that ship-owners who employ foreign crews will lobby for the chance to enter a growing domestic trade market. Their success would mean potential job loss for thousands of Americans currently employed in maritime trade.

  7. Analysis of Actual Operating Conditions of an Off-grid Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson; Jack Schmid

    2008-12-31

    Fuel cells have been proposed as ideal replacements for other technologies in remote locations such as Rural Alaska. A number of suppliers have developed systems that might be applicable in these locations, but there are several requirements that must be met before they can be deployed: they must be able to operate on portable fuels, and be able to operate with little operator assistance for long periods of time. This project was intended to demonstrate the operation of a 5 kW fuel cell on propane at a remote site (defined as one without access to grid power, internet, or cell phone, but on the road system). A fuel cell was purchased by the National Park Service for installation in their newly constructed visitor center at Exit Glacier in the Kenai Fjords National Park. The DOE participation in this project as initially scoped was for independent verification of the operation of this demonstration. This project met with mixed success. The fuel cell has operated over 6 seasons at the facility with varying degrees of success, with one very good run of about 1049 hours late in the summer of 2006, but in general the operation has been below expectations. There have been numerous stack failures, the efficiency of electrical generation has been lower than expected, and the field support effort required has been far higher than expected. Based on the results to date, it appears that this technology has not developed to the point where demonstrations in off road sites are justified.

  8. Geothermal R&D Program FY 1988 Project Summaries

    SciTech Connect (OSTI)

    1988-10-01

    This report summarizes DOE Geothermal R&D subprograms, major tasks, and projects. Contract funding amounts are shown. Many summaries have references (citations) to the researchers' previous related work. These can be useful. Geothermal budget actual amounts are shown for FY 1984 -1988. (DJE 2005)

  9. Preparing for Project Implementation Financing Project Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference Agenda Seminar Series ...

  10. PROJECT MANAGEMENT PLANS Project Management Plans

    Office of Environmental Management (EM)

    MANAGEMENT PLANS Project Management Plans Overview Project Management Plan Suggested Outline Subjects Crosswalk between the Suggested PMP Outline Subjects and a Listing ...

  11. BETO Active Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contributes to setting goals * In-depth knowledge of project statusaccomplishmentsissues ... Project Project Program eere.energy.gov Management Lifecycle Budget & Procurement Planning ...

  12. Capital Project Prioritization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capital-Project-Prioritization Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  13. Project Grandmaster

    Energy Science and Technology Software Center (OSTI)

    2013-09-16

    The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves inmore » the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they weren’t already aware of or different groups of interest they might want to follow.« less

  14. Project Grandmaster

    SciTech Connect (OSTI)

    2013-09-16

    The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves in the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they weren?t already aware of or different groups of interest they might want to follow.

  15. ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-07-10

    In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

  16. International Energy Outlook 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference case projections by end-use sector and country grouping Table F9. Delivered energy consumption in AustraliaNew Zealand by end-use sector and fuel, 2008-2035 (quadrillion ...

  17. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  18. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  19. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    SciTech Connect (OSTI)

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth; Carranza, Isidro; Hight, Kenneth; Lai, Shan-Tao T.; Mooers, Cavin; Bazemore, Gina; Cecil, Richard; Kruger, Albert A.

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  20. Perspectives on Project Finance

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern Brothers & Co.

  1. Western Interconnection Synchrophasor Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a...

  2. MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    eLabel":"","visitedicon":"" Project Profile Project Start Date 112006 Project City Port Townsend, WA Project StateProvince Washington Project Country United States...

  3. Demonstration project Smart Charging (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  4. Photovoltaic Solar Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic ...

  5. Solar Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  6. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  7. Step 3: Project Refinement

    Energy Savers [EERE]

    3: Project Refinement 2 1 Potential 3 Refinement 4 Implementation 5 Operations & Maintenance 2 Options 3 Refinement 1/28/2016 2 3 FUNDING AND FINANCING OPTIONS Project Ownership Financing structure is highly dependent on size of the project and the capital available for a given project: * Tribe owns the project (cash purchase or debt) * Tribe hosts the project and buys the electricity (power purchase agreement) * Tribe partners with private sector and co-owns the project (uncertainties about

  8. Project Reports for Haida Corporation- 2010 Project

    Broader source: Energy.gov [DOE]

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  9. Project Reports for Chickasaw Nation- 2010 Project

    Broader source: Energy.gov [DOE]

    Under this project, the Chickasaw Nation, Division of Commerce (CNDC) will upgrade old, inefficient lighting systems throughout CNDC to new, energy saving systems. Learn more about this project or...

  10. Step 4: Project Implementation

    Energy Savers [EERE]

    Process Step 4: Project Implementation Presentation Agenda * Step 4: Project Implementation - Pre-construction - Contract execution - Interconnection - Project construction - Commissioning * Project Example 2 1/28/2016 2 1 Potential 3 Refinement 5 Operations & Maintenance 2 Options 4 Implementation 4 Implementation 3 Potential Options Refinement Implementation Operations & Maintenance Step 4: Implementation 4 Purpose: Contract and begin physical construction of project Tasks: * Finalize

  11. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  12. Project File System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with each project directory. This user must have a NIM role of PI, PI Proxy, or Project Manager. Access control for project directories is based on Unix groups. The...

  13. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCACAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: ...

  14. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One project >100M achieved CD-2 in 1 st qtr FY09. 5. TRA Use: By end of FY11, 80% of projects >750M will implement TRA no later than CD-2. 50% - No projects >750 M achieved ...

  15. Buckman Direct Diversion Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buckman Direct Diversion Project Buckman Direct Diversion Project This project takes surface water from the Rio Grande, and then treats and distributes these waters to the city and county of Santa Fe through their drinking water distribution systems. August 1, 2013 Water flumes at Buckman Direct Diversion Project Water flumes at Buckman Direct Diversion Project The City of Santa Fe and Santa Fe County completed the construction of the Buckman Direct Diversion (BDD) Project in December 2010. The

  16. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Baselines - Performance Baseline Examples Example 34 6.0 PROJECT BASELINE This section presents a summary of the PFP Stabilization and Deactivation Project baseline, which was prepared by an inter- contractor team to support an accelerated planning case for the project. The project schedules and associated cost profiles presented in this section are compared to the currently approved project baseline, as contained in the Facility Stabilization Project Fiscal Year 1999 Multi-Year Work Plan (MYWP)

  17. Perspectives on Project Finance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Typical Project Finance Structure 2 SOUND PROJECT ECONOMICS Leads to Adequate Debt Service Coverage And Acceptable Equity Returns Market Risk Assessment Competitive positioning. ...

  18. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  19. GTO Project Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office funds 154 research and development projects leveraging nearly $500 million in total combined investment. Each project represents a growing technology sector in conventional hydrothermal,...

  20. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  1. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset ...

  2. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY ...

  3. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Project Management Performance Metric FY 2013 Target FY 2013 Forecast FY 2013 Pre- & Post-CAP* Forecast Comment Capital Asset Project Success: Complete 90% of capital asset ...

  4. Evaluation Project 4492

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization area to allow the movement and radio-graphing of component for evaluation to determine the proper Project Execution Plan for dismantlement. Evaluation Project...

  5. Sandia National Laboratories: Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Threat and Intelligence Insight Game-changing projects with a high degree of technical risk realized and produced in support of the warfighter Threat and Intelligence...

  6. Manhattan Project: Maps

    Office of Scientific and Technical Information (OSTI)

    Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the ...

  7. Contract/Project Management

    Office of Environmental Management (EM)

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast ...

  8. Contract/Project Management

    Office of Environmental Management (EM)

    Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 ...

  9. Contract/Project Management

    Office of Environmental Management (EM)

    3 First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2013 Target FY 2013 Final FY ...

  10. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 ...

  11. Contract/Project Management

    Energy Savers [EERE]

    Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY ...

  12. Contract/Project Management

    Energy Savers [EERE]

    First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast ...

  13. Step 4: Project Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... expected * Technology O&M Assumed low, mitigable or allocatable Sources: Adapted from Holland & Hart, RE Project Development & Finance & Infocast, Advanced RE Project Finance & ...

  14. Mentors and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentors and Projects Bringing together top space science students with internationally ... scientists, on challenging research projects in the Space Weather Summer School. ...

  15. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  16. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Program Management Scorecard. The Department has maintained performance measures for key project (Federal Project ... of FY11, on a program portfolio basis, 90% of all ...

  17. Project Finance and Investments

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  18. ARRA Electrification Projects

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    U.S. Department of Energy funded multiple electrification projects through the American ... The U.S. Department of Energy funded multiple electrification projects through the ...

  19. MHK Projects/Clarence Strait Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Project Country Australia Project Resource Click here Current Tidal Project Nearest Body of Water Clarence Strait Coordinates -12.083533792616, 131.04972839355 Project...

  20. 2016 DOE Project Management Workshop - "Enhancing Project Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Workshop - "Enhancing Project Management" 2016 DOE Project Management Workshop - "Enhancing Project Management" 20160407-doe-project-management-workshop-ADJUST-slide.png ...

  1. MHK Projects/Twelve Mile Point Project | Open Energy Information

    Open Energy Info (EERE)

    Province Louisiana Project Country United States Project Resource Click here Current Tidal Coordinates 29.9177, -89.9307 Project Phase Phase 1 Project Installed Capacity...

  2. Statement of Project Objectives

    Broader source: Energy.gov [DOE]

    Statement of Project Objectives, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  3. West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

  4. Financing Project Implementation

    Broader source: Energy.gov [DOE]

    This presentation covers typical sources of financing to implement energy efficiency projects in industry.

  5. EM Projects Perspective

    Broader source: Energy.gov [DOE]

    Jack Surash, Deputy Assistant Secretary for Acquisition and Project Management, Environmental Management March 22, 2016

  6. Desert Peak EGS Project

    Broader source: Energy.gov [DOE]

    Desert Peak EGS Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

  7. PROJECT MANGEMENT PLAN EXAMPLES Project Execution Example

    Office of Environmental Management (EM)

    Project Execution Example Example 73 6.3 Project Approach The overall schedule strategy for the PFP project includes ongoing minimum safe activities, combined with stabilization of materials followed by materials disposition, and subsequent transition of the PFP complex to a decommissioned state. The PFP material stabilization baseline was developed using a functionally-based work WBS. The WBS defines all activities required to take each material stream from their current location/conditions

  8. December 2015 Project Dashboard

    Broader source: Energy.gov [DOE]

    The Office of Project Management Oversight and Assessments (PM) provides a monthly assessment of DOEs portfolio of capital assets projects, which is summarized in the monthly Project Dashboard report. The current portfolio consists of 32 active projects with established scope, schedule, and cost performance baselines. Based on current performance, projects that are expected to meet their performance baseline are assessed as GREEN, projects that are at-risk of breaching their performance baselines are assessed as YELLOW, and projects that are expected to breach their performance baselines are assessed as RED.

  9. January 2016 Project Dashboard

    Broader source: Energy.gov [DOE]

    The Office of Project Management Oversight and Assessments (PM) provides a monthly assessment of DOEs portfolio of capital assets projects, which is summarized in the monthly Project Dashboard report. The current portfolio consists of 32 active projects with established scope, schedule, and cost performance baselines. Based on current performance, projects that are expected to meet their performance baseline are assessed as GREEN, projects that are at-risk of breaching their performance baselines are assessed as YELLOW, and projects that are expected to breach their performance baselines are assessed as RED.

  10. Project Reports for Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings...

  11. Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership

    SciTech Connect (OSTI)

    Robert Lee; Reid Grigg; Brian McPherson

    2011-04-15

    Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

  12. Project Management Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Career Development Program Project Management Career Development Program The Project Management Career Development Program (PMCDP) in Office of Project Management Oversight and Assessments was established in 2001 by a Congressional mandate to ensure the Department of Energy (DOE) has well qualified and experienced Federal Project Directors (FPDs) to oversee the agency's diverse portfolio of highly-technical construction, experimental equipment and environmental cleanup projects. The

  13. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect (OSTI)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  14. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect (OSTI)

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  15. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect (OSTI)

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  16. Technique of estimation of actual strength of a gas pipeline section at its deformation in landslide action zone

    SciTech Connect (OSTI)

    Tcherni, V.P.

    1996-12-31

    The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections as well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.

  17. RP-5 Renewable Energy Efficiency Project

    SciTech Connect (OSTI)

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2004-01-29

    This is the sixth quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period from October 1, 2003 through December 31, 2003. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. In coordination with the DOE, IEUA has revised the original Cooperative Agreement to reflect the actual and current project scope of work. The original Agreement statement of work (SOW) included conceptual and preliminary equipment and systems, which were further evaluated for feasibility and suitability for the project. As a result, some of the equipment was taken out of the project scope. In response to questions from the DOE, IEUA has submitted a summary report on the Organic Rankine Cycle (ORC) secondary power generation units for availability and suitability for this project and associated safety concerns pointed out by the DOE. IEUA has awarded the consulting engineering contract to Parsons Water and Infrastructure, Inc. to provide the project's design and construction services. The project's pre-design kickoff meeting was held at IEUA's headquarters on December 11, 2003. IEUA has submitted a proposal for a grant offered by California Energy Commission (CEC) which if awarded to IEUA, will add value to this project. IEUA has finalized and signed the agreement with Stirling Energy Systems (SES) to host a 25 kW Stirling Engine at the RP-5 plant site for reliability and performance testing using digester and natural gas. As a result of further evaluation of the flexible microturbine system, IEUA has decided to take it out of the project's scope of work; however, it may be considered in future projects at other locations. IEUA has installed a 60 kW Photovoltaic (PV) power generation system on the roof of the new headquarters building. A matching funds update is also included in the Results and Discussion section. The update presents the work effort performed by CH2M Hill, the PIER Consultant, and the associated costs that serve as matching funds for the RP-5 Renewable Energy Efficiency Project during this report period.

  18. Solar Two: A successful power tower demonstration project

    SciTech Connect (OSTI)

    REILLY,HUGH E.; PACHECO,JAMES E.

    2000-03-02

    Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

  19. 2014 DOE Project Management Workshop

    Broader source: Energy.gov [DOE]

    What:  2014 DOE Project Management Workshop (Meeting the Challenge—Integrated Acquisition & Project Management)

  20. Contract/Project Management

    Energy Savers [EERE]

    Third Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 71% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10).

  1. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  2. Integrated Project Team RM

    Broader source: Energy.gov [DOE]

    The Integrated Project Team (IPT) is an essential element of the Department’s acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals...

  3. Acquisition and Project Management

    National Nuclear Security Administration (NNSA)

    4%2A en Acquisition and Project Management Office volunteers get up-close look at Office of Secure Transportation exercise http:nnsa.energy.govblogacquisition-and-project-mana...

  4. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Metrics and Targets 10. Projects Completed Below TPC: By the end of FY11, for all capital asset line item projects that are completed at CD-4, 50% are completed ...

  5. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract Specialist series is "1102." 10. Projects Completed Below TPC: By the end of FY11, for all capital asset line item projects that are completed at CD-4, 50% are completed ...

  6. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    series will be certified. 80% 85% 10. Projects Completed Below TPC: By the end of FY11, for all capital asset line item projects that are completed at CD-4, 50% are completed ...

  7. Haida Corporation- 2010 Project

    Broader source: Energy.gov [DOE]

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  8. A=HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HTML Documents for Nuclides, A 3 - 20 The HTML for Nuclides Project is an ongoing project. HTML documents for A 3 - 20 nuclides provide HTML documents for each individual...

  9. Sample Project Execution Plan

    Broader source: Energy.gov [DOE]

    The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects.  The plan serves as the main communication vehicle to ensure that...

  10. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Admin Chg 1, dated 1-16-2013, supersedes DOE O 415.1.

  11. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  12. Waste Treatment Plant Project

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 DOE National Cleanup Workshop by Peggy McCullough, Project Manager-WTP, Bechtel National.

  13. Step 2: Project Options

    Energy Savers [EERE]

    2: Project Options 2 2 Design 1 Potential 3 Refinement 4 Implementation 2 Options 5 Operations & Maintenance 1/28/2016 2 Presentation Agenda * Step 2: Project Options * Project members and roles * Activity * Project ownership options - Interconnection, net metering, permitting, and considerations * Tools * Case in Point 3 Potential Options Refinement Implementation Operations & Maintenance 4 Step 2: Roles, Business Structures, & Regulatory Considerations Purpose: Determine ownership

  14. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, ... to record the following data: Water temperature before: ...

  15. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    2013-07-09

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  16. Production Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Project Accounts Production Project Accounts Overview Most NERSC login accounts are associated with specific individuals and must not be shared. Sometimes it is advantageous to have a login account which is not tied to a person but instead to the group for the purposes of shared access to batch jobs or data. Project Accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the Project Account are traceable

  17. Mentors and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentors, Projects Mentors and Projects Bringing together top space science students with internationally recognized researchers at Los Alamos in an educational, collaborative atmosphere Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Students work closely with their mentors, who are Laboratory scientists, on challenging research projects in the Space Weather Summer School. Projects are related to current research topics in space

  18. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  19. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  20. Fit for Purpose Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fit for Purpose Projects "Fit-for-Purpose" projects are focused on developing specific subsurface engineering approaches that address research needs critical for advancing CCS to commercial scale. These projects include CO2 injection field tests, as well as applied research and development projects. The field tests augment the information gathered through the Regional Carbon Sequestration Partnerships. The RCSPs have provided valuable data, but complex issues surrounding the processes

  1. ARM Observations Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations Projected onto ARM States CCSM Results Projected onto ARM States 1 Oak Ridge National Laboratory, 2 Texas A&M University, 3 USDA Forest Service, 4 NASA GISS A Cluster Analysis Approach to Comparing Atmospheric Radiation Measurement (ARM) Data with Global Climate Model (GCM) Results Atmospheric state contained only in model results Atmospheric states contained only in ARM observations ARM Observations Projected onto Combined ARM-CCSM States CCSM Results Projected onto Combined

  2. Project Cost Profile Spreadsheet

    Broader source: Energy.gov [DOE]

    Under DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, the Office of Acquisition and Project Management (OAPM) must perform a Performance Baseline External Independent Review (EIR) prior to Critical Decision (CD) 2, and a Construction/Execution Readiness EIR for all Major System projects prior to CD-3.

  3. All Selected Projects

    Energy Savers [EERE]

    Selected Projects Oct 23, 2009 (rev. Dec. 14, 2010) 99 Projects SMART GRID INVESTMENT GRANTS Type Advanced Metering Infrastructure Customer Systems Electric Systems Distribution Electric Transmission Systems Equipment Manufacturing Integrated and/or Crosscutting Systems Circle indicates project where specific utility/area is not known.

  4. Distributed Energy Projects

    Broader source: Energy.gov [DOE]

    At the National Clean Energy Summit 8.0 in Nevada, President Obama announced that the Loan Programs Office (LPO) has issued guidance for potential applicants on the kinds of Distributed Energy Projects it can support, in the form of supplements to its existing Renewable Energy and Efficient Energy (REEE) Projects and Advanced Fossil Energy Projects solicitations.

  5. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0% One project >100M achieved CD-2 in 3rd qtr FY09. 5. TRA Use: By end of FY11, 80% of projects >750M will implement TRA no later than CD-2. 50% 0% No projects >750M achieved ...

  6. Project Reports for Hualapai Tribe- 2010 Project

    Broader source: Energy.gov [DOE]

    The project will build on the potential for renewable energy development on the Hualapai Reservation that was identified during the Phase l renewable energy resource assessment conducted by the Hualapai Tribe since 2005.

  7. Project Reports for Pawnee Nation- 2006 Project

    Broader source: Energy.gov [DOE]

    The primary goal of this project is to move the energy vision of the Pawnee Nation forward by conducting specific data collection and analysis tasks to assess the viable options available to Pawnee to meet future energy needs sustainable.

  8. MHK Projects/Tensas | Open Energy Information

    Open Energy Info (EERE)

    ","visitedicon":"" Project Profile Project Start Date 112009 Project City Butte la Rose, LA Project StateProvince Louisiana Project Country United States Project Resource...

  9. Contract/Project Management

    Energy Savers [EERE]

    Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC

  10. Contract/Project Management

    Energy Savers [EERE]

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is

  11. Contract/Project Management

    Energy Savers [EERE]

    First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 84% Construction 83% Cleanup 85% 77% Pre-CAP 86% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  12. Contract/Project Management

    Energy Savers [EERE]

    Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 88% Construction 87% Cleanup 89% 77% Pre-CAP 92% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  13. Contract/Project Management

    Energy Savers [EERE]

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 87% Construction 87% Cleanup 87% 77% Pre-CAP 90% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  14. Contract/Project Management

    Energy Savers [EERE]

    Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 86% Construction 87% Cleanup 84% 77% Pre-CAP 89% Post-CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  15. EM Capital Asset Project List

    Broader source: Energy.gov [DOE]

    Read the EM Capital Asset Project List, which includes the project's name, site, current critical decision and current total project cost.

  16. 2016 DOE Project Management Workshop

    Broader source: Energy.gov [DOE]

    This successful event provided opportunities to discuss projects and project challenges with senior leadership, share lessons learned, and recognize excellence in project management from across the...

  17. MHK Projects/UEK Yukon River Project | Open Energy Information

    Open Energy Info (EERE)

    StateProvince Alaska Project Country United States Project Resource Click here Current Tidal Coordinates 64.7881, -141.2 Project Phase Phase 1 Project Details UEK is has...

  18. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  19. Project Reports for Hualapai Tribe- 2005 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hualapai Tribe is located on the end of their existing utility grid which has subjected them to high costs and poor reliability of electric service. The first phase of the project will establish a tribally operated utility to provide service to tribal customers at Grand Canyon West, which has been operating without grid power for the past seven years. The second phase of the project will examine the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation.

  20. Y-12 Steam Plant Project Received National Recognition for Project

    National Nuclear Security Administration (NNSA)

    Management Excellence | National Nuclear Security Administration Steam Plant Project Received National Recognition for Project Management Excellence March 23, 2011 Y-12 steam plant project receives national recognition for project management excellence. Y-12's Steam Plant Life Extension Project (SPLE) has received the Secretary of Energy's Project Management Improvement Award. Microsoft Office document icon NR-03-28.doc

  1. Structuring small projects

    SciTech Connect (OSTI)

    Pistole, C.O.

    1995-11-01

    One of the most difficult hurdles facing small project developers is obtaining financing. Many major banks and institutional investors are unwilling to become involved in projects valued at less than $25 million. To gain the interest of small project investors, developers will want to present a well-considered plan and an attractive rate of return. Waste-to-energy projects are one type that can offer diversified revenue sources that assure maximum profitability. The Ripe Touch Greenhouse project, a $14.5 million waste tire-to-energy facility in Colorado, provides a case study of how combining the strengths of the project partners can help gain community and regulatory acceptance and maximize profit opportunities.

  2. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  3. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  4. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  5. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  6. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  7. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  8. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  9. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  10. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  11. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  12. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  13. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  14. Southwest Alaska Regional Geothermal Energy Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southwest Alaska Regional Geothermal Energy Project Southwest Alaska Regional Geothermal Energy Project Engineered Geothermal Systems Demonstration Projects. Project objectives: ...

  15. NREL: Geothermal Technologies - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  16. NREL: Transportation Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Illustration of aerodynamic light-, medium, and heavy-duty vehicles. NREL research helps optimize the energy efficiency of a wide range of vehicle technologies and applications. NREL's innovative transportation research, development, and deployment projects accelerate widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. The following NREL transportation projects are propelling

  17. Microwave solidification project overview

    SciTech Connect (OSTI)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  18. Tribal Energy Projects

    Energy Savers [EERE]

    PROJECTS U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY TRIBAL ENERGY PROGRAM TRIBAL ENERGY PROGRAM DOE's Tribal Energy Program DOE's Tribal Energy Program Tribal Energy Projects Tribal Energy Projects First Steps Toward Developing Renewable Energy and Energy Efficiency * Strategic planning * Energy options analysis * Capacity building * Organizational development Renewable Energy Development

  19. Project Submission Template

    Energy Savers [EERE]

    Department of Energy Stockbridge-Munsee Community - 2012 Project Project Reports for Stockbridge-Munsee Community - 2012 Project The ends to investigate the feasibility of utilizing renewable energy resources on- site in order to provide electric power as well as heating and cooling energy for the Stockbridge-Munsee Health and Wellness Center (SMHWC) as well as two support buildings that house an emergency diesel generator, a fuel storage tank, a workshop, and garage space for vehicles and

  20. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    12-2010 NNSA-B-10-0412 Sandia National Laboratories/New Mexico (SNL/NM) proposes to support the Bio-Response Operational Testing and Evaluation (BOTE) project. The BOTE project would involve multiple releases of a biological simulant, characterization sampling, decontamination, and clearance sampling, at the Idaho National Laboratory (INL) Test Site. Sandia Site Office Bio-Response Operational Testing and Evaluation (BOTE) Project (TA-I, TA-III, & Offsite at INL) INL LACY,SUSAN DOYLENE

  1. Funding for CSES Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding for CSES Projects Funding for CSES Projects High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email CSES Student and Postdoctoral Fellow Program Funding intervals are based on the federal fiscal year spanning the year from October 1 through September 30 of the following year. For all projects

  2. Gasification Systems Project Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Gasifier Optimization Archived Projects Agreement Number Project Title Performer Name Technology Area FE0023497 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation Alstom Power, Inc Gasification Systems FE0023577 Advanced Gasifier and Water Gas Shift Technologies for Low Cost Coal Conversion to High Hydrogen Syngas Gas Technology Institute Coal & Coal-Biomass to Liquids, Gasification Systems FE0023915 Pilot Scale Operation and

  3. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Safety Integration - Implementation of Controls Examples Example 24 5 Health & Safety This section describes the work controls associated with the 771/774 Closure Project. As prescribed in DOE Order 440.1, Worker Protection Management for DOE Federal and Contractor Employees, the project must comply with the OSHA construction standards for Hazardous Waste Operations and Emergency Response, 29 CFR 1910.120 and 1926. Under these standards, a Building 771/774 Closure Project-Specific HASP has

  4. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  5. Portable Power Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Portable Power, Auxiliary Power Units, and R&D for Off-Road Fuel Cell Applications Research Projects Awarded April 2004

  6. Envision Charlotte Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    across the following sectors: 1) Commercial, Real Estate & Hospitality; 2) Higher Education; 3) Healthcare; and 4) Retail Impact of Project: By enabling building energy-use ...

  7. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MW project DOE energy grant Land use planning, renewable energy zones overlay ... Milestones Year six buyout option at fair market value Year twenty lease ends ...

  8. Penobscot Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    With this award, the Penobscot Indian Nation will advance the preconstruction activities required to secure funding for the proposed 227-megawatt (MW) Alder Stream wind project.

  9. The MAJORANA project

    SciTech Connect (OSTI)

    Elliott, Steven R [Los Alamos National Laboratory

    2009-01-01

    The Majorana Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  10. Chemical Sciences Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Simulation for the Chemical Sciences Project Description Almos every scientific activity at Los Alamos involves data analysis and modeling. From a chemical sciences point of ...

  11. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  12. Funding for IGPPS Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which may, in certain circumstances, require several months to implement after the start of the fiscal year. For all projects supported with Los Alamos National Laboratory...

  13. The MAJORANA Project

    SciTech Connect (OSTI)

    Aalseth, Craig E.; Amman, M.; Amsbaugh, John F.; Avignone, F. T.; Back, Henning O.; Barabash, Alexander; Barbeau, P. S.; Beene, Jim; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fujikawa, Brian; Fuller, Erin S.; Gehman, Victor M.; Giovanetti, G. K.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Hossbach, Todd W.; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Montoya, A.; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Phillips, D.; Poon, Alan; Prior, Gersende; Qian, J.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Thompson, Rachel B.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Vetter, Kai; Warner, Ray A.; Wilkerson, J. F.; Wouters, Jan; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.; Zimmerman, S.

    2010-10-01

    The MAJORANA project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  14. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  15. Project Finance and Investments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance and Investments Biomass 2014 Growing The Future Bioeconomy Sustainable Bioenergy Supply Chain Year Number of Projects Grant Amount Loan Guarantee Amount Leverage Total ...

  16. Custom Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    Project development assistance funding is available for a variety of purposes, including grant writing, feasibility studies, or technical assistance with design, permitting, or utility interconne...

  17. Final Project Report

    SciTech Connect (OSTI)

    Wang, Qiang; Dandy, David S.

    2015-05-15

    This is the final technical report of the DOE project DE-FG02-07ER46448 awarded to Colorado State University.

  18. Desert Peak EGS Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Project ManagementCoordination * Coordination with Ormat's existing ... 68 MEQ events located in "Target Area" * Event locations consistent with stress- field ...

  19. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA on 242015 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  20. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA on 622014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  1. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 1142014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  2. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 2112014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  3. Contract/Project Management

    Energy Savers [EERE]

    Second Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics 1 Contract/Project Management Performance Metric FY 2013 Target FY 2013 Forecast FY 2013 Pre- & Post-CAP* Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 83% Construction 85% Cleanup 80% 70% Pre-CAP 84% Post-CAP This is based on a 3- year rolling average (FY11 to FY13). TPC is Total Project Cost.

  4. PNM Prosperity Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNM Prosperity Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  5. Classroom Projects - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford For Students and Kids Classroom Projects Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Classroom Projects Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size If you've been assigned to write a report or complete a classroom assignment that involves Hanford, we've got some tools that might help you with your project! Photographs The first is an online photo gallery of pictures. We've got thousands of photographs

  6. Environmental Wind Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office’s environmental wind projects from fiscal years 2006 to 2015.

  7. Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Management Project Management Some of the Project Management Division’s many functions involve developing risk management plans, managing project risks, and providing input on prime contractor performance. Some of the Project Management Division's many functions involve developing risk management plans, managing project risks, and providing input on prime contractor performance. Employees in our Project Management Division address projects' planning and execution, as specified in

  8. Project Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Reports Project Reports This page contains links to project reports summarizing the solid-state lighting projects funded by DOE, providing project descriptions and information on project partners, funding, and research period. The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. 2016 Project Portfolio Overviews of all current DOE-funded R&D projects related to solid-state lighting, including brief description, partners, funding level, and proposed time

  9. Project Reports for Kootznoowoo Incorporated- 2010 Project

    Broader source: Energy.gov [DOE]

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  10. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    NAVARRO, J.E.

    2001-03-07

    The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

  11. Wind Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects WIND ENERGY 4 PROJECTS in 5 LOCATIONS 1,025 MW GENERATION CAPACITY 2,190,000 MWh PROJECTED ANNUAL GENERATION * 1,225,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL

  12. The Home Microbiome Project

    ScienceCinema (OSTI)

    Gilbert, Jack

    2014-09-15

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  13. West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

  14. The human genome project

    SciTech Connect (OSTI)

    Yager, T.D.; Zewert, T.E.; Hood, L.E. )

    1994-04-01

    The Human Genome Project (HGP) is a coordinated worldwide effort to precisely map the human genome and the genomes of selected model organisms. The first explicit proposal for this project dates from 1985 although its foundations (both conceptual and technological) can be traced back many years in genetics, molecular biology, and biotechnology. The HGP has matured rapidly and is producing results of great significance.

  15. The Home Microbiome Project

    SciTech Connect (OSTI)

    Gilbert, Jack

    2014-08-25

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  16. Project organizations and schedules

    SciTech Connect (OSTI)

    Briggs, R.J.

    1990-07-01

    The Superconducting Super Collider Laboratory (SSCL) faces the challenge of simultaneously carrying out a large-scale construction project with demanding cost, schedule, and performance goals; and creating a scientific laboratory capable of exploiting this unique scientific instrument. This paper describes the status of the laboratory organization developed to achieve these goals, and the major near-term schedule objectives of the project.

  17. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  18. Bradys EGS Project

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Program 2010 Peer Review Bradys Engineered Geothermal Systems Project for Engineered Geothermal Systems Demonstration Projects Track and Innovative Exploration Technologies. Objective to stimulate permeability in tight well 15-12 and improve connection to rest of the field, improve overall productivity or injectivity.

  19. Project Reports for Seneca Nation - 2007 Project | Department of Energy

    Energy Savers [EERE]

    Seneca Nation - 2007 Project Project Reports for Seneca Nation - 2007 Project On the three territories of the Seneca Nation, there exist opportunities for energy development from both renewable and nonrenewable resources. Learn more about this project or find details in the below status reports. PDF icon November 2007 status report PDF icon November 2008 status report PDF icon Final report More Documents & Publications Project Reports for Seneca Nation - 2003 Project Project Reports for

  20. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and

    Office of Environmental Management (EM)

    Risk Assessment Examples Example 54 10.0 PROJECT RISK This section outlines a methodology which will be used to qualitatively/subjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training courses but tailored to the unique risks encountered in the DOE projects. In the context of this section, project risk means risk to one of the project baselines (technical, cost, or schedule) and should not be

  1. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  2. Address (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  3. Project Reports for Yurok Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Yurok Tribe has a great need for improved energy services on the reservation. The members pay $328 per month per household on average for energy, with just a $9,000 median household income. The project will assess the need for energy efficiency services on the reservation, identify available resources, and develop an implementation plan for meeting these needs. With an unemployment rate of 42%, the job training component of this program will benefit the tribe. Past attempts have been made to provide energy efficiency and renewable energy maintenance services on the reservation, but many of these services have not endured because they were not tribe-driven. This project will build tribal expertise, increase awareness, and form collaborative relationships with local energy services.

  4. WINDExchange: Wind for Schools Project

    Wind Powering America (EERE)

    Participant Roles & Responsibilities Affiliate Projects Pilot Project Results Project Funding School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Wind for Schools Project The U.S. Department of Energy funds the Wind for Schools project, which helps develop a future wind energy workforce by engaging students at higher education institutions to join Wind Application Centers and serve as project consultants for small wind turbine

  5. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  6. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  7. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  8. ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID

    SciTech Connect (OSTI)

    Martino, C.; King, W.; Ketusky, E.

    2012-01-12

    Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

  9. Hydrothermal Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Projects Hydrothermal Projects Hydrothermal Projects Geothermal electricity production has grown steadily, tapping a reliable, nearly inexhaustible reserve of hydrothermal systems where fluid, heat, and permeability intersect naturally in the subsurface. The United States Geological Survey estimates that 30 GW of hydrothermal resources lie beneath the surface--ten times the current installed capacity. Hydrothermal Projects Projects Database Program Links What is Play Fairway

  10. Hualapai Tribe- 2010 Project

    Broader source: Energy.gov [DOE]

    The project will build on the potential for renewable energy development on the Hualapai Reservation that was identified during the Phase l renewable energy resource assessment conducted by the Hualapai Tribe since 2005.

  11. Renewable energy projects approved

    Broader source: Energy.gov [DOE]

    Two renewable energy projects representing a $100 million-plus investment by Las Vegas-based Nevada Power Co.—a cost likely to be covered over time by the utility's customers—were approved Wednesday by state regulators.

  12. Pawnee Nation- 2006 Project

    Broader source: Energy.gov [DOE]

    The primary goal of this project is to move the energy vision of the Pawnee Nation forward by conducting specific data collection and analysis tasks to assess the viable options available to Pawnee to meet future energy needs sustainable.

  13. Healthcare Project Performance Benchmarks

    Broader source: Energy.gov [DOE]

    Reports five major performance metrics that can be used to benchmark proposed energy service company projects within the healthcare industry, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy

  14. Chickasaw Nation- 2010 Project

    Broader source: Energy.gov [DOE]

    Under this project, the Chickasaw Nation, Division of Commerce (CNDC) will upgrade old, inefficient lighting systems throughout CNDC to new, energy saving systems. This will be the first step in a...

  15. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. ...

  16. Capital Project Authorization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This policy applies to capital projects in these asset categories: 1. Transmission investment in assets owned or leased by BPA, whether funded by bonds issued to the U.S....

  17. 2015 Project Portfolio

    Broader source: Energy.gov [DOE]

    Overviews of all current DOE-funded R&D projects related to solid-state lighting, including brief description, partners, funding level, and proposed time frame (322 pages, January 2015)

  18. Navajo Electrification Demonstraiton Project

    SciTech Connect (OSTI)

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  19. Power Project Loan Fund

    Broader source: Energy.gov [DOE]

    The loan term is related to the life of the project, but may not exceed 50 years. Interest rates are the lesser of the average weekly yield of municipal bonds for the 12 months preceding the date...

  20. Lake Charles CCS Project

    SciTech Connect (OSTI)

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  1. EM Current Project Performance

    Broader source: Energy.gov [DOE]

    In the spirit of promoting transparency with stakeholders and the public, the Office of Environmental Management (EM) posts key project management information on its website. This document provides...

  2. Pennsylvania Regional Infrastructure Project

    Broader source: Energy.gov [DOE]

    Presentation by 11-Wang to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  3. Portsmouth Paducah Project Office

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the...

  4. Manhattan Project: Potsdam Note

    Office of Scientific and Technical Information (OSTI)

    Potsdam, July 19, 1945 (Truman wrote the above on the back of this). Click on a link below to return to: Espionage and the Manhattan Project, 1940-1945 Library Potsdam and the ...

  5. Offshore Wind Project Map

    Broader source: Energy.gov [DOE]

    Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

  6. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93016 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  7. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thru FY14 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  8. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    122818 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  9. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    121917 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  10. Project financial evaluation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  11. AVTA: The EV Project

    Broader source: Energy.gov [DOE]

    The EV Project partnered with city, regional and state governments, utilities, and other organizations in 18 cities to deploy about 12,500 public and residential charging stations.  It also...

  12. Manhattan Project: Library

    Office of Scientific and Technical Information (OSTI)

    relating to the Manhattan Project are available either as web pages or as .pdf documents. ... upon which most of the "Events" and many other pages from this web site were based. ...

  13. Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings consistent with protecting our natural environment.

  14. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDRI will be documented in future EIRs. (733) 5. TRA Use: By end of FY11, 80% of projects >750M will implement TRA no later than CD-2. Establish Baseline 8% Baseline established. ...

  15. CNEEC - Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of developing systems that can lead to break-out high-efficiency, cost-effective solar energy-to-fuel technologies. The projects are closely tied together through two mechanisms:...

  16. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R. C.

    1998-06-01

    This Quality Assurance Project Plan documents the quality assurance activities for the Wastewater/Stormwater/Groundwater and Environmental Surveillance Programs. This QAPP was prepared in accordance with DOE guidance on compliance with 10CFR830.120.

  17. START Program Project Sites

    Broader source: Energy.gov [DOE]

    The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START,...

  18. NATURALHY Project Overview

    Broader source: Energy.gov [DOE]

    Presentation by 05-Florisson to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  19. St. Bernard Project Update

    Broader source: Energy.gov [DOE]

    The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.

  20. The Manhattan Project

    Office of Scientific and Technical Information (OSTI)

    The Manhattan Project Sites and Their Contributions * Key Events * Scientists * Its Story * Additional Information * Related Information President Roosevelt Establishes the Manhattan Project President Roosevelt instructs the Army to take responsibility for construction of atomic weapons complex. The Army delegates the task to the Corps of Engineers, which establishes the Manhattan Engineer District. Courtesy of National Nuclear Security Administration August 13, 2012 was the 70th anniversary of

  1. PROJECT TASK STATEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROJECT TASK STATEMENT BETWEEN Sandia Corporation AND British East India Company a corporation of the United Kingdom having a principal office in London, United Kingdom (hereinafter "Participant") Geothermal Dynamics This Project Task Statement (PTS) is under the authority and subject to all terms and conditions of Cooperative Research and Development Agreement (CRADA) No. SC##/####.##.##. A. PURPOSE Sandia National Laboratories (Sandia) and the British East India Company (BEIC) are

  2. Hualapai Tribal Utility Project

    Energy Savers [EERE]

    Hualapai Tribal Utility Project Tribal Utility Project DOE First Steps Program DOE First Steps Program Jack Ehrhardt Jack Ehrhardt - - Hualapai Planning Director Hualapai Planning Director WHO WE ARE WHO WE ARE ~1 MILLION ACRES IN ~1 MILLION ACRES IN NW ARIZONA NW ARIZONA 108 MILES OF THE 108 MILES OF THE GRAND CANYON GRAND CANYON 2500 Members 2500 Members Peach Springs Peach Springs Community Community ~240 electric customers ~240 electric customers ECONOMIC SITUATION ECONOMIC SITUATION Very

  3. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  4. Reynolds Ceek Hydroelelctric Project

    Energy Savers [EERE]

    Hydroelectric Project Project Status November, 2011 By : Alvin Edenshaw, President Haida Corporation and Haida Energy, Inc. June 9, 2010 2 Haida Corporation b Located in Hydaburg on Prince of Wales Island in SE Alaska b Hydaburg population = 350 people (called Kaigani Haida) b Hydaburg is largest Haida Village in Alaska b Subsistence and Commercial Fishing Lifestyle b Substantial Timber Holdings b Hydaburg has Excellent School System June 9, 2010 3 Haida Energy, Inc. b Joint Venture b

  5. Manhattan Project: Places

    Office of Scientific and Technical Information (OSTI)

    Places "Met Lab" (Metallurgical Laboratory) Oak Ridge: Clinton Engineer Works Hanford Engineer Works Los Alamos Other Places Places of the Manhattan Project Places PLEASE NOTE: The Places pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the places where the Manhattan Project occurred have been grouped into the categories listed to the left. A quick overview of places involved in the

  6. ARM - Science Project Ideas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TeachersScience Project Ideas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Science Project Ideas Do changes in air pressure affect the weather? What is the relationship between air pressure and temperature? Monitor the weather forecast data from the web to find the answer. How does the

  7. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  8. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Development of Detailed End Points - End Point Document Examples Example 28 7.0 ENDPOINTS Chapter 7.0 describes the endpoint development principles and methodology, administration, closure, and turnover package for the 324 and 327 Buildings Stabilization/Deactivation Project. 7.1 Background The endpoint method for the 324 and 327 Buildings Stabilization/Deactivation Project will follow the EM-60 guidance, published in DOE/EM-0318, Rev. 0, U.S. Department of Energy, Office of Environmental

  9. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  10. Hopi Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Hopi Tribe will conduct a feasibility study to determine if development of a utility-scale wind power project with a capacity of approximately 100 MW located on Hopi lands held in fee simple in northern Arizona is feasible. If the feasibility study determines there is no impact or minimal impact to the environment, the tribe may develop the wind power project on two large mesas called East and West Sunset Mountains approximately 16 miles southwest of the city of Winslow.

  11. Project Reports for Winnebago Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Winnebago Tribe of Nebraska has experienced significant growth over the last five years. Estimated at over 10%, the growth trend has caused the tribe to examine the vital role that energy plays in supporting growth and economic development overall. The project seeks to: (1) investigate the opportunities for wind generation, improving the tribe's energy resource portfolio, and shaping the reservation load profile; (2) analyze renewable generation investment opportunities and their potential job creation and economic development benefits; and (3) conduct a tribal utility formation study to facilitate accomplishment of tribal goals.

  12. Cost-Effective Modeling and Savings Projections for Multifamily Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effective Modeling and Savings Projections for Multifamily Projects Cost-Effective Modeling and Savings Projections for Multifamily Projects Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Cost-Effective Modeling and Savings Projections for Multifamily Projects, Call Slides and Discussion Summary, June 26, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Trends in Multifamily Programs:

  13. Project Reports for Citizen Potawatomi Nation - 2005 Project | Department

    Energy Savers [EERE]

    of Energy Citizen Potawatomi Nation - 2005 Project Project Reports for Citizen Potawatomi Nation - 2005 Project The economic future of the Citizen Potawatomi Nation, located in central Oklahoma, depends on affordable and reliable energy. Learn more about this project or find details in the below status reports. PDF icon October 2005 status report PDF icon October 2006 status report More Documents & Publications Project Reports for Citizen Potawatomi Nation - 2003 Project Key Renewable

  14. Project Reports for Lower Sioux Indian Community - 2010 Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lower Sioux Indian Community - 2010 Project Project Reports for Lower Sioux Indian Community - 2010 Project Lower Sioux intends to continue its efforts to develop wind projects on its lands as a continuation of efforts begun roughly 20 years ago. Learn more about this project or find details in the below status reports. PDF icon November 2009 status report PDF icon October 2010 status report PDF icon Final report More Documents & Publications Project Reports for

  15. Project Information Form for Usability Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Form for Usability Projects Project Information Form for Usability Projects For user-centered design projects such as a survey or card sort, complete the user-centered design project information form and send it to the Web Governance Team facilitator. File Project Information Form - Usability More Documents & Publications EERE's Usability and Analysis Techniques Guidebook Web Content Analysis and Inventories: Template and FY 2014 Inventory Templates and Examples - Analysis and

  16. NNSA project receives DOE Secretary's Award for Project Management

    National Nuclear Security Administration (NNSA)

    Improvement | National Nuclear Security Administration project receives DOE Secretary's Award for Project Management Improvement Monday, April 13, 2015 - 3:28pm The NNSA Nuclear Materials Safeguards and Security Upgrade Project (NMSSUP) team recently received the DOE Secretary's Award for Project Management Improvement. The NMSSUP project team was honored for utilizing a highly disciplined, cost-effective and integrated approach to execute capital asset projects. NNSA Nuclear Materials

  17. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and

    Office of Environmental Management (EM)

    Technical Baseline Development and Control Examples Example 40 5.0 PROJECT MANAGEMENT AND CONTROL The Project Management and Control section provides an overview of the project management and control systems that will be used to manage the 324/327 Buildings Stabilization/Deactivation Project, addressing the following key elements of project management and control:  Project Management Control System (PMCS) - Work breakdown structure - Baseline development/update - Scheduling - Performance

  18. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  19. MHK Projects/Cape Islands Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. MHK Projects/Indian River Tidal Hydrokinetic Energy Project ...

    Open Energy Info (EERE)

    Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  1. MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","t...

  2. MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  3. MHK Projects/Central Cook Inlet Alaska Tidal Energy Project ...

    Open Energy Info (EERE)

    Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  4. MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3...

  5. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project...

    Open Energy Info (EERE)

    Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice"...

  6. MHK Projects/Spieden Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3...

  7. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open...

    Open Energy Info (EERE)

    Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  8. MHK Projects/Highlands Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  9. MHK Projects/Penobscot Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","typ...

  10. MHK Projects/Guemes Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  11. MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Tacoma Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  12. MHK Projects/Hope Field Point Project | Open Energy Information

    Open Energy Info (EERE)

    Hope Field Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"RO...

  13. MHK Projects/TWEC Project | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Project Details Based on a 2003 ENI, SEV and Wavegen feasibility study of a wave power plant installation in the Faroe Islands ('Feasibility study...

  14. MHK Projects/Williams Point Project | Open Energy Information

    Open Energy Info (EERE)

    Williams Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROAD...

  15. EEnergy Project "MeRegio" (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters Location Gppingen, Germany Coordinates 48.703159, 9.653999 Loading map......

  16. MHK Projects/Oyster 800 Project | Open Energy Information

    Open Energy Info (EERE)

    4 Project Details Operational testing of Oyster 800 commenced in June 2012 when the machine produced first electrical power to the grid. Project Installed Capacity (MW) 1...

  17. EEnergy Project "MeRegio" (Smart Grid Project) (Freiamt, Germany...

    Open Energy Info (EERE)

    Freiamt, Germany) Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters Location Freiamt, Germany Coordinates 48.170155, 7.906666...

  18. EEnergy Project "MeRegio" (Smart Grid Project) (Ettenheim, Germany...

    Open Energy Info (EERE)

    Ettenheim, Germany) Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters Location Ettenheim, Germany Coordinates 48.252537, 7.813286...

  19. MHK Projects/Miller Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP...

  20. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open...

    Open Energy Info (EERE)

    Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  1. MHK Projects/Jackson Point Project | Open Energy Information

    Open Energy Info (EERE)

    Jackson Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  2. MHK Projects/Reliance Light Project | Open Energy Information

    Open Energy Info (EERE)

    Reliance Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROAD...

  3. MHK Projects/Malone Field Light Project | Open Energy Information

    Open Energy Info (EERE)

    Malone Field Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"...

  4. MHK Projects/Huffman Light Project | Open Energy Information

    Open Energy Info (EERE)

    Huffman Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  5. MHK Projects/Ironton Light Project | Open Energy Information

    Open Energy Info (EERE)

    Ironton Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  6. MHK Projects/Algiers Light Project | Open Energy Information

    Open Energy Info (EERE)

    Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoo...

  7. MHK Projects/Woodland Light Project | Open Energy Information

    Open Energy Info (EERE)

    Woodland Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROAD...

  8. MHK Projects/Fashion Light Project | Open Energy Information

    Open Energy Info (EERE)

    Fashion Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  9. MHK Projects/Newfound Harbor Project | Open Energy Information

    Open Energy Info (EERE)

    Systems Project Technology *MHK TechnologiesKESC Tidal Generator Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  10. MHK Projects/Old River Outflow Channel Project | Open Energy...

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization UEK Corporation Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  11. MHK Projects/Humboldt County Wave Project | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Project Technology *MHK TechnologiesAquaBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  12. MHK Projects/Grand Manan Channel Project | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization Mananook Associates Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  13. MHK Projects/Aquantis Project | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization Aquantis Inc Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  14. MHK Projects/Maine 1 Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesOcean *MHK TechnologiesKensington Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  15. MHK Projects/Ogdensburg Kinetic Energy Project | Open Energy...

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization AER NY Kinetics LLC Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  16. MHK Projects/Luangwa Zambia Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  17. MHK Projects/Chitokoloki Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  18. MHK Projects/Atchafalaya River Hydrokinetic Project II | Open...

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization UEK Corporation Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  19. MHK Projects/Coal Creek Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  20. MHK Projects/Griffin Project | Open Energy Information

    Open Energy Info (EERE)

    Ocean Power Technologies Project Technology *MHK TechnologiesPowerBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  1. NNSA project receives DOE Secretary's Award for Project Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the ...

  2. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  3. MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project...

    Open Energy Info (EERE)

    Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":...

  4. Step 4: Project Implementation Introduction to Step 5: Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Operations & Maintenance Project Development Process 2 1 Potential 3 Refinement 2 Options 4 Implementation 5 Operations & Maintenance 3 Step 5: Operations & Maintenance ...

  5. MHK Projects/Mohawk MHK Project | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14408 Environmental Monitoring and...

  6. MHK Projects/Fishers Island Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14395 Environmental Monitoring and...

  7. MHK Projects/Shelter Island Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  8. MHK Projects/Tidal Energy Project Portugal | Open Energy Information

    Open Energy Info (EERE)

    Organization Tidal Energy Pty Ltd Project Technology *MHK TechnologiesDavidson Hill Venturi DHV Turbine Project Licensing Environmental Monitoring and Mitigation Efforts See...

  9. MHK Projects/Hickman Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  10. MHK Projects/Portugal Pre Commercial Pilot Project | Open Energy...

    Open Energy Info (EERE)

    AWS Ocean Energy formerly Oceanergia Project Technology *MHK TechnologiesArchimedes Wave Swing Project Licensing Environmental Monitoring and Mitigation Efforts See...

  11. MHK Projects/Cat Island Project | Open Energy Information

    Open Energy Info (EERE)

    Cat Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP"...

  12. MHK Projects/Bonnybrook Wastewater Facility Project 2 | Open...

    Open Energy Info (EERE)

    Bonnybrook Wastewater Facility Project 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  13. NREL: Technology Deployment - Project Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Development By employing our project development models, NREL offers a broad range of advisory services that are based off commercial practices and support the entire project development process to help reduce the risks associated with energy efficiency and renewable energy projects. This includes policy and regulatory analysis, financing alternatives, project management, proposal reviews, and project risk and technology assessments. Policy and Regulatory Analysis NREL analyzes federal

  14. Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Manhattan Project Manhattan Project New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy traces its origins to World War II and the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the organization set up by the Army Corps of Engineers to develop and build the bomb, the Department continues to own and manage the Federal properties at most of the major Manhattan Project sites,

  15. Manhattan Project National Historical Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project » Manhattan Project Historical Resources Manhattan Project Historical Resources New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy has developed and made available to the public--in print, online, and on display--a variety of Manhattan Project historical resources. These include histories, websites, reports and document collections, and exhibits and tours. Histories produced by the Department include The Manhattan Project, which provides a

  16. Manhattan Project National Historical Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan Project National Historical Park U.S. Interior Secretary Ken Salazar recommended on July 13, 2011 that Congress establish a Manhattan Project National Historical Park. He...

  17. Project Management Policies & Principles Memo

    Broader source: Energy.gov [DOE]

    Memo enhances and clarifies departmental policy related to project management as a result of the Improving Project Management Study and subsequent Secretarial Memo dated December 2014.

  18. MHK Projects/ | Open Energy Information

    Open Energy Info (EERE)

    50.705279, -1.498938 Project Technology *MHK Technologies Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  19. LTS Project Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management About Us LTS Home Page LTS Project Management LTS Transition and Timeline LTS Execution LTS Background LTS Information Management LTS Fact Sheets Briefings LTS ...

  20. POET-DSM Project LIBERTY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    alternative energy production and minimize traditional energy usage * Project LIBERTY is one of ... fuel ethanol distillation and molecular sieves * Scale of the project under ...

  1. Completed Projects Table.xlsx

    Office of Environmental Management (EM)

    ... Construction Line Item Project Depleted Uranium Hexafluoride Conversion Project (DUF6) Portsmouth & Paducah 02-U-101 346 580 2008 2010 No No Yes Nuclear Facility ...

  2. Boardman to Hemingway Transmission Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  3. Project Analysis Standard Operating Procedure

    Office of Environmental Management (EM)

    Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...

  4. 20th Century Reanalysis Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20th Century Reanalysis Project 20th Century Reanalysis Project Key Challenges: Assimilate historical weather observations from sources as diverse as 19th century sea captains and...

  5. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

  6. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  7. 2020 Vision Project Summary

    SciTech Connect (OSTI)

    Gordon, K.W.; Scott, K.P.

    2000-11-01

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  8. Project Reports for Penobscot Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Penobscot Nation includes 2,261 members and land holdings of 118,885 acres in various parcels located throughout northern, eastern, and western Maine, including rights to waters of the Penobscot River and many of its tributaries. The tribe is located in a region that has both a cold, harsh climate and very high energy costs. The objectives of the project are to develop an energy vision that in turn will lead to a more detailed, prioritized, long-term strategic plan. Two principle objectives are: (1) for the plan to address the cost burden of their current energy situation and explore ways to make existing tribal public facilities and private residences more energy efficient, and (2) for the plan to identify renewable energy development and production opportunities, always mindful of environmental impacts.

  9. Property:Project Resource | Open Energy Information

    Open Energy Info (EERE)

    property. (previous 25) (next 25) M MHK Projects + Current Tidal MHK Projects40MW Lewis project + Wave MHK ProjectsADM 3 + Wave MHK ProjectsADM 4 + Wave MHK ProjectsADM 5...

  10. Breckinridge Project, initial effort

    SciTech Connect (OSTI)

    None, None

    1982-09-01

    Report III, Volume 1 contains those specifications numbered A through J, as follows: General Specifications (A); Specifications for Pressure Vessels (C); Specifications for Tanks (D); Specifications for Exchangers (E); Specifications for Fired Heaters (F); Specifications for Pumps and Drivers (G); and Specifications for Instrumentation (J). The standard specifications of Bechtel Petroleum Incorporated have been amended as necessary to reflect the specific requirements of the Breckinridge Project, and the more stringent specifications of Ashland Synthetic Fuels, Inc. These standard specifications are available to the Initial Effort (Phase Zero) work performed by all contractors and subcontractors. Report III, Volume 1 also contains the unique specifications prepared for Plants 8, 15, and 27. These specifications will be substantially reviewed during Phase I of the project, and modified as necessary for use during the engineering, procurement, and construction of this project.

  11. Project ACHIEVE final report

    SciTech Connect (OSTI)

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  12. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  13. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  14. Hualapai Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Hualapai Tribe is located on the end of their existing utility grid which has subjected them to high costs and poor reliability of electric service. The first phase of the project will establish a tribally operated utility to provide service to tribal customers at Grand Canyon West, which has been operating without grid power for the past seven years. The second phase of the project will examine the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation.

  15. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  16. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  17. Edwards Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222,...

  18. Acquisition and Project Management Continuous Improvement Presentation...

    Office of Environmental Management (EM)

    and Project Management Continuous Improvement Presentation Acquisition and Project Management Continuous Improvement Presentation Presentation on Acquisition and Project Management ...

  19. NNSA Procurement Projects Perspective - Bob Raines, Associate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Perspective - Bob Raines, Associate Administrator for Acquisition and Project Management, NNSA NNSA Procurement Projects Perspective - Bob Raines, Associate Administrator ...

  20. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance ...