Powered by Deep Web Technologies
Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 6. Petroleum Net Imports, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 AEO 1997 3099 3245 3497 3665 3825 3975 4084 4190 4285 4380 4464 4552 4617 4654 4709 4760 AEO 1998 3303 3391 3654 3713 3876 4053 4137 4298 4415 4556 4639 4750 4910 4992 5087 AEO 1999 3380 3442 3888 4022 4153 4238 4336 4441 4545 4652 4780 4888 4999 5073 AEO 2000 3599 3847 4036 4187 4320 4465 4579 4690 4780 4882 4968 5055 5113

2

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

3

Table 7. Petroleum Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 7.58 7.45 7.12 6.82 6.66 7.09 AEO 1983 5.15 5.44 5.73 5.79 5.72 5.95 6.96 AEO 1984 4.85 5.11 5.53 5.95 6.31 6.59 8.65 AEO 1985 4.17 4.38 4.73 4.93 5.36 5.72 6.23 6.66 7.14 7.39 7.74 AEO 1986 5.15 5.38 5.46 5.92 6.46 7.09 7.50 7.78 7.96 8.20 8.47 8.74 9.04 9.57 9.76 AEO 1987 5.81 6.04 6.81 7.28 7.82 8.34 8.71 8.94 8.98 10.01 AEO 1989* 6.28 6.84 7.49 7.96 8.53 8.83 9.04 9.28 9.60 9.64 9.75 10.02 10.20 AEO 1990 7.20 7.61 9.13 9.95 11.02 AEO 1991 7.28 7.25 7.34 7.48 7.72 8.10 8.57 9.09 9.61 10.07 10.51 11.00 11.44 11.72 11.86 12.11 12.30 12.49 12.71 12.91 AEO 1992 6.86 7.42 7.88 8.16 8.55 8.80 9.06 9.32 9.50 9.80 10.17 10.35 10.56 10.61 10.85 11.00 11.15 11.29 11.50 AEO 1993 7.25 8.01 8.49 9.06

4

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

5

,"U.S. Natural Gas Net International Receipts (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts (MMcf)" Receipts (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Net International Receipts (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1290_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1290_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:41:51 PM"

6

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

7

SPACE TECHNOLOGY Actual Estimate  

E-Print Network [OSTI]

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

8

Net Metering  

Broader source: Energy.gov [DOE]

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became...

9

Net Metering  

Broader source: Energy.gov (indexed) [DOE]

No limit specified (Board of Public Utilities may limit to 2.5% of peak demand) 9 * California o Net Excess Generation (NEG): Credited to customer's next bill at retail rate. - At...

10

Net Metering  

Broader source: Energy.gov [DOE]

North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts ...

11

Net Metering  

Broader source: Energy.gov [DOE]

[http://nebraskalegislature.gov/FloorDocs/101/PDF/Final/LB436.pdf LB 436], signed in May 2009, established statewide net metering rules for all electric utilities in Nebraska. The rules apply to...

12

Net Metering  

Broader source: Energy.gov [DOE]

Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005 and 2007. Systems up to one megawatt (MW) in capacity that generate electricity...

13

Active QuarkNet Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active QuarkNet Centers Active QuarkNet Centers       QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Centers on a Google Map @ the PTEC website Mentor List Sorted by: Last Name Institution Name First Year in Program Argonne National Laboratory - On sabbatical Black Hills State University Brown, Northeastern & Brandeis Universities Brookhaven National Laboratory, Columbia & Stony Brook Universities Chicago State University Colorado State University Fermilab & University of Chicago Florida Institute of Technology Florida International University Florida State University Hampton, George Mason, William & Mary Universities Idaho State University Indiana University - On sabbatical Johns Hopkins University

14

Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya  

E-Print Network [OSTI]

treated net (ITN) ownership, usage, and malaria transmissionand mortality. However, usage varies among households, andsuch variations in actual usage may seriously limit the

2011-01-01T23:59:59.000Z

15

Modeling Mobile Agent Systems with High Level Petri Nets Dianxiang Xu and Yi Deng  

E-Print Network [OSTI]

Modeling Mobile Agent Systems with High Level Petri Nets Dianxiang Xu and Yi Deng School-based approach for architectural modeling of mobile agent systems. Agent template (net) is proposed to model as a component, consisting of mobility environment (system net), agent templates (agent nets), and internal

16

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2010 Graphic Data - Electricity Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035 Figure 68. World net electricity generation by region, 1990-2035 Figure 69. Non-OECD net electricity generation by region, 1990-2035 Figure 70. World net electricity generation by fuel, 2006-2035 Figure 71. World net electricity generation from nuclear power by region, 2007-2030 Figure 72. Net electricity generation in North America, 1990-2035 Figure 73. Net electricity generation in North America by Fuel, 2007 and 2035 Figure 74. Net electricity generation in OECD Europe by fuel, 2007-2035 Figure 75. Net electricity generation in OECD Asia, 2007-2035 Figure 76. Net electricity generation in Non-OECD Europe and Eurasia, 2007-2035

17

Equity in international agreements  

SciTech Connect (OSTI)

Approaches to establishing equitable greenhouse gas emission policies among different nations are briefly discussed. The impact of energy efficiency is proposed as an aid to equitable resource distribution. A comprehensive approach which would account for changes in net greenhouse gases is discussed. In addition, international trading of net greenhouse gas emissions reduction credits is proposed.

Stewart, R. [Georgetown Univ. Law Center, Washington, DC (United States)

1992-12-31T23:59:59.000Z

18

DIAGNOSING, BENCHMARKING AND TRANSFORMING THE LEED CERTIFIED FIU SIPA BUILDING INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB)  

E-Print Network [OSTI]

, the energy score is not benchmarked against the AIA and DOE 2030 Challenge to make buildings carbon-neutral INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB) Thomas Spiegelhalter Florida International University-Department of Construction Management Miami, FL 33174 e-mail: yckang@fiu.edu Nezih Pala FIU- Department of Electrical

Pala, Nezih

19

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

20

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Massachusetts Program Type Net Metering Provider Department of Public Utilities In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric cooperatives in Massachusetts.) Class I, Class II, Class III net metering facilities In Massachusetts, there are several categories of net-metering facilities.

22

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

23

Timeline for Net Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17.5 7302010 Yes Biennially x By July 31 of each Forecast Year, BPA publishes all Load Following customers' Net Requirements data for the two years of the upcoming Rate...

24

Net Metering Resources  

Broader source: Energy.gov [DOE]

State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed...

25

Ashland Electric- Net Metering  

Broader source: Energy.gov [DOE]

In 1996, Ashland adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to purchase,...

26

American Samoa- Net Metering  

Broader source: Energy.gov [DOE]

The American Samoa Power Authority (ASPA), a government-owned electric utility, is the only power provider in this U.S. territory of almost 70,000 people. ASPA's "Interconnection and Net Energy...

27

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Arkansas Program Type Net Metering Provider Arkansas Economic Development Commission In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved final rules for net metering in July 2002. Subsequent legislation enacted in April 2007 (HB 2334) expanded the availability of net metering; increased the capacity

28

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

29

ARM - Field Campaign - International Pyrgeometer Intercomparison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working Group hosted an International Pyrgeometer Intercomparison among Baseline Surface Radiation Network (BSRN) members September 20 - October 1, 1999. The comparison actually...

30

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State New Mexico Program Type Net Metering Provider New Mexico Public Regulation Commission Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA)*, which pertains to systems up to 80 megawatts (MW) in capacity. Previously, net metering in New Mexico was limited to systems up to 10 kilowatts (kW) in capacity. Net-metered customers are credited or paid for any monthly net excess generation (NEG) at the utility's avoided-cost rate. If a customer has net

31

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Fed. Government Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Washington State University Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power technologies (including fuel cells). All customer classes are eligible, and all utilities -- including municipal utilities and electric cooperatives -- must offer net metering.

32

,"U.S. Blender Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Input of Residuum (Thousand Barrels)","U.S. Blender Net Input of Gasoline Blending Components (Thousand Barrels)","U.S. Blender Net Input of Reformulated...

33

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Vermont Program Type Net Metering Provider Vermont Department of Public Service NOTE: Legislation enacted in May 2012 (HB475) further amends Vermont's net metering policy. Vermont's original net-metering legislation was enacted in 1998, and the law has been expanded several times subsequently. Any electric customer in Vermont may net meter after obtaining a Certificate of Public Good from the Vermont Public Service Board (PSB). Solar net metered systems 10 kilowatts

34

International Energy Outlook - Electicity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2004 Electricity Electricity consumption nearly doubles in the IEO2004 projections. Developing nations in Asia are expected to lead the increase in world electricity use. Figure 60. World Net Electricity Consumptin, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 61. World Net Electricity Consumptin by Region, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World net electricity consumption is expected nearly double to over the next two decades, according to the International Energy Outlook 2004 (IEO2004) reference case forecast. Total demand for electricity is projected to increase on average by 2.3 percent per year, from 13,290

35

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State North Carolina Program Type Net Metering Provider North Carolina Utilities Commission The North Carolina Utilities Commission (NCUC) requires the state's three investor-owned utilities -- Duke Energy, Progress Energy and Dominion North Carolina Power -- to make net metering available to customers that own and operate systems that generate electricity using solar energy, wind energy, hydropower, ocean or wave energy, biomass resources, combined heat and

36

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Net Metering Provider Missouri Public Service Commission Missouri enacted legislation in June 2007 (S.B. 54)* requiring all electric utilities -- investor-owned utilities, municipal utilities and electric cooperatives -- to offer net metering to customers with systems up to 100 kilowatts (kW) in capacity that generate electricity using wind energy, solar-thermal energy, hydroelectric energy, photovoltaics (PV), fuel cells

37

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Wind Program Info State Maryland Program Type Net Metering Provider Maryland Public Service Commission Note: The program web site listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing implementation of net metering in Maryland, such as meeting agendas, minutes, and draft utility tariffs.

38

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State District of Columbia Program Type Net Metering Provider DC Public Service Commission In the District of Columbia (DC), net metering is currently available to residential and commercial customer-generators with systems powered by renewable-energy sources, combined heat and power (CHP), fuel cells and microturbines, with a maximum capacity of 1 megawatt (MW). The term "renewable energy sources" is defined as solar, wind, tidal, geothermal, biomass, hydroelectric power and digester gas. In October 2008, the Clean

39

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State New Hampshire Program Type Net Metering Provider New Hampshire Public Utilities Commission New Hampshire requires all utilities selling electricity in the state to offer net metering to customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas, bio-oil or

40

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Virginia Program Type Net Metering Provider Virginia Department of Mines, Minerals, and Energy '''''Note: In March 2011, Virginia enacted HB 1983, which increased the residential net-metering limit to 20 kW. However, residential facilities with a capacity of greater than 10 kW must pay a monthly standby charge. The Virginia State Corporation Commission approved standby charges for transmissions and distribution components as proposed by Virginia Electric and Power Company (Dominion Virginia Power) on November 3, 2011.'''''

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Local Government Multi-Family Residential Nonprofit Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State West Virginia Program Type Net Metering Provider West Virginia Public Service Commission Net metering in West Virginia is available to all retail electricity customers. System capacity limits vary depending on the customer type and electric utility type, according to the following table. Customer Type IOUs with 30,000 customers or more IOUs with fewer than 30,000 customers, municipal utilities, electric cooperatives

42

QuarkNet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QuarkNet: The science connection you've been waiting for! QuarkNet: The science connection you've been waiting for! The Opportunity: "Your program rejuvenates my soul. It connects me with a cadre of intelligent and excited educators. It reinvigorates my teaching and provides me avenues to extend and enliven the projects that I can offer my students. Without the Quarknet program I am sure that I would have left teaching years ago." The Players: High school students, teachers and physicsts working together on physics research projects exploring the hidden nature of matter, energy, space and time. The Questions: What are the origins of mass? Can the basic forces of nature be unified? How did the universe begin? How will it evolve? LHC & Fermilab Links For Teachers For Students CERN Homepage ATLAS Experiment

43

Generation of a Consistent Terrestrial Net Primary Production Data Set  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation of a Consistent Terrestrial Net Generation of a Consistent Terrestrial Net Primary Production Data Set Final Report NASA Reference Number TE/99-0005 May 3, 2001 Richard J. Olson and Jonathan M. O. Scurlock Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6407 This project, "Generation of a Consistent Terrestrial Net Primary Production Data Set", is a coordinated, international effort to compile global estimates of terrestrial net primary productivity (NPP) for parameterization, calibration, and validation of NPP models. The project (NASA Reference Number TE/99-0005) was funded by the National Aeronautics and Space Administration (NASA), Office of Earth Science, Terrestrial Ecology Program under Interagency Agreement number 2013-M164-A1, under

44

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Home Weatherization Water Program Info State New York Program Type Net Metering Provider New York State Department of Public Service Note: In October 2012 the New York Public Service Commission (PSC) issued an order directing Central Hudson Gas and Electric to file net metering tariff revisions tripling the aggregate net metering cap for most systems from 1% of 2005 peak demand (12 MW) to 3% of 2005 peak demand (36 MW). The PSC issued another order in June 2013 to raise the aggregate net metering cap

45

NetCDF at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NetCDF NetCDF NetCDF Description and Overview NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. This includes the libnetcdf.a library as well as the NetCDF Operators (NCO), Climate Data Operators (CDO), NCCMP, and NCVIEW packages. Files written with previous versions can be read or written with the current version. Using NetCDF on Cray System There are separate NetCDF installations provided by Cray and by NERSC. On Hopper and Edison, Cray installations are recommended because they are simpler to use. To see the available Cray installations and versions use the following command: module avail cray-netcdf To see the NERSC installations and versions use the following command:

46

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial General Public/Consumer Industrial Residential Fed. Government Local Government State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Oklahoma Program Type Net Metering Provider Oklahoma Corporation Commission Net metering has been available in Oklahoma since 1988 under Oklahoma Corporation Commission (OCC) Order 326195. The OCC's rules require investor-owned utilities and electric cooperatives under the commission's jurisdiction* to file net-metering tariffs for customer-owned renewable-energy systems and combined-heat-and-power (CHP) facilities up to 100 kilowatts (kW) in capacity. Net metering is available to all customer

47

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Ohio Program Type Net Metering Provider Ohio Public Utilities Commission '''''Note: In July 2012, the Public Utilities Commission of Ohio (PUCO) opened a docket ([http://dis.puc.state.oh.us/CaseRecord.aspx?CaseNo=12-2050-EL-ORD Case 12-0250-EL-RDR]) to review the net metering rules for investor-owned utilities. Details will be posted as more information is available.''''' Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fuel cells or microturbines.

48

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Fed. Government Local Government Residential State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Hawaii Program Type Net Metering Provider Hawaii Public Utilities Commission NOTE: Kauai Island Electric Cooperative's (KIUC) net metering program has reached its capacity and has implemented a Net Energy Metering Pilot Program. Hawaii's original net-metering law was enacted in 2001 and expanded in 2004 by HB 2048, which increased the eligible capacity limit of net-metered systems from 10 kilowatts (kW) to 50 kW. In 2005, the law was further amended by SB 1003, which authorized the Hawaii Public Utilities Commission

49

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005...

50

Calculating and reporting changes in net heat of combustion of wood fuel  

SciTech Connect (OSTI)

There is often confusion when reporting net heat of combustion changes in wood fuel due to changes in moisture content (MC) of the fuel. This paper was written to identify and clarify the bases on which changes in net heat of combustion can be calculated. Formulae for calculating changes in net heat of combustion of wood fuel due to MC changes are given both on a per unit weight of fuel basis and on an actual gain basis. Examples which illustrate the difference in the two reporting approaches, as well as the importance of both approaches, are presented. (Refs. 7).

Harris, R.A.; McMinn, J.W.; Payne, F.A.

1986-06-01T23:59:59.000Z

51

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

7 DefiningaNet?ZeroEnergyNetZeroEnergy .A. DefiningaNetZeroEnergyBuilding Duetothe

Al-Beaini, S.

2010-01-01T23:59:59.000Z

52

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

53

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Minnesota Program Type Net Metering Provider Minnesota Department of Commerce '''''Note: H.F. 729, enacted in May 2013, includes many changes to Minnesota's net metering law. These changes are described above, but most will not take effect until rules are implemented at the PUC. The below summary reflects the current rules.''''' Minnesota's net-metering law, enacted in 1983, applies to all investor-owned utilities, municipal utilities and electric cooperatives. All "qualifying facilities" less than 40 kilowatts (kW) in capacity are

54

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Pennsylvania Program Type Net Metering Provider Pennsylvania Public Utility Commission Note: In March 2012 the Pennsylvania Public Utilities Commission (PUC) issued a Final Order (Docket M-2011-2249441) approving the use of third-party ownership models (i.e., system leases or retail power purchase agreements) in conjunction with net metering. The Order allows these types of arrangements for net metered systems, subject to a restriction that the

55

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Illinois Program Type Net Metering Provider Illinois Commerce Commission '''''NOTE: Legislation enacted in 2011 and 2012 (S.B. 1652, H.B. 3036, and S.B. 3811) has changed several aspects of net metering in Illinois. For customers in competitive classes as of July 1, 2011, the law prescribes a dual metering and bill crediting system which does not meet the definition of net metering as the term is generally defined. Click here for information regarding competitive classes, and

56

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Iowa Program Type Net Metering Provider Iowa Utilities Board Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ''et seq.'' Iowa's net-metering subrule, adopted by the IUB in July 1984, applies to customers that generate electricity using alternate energy production facilities (AEPs). Net metering is available to all customer classes of Iowa's two investor-owned utilities -- MidAmerican Energy and Interstate Power and

57

International Energy Statistics  

Gasoline and Diesel Fuel Update (EIA)

> Countries > International Energy Statistics > Countries > International Energy Statistics International Energy Statistics Petroleum Production| Annual Monthly/Quarterly Consumption | Annual Monthly/Quarterly Capacity | Bunker Fuels | Stocks | Annual Monthly/Quarterly Reserves | Imports | Annual Monthly/Quarterly Exports | CO2 Emissions | Heat Content Natural Gas All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Coal All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Electricity Generation | Consumption | Capacity | Imports | Net Imports | Exports | Distribution Losses | Heat Content Renewables Electricity Generation| Electricity Consumption | Biofuels Production | Biofuels Consumption | Heat Content Total Energy

58

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider Louisiana Public Service Commission '''''Note: Ongoing proceedings related to net metering can be found in Docket R-31417.''''' Louisiana enacted legislation in June 2003 establishing net metering. Modeled on Arkansas's law, Louisiana's law requires investor-owned utilities, municipal utilities and electric cooperatives to offer net metering to customers that generate electricity using solar, wind, hydropower, geothermal or biomass resources. Fuel cells and microturbines that generate electricity entirely derived from renewable resources are

59

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Connecticut Program Type Net Metering Provider Public Utilities Regulatory Authority Connecticut's two investor-owned utilities -- Connecticut Light and Power Company (CL&P) and United Illuminating Company (UI) -- are required to provide net metering to customers that generate electricity using "Class I" renewable-energy resources, which include solar, wind, landfill gas, fuel

60

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kentucky Program Type Net Metering Provider Kentucky Public Service Commission In April 2008, Kentucky enacted legislation that expanded its net metering law by requiring utilities to offer net metering to customers that generate electricity with photovoltaic (PV), wind, biomass, biogas or hydroelectric systems up to 30 kilowatts (kW) in capacity. The Kentucky Public Service Commission (PSC) issued rules on January 8, 2009. Utilities had 90 days from that date to file tariffs that include all terms and conditions of their net metering programs, including interconnection.

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Weekly Refiner Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production Refiner Net Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/Region 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History Finished Motor Gasoline 2,168 2,300 2,336 2,359 2,462 2,368 2010-2013 East Coast (PADD 1) 54 53 52 67 71 67 2010-2013 Midwest (PADD 2) 696 745 722 711 798 790 2010-2013 Gulf Coast (PADD 3) 891 916 1,010 1,053 1,011 1,021 2010-2013 Rocky Mountain (PADD 4) 260 248 245 232 279 235 2010-2013 West Coast (PADD 5) 268 338 308 296 302 255 2010-2013 Reformulated 50 49 49 49 48 49 2010-2013 Blended with Ethanol 50 49 49 49 48 49 2010-2013 Other

62

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State New Jersey Program Type Net Metering Provider New Jersey Board of Public Utilities New Jersey's net-metering rules apply to all residential, commercial and industrial customers of the state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives). Systems that generate electricity using solar, wind, geothermal, wave, tidal, landfill gas or sustainable biomass resources, including fuel cells (all "Class I" technologies under the state RPS), are

63

net generation | OpenEI  

Open Energy Info (EERE)

net generation net generation Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

64

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Michigan Program Type Net Metering Provider Michigan Public Service Commission '''''The MPSC is reviewing state interconnection and net metering policies in [http://efile.mpsc.state.mi.us/efile/viewcase.php?casenum=15919&submit.x=... Case U-15919].''''' In October 2008, Michigan enacted legislation (P.A. 295) requiring the Michigan Public Service Commission (PSC) to establish a statewide net metering program for renewable-energy systems within 180 days. On May 26, 2009 the Michigan Public Service Commission (PSC) issued an order formally

65

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Colorado Program Type Net Metering Provider Colorado Public Utilities Commission [http://www.leg.state.co.us/clics/clics2009a/csl.nsf/fsbillcont3/571064D8... Senate Bill 51] of April 2009 made several changes, effective September 1, 2009, to the state's net metering rules for investor-owned utilities, as they apply to solar-electric systems. These changes include converting the maximum system size for solar-electric systems from two megawatts (MW) to 120% of the annual consumption of the site; redefining a site to include

66

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Fed. Government General Public/Consumer Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State California Program Type Net Metering Provider California Public Utilities Commission California's net-metering law originally took effect in 1996 and applies to all utilities with one exception*. The law has been amended numerous times since its enactment, most recently by AB 327 of 2013. '''Eligible Technologies''' The original law applied to wind-energy systems, solar-electric systems and hybrid (wind/solar) systems. In September 2002, legislation (AB 2228)

67

Estimation of Regional Actual Evapotranspiration in the Panama Canal Watershed  

Science Journals Connector (OSTI)

The upper Ro Chagres basin is a part of the Panama Canal Watershed. The least known water balance...SEBAL...). We use an image from March 27, 2000, for estimation of the distribution of the regional actual evapo...

Jan M.H. Hendrickx; Wim G.M. Bastiaanssen; Edwin J.M. Noordman

2005-01-01T23:59:59.000Z

68

The Net changes everything  

Science Journals Connector (OSTI)

......Web and e-mail. Internet technology is also used internally...the travel department. The intranet is also used to report problems...yet. Lots are adopting the technologies, but most are still wondering...through the pain and deploy the technologies fully early on will get the......

John Kavanagh

2000-05-01T23:59:59.000Z

69

A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature  

E-Print Network [OSTI]

and the dynamic nature of heat transfer processes. Satellite remote sensing is a promising tool which has been] Satellite remote sensing is a promising technique for estimating global or regional evapotranspiration (ET). A simple and accurate method is essential when estimating ET using remote sensing data. Such a method

Li, Zhanqing

70

Net Metering | Open Energy Information  

Open Energy Info (EERE)

Metering Metering Jump to: navigation, search For electric customers who generate their own electricity, net metering allows for the flow of electricity both to and from the customer,– typically through a single, bi-directional meter. With net metering, when a customer’'s generation exceeds the customer’'s use, the customer's electricity flows back to the grid, offsetting electricity consumed by the customer at a different time. In effect, the customer uses excess generation to offset electricity that the customer otherwise would have to purchase at the utility’'s full retail rate. Net metering is required by law in most states, but some of these laws only apply to investor-owned utilities,– not to municipal utilities or electric cooperatives. [1] Net Metering Incentives

71

Grid Net | Open Energy Information  

Open Energy Info (EERE)

Net Net Jump to: navigation, search Name Grid Net Address 340 Brannan St Place San Francisco, California Zip 94107 Sector Efficiency Product Sells open, interoperable, policy-based network management software Website http://www.grid-net.com/ Coordinates 37.781265°, -122.393229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.781265,"lon":-122.393229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

From DSM to DSM Net  

Science Journals Connector (OSTI)

The following sections describe the integration of the DSM planning model with process modeling approaches of Petri nets . First, the process correctness criteria for the Dynamic new-Product Design Process (D...

Arie Karniel; Yoram Reich

2011-01-01T23:59:59.000Z

73

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fuel Vehicles Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Delaware Program Type Net Metering Provider Delaware Public Service Commission In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fuels. Grid-interactive electric vehicles are also eligible for net metering treatment for electricity that they put on the grid, although these vehicles do not themselves generate electricity. The maximum capacity of a net-metered system is 25 kilowatts (kW) for residential customers; 100 kW for farm customers on residential rates; two megawatts (MW) per meter for

74

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

75

Self-actualization as it relates to aerobic physical fitness  

E-Print Network [OSTI]

higher than the aerobic and archery group on the TC, Ex, and C scales. The archery group was significantly higher than the preaerobic and aerobic groups on the Fr and S scales. Females from the preaerobic group were significantly lower than archery... Inventory Sav Self-actualization values measures how well a person holds and lives by values of se 1f- ac tualizing people Ex Existentiality measures ability to flexibly apply self-actualizing values to one's own life Fr Feeling reactivity measures...

Russell, Kathryn Terese Vecchio

2012-06-07T23:59:59.000Z

76

2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION  

E-Print Network [OSTI]

Power Mix Fuel Type Net System Power Coal 15% Large Hydroelectric 23% Natural Gas 42% Nuclear 11CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER and report net system power, annually (Senate Bill 1305, Sher, Chapter 796, statue of 1997)1 . Net system

77

Improving UccNet-compliant B2B Supply-chain Applications Using a Context Interchange Framework  

E-Print Network [OSTI]

UccNet is a globally centralized B2B electronic data platform for storing trading product item information and hosted by the non-profit international standardization institute EAN-UCC. It is an emerging ...

Tu, Steven

2004-12-10T23:59:59.000Z

78

Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet)  

Broader source: Energy.gov [DOE]

In 2009, Transformations, Inc. partnered with the Building Science Corporation team to build new net zero energy houses in three developments in Massachusetts that achieve a 45% reduction in energy use compared to 2009 International Residential Code.

79

experiment actually sees," Smith says. "When we were  

E-Print Network [OSTI]

experiment actually sees," Smith says. "When we were finished, we got much more ­ a method in science depend on atoms and molecules moving," Smith says. "We want to create movies of molecules science development," Smith says.--Morgan McCorkle A theoretical technique developed at ORNL is bringing

Pennycook, Steve

80

COORDINATING ADVICE AND ACTUAL TREATMENT Thomas A. Russ  

E-Print Network [OSTI]

. Unfortunately, this information is not always immediately available. For example, the exact fluid infused via an intravenous line can only be determined after someone checks the infusion bottle to determine how much fluid differ in timing and exact amount from what is actually done. For example, an infusion order might call

Russ, Thomas A.

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Commercial Heating & Cooling Wind Program Info State Indiana Program Type Net Metering Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission (IURC) adopted rules for net metering in September 2004, requiring the state's investor-owned utilities (IOUs) to offer net metering to all electric customers. The rules, which apply to renewable energy resource projects [defined by IC 8-1-37-4(a)(1) - (8)] with a maximum capacity of 1 megawatt (MW), include the following

82

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Oregon Program Type Net Metering Oregon has established separate net-metering programs for the state's primary investor-owned utilities (PGE and PacifiCorp), and for its municipal utilities and electric cooperatives. '''PGE and PacifiCorp Customers''' The Oregon Public Utilities Commission (PUC) adopted new rules for net metering for PGE and PacifiCorp customers in July 2007, raising the individual system limit from 25 kilowatts (kW) to two megawatts (MW) for non-residential applications. (The rules do not apply to customers of Idaho

83

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Wyoming Program Type Net Metering Provider Wyoming Public Service Commission Wyoming enacted legislation in February 2001 that established statewide net metering. The law applies to investor-owned utilities, electric cooperatives and irrigation districts. Eligible technologies include solar, wind, biomass and hydropower systems up to 25 kilowatts (kW) in capacity. Systems must be intended primarily to offset part or all of the customer-generator's requirements for electricity. Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits at the utility's avoided-cost

84

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Final July 01, 2010 Final July 01, 2010 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2010 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

85

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

86

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Draft July 9, 2009 Draft July 9, 2009 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2009 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

87

Table 12. Total Coal Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption, Projected vs. Actual" Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO 1996",,,937,942,954,962,983,990,1004,1017,1027,1033,1046,1067,1070,1071,1074,1082,1087 "AEO 1997",,,,948,970,987,1003,1017,1020,1025,1034,1041,1054,1075,1086,1092,1092,1099,1104 "AEO 1998",,,,,1009,1051,1043.875977,1058.292725,1086.598145,1084.446655,1089.787109,1096.931763,1111.523926,1129.833862,1142.338257,1148.019409,1159.695312,1162.210815,1180.029785

88

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Consumption, Projected vs. Actual Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 AEO 1997 6636 6694 6826 6953 7074 7183 7267 7369 7461 7548 7643 7731 7793 7833 7884 7924 AEO 1998 6895 6906 7066 7161 7278 7400 7488 7597 7719 7859 7959 8074 8190 8286 8361 AEO 1999 6884 7007 7269 7383 7472 7539 7620 7725 7841 7949 8069 8174 8283 8351 AEO 2000 7056 7141 7266 7363 7452 7578 7694 7815 7926 8028 8113 8217 8288

89

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

90

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

91

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Arizona Program Type Net Metering Provider Arizona Corporation Commission Net metering is available to customers who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power (CHP) or fuel cell technologies. The ACC has not set a firm kilowatt-based limit on system size capacity; instead, systems must be sized to not exceed 125% of the customer's total connected load. If there is no available load data for the customer, the generating system may not

92

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Wisconsin Program Type Net Metering Provider Public Service Commission of Wisconsin The Public Service Commission of Wisconsin (PSC) issued an order on January 26, 1982 requiring all regulated utilities to file tariffs allowing net metering to customers that generate electricity with systems up to 20 kilowatts (kW)* in capacity. The order applies to investor-owned utilities and municipal utilities, but not to electric cooperatives. All distributed-generation (DG) systems, including renewables and combined heat and power (CHP), are eligible. There is no limit on total enrollment.

93

QuarkNet at Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QuarkNet at Work Information for Active Mentors & Teachers     QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Information Active Centers Calendar Contacts Expectations: for Teachers, for Mentors Information on Other Funding Sources Program Overview Support: for Teachers, for Centers Staff Job Description Activities Essential Practices - Teaching with Inquiry (word.doc) Classroom Activities e-Labs: CMS - Cosmic Ray Boot Camp Project Activities Databases: Data Entry (password only) 2012 Center Reporting Resources Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit Print Bibliography - Online Resources Imaging Detector Principles of Professionalism for Science Educators - NSTA position

94

QuarkNet Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joel Eduardo Fuentes Santiago with his regional trophies Joel Eduardo Fuentes Santiago with his regional trophies Cosmic Ray Muons: Speed and Lifetime 2012 Intel International Science & Engineering Fair "My research idea came to me while I read David Griffith's Introduction to Elementary Particles, where I learned about the Lorentz Factor and its use for calculating difference in time parameters depending on the speeds involved." Joel was born in San Juan, Puerto Rico. He went to elementary and high school until tenth grade in a private school. During his last year there, before going to C.R.O.E.M., he used to spend his free time in the school library molding his perspective with enthralling books and studying mathematics and physics. He also dedicated his time to study and practice languages to speak more than one language. That is why he speaks fluent English, French, and Spanish, his native tongue. Also important, his biggest influences have been the works of Albert Einstein and Henry David Thoreau.

95

WANTED: GIS Intern Close Date: 3/23/2012  

E-Print Network [OSTI]

WANTED: GIS Intern Close Date: 3/23/2012 Send Cover Letter, Resume, References, and Portfolio to: GIS.Intern@urbanrobotics.net Company Background Urban Robotics Inc. is a well-established engineering are currently hiring an Intern or entry level GIS Analyst capable of understanding the world of metadata

Escher, Christine

96

Idaho Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Idaho Power - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Idaho Power Company Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar, wind, hydropower, biomass or fuel cells; (2) limits residential systems to

97

Avista Utilities - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

98

SRP - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SRP - Net Metering SRP - Net Metering SRP - Net Metering < Back Eligibility Commercial Residential Savings Category Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Net Metering Provider SRP Salt River Project (SRP) modified an existing net-metering program for residential and commercial customers in November 2013. Net metering is now available to customers who generate electricity using photovoltaic (PV), geothermal, or wind systems up to 300 kilowatts (kW) in AC peak capacity. The kilowatt-hours (kWh) delivered to SRP are subtracted from the kWh delivered from SRP for each billing cycle. If the kWh calculation is net positive for the billing cycle, SRP will bill the net kWh to the customer under the applicable price plan, Standard Price Plan E-21, E-23, E-26,

99

Feasibility of Achieving Net-Zero-Energy Net-Zero-Cost  

E-Print Network [OSTI]

1 Feasibility of Achieving Net- Zero-Energy Net-Zero-Cost Homes I.S. Walker, Al-Beaini, SSimjanovic,JohnStanley,BretStrogen,IainWalker FeasibilityofAchieving ZeroNetEnergy,Zero NetCostHomes #12;4 ACKNOWLEDGEMENTS

100

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes 1 fey, 1David Feasibility of Achieving a ZeroNetEnergy, ZeroNetCost Homes 1 #12;2 ACKNOWLEDGEMENTS The material building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hyperbolic Dirac Nets for medical decision support. Theory, methods, and comparison with Bayes Nets  

Science Journals Connector (OSTI)

We recently introduced the concept of a Hyperbolic Dirac Net (HDN) for medical inference on the grounds that, while the traditional Bayes Net (BN) is popular in medicine, it is not suited to that domain: there are many interdependencies such that any ... Keywords: Bayes Net, Complex, Decision support system, Dirac, Expert system, Hyperbolic, Hyperbolic Dirac Net, Medical inference

Barry Robson

2014-08-01T23:59:59.000Z

102

Constrained CP-nets Steve Prestwich  

E-Print Network [OSTI]

Constrained CP-nets Steve Prestwich , Francesca Rossi � , Kristen Brent Venable �, Toby Walsh 1, soft constraints, and CP-nets. We construct a set of hard constraints whose solutions are the optimal to represent preferences, we will consider CP-nets [6, 3], which is a quali- tative approach where preferences

Walsh, Toby

103

Constrained CP-nets Steve Prestwich1  

E-Print Network [OSTI]

Constrained CP-nets Steve Prestwich1 , Francesca Rossi2 , Kristen Brent Venable2 , Toby Walsh1 1, soft constraints, and CP nets. We construct a set of hard constraints whose solutions are the optimal. Among the many existing approaches to represent preferencess, we will consider CP nets [5,3], which

Rossi, Francesca

104

2007 NET SYSTEM POWER REPORT STAFFREPORT  

E-Print Network [OSTI]

-2007.......................................................................5 Figure 3: Natural Gas and Coal Shares of Net System Power Mix Become Larger 1999-2007.....7 ListCALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings

105

The CloudNets Network Virtualization Architecture  

E-Print Network [OSTI]

Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

Schmid, Stefan

106

International Energy Outlook 2006 - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2006 Chapter 6: Electricity World electricity consumption doubles in the IEO2006 projections from 2003 to 2030. Non-OECD countries account for 71 percent of the projected growth, and OECD countries account for 29 percent. Figure 55. World Net Electricity Consumption, 2003-2030 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 56. World Net Electricity Consumption by Region, 1980-2030 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 57. Net Electricity Consumption in OECD Countries by End-Use Sector, 2003, 2015, and 2030 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

107

Table 12. Total Coal Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Coal Consumption, Projected vs. Actual Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041 1054 1075 1086 1092 1092 1099 1104 AEO 1998 1009 1051 1044 1058 1087 1084 1090 1097 1112 1130 1142 1148 1160 1162 1180 AEO 1999 1040 1075 1092 1109 1113 1118 1120 1120 1133 1139 1150 1155 1156 1173 AEO 2000 1053 1086 1103 1124 1142 1164 1175 1184 1189 1194 1199 1195 1200 AEO 2001 1078 1112 1135 1153 1165 1183 1191 1220 1228 1228 1235 1240

108

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

109

Table 16. Total Electricity Sales, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Electricity Sales, Projected vs. Actual Electricity Sales, Projected vs. Actual (billion kilowatt-hours) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2364 2454 2534 2626 2708 2811 AEO 1983 2318 2395 2476 2565 2650 2739 3153 AEO 1984 2321 2376 2461 2551 2637 2738 3182 AEO 1985 2317 2360 2427 2491 2570 2651 2730 2808 2879 2949 3026 AEO 1986 2363 2416 2479 2533 2608 2706 2798 2883 2966 3048 3116 3185 3255 3324 3397 AEO 1987 2460 2494 2555 2622 2683 2748 2823 2902 2977 3363 AEO 1989* 2556 2619 2689 2760 2835 2917 2994 3072 3156 3236 3313 3394 3473 AEO 1990 2612 2689 3083 3488.0 3870.0 AEO 1991 2700 2762 2806 2855 2904 2959 3022 3088 3151 3214 3282 3355 3427 3496 3563 3632 3704 3776 3846 3916 AEO 1992 2746 2845 2858 2913 2975 3030 3087 3146 3209 3276 3345 3415 3483 3552 3625 3699 3774 3847 3921 AEO 1993 2803 2840 2893 2946 2998 3052 3104 3157 3214 3271 3327

110

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

111

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

112

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

113

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 AEO 1996 1994 7.09 6.99 6.94 6.93 6.96 6.96 6.96 6.97 6.98 6.97 6.98 6.95 6.95 6.94 6.96 6.95 6.91 AEO 1997 1995 6.94 6.89 6.90 6.91 6.86 6.84 6.78 6.73 6.66 6.60 6.58 6.54 6.49 6.48 6.45 6.36

114

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Petroleum Consumption, Projected vs. Actual" Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO 1995",,6398.45,6544.45,6555.4,6675.85,6745.2,6821.85,6887.55,6964.2,7048.15,7146.7,7245.25,7336.5,7405.85,7471.55,7537.25,7581.05,7621.2 "AEO 1996",,,6489.7,6526.2,6606.5,6708.7,6781.7,6854.7,6942.3,7008,7084.65,7175.9,7259.85,7329.2,7383.95,7449.65,7500.75,7544.55,7581.05 "AEO 1997",,,,6635.7,6694.1,6825.5,6953.25,7073.7,7183.2,7267.15,7369.35,7460.6,7548.2,7643.1,7730.7,7792.75,7832.9,7884,7924.15

115

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

116

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

117

Net Energy Billing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Billing Energy Billing Net Energy Billing < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Maine Program Type Net Metering Provider Maine Public Utilities Commission All of Maine's electric utilities -- investor-owned utilities (IOUs), consumer-owned utilities (COUs), which include municipal utilities and electric cooperatives -- must offer net energy billing for individual customers. Furthermore IOUs are required to offer net metering for shared ownership customers, while COUs may offer net metering to shared ownership

118

Kansas - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kansas - Net Metering Kansas - Net Metering Kansas - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kansas Program Type Net Metering Provider Kansas Corporation Commission Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing net metering for customers of investor-owned utilities in Kansas. Net metering applies to systems that generate electricity using solar, wind, methane, biomass or hydro resources, and to fuel cells using hydrogen produced by an eligible

119

Progress Energy - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Progress Energy - Net Metering Progress Energy - Net Metering Progress Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering Provider Progress Energy Carolinas In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

120

Net Metering Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Webinar Net Metering Webinar Net Metering Webinar June 25, 2014 11:00AM MDT Attendees will become familiar with the services provided by utility net metering and their importance in making projects cost-effective. The speakers will provide information based on case histories of how facilities that generate their own electricity from renewable energy sources can feed electricity they do not use back into the grid. Many states have net-metering laws with which utilities must comply. In states without such legislation, utilities may offer net-metering programs voluntarily or as a result of regulatory decisions. The webinar will cover the general differences between states' legislation and implementation and how the net-metering benefits can vary widely for facilities in different areas of

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Duke Energy - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Duke Energy - Net Metering Duke Energy - Net Metering Duke Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an [http://dms.psc.sc.gov/pdf/matters/F05030FC-E19A-9225-B838F72EDF4557DC.pdf] order mandating net metering be made available by the regulating utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including

122

Predicted vs. Actual Energy Savings of Retrofitted House  

E-Print Network [OSTI]

-physical properties of the envelope and the changes in schedules and number of users. In order to account for those differences, electrical consumption attributed to A/C in summer was isolated and compared. The study followed the International Performance Measurement...

Al-Mofeez, I.

2010-01-01T23:59:59.000Z

123

Pose estimation of an uncooperative spacecraft from actual space imagery  

Science Journals Connector (OSTI)

This paper addresses the preliminary design of a spaceborne monocular vision-based navigation system for on-orbit-servicing and formation-flying applications. The aim is to estimate the pose of a passive space resident object using its known three-dimensional model and single low-resolution two-dimensional images collected on-board the active spacecraft. In contrast to previous work, no supportive means are available on the target satellite (e.g., light emitting diodes) and no a-priori knowledge of the relative position and attitude is available (i.e., lost-in-space scenario). Three fundamental mechanisms - perceptual organisation, true perspective projection, and random sample consensus - are exploited to overcome the limitations of monocular passive optical navigation in space. The preliminary design is conducted and validated making use of actual images collected in the frame of the PRISMA mission at about 700 km altitude and 10 m inter-spacecraft separation.

Simone D'Amico; Mathias Benn; John L. Jørgensen

2014-01-01T23:59:59.000Z

124

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

125

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

126

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

127

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

128

Table 3. Gross Domestic Product, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Gross Domestic Product, Projected vs. Actual Gross Domestic Product, Projected vs. Actual (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.3% 3.8% 3.6% 3.3% 3.2% 3.2% AEO 1983 3.3% 3.3% 3.4% 3.3% 3.2% 3.1% 2.7% AEO 1984 2.7% 2.4% 2.9% 3.1% 3.1% 3.1% 2.7% AEO 1985 2.3% 2.2% 2.7% 2.8% 2.9% 3.0% 3.0% 3.0% 2.9% 2.8% 2.8% AEO 1986 2.6% 2.5% 2.7% 2.5% 2.5% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% AEO 1987 2.7% 2.3% 2.4% 2.5% 2.5% 2.6% 2.6% 2.5% 2.4% 2.3% AEO 1989* 4.0% 3.4% 3.1% 3.0% 2.9% 2.8% 2.7% 2.7% 2.7% 2.6% 2.6% 2.6% 2.6% AEO 1990 2.9% 2.3% 2.5% 2.5% 2.4% AEO 1991 0.8% 1.0% 1.7% 1.8% 1.8% 1.9% 2.0% 2.1% 2.1% 2.1% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% AEO 1992 -0.1% 1.6% 2.0% 2.2% 2.3% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.2%

129

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

130

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

131

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

132

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

133

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

134

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

135

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

136

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

137

Table 2. Real Gross Domestic Product, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Real Gross Domestic Product, Projected vs. Actual Real Gross Domestic Product, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 3.1% 3.2% 2.9% 2.8% 2.7% 2.7% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% AEO 1995 3.7% 2.8% 2.5% 2.7% 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% AEO 1996 2.6% 2.2% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% 2.2% 2.2% 1.6% AEO 1997 2.1% 1.9% 2.0% 2.2% 2.3% 2.3% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.1% 2.1% 1.5% AEO 1998 3.4% 2.9% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.2% 1.8% AEO 1999 3.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 1.8% AEO 2000 3.8% 2.9% 2.7% 2.6% 2.6% 2.6% 2.6% 2.6% 2.5% 2.5%

138

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

139

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

140

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 15. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Average Electricity Prices, Projected vs. Actual Average Electricity Prices, Projected vs. Actual (nominal cents per kilowatt-hour) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.38 6.96 7.63 8.23 8.83 9.49 AEO 1983 6.85 7.28 7.74 8.22 8.68 9.18 13.12 AEO 1984 6.67 7.05 7.48 7.89 8.25 8.65 11.53 AEO 1985 6.62 6.94 7.32 7.63 7.89 8.15 8.46 8.85 9.20 9.61 10.04 AEO 1986 6.67 6.88 7.05 7.18 7.35 7.52 7.65 7.87 8.31 8.83 9.41 10.01 10.61 11.33 12.02 AEO 1987 6.63 6.65 6.92 7.12 7.38 7.62 7.94 8.36 8.86 11.99 AEO 1989* 6.50 6.75 7.14 7.48 7.82 8.11 8.50 8.91 9.39 9.91 10.49 11.05 11.61 AEO 1990 6.49 6.72 8.40 10.99 14.5 AEO 1991 6.94 7.31 7.59 7.82 8.18 8.38 8.54 8.73 8.99 9.38 9.83 10.29 10.83 11.36 11.94 12.58 13.21 13.88 14.58 15.21 AEO 1992 6.97 7.16 7.32 7.56 7.78 8.04 8.29 8.57 8.93 9.38 9.82 10.26 10.73 11.25 11.83 12.37 12.96 13.58 14.23 AEO 1993

142

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

143

EIA - 2010 International Energy Outlook - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2010 Electricity World electricity generation increases by 87 percent from 2007 to 2035 in the IEO2010 Reference case. Non-OECD countries account for 61 percent of world electricity use in 2035. Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 68. World net electricity generation by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 69. Non-OECD net electricity generation by region, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. World net electricity generation by fuel, 2006-2030. Click to enlarge » Figure source and data excel logo Figure 71. World net electricity generation from nuclear power by region, 2007-2030.

144

Guam - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guam - Net Metering Guam - Net Metering Guam - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info Program Type Net Metering Provider Guam Energy Office Guam's Public Utilities Commission (PUC) reviewed net metering and interconnection during a regular meeting in February 2009 (Docket 08-10). Please contact the [http://www.guampuc.com/ Guam PUC] for the results of that docket review. In 2004, Guam enacted legislation requiring the Guam Power Authority (GPA) to allow net metering for customers with fuel cells, microturbines, wind energy, biomass, hydroelectric, solar energy or hybrid systems of these

145

Net Metering Rules (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Net Metering Provider Arkansas Public Service Commission The Net Metering Rules are promulgated under the authority of the Arkansas Public Service Commission. These rules are created to establish rules for net energy metering and interconnection. These rules are developed pursuant to the Arkansas Renewable Energy Development Act (Arkansas Code Annotated 23-18-603). These rules apply to all electric utilities.

146

TacNet Tracker - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Transmission Find More Like This Return to Search TacNet Tracker Handheld Tracking and Communications Device Sandia National Laboratories Contact SNL About This...

147

NASA Net Zero Energy Buildings Roadmap  

SciTech Connect (OSTI)

In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

2014-10-01T23:59:59.000Z

148

E-Print Network 3.0 - actual results satellitenexperiment Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The actual case here corresponds to the minor windows (U0.5) case in Table 6. Table A1: Load and energy... .96) 6343.77 (3316.14) 933.65 (901.44) Major windows (Actual) Diff. - -...

149

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

for anynetenergyconsumptionwithsolarpanels,thecostenergygenerationtechnologies(suchassolarpanels).

Al-Beaini, S.

2010-01-01T23:59:59.000Z

150

Net pay evaluation: a comparison of methods to estimate net pay and net-to-gross ratio using surrogate variables  

E-Print Network [OSTI]

Net pay (NP) and net-to-gross ratio (NGR) are often crucial quantities to characterize a reservoir and assess the amount of hydrocarbons in place. Numerous methods in the industry have been developed to evaluate NP and NGR, depending on the intended...

Bouffin, Nicolas

2009-06-02T23:59:59.000Z

151

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

152

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

153

Active QuarkNet Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

first active year) first active year)       QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Institution Contact e-mail Year Brown, Northeastern & Brandeis Universities Richard Dower - rick.dower@roxburylatin.org 1999 Fermilab & University of Chicago Chris Stoughton - stoughto@fnal.gov 1999 Florida State University Horst Wahl - wahl@hep.fsu.edu 1999 Indiana University Rick Van Kooten - rickv@paoli.physics.indiana.edu 1999 University of California - Santa Cruz Steve Ritz - ritz@scipp.ucsc.edu 1999 University of Notre Dame Dan Karmgard - Karmgard.1@nd.edu 1999 University of Oklahoma Michael Strauss - strauss@mail.nhn.ou.edu 1999 University of Rochester Kevin McFarland - ksmcf@pas.rochester.edu 1999

154

Puerto Rico - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Puerto Rico - Net Metering Puerto Rico - Net Metering Puerto Rico - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Program Type Net Metering Provider Autoridad de Energía Electrica de Puerto Rico Puerto Rico enacted net-metering legislation in August 2007, allowing customers of Puerto Rico Electric Power Authority (PREPA) to use electricity generated by solar, wind or "other" renewable-energy resources to offset their electricity usage. This law applies to residential systems with a generating capacity of up to 25 kilowatts (kW) and non-residential systems up to one megawatt (MW) in capacity.*

155

LADWP - Net Metering (California) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering (California) Net Metering (California) LADWP - Net Metering (California) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Residential Savings Category Solar Buying & Making Electricity Wind Program Info State California Program Type Net Metering Provider Los Angeles Department of Water and Power LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless an installation requires atypical metering equipment. In these cases the customer must cover the additional metering expenses. The customer must also pay any related interconnection fees. Excess kilowatt-hours (kWh) generated by the customer's system will be

156

Definition: Net Zero | Open Energy Information  

Open Energy Info (EERE)

Zero Zero Jump to: navigation, search Dictionary.png Net Zero A building, home, or community that offsets all of its energy use from renewable energy available within the community's built environment.[1] View on Wikipedia Wikipedia Definition A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption and zero carbon emissions annually. Buildings that produce a surplus of energy over the year may be called "energy-plus buildings" and buildings that consume slightly more energy than they produce are called "near-zero energy buildings" or "ultra-low energy houses". Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant

157

Zero Net Energy Myths and Modes of Thought  

E-Print Network [OSTI]

mypp.html. . (2009). "Net-Zero Energy CommercialZeroNetEnergyMythsandModesofThought NicholasB. AC02? 05CH11231. Page | i Zero Net Energy Myths and Modes of

Rajkovich, Nicholas B.

2010-01-01T23:59:59.000Z

158

Production-ecological modelling explains the difference between potential soil N mineralisation and actual herbage N uptake  

Science Journals Connector (OSTI)

Abstract We studied two different grassland fertiliser management regimes on sand and peat soils: above-ground application of a combination of organic N-rich slurry manure and solid cattle manure (SCM) vs. slit-injected, mineral N-rich slurry manure, whether or not supplemented with chemical fertiliser (non-SCM). Measurements of field N mineralisation as estimated from herbage N uptake in unfertilised plots were compared with (i) potential N mineralisation as determined from a standard laboratory soil incubation, (ii) the contribution of groups of soil organisms to N mineralisation based on production-ecological model calculations, and (iii) N mineralisation calculated according to the Dutch fertilisation recommendation for grasslands. Density and biomass of soil biota (bacteria, fungi, enchytraeids, microarthropods and earthworms) as well as net plant N-uptake were higher in the SCM input grasslands compared to the non-SCM input grasslands. The currently used method in Dutch fertilisation recommendations underestimated actual soil N supply capacity by, on average, 102kg Nha?1 (202 vs. 304kgha?1=34%). The summed production-ecological model estimate for N mineralisation by bacteria, fungi, protozoa, and enchytraeids was 87120% of the measured potential soil N mineralisation. Adding the modelled N mineralisation by earthworms to potential soil N mineralisation explained 98107% of the measured herbage N uptake from soil. For all grasslands and soil biota groups together, the model estimated 105% of the measured net herbage N uptake from soil. Soil biota production-ecological modelling is a powerful tool to understand and predict N uptake in grassland, reflecting the effects of previous manure management and soil type. The results show that combining production ecological modelling to predict N supply with existing soil N tests using aerobic incubation methods, can add to a scientifically based improvement of the N fertilisation recommendations for production grasslands.

Muhammad Imtiaz Rashid; Ron G.M. de Goede; Lijbert Brussaard; Jaap Bloem; Egbert A. Lantinga

2014-01-01T23:59:59.000Z

159

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Environmental Management (EM)

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

160

Aspinall Courthouse: GSA's Historic Preservation and Net-Zero...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nevada Renewable Energy Application For Net Metering Customers...  

Open Energy Info (EERE)

Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

162

Best Practices for Controlling Capital Costs in Net Zero Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy Design and...

163

Community Renewable Energy Success Stories Webinar: Net Zero...  

Office of Environmental Management (EM)

Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version) Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text...

164

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by...

165

What is e-entrepreneurship? ?? fundamentals of company founding in the net economy  

Science Journals Connector (OSTI)

Internal and external information and communication processes at enterprises across almost every industry sector have been increasingly supported by electronic information technologies. The fundamental advantages of such technologies insure that this trend will continue in the future. The constant development of technology in the accompanying Net Economy has had a significant influence on various possibilities for developing innovative business concepts based on electronic information and communication networks and realising these by establishing a new company (e-ventures). Against this background, the term 'e-entrepreneurship' respectively describes the act of establishing new companies specifically in the Net Economy. Therefore, this article focuses on answering the following questions: which environment and which possibilities does the Net Economy offer for new and innovative entrepreneurial activities?

Tobias Kollmann

2006-01-01T23:59:59.000Z

166

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

> Graphic data - Highlights > Graphic data - Highlights International Energy Outlook 2010 Graphic data - Highlights Figure 1. World marketed energy consumption, 2007-2035 Figure 2. World marketed energy use by fuel type, 1990-2035 Figure 3. World liquids production, 1990-2035 Figure 4. Net change in world natural gas production by region, 2007-2035 Figure 5. World coal consumption by region, 1990-2035 Figure 6. World net electricity generation by fuel, 2007-2035 Figure 7. World renewable electricity generation by energy source excluding world and hydropower, 2007-2035 Figure 8. World delivered energy consumption in the industrial sector, 2007-2035 Figure 9. World delivered energy consumption in the transportation sector, 2005-2035 Figure 10. World energy-related carbon dioxide emissions, 2007-2035

167

Internal Tides  

Science Journals Connector (OSTI)

Abstract Internal tides are internal waves at tidal frequencies and are generated by interaction of the barotropic surface tide with bottom topography. Being dependent on ocean stratification and background currents, internal tides tend to be highly variable in time, sometimes almost erratic, yet in the open ocean the lowest mode can travel great distances across ocean basins while remaining phase-locked with the astronomical potential. Internal tides are an important energy source for ocean mixing.

R.D. Ray

2013-01-01T23:59:59.000Z

168

international programs  

National Nuclear Security Administration (NNSA)

9%2A en International Programs http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorisminternationalprograms

169

Risk analysis of FORTUMs 560MWe net power plant retrofit to oxyfuel combustion  

Science Journals Connector (OSTI)

Through technical discussion of oxyfuel retrofit of MeriPoris supercritical power plant (565MWe net), it was recognized that a deep analysis of the risks associated with the retrofit solution would be necessary for learning more about oxycombustion technology and to clarify the actual risks. As the result of the risk analysis, it was concluded that oxyfuel retrofit and oxyfuel operation would only involve low magnitude risks. This paper describes methodology of the risk analysis and major results including mitigation methods of the risks.

Kati Kupila; Pauli Dernjatin; Risto Sormunen; Tadashi Sumida; Kenji Kiyama; Alain Briglia; Ivan Sanchez-Molinero; Arthur Darde

2011-01-01T23:59:59.000Z

170

E-Print Network 3.0 - actuales relacionadas con Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: actuales relacionadas con Page: << < 1 2 3 4 5 > >> 1 Departamento de Fsica (EPS) Universidad Carlos III de Madrid Summary: fsica relacionada con la implosin de los...

171

E-Print Network 3.0 - actuales clasificaciones del Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 30 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

172

E-Print Network 3.0 - actuales del sector Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 60 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

173

Millenial Net Inc | Open Energy Information  

Open Energy Info (EERE)

Millenial Net Inc Millenial Net Inc Jump to: navigation, search Name Millenial Net, Inc. Place Burlington, Massachusetts Zip MA 01803 Sector Services Product Millennial Net is a US-based developer of wireless sensor networking software, systems, and services. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

175

Definition: Net generation | Open Energy Information  

Open Energy Info (EERE)

Net generation Net generation Jump to: navigation, search Dictionary.png Net generation Equal to gross generation less electrical energy consumed at the generating station(s).[1][2] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Gross generation, power, gross generation References ↑ http://www1.eere.energy.gov/site_administration/glossary.html#N ↑ http://205.254.135.24/tools/glossary/index.cfm?id=N Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Net_generation&oldid=480320" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

176

June 25 Webinar to Explore Net Metering  

Broader source: Energy.gov [DOE]

Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

177

Addressing RESTful ADO.NET Data Services  

Science Journals Connector (OSTI)

If youre a developer, you probably want to learn everything about ADO.NET Data Services as quickly as possible so you can implement it in your company. However, as with most software development that is under...

2009-01-01T23:59:59.000Z

178

Definition of a 'Zero Net Energy' Community  

SciTech Connect (OSTI)

This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

Carlisle, N.; Van Geet, O.; Pless, S.

2009-11-01T23:59:59.000Z

179

Introduction to ASP.NET Web API  

Science Journals Connector (OSTI)

The fact that you are reading this means you are interested in learning something about ASP.NET Web API (application programming interface). Perhaps you are ... to swim a bit deeper into the Web API waters; hence...

Tugberk Ugurlu; Alexander Zeitler; Ali Kheyrollahi

2013-01-01T23:59:59.000Z

180

AllNet: Ubiquitous Interpersonal Communication  

E-Print Network [OSTI]

AllNet: Ubiquitous Interpersonal Communication Edoardo Biagioni University of Hawaii at Mãnoa esb@hawaii (RSA, + AES for long msgs) ­ Then digitally signed I only decrypt if I can verify the signature

Biagioni, Edoardo S.

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SIXTH FRAMEWORK PROGRAMME PRIORITY "ERA-NET"  

E-Print Network [OSTI]

Co-ordination Action to Establish a Hydrogen and Fuel Cell ERA-Net, Hydrogen Co- ordination Work.....................................................................34 4.5 Hydrogen conversion ­ Fuel cells......................................................................36 4.6 Application of hydrogen and fuel cell technology

182

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

net?zeroenergyhome (basedonthedefaultvalueswithSiemensSP75cellsinEnergyGaugesPVcalculation

Al-Beaini, S.

2010-01-01T23:59:59.000Z

183

Seismic Deployments and Experiments: PeruNet, GeoNet, and SeismoPhone.  

E-Print Network [OSTI]

Networked Sensing Seismic Deployments and Experiments:PeruNet: Installing a UCLA seismic line in Latin Americadata quality controll Seismic tomography to reveal slab

2009-01-01T23:59:59.000Z

184

Instructions for Submitting Document to OpenNet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Document to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't...

185

RETScreen International Clean Energy Project Analysis Tool | Open Energy  

Open Energy Info (EERE)

RETScreen International Clean Energy Project Analysis Tool RETScreen International Clean Energy Project Analysis Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RETScreen International Clean Energy Project Analysis Tool Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: www.retscreen.net/ang/home.php Equivalent URI: cleanenergysolutions.org/content/retscreen-international-clean-energy- Language: String representation "English,Arabic, ... Urdu,Vietnamese" is too long. Policies: Deployment Programs DeploymentPrograms: Training & Education The RETScreen International Clean Energy Project Analysis Software is a unique decision-support tool. The software, provided free-of-charge, can be used worldwide to evaluate the energy production and savings, costs,

186

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H13. World net liquids-fired electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 93 74 68 66 64 62 60 -1.5 United States a 37 20 17 18 18 18 18 -2.3 Canada 7 7 6 6 6 5 5 -1.0 Mexico/Chile 49 47 45 42 40 38 36 -1.0 OECD Europe 77 73 70 66 63 60 57 -1.0 OECD Asia 112 157 102 97 92 87 83 -1.0 Japan 92 137 83 79 75 71 68 -1.0 South Korea 18 17 16 15 15 14 13 -1.0 Australia/New Zealand 3 3 3 3 2 2 2 -1.0 Total OECD 282 303 239 229 219 209 200 -1.1 Non-OECD Non-OECD Europe and Eurasia

187

International telecommunications  

Science Journals Connector (OSTI)

... A NEW Japanese telecommunications company established by Cable and Wireless of the United Kingdom began international services last week ... company an operating licence (see Nature 326, 319; 1987). The costs of international telecommunications in Japan are expected to drop significantly as a result of the new competition. ...

David Swinbanks

1989-05-11T23:59:59.000Z

188

ENGINEERING INTERNATIONAL  

E-Print Network [OSTI]

Sydney is Australia's largest city and its centre of finance and commerce. The Harbour Bridge, Opera House and Sydney Tower are internationally recognised icons, which represent both Sydney and its rich developed close links with many international institutions, particularly in Asia. ENGINEERING IN SYDNEY

University of Technology, Sydney

189

Internal Communication  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Internal Communication Process 11_0303 Page 1 of 6 9 Internal Communication Process 11_0303 Page 1 of 6 EOTA - Business Process Document Title: Internal Communication Process Document Number: P-009 Rev 11_0303 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001 Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): N/A P-009 Internal Communication Process 11_0303 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 09_0902 Modified process to better fit current practice. 10_0831 Added verbiage to clarify process. Added initiation phrase to process steps. 11_0303 Added QAM to the last step and made minor editorial updates. P-009 Internal Communication Process 11_0303 Page 3 of 6 I. Purpose

190

ARM - Measurement - Net broadband total irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

191

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

192

Chapter 17: Estimating Net Savings: Common Practices  

SciTech Connect (OSTI)

This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM&V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to particular program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and compares the current industry practices for determining net energy savings, but does not prescribe particular methods.

Violette, D. M.; Rathbun, P.

2014-09-01T23:59:59.000Z

193

SolarNet | Open Energy Information  

Open Energy Info (EERE)

SolarNet SolarNet Jump to: navigation, search Name SolarNet Place Healdsburg, California Zip 95448 Sector Solar Product Solar project developer with subsidiaries involved in the distribution, installation and financing of solar projects. Coordinates 38.610645°, -122.868834° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.610645,"lon":-122.868834,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Are net surfers ready for audio banners?  

Science Journals Connector (OSTI)

The internet is the fastest growing medium of all time. In this research, the potential effects of advertising music on net surfers' attitude and recall are investigated by means of an online experiment that took place on the internet, using audio banners and a banner without music, placed on existing websites. The results showed that, even though the net surfer of today is still stimulated insufficiently, from a musical point of view, in online advertisements, the presence of music, and particularly the presence of music with an expected tempo, has a positive affect on the click-through rate of the banner, as well as the attitude towards the advertising and the recall rate of the net surfer. The research aims to take a further step in the comprehension of online advertising music and its fundamental effects.

Caner Dincer

2008-01-01T23:59:59.000Z

195

NetMOD version 1.0 user%3CU%2B2019%3Es manual.  

SciTech Connect (OSTI)

NetMOD (Network Monitoring for Optimal Detection) is a Java-based software package for conducting simulation of seismic networks. Specifically, NetMOD simulates the detection capabilities of seismic monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform seismic detection simulations. In addition, NetMOD is distributed with a simulation dataset for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic network for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation.

Merchant, Bion John

2014-01-01T23:59:59.000Z

196

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

Stadler, Michael

2009-01-01T23:59:59.000Z

197

XAFS Study of Phase-Change Recording Material Using Actual Media  

Science Journals Connector (OSTI)

The influence of the interface layer to the local structure for atomic arrangement of a GeBiTe phase-change material was investigated by using XAFS on the actual rewritable HD DVD...

Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro

198

E-Print Network 3.0 - actual del ultrasonido Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: : evolucin histrica y situacin actual. 8 l) Evaluacin de la capacidad de carga del Parque para los... Proyectos A lo largo del ao 2010 han estado vigentes 85...

199

E-Print Network 3.0 - anciano consideraciones actuales Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mitigacin de los efectos del cambio climtico y con... polticas De proseguir las emisiones de GEI a una tasa igual o superior a la actual, el calentamiento Source: Binette,...

200

E-Print Network 3.0 - actual terrestrial rabies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 56 innovati nNREL Advances a Unique Crystalline Silicon Solar Cell Summary: actually begins at another of the U.S. Department of Energy (DOE)...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - actual del huemul Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 88 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

202

E-Print Network 3.0 - actual del franciscanismo Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 75 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

203

E-Print Network 3.0 - actual del control Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 30 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

204

E-Print Network 3.0 - actual del tabaquismo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 91 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

205

E-Print Network 3.0 - actual del no-acceso Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 73 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

206

E-Print Network 3.0 - actual del rabdomiosarcoma Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 74 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

207

E-Print Network 3.0 - actual del estreptococo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 80 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

208

International Portfolio  

Broader source: Energy.gov [DOE]

The U.S.-China Clean Energy Research Center (CERC) is a multi-year international effort focused on developing and implementing energy efficiency technologies in both the USA and in China. The...

209

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

210

Discrete Koenigs Nets and Discrete Isothermic Surfaces  

Science Journals Connector (OSTI)

......then any) of the four points , . (2) Let be...leads to These points satisfy the Moutard...circular net its lift into the light cone...Thereby conditions like points lie in a d-dimensional...then any) of the four points , . (2......

Alexander I. Bobenko; Yuri B. Suris

2009-01-01T23:59:59.000Z

211

.NET gadgeteer: a platform for custom devices  

Science Journals Connector (OSTI)

.NET Gadgeteer is a new platform conceived to make it easier to design and build custom electronic devices and systems for a range of ubiquitous and mobile computing scenarios. It consists of three main elements: solder-less modular electronic hardware; ...

Nicolas Villar; James Scott; Steve Hodges; Kerry Hammil; Colin Miller

2012-06-01T23:59:59.000Z

212

Rocky Mountain Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

213

ARM - Reading netCDF, HDF, and GRIB Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DocumentationReading netCDF, HDF, and GRIB Files DocumentationReading netCDF, HDF, and GRIB Files Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog of Data Streams (Updated monthly) Access to Historical ARM Data More on Understanding and Finding ARM Data Data Quality Problem Reporting Reading netCDF, HDF, and GRIB Files netCDF Files Most ARM data are stored in netCDF format. This format allows for the definition of data fields and storage of operational information in the header of the file. All ARM netCDF files are in UTC time and represent time as "seconds since January 1, 1970,'' which is called the "epoch time.'' For

214

City of St. George - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of St. George - Net Metering City of St. George - Net Metering City of St. George - Net Metering < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Program Info State Utah Program Type Net Metering Provider City of St. George The St. George City Council adopted a [http://www.sgcity.org/wp/power/NetMeteringPolicy.pdf net-metering program for area utilities], including interconnection procedures, in October 2005.* The interconnection procedures include different requirements, based on system size, for systems up to 10 megawatts (MW). Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems. The net metering agreements currently available on the utility's web site only pertain to

215

Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

216

New Jersey Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) New Jersey Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

217

Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

218

Rhode Island Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

219

Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

220

Tennessee Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Tennessee Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

222

New York Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) New York Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

223

Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

224

Connecticut Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

225

Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

226

New Hampshire Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) New Hampshire Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

227

Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

228

Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

229

North Carolina Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) North Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

230

Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

231

Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

232

California Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) California Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

233

Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

234

Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

235

Pennsylvania Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Pennsylvania Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

236

Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

237

Oregon Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Oregon Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

238

South Dakota Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

239

Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

240

Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

242

Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

243

Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

244

Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

245

South Carolina Natural Gas LNG Storage Net Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) South Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

246

Collective Impact for Zero Net Energy Homes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Collective Impact for Zero Net Energy Homes Collective Impact for Zero Net Energy Homes This presentation was delivered at the U.S. Department of Energy Building America meeting on...

247

RETScreen International Training Courses | Open Energy Information  

Open Energy Info (EERE)

RETScreen International Training Courses RETScreen International Training Courses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RETScreen International Training Courses Agency/Company /Organization: Natural Resources Canada Focus Area: Renewable Energy Resource Type: Software/modeling tools, Training materials Website: www.retscreen.net/ang/d_t_info.php References: RETScreen International Training Courses[1] Overview "The RETScreen Clean Energy Project Analysis Course has been created for use by educational centres and training organisations around the globe, as well as for use by professionals and students in "self-study" distance learning format. Each training module can be presented as a separate seminar or workshop, or as a section of a college or university course.

248

Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania  

Science Journals Connector (OSTI)

Evaluation of three different ITN delivery strategies co-existing in Tanzania which enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population.

Rashid A Khatib; Gerry F Killeen; Salim MK Abdulla; Elizeus Kahigwa; Peter D McElroy; Rene PM Gerrets; Hassan Mshinda; Alex Mwita; S Patrick Kachur

2008-06-02T23:59:59.000Z

249

MU INTERNATIONAL DIRECTORY International Directory  

E-Print Network [OSTI]

of Ag., Food & Natural Resources International Programs http://students.missouri.edu/~asa Association of Malaysian Students http://www.missouri.edu/~ctl2m5/index.html Bangladesh Student Association

Taylor, Jerry

250

Porting the .NET Micro Framework A Microsoft Technical White Paper  

E-Print Network [OSTI]

Porting the .NET Micro Framework A Microsoft Technical White Paper December 10, 2007 AbstractShow-capable devices to port the .NET Micro Framework to new hardware platforms. This white paper introduces the .NET Micro Framework architecture with a view toward porting it to a new hardware platform. It then discusses

Hunt, Galen

251

heavy-snowfall area. The annual NEP (net ecosystem productiv-  

E-Print Network [OSTI]

Net includes temperate deciduous, coniferous and mixed forests. #12;FFPRI...FluxNet sites, Japan radiation radiation and air temperature was an important factor. In contrast, at the decidu- ous broad-leaved forests, Japan by Yoshikazu Ohtani Figure 1: Flux towers and forests in FFPRI FluxNet, Japan. The FFPRI Flux

252

Net Zero Energy Military Installations: A Guide to  

E-Print Network [OSTI]

Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John;Technical Report Net Zero Energy Military NREL/TP-7A2-48876 Installations: A Guide to August 2010 Assessment .......................................................................................................................................1 1 Introduction: Net Zero Energy In DoD Context

253

NetGator: Malware Detection Using Program Interactive Challenges  

E-Print Network [OSTI]

NetGator: Malware Detection Using Program Interactive Challenges Brian Schulte, Haris Andrianakis, we present a scalable approach called Network Interrogator (NetGator) to detect network-based malware that attempts to exfiltrate data over open ports and protocols. NetGator operates as a transparent proxy using

Stavrou, Angelos

254

Estimating actual evapotranspiration for a coupled human environment system: sensitivity to drought  

E-Print Network [OSTI]

, the overall aim of this study is to quantify regional water consumption using remote sensing. More Remote sensing can estimate ET as a residual of the energy balance: Friction Velocity Roughness Length Aerodynamic Resistance Net radiation (Rn) Soil Heat Flux (G) T Hot & Cold Pixels Sensible Heat Flux (H

Hall, Sharon J.

255

FishNet: Finding and Maintaining Information on the Net Paul De Bra 1 and Pim Lemmens  

E-Print Network [OSTI]

FishNet: Finding and Maintaining Information on the Net Paul De Bra 1 and Pim Lemmens Department whether links are still valid and whether documents they point to have been modified or moved. ffl Fish of a given set of (addresses of) documents. FishNet keeps track of the evolution of a domain of interest

De Bra, Paul

256

Internal Dosimetry  

Broader source: Energy.gov (indexed) [DOE]

MEASUREMENT MEASUREMENT SENSITIVE DOE-STD-1121-2008 Change Notice No.1 October 2013 DOE STANDARD INTERNAL DOSIMETRY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://energy.gov/hss/information-center/department-energy- technical-standards-program ii Change Notice 1. Internal Dosimetry DOE-STD-1121-2008 Page/Section Change Throughout Change: airborne contamination To: airborne radioactivity Section 1.5, p. 4 Change: HPS N 13.1-1999 To: HPS N 13.1-2011 Section 1.5, p. 4 Change: HPS N 13.6-1999 To: HPS N 13,.6-2010 Section 1.5, p. 4 Delete: HPS N 13.14-1994, Internal Dosimetry Programs for

257

International Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Correction/Update July 27th A stray "2010" was left in the middle of Figure 1. August 1st Figure title changes (PDF only): Figure 10. World energy-related carbon dioxide emissions by fuel type, 2010-2040 (billion metric tons) This should actually be: Figure 10. World energy-related carbon dioxide emissions by fuel type, 1990-2040 (billion metric tons) Figure 11. OECD and non-OECD carbon intensities, 1990-2040 (metric tons carbon dioxide emitted per million 2010 dollars of gross domestic product) This should actually be: Figure 11. OECD and non-OECD carbon intensities, 1990-2040 (metric tons

258

net zero | OpenEI Community  

Open Energy Info (EERE)

44 44 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229644 Varnish cache server net zero Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing

259

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

260

Definition: Net Interchange Schedule | Open Energy Information  

Open Energy Info (EERE)

Interchange Schedule Interchange Schedule Jump to: navigation, search Dictionary.png Net Interchange Schedule The algebraic sum of all Interchange Schedules with each Adjacent Balancing Authority.[1] Related Terms Balancing Authority, Adjacent Balancing Authority, Interchange, Interchange Schedule, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Net_Interchange_Schedule&oldid=502531" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

262

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H21. World net solar electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 4 33 38 42 48 63 101 11.1 United States a 4 32 37 40 46 62 99 11.2 Canada 0 1 1 1 1 1 1 -- Mexico/Chile 0 0 0 0 0 1 1 -- OECD Europe 23 78 85 89 94 98 102 5.1 OECD Asia 5 12 22 33 39 50 50 8.1 Japan 4 7 14 23 29 39 39 8.1 South Korea 1 1 2 2 2 2 2 3.6 Australia/New Zealand 0 4 6 8 8 9 9 -- Total OECD 32 123 145 165 181 211 253 7.1 Non-OECD Non-OECD Europe and Eurasia 0 0 1 1 1 1 1 -- Russia 0 0 0 0 0 0 0 -- Other 0 0 1 1 1 1 1 -- Non-OECD Asia 1 31 76 94 107 120 129 17.2 China 1 26 67 79 90 100 105 17.0 India 0 3 7 13 14 17

263

Long Island Power Authority - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Long Island Power Authority - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Program Info State New York Program Type Net Metering Provider Long Island Power Authority : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net metering cap for solar, agricultural biogas, residential micro-CHP and

264

Montana Electric Cooperatives - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Cooperatives - Net Metering Electric Cooperatives - Net Metering Montana Electric Cooperatives - Net Metering < Back Eligibility Commercial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Montana Program Type Net Metering Provider Montana Electric Cooperatives' Association The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or part by most of the 26 electric cooperatives in Montana. A map of the service areas of each of member cooperative is available on the MECA web site. To determine if a specific cooperative offers net metering, view the MECA

265

Farmington Electric Utility System - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

266

SCE&G - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SCE&G - Net Metering SCE&G - Net Metering SCE&G - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

267

Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach  

E-Print Network [OSTI]

We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central ($b\\leq 2.75$ fm) Pb+Pb/Au+Au collisions from $E_{lab}=2A$ GeV to $\\sqrt{s_{NN}}=200$ GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low $\\sqrt{s_{NN}}$.

Marlene Nahrgang; Tim Schuster; Michael Mitrovski; Reinhard Stock; Marcus Bleicher

2012-09-03T23:59:59.000Z

268

INTERNATIONAL COURSEGUIDE  

E-Print Network [OSTI]

, Applied Science, Arts and Design, Information Sciences and Engineering. INTERNATIONAL COURSE GUIDE01 #00212K, University of Canberra College #01893E. Information in this guide was correct at time in a competitive global market. This can involve work integrated learning, and in many courses students have

Canberra, University of

269

International Educational  

E-Print Network [OSTI]

International Journal of Educational Technology Opportunities and options for Web-enabled databases.D., Arizona State University The landscape of Web-based instruction is changing due to the convergence of the Web and database servers. Web-based database (WBD) servers enhance Web-based instruction by providing

Yu, Alex

270

INTERNATIONAL STUDYCENTRE  

E-Print Network [OSTI]

;6 Experiential Learning 8 21st Century Education 9 Supporting your Success 18 Financing your Castle Education is located in a 15th century castle, but our focus is the 21st century, an age of networks and processes escaping the Nazis, Dr. Alfred Bader fled to England in 1938, from where he was sent to an internment camp

Abolmaesumi, Purang

271

INTERNATIONAL STUDYCENTRE  

E-Print Network [OSTI]

;6 Experiential Learning 8 21st Century Education 9 Supporting your Success 18 Financing your Castle Education in a 15th century castle, but our focus is the 21st, a century of networks and processes.Where people escaping the Nazis, Dr. Alfred Bader fled to England in 1938, from where he was sent to an internment camp

Graham, Nick

272

Electric Power Annual 2011  

U.S. Energy Information Administration (EIA) Indexed Site

net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation Region" "1999 through 2011 actual, 2012-2016 projected"...

273

Gasoline direct injection: Actual trends and future strategies for injection and combustion systems  

SciTech Connect (OSTI)

Recent developments have raised increased interest on the concept of gasoline direct injection as the most promising future strategy for fuel economy improvement of SI engines. The general requirements for mixture preparation and combustion systems in a GDI engine are presented in view of known and actual systems regarding fuel economy and emission potential. The characteristics of the actually favored injection systems are discussed and guidelines for the development of appropriate combustion systems are derived. The differences between such mixture preparation strategies as air distributed fuel and fuel wall impingement are discussed, leading to the alternative approach to the problem of mixture preparation with the fully air distributing concept of direct mixture injection.

Fraidl, G.K.; Piock, W.F.; Wirth, M.

1996-09-01T23:59:59.000Z

274

Net Interchange Schedule Forecasting of Electric Power Exchange for RTO/ISOs  

SciTech Connect (OSTI)

Neighboring independent system operators (ISOs) exchange electric power to enable efficient and reliable operation of the grid. Net interchange (NI) schedule is the sum of the transactions (in MW) between an ISO and its neighbors. Effective forecasting of the amount of actual NI can improve grid operation efficiency. This paper presents results of a preliminary investigation into various methods of prediction that may result in improved prediction accuracy. The methods studied are linear regression, forward regression, stepwise regression, and support vector machine (SVM) regression. The work to date is not yet conclusive. The hope is to explore the effectiveness of other prediction methods and apply all methods to at least one new data set. This should enable more confidence in the conclusions.

Ferryman, Thomas A.; Haglin, David J.; Vlachopoulou, Maria; Yin, Jian; Shen, Chao; Tuffner, Francis K.; Lin, Guang; Zhou, Ning; Tong, Jianzhong

2012-07-26T23:59:59.000Z

275

A COGNITIVE-SYSTEMIC RECONSTRUCTION OF MASLOW'S THEORY OF SELF-ACTUALIZATION  

E-Print Network [OSTI]

A COGNITIVE-SYSTEMIC RECONSTRUCTION OF MASLOW'S THEORY OF SELF-ACTUALIZATION by Francis Heylighen1-order, cognitive-sys- temic framework. A hierarchy of basic needs is derived from the ur- gency of perturbations: material, cognitive and subjective. Material and/or cognitive incompetence during child- hood create

Toint, Philippe

276

SAMPLE GENERAL TERMS WHEN PURCHASING SERVICES* ACTUAL TERMS REQUIRED WILL BE DETERMINED BY CONTRACTS &  

E-Print Network [OSTI]

1 SAMPLE GENERAL TERMS WHEN PURCHASING SERVICES* ACTUAL TERMS REQUIRED WILL BE DETERMINED Contracts and Procurement (x4532) if you have questions regarding purchasing services. 1. Independent Status in an independent capacity and not as officers or employees or agents of the State of California. While Contractor

de Lijser, Peter

277

INTERNATIONAL AGREEMENTS  

Broader source: Energy.gov (indexed) [DOE]

INTERNATIONAL INTERNATIONAL AGREEMENTS Signed by Secretary Spencer Abraham January 2001-December 2004 TABLE OF CONTENTS Joint Statement of ntent between the Department of Energy of the United States ofAmerica and The Ministry of Energy and Mines of the Republic ofPeru on Cooperation in the Field of Energy -Tab 1 Fifth Hemispheric Energy Ministers Meeting Mexico City, Mexico - March 9, 2001. Mexico Declaration - Energy: A Crucial Factor for Integration and Sustainable Development in the Hemisphere - Tab 2 Extension of the Agreement for Energy Cooperation between the Department of Energy of the United States ofAmerica and the Secretariat ofEnergy of the United Mexican States, and its Four Annexes - Tab3 Implementing Agreement between the Department ofEnergy of the United States ofAmerica and the

278

A comparative study on conventional and advanced exergetic analyses of geothermal district heating systems based on actual operational data  

Science Journals Connector (OSTI)

This paper comparatively evaluates exergy destructions of a geothermal district heating system (GDHS) using both conventional and advanced exergetic analysis methods to identify the potential for improvement and the interactions among the components. As a real case study, the Afyon GDHS in Afyonkarahisar, Turkey, is considered based on actual operational data. For the first time, advanced exergetic analysis is applied to the GDHSs, in which the exergy destruction rate within each component is split into unavoidable/avoidable and endogenous/exogenous parts. The results indicate that the interconnections among all the components are not very strong. Thus, one should focus on how to reduce the internal inefficiency (destruction) rates of the components. The highest priority for improvement in the advanced exergetic analysis is in the re-injection pump (PM-IX), while it is the heat exchanger (HEX-III) in the conventional analysis. In addition, there is a substantial influence on the overall system as the total avoidable exergy destruction rate of the heat exchanger (HEX-V) has the highest value. On the overall system basis, the value for the conventional exergetic efficiency is determined to be 29.29% while that for the modified exergetic efficiency is calculated to be 34.46% through improving the overall components.

Arif Hepbasli; Ali Keeba?

2013-01-01T23:59:59.000Z

279

EIA - International Energy Outlook 2009-Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2009 Chapter 5 - Electricity World electricity generation increases by 77 percent from 2006 to 2030 in the IEO2009 reference case. The non-OECD countries are projected to account for 58 percent of world electricity use in 2030 Figure 48. Growth in World Electric Power Generation and Total Energy Consumption, 1990-2030 (Index, 1990 = 1). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 49. World Net Electric Power Generation, 1980-2030 (Trillion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 50. Non-OECD Net Electricity Generation by Region, 1980-2030 (Trillion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

280

E-Print Network 3.0 - actual screening platform Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Information Sciences 88 Correlating the Visual Representation of User Interfaces with their Internal Structures and Metadata Summary: and evaluate two new...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Grays Harbor PUD - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Grays Harbor PUD - Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Grays Harbor PUD Grays Harbor PUD's net-metering program differs slightly from what is required by Washington state law in that Grays Harbor PUD reimburses customers for net excess generation (NEG), at the end of each year, at 50% of the utility's retail rate. State law allows utilities to require customers to surrender NEG to the utility, without reimbursement, at the end of a 12-month billing cycle. Grays Harbor PUD has voluntarily gone

282

City of New Orleans - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of New Orleans - Net Metering City of New Orleans - Net Metering City of New Orleans - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider City Council Utilities Regulatory Office In May 2007, the New Orleans City Council adopted net-metering rules that are similar to rules adopted by the Louisiana Public Service Commission (PSC) in November 2005. The City Council's rules require Entergy New Orleans, an investor-owned utility regulated by the city, to offer net metering to customers with systems that generate electricity using solar energy, wind energy, hydropower, geothermal or biomass resources. Fuel

283

SaskPower Net Metering (Saskatchewan, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) < Back Eligibility Commercial Agricultural Industrial Residential Savings Category Solar Buying & Making Electricity Program Info Funding Source SaskPower State Saskatchewan Program Type Net Metering Provider SaskPower Residents, farms and businesses with approved Environmental Preferred Technologies of up to 100 kilowatts (kW) of nominal (nameplate) generating capacity can deliver their excess electricity to our electrical grid. SaskPower will pay a one-time rebate, equivalent to 20% of eligible costs to a maximum payment of $20,000, for an approved and grid interconnected net metering project. The Net Metering Rebate is available to SaskPower, Saskatoon Light and Power and City of Swift Current electricity customers

284

Washington City Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Washington City Power - Net Metering Washington City Power - Net Metering Washington City Power - Net Metering < Back Eligibility General Public/Consumer Savings Category Solar Buying & Making Electricity Wind Program Info State Utah Program Type Net Metering Provider Washington City Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems or wind-energy systems up to 10 kilowatts (kW) in capacity. At the customer's expense, the municipal utility will provide a single, bidirectional meter to measure the in-flow and out-flow of electricity at the customer's home. Systems are restricted to being sized to provide no more than 120% of the historic maximum monthly energy consumption of the

285

U.S. Virgin Islands - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering < Back Eligibility Commercial Fed. Government Institutional Local Government Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Wind Program Info Program Type Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy system up to 10 kilowatts (kW) in capacity. In July 2009, the legislature passed Act 7075 that raised the capacity limits to 20 kW for residential systems, 100 kW for commercial systems, and 500 kW for public (which includes government, schools, hospitals). The aggregate capacity limit of all net-metered systems is five megawatts

286

Murray City Power - Net Metering Pilot Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Program Info State Utah Program Type Net Metering Provider Murray City Power Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10 kilowatts (kW).* The utility will install and maintain a revenue meter capable of registering the bi-directional flow of electricity at the customer's facility. Any customer net excess generation (NEG) is carried over to the customer's next bill as a kilowatt-hour credit. Each April, any remaining NEG credits are

287

City of Brenham - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Brenham - Net Metering City of Brenham - Net Metering City of Brenham - Net Metering < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Nonprofit Residential Schools State Government Savings Category Bioenergy Wind Buying & Making Electricity Energy Sources Solar Program Info State Texas Program Type Net Metering Provider City of Brenham In September 2010, the City of Brenham passed an ordinance adopting net metering and interconnection procedures. Customer generators up to 10 megawatts (MW) are eligible to participate, although customer generators with systems 20 kilowatts (kW) or less are eligible for a separate rider and expedited interconnection. The utility will install and maintain a meter capable of measuring flow of electricity in both directions. Any net

288

Medicaid Implications for the Health Safety Net  

Science Journals Connector (OSTI)

...Medicaid helps to finance health and long-term care for more than 55 million low-income children and parents, people with severe disabilities, and elderly Americans, at an annual cost of nearly $300 billion to the federal and state governments. The program currently provides health coverage to 1 in 4 U.S... Medicaid is the nation's health safety net, but as Diane Rowland explains, its growing role and increasing costs in the face of state budgetary pressures and the federal deficit have made it a target for reform that could fundamentally reshape the ...

Rowland D.

2005-10-06T23:59:59.000Z

289

,"South Carolina Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South...

290

,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode...

291

,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

292

,"Connecticut Natural Gas LNG Storage Net Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

293

,"U.S. Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","9302014" ,"Next...

294

,"New Jersey Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New...

295

,"North Carolina Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

296

,"New Hampshire Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New...

297

Maritime Electric- Net Metering (Prince Edward Island, Canada)  

Broader source: Energy.gov [DOE]

In December 2005 The Renewable Energy Act and associated Regulations came into effect. A Government policy objective incorporated in the Act was the introduction of net metering for...

298

Transportation Security SensorNet: A Service Oriented Architecture  

E-Print Network [OSTI]

Transportation Security SensorNet: A Service Oriented Architecture for Cargo Monitoring Martin..................................................................................................................2 C. Service Oriented Architecture .................................................................4 B. Adobe - Service Oriented Architecture

Kansas, University of

299

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

300

,"New York Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","12...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Chapter 23: Estimating Net Savings: Common Practices. The Uniform...  

Energy Savers [EERE]

an understanding of the relationship between efficiency levels embedded in base-case load forecasts and the additional net reductions from programs. * Assessing the degree to which...

302

The Intersection of Net Metering and Retail Choice: An Overview...  

Office of Environmental Management (EM)

five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies to...

303

Deep Energy Efficiency and Getting to Net Zero  

Broader source: Energy.gov [DOE]

Presentation covers energy efficiency and getting to net zero and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

304

FY 2002 Generation Audited Accumulated Net Revenues, February...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 021003 February 2003 Bonneville Power Administration Power Business Line FY 2002 Generation Audited Accumulated Net Revenues for Financial- Based Cost Recovery Adjustment...

305

FY 2003 Generation Audited Accumlated Net Revenues, March 2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2004 Bonneville Power Administration Power Business Line FY 2003 Generation (PBL) Audited Accumulated Net Revenues for Financial-Based Cost Recovery Adjustment Clause (FB...

306

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

307

Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest  

SciTech Connect (OSTI)

Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

2012-10-01T23:59:59.000Z

308

The Multiple Peril Crop Insurance Actual Production History (APH) Insurance Plan  

E-Print Network [OSTI]

Economics, Professor and Extension Economist? Management, The Texas A&M System; and Extension Agricultural Economist, Kansas State University Agricultural Experiment Station and Cooperative Extension Service. The U.S. Dept. of Agriculture?s (USDA) Risk..., levels of coverage, price elections, applicable premium rates and subsidy amounts. The special provisions list program calendar dates and contain general and special statements that may further define, limit or modify coverage. MPCI?s Actual...

Stokes, Kenneth; Barnaby, G. A. Art; Waller, Mark L.; Outlaw, Joe

2008-10-07T23:59:59.000Z

309

Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites  

SciTech Connect (OSTI)

.A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

2009-03-09T23:59:59.000Z

310

Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

Jantzen, C.M.; Peeler, D.K. [Westinghouse Savannah River Co., Aiken, SC (United States); Gilliam, T.M.; Bleier, A.; Spence, R.D. [Oak Ridge National Lab., TN (United States)

1996-05-06T23:59:59.000Z

311

Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout  

SciTech Connect (OSTI)

Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations ({+-}10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample.

Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

1998-03-03T23:59:59.000Z

312

Transactions and Zero-Safe Nets Roberto Bruni and Ugo Montanari  

E-Print Network [OSTI]

Transactions and Zero-Safe Nets Roberto Bruni and Ugo Montanari Dipartimento di Informatica present an approach to the modeling of transactions based on zero-safe nets. They extend ordinary PT nets be uniformly adapted to zero-safe nets. In particular, we show that each zero-safe net has two associated PT

Bruni, Roberto

313

A Method for Correcting Catches of Fish Larvae For the Size Selection of Plankton Nets  

E-Print Network [OSTI]

corrected by determining the ratio between a stan- dard net and a test net with either zero extrusion or. . zero avoidance. However, when avoidance of the test net with zero extrusion or when extrusion through test net with zero avoidance differs from the stan- dard net, then the usual method of correcting

314

Department of Defense Net Assessment Summer 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Randall Luthi, President www.noia.org Randall Luthi, President www.noia.org National Ocean Industries Association The Future of OCS After Macondo 2011 EIA Conference Washington, DC April 26, 2011 NOIA represents the full spectrum of U.S. businesses that produce energy offshore Last year's view through the crystal ball was far different than today's * A year ago, the off shore oil and gas industry was poised to come out of the economic doldrums * Spurred by earlier deep water discoveries, the future looked promising * The Obama Administration actually proposed opening new areas on the Atlantic coast for exploration Deepwater Horizon April 20, 2010 Washington's Reaction and Response Images Compel

315

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network [OSTI]

and Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michaelgoal of achieving zero-net-energy commercial buildings (

Stadler, Michael

2010-01-01T23:59:59.000Z

316

Internal Dosimetry  

Broader source: Energy.gov (indexed) [DOE]

21-2008 21-2008 October 2008 DOE STANDARD INTERNAL DOSIMETRY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1121-2008 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE Components and their contractors. 2. Constructive comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to Office of Worker Safety and Health Policy (HS-11) U.S. Department of Energy Washington, DC 20585

317

RETScreen International Clean Energy Decision Support Centre | Open Energy  

Open Energy Info (EERE)

RETScreen International Clean Energy Decision Support Centre RETScreen International Clean Energy Decision Support Centre Jump to: navigation, search Logo: RETScreen International Clean Energy Decision Support Centre Name RETScreen International Clean Energy Decision Support Centre Agency/Company /Organization Natural Resources Canada Sector Energy Focus Area Renewable Energy Topics Pathways analysis Website http://www.retscreen.net/ang/h References Centre Overview [1] This article is a stub. You can help OpenEI by expanding it. "The RETScreen International Clean Energy Decision Support Centre seeks to build the capacity of planners, decision-makers and industry to implement renewable energy, cogeneration and energy efficiency projects. This objective is achieved by: developing decision-making tools (i.e. RETScreen

318

ARM - Reading netCDF, HDF, and GRIB Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govDataReading netCDF, HDF, and GRIB Files govDataReading netCDF, HDF, and GRIB Files Reading netCDF, HDF, and GRIB Files netCDF Files Most ARM data are stored in netCDF format. This format allows for the definition of data fields and storage of operational information in the header of the file. All ARM netCDF files are in UTC time and represent time as "seconds since January 1, 1970,'' which is called the "epoch time.'' For example, an epoch time of 1 means "Thu Jan 1 00:00:01 1970''; an epoch time of 992794875 is "Sun Jun 17 16:21:15 2001.'' To learn more about how to convert epoch time, see Time in ARM netCDF Data Files. More information on the netCDF format and tools is available from UCAR at http://www.unidata.ucar.edu/packages/netcdf/index.html. HDF Files Some data files also contain one or more measurements distributed over a

319

Shapes of geodesic nets. Alexander Nabutovsky and Regina Rotman  

E-Print Network [OSTI]

Shapes of geodesic nets. Alexander Nabutovsky and Regina Rotman August 14, 2006 Abstract Let M n infinitely many geometrically distinct geodesic nets on this manifold. We will also show that either the length of a shortest pe­ riodic geodesic is bounded in terms of the volume of a manifold M n

Nabutovsky, Alexander

320

Bayes Net Toolbox practical Charles Fox, University of Sheffield  

E-Print Network [OSTI]

this network (which is a Directed Acyclic graph, or 'DAG'), we create an adjacency matrix: N = 4 %the number of nodes in the network dag = zeros(N,N) %connectivity matrix for the net (directed acyclic graph) C = 1 matlab >>cd bayesnet >>cd FullBNT1.0.4/ >>addpath(genpathKPM(pwd)) Creating your first Bayes net

Barker, Jon

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CP-nets and Nash equilibria Krzysztof R. Apt  

E-Print Network [OSTI]

CP-nets and Nash equilibria Krzysztof R. Apt ¢¡ £¤¡ ¥ , Francesca Rossi ¦ , and Kristen Brent, the Netherlands Department of Pure and Applied Mathematics, University of Padova, Italy Abstract. CP instead of payoff functions. We show then that the optimal outcomes of a CP-net are ex- actly the Nash

Rossi, Francesca

322

Translating Orc Features into Petri nets and the Join Calculus #  

E-Print Network [OSTI]

Translating Orc Features into Petri nets and the Join Calculus # Roberto Bruni 1 , Hern@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

323

Translating Orc Features into Petri nets and the Join Calculus  

E-Print Network [OSTI]

Translating Orc Features into Petri nets and the Join Calculus Roberto Bruni1, Hern´an Melgratti2@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

324

ORIGINAL ARTICLE Quantification of net primary production of Chinese  

E-Print Network [OSTI]

ORIGINAL ARTICLE Quantification of net primary production of Chinese forest ecosystems with spatial Abstract Net primary production (NPP) of terrestrial ecosystems provides food, fiber, construction materials, and energy to humans. Its demand is likely to increase substantially in this century due

Zhang, Tonglin

325

Artificial Neural Nets and Cylinder Pressures in Diesel  

E-Print Network [OSTI]

Artificial Neural Nets and Cylinder Pressures in Diesel Engine Fault Diagnosis * Gopi O diagnosis system for a diesel engine, which uses artificial neural nets to identify faults on the basis­temporal representation of cylinder pressures. Draw cards and power cards are regularly assessed for the condition

Sharkey, Amanda

326

HYPER-I-NET: European Research Network on Hyperspectral Imaging  

E-Print Network [OSTI]

sensor design and cal- ibration/validation [3], [4] to advanced data processing [5]­ [8], and science-I-NET), a recently started Marie Curie Research Training Network. The project is designed to build-I-NET is at the confluence of heterogeneous disciplines, such as sensor design including optics and electronics, aerospace

Plaza, Antonio J.

327

Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation?  

E-Print Network [OSTI]

from the gas balance at night (when GPP is zero) and then GPP is calculated from Eq. 2. This gas COMMENTARY Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? Gary M. Lovett ABSTRACT Net ecosystem production (NEP), defined as the difference between gross primary production

Berkowitz, Alan R.

328

Petri nets for modelling metabolic pathways: a survey  

Science Journals Connector (OSTI)

In the last 15 years, several research efforts have been directed towards the representation and the analysis of metabolic pathways by using Petri nets. The goal of this paper is twofold. First, we discuss how the knowledge about metabolic pathways can ... Keywords: Metabolic pathways, Petri nets, Qualitative and quantitative analysis, Tools

Paolo Baldan; Nicoletta Cocco; Andrea Marin; Marta Simeoni

2010-12-01T23:59:59.000Z

329

Targeting Net Zero Energy for Military Installations (Presentation)  

SciTech Connect (OSTI)

Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Burman, K.

2012-05-01T23:59:59.000Z

330

NREL: TroughNet - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data and Resources Data and Resources This site features data and resources about parabolic trough power plant technology, including: Industry partners U.S. power plant data Solar data Models and tools System and component testing Also see our publications on parabolic trough power plants. Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources Industry Partners Power Plant Data Solar Data Models & Tools System & Component Testing FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

331

NREL: TroughNet - Email Updates - Subscribe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Email Updates - Subscribe Email Updates - Subscribe Subscribe to receive email updates about parabolic trough technology, including: Status on R&D and deployment projects Workshops and other events New publications New data and resources. Please provide and submit the following information. Name (first & last): Organization/Affiliation: Email Address: Submit Clear Form Unsubscribe Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

332

Austin Energy - Net Metering (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) < Back Eligibility Commercial Savings Category Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State Texas Program Type Net Metering Provider Austin Energy Austin Energy, the municipal utility of Austin Texas, offers net metering for renewable energy systems up to 20 kilowatts (kW) to its non-residential retail electricity customers. The definition of renewable includes solar*, wind, geothermal, hydroelectric, wave and tidal energy, biomass, and biomass-based waste products, including landfill gas. Systems must be used primarily to offset a portion or all of a customer's on-site electric load. Metering is accomplished using a single meter capable of registering the

333

Building Energy Software Tools Directory: Degree Day .Net  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degree Day .Net Degree Day .Net Logo for Degree Day.net Website that generates heating and cooling degree days for locations worldwide. Degree days are commonly used in calculations relating to building energy consumption. Once you have chosen a weather station (of which there are thousands available) and specified the degree days you want (e.g. what base temperature, do you want them broken down in daily, weekly or monthly format), Degree Days.net will calculate your degree days, and give them to you as a CSV file that you can open directly in a spreadsheet. Screen Shots Keywords degree days, HDD, CDD Validation/Testing A comprehensive suite of automated tests have been written to test the software. Expertise Required Degree Days.net makes it very easy to specify and generate degree days, so

334

Notices F. NTIA Consultations With FirstNet on  

Broader source: Energy.gov (indexed) [DOE]

6 Federal Register 6 Federal Register / Vol. 77, No. 162 / Tuesday, August 21, 2012 / Notices F. NTIA Consultations With FirstNet on the State and Local Implementation Grant Program Requirements As previously discussed, the Act directs NTIA to consult with FirstNet to establish the requirements of the State and Local Implementation Grant Program not later than 6 months after the date of the Act's enactment, or by August 22, 2012. The Act also required that FirstNet be established no later than August 20, 2012. The Act's framework, which essentially placed the creation of FirstNet and the development of the grant program requirements on parallel tracks, proved challenging for NTIA as it attempted to fulfill the statutory mandate to consult with FirstNet in establishing the State and Local

335

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) |  

Broader source: Energy.gov (indexed) [DOE]

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Multi-Family Residential Residential Schools Savings Category Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Nova Scotia Program Type Net Metering Provider Nova Scotia Power, Inc Nova Scotia Power Inc. Net Metering allows residential and commercial customers to connect small, renewable energy generating units to the provincial power grid. Generating units that produce renewable energy such as wind, solar, small hydro or biomass can be added to homes or businesses with the addition of a bi-directional meter. This meter monitors the electricity generated by the

336

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Landfill Waste, and Zero Net Greenhouse Gas Emissions by 2020 Speaker(s): John Elliott Date: May 14, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Andrea Mercado John will highlight sustainability efforts at UC Merced, particularly with respect to its Triple Zero Commitment to zero net energy, zero landfill waste, and climate neutrality by 2020. From a technical perspective, the campus zero net energy strategy relies primarily on energy efficiency, solar energy, and plasma gasification, along with various smart grid strategies. Zero waste efforts currently emphasize composting and control of purchasing to simplify recycling efforts. Campus efforts are only beginning to address climate neutrality beyond initial attainment of zero

337

Definition of a Zero Net Energy Community | Open Energy Information  

Open Energy Info (EERE)

Definition of a Zero Net Energy Community Definition of a Zero Net Energy Community Jump to: navigation, search Name Net Zero Agency/Company /Organization National Renewable Energy Laboratory Partner Nancy Carlisle, Otto Van Geet, Shanti Pless Focus Area Energy Efficiency, Buildings, People and Policy Phase Determine Baseline, Evaluate Options Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2009/11/01 Website http://www.nrel.gov/docs/fy10o References Definition of a 'Zero Net Energy' Community[1] Overview This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewable energy available within the community's built environment. It assists a community also by showing the importance of this classification by encouraging

338

Fact #837: September 8, Gap between Net Imports and Total Imports...  

Broader source: Energy.gov (indexed) [DOE]

7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact 837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net...

339

A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)  

E-Print Network [OSTI]

Rita Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay,Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay Jail is unlikely to meet zero net energy in the near future.

Marnay, Chris

2011-01-01T23:59:59.000Z

340

E-Print Network 3.0 - adding wire nets Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of applications. What is the 1-Wire Net? The 1-Wire net... architecture that uses a resistor pull-up to a nominal 5V supply at the master. A 1-Wire net-based system... interfaces...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NetSeed User Manual NetSeed is a toolkit for identifying the seed set of networks, available as an online tool  

E-Print Network [OSTI]

of Washington and is available online at http://elbo.gs.washington.edu/tools/NetSeed/. NetSeed>Web NetSeed>Web allows researchers to calculate the seed set of a network online and requires only a web browser. The NetSeed>Web and functional analysis options. Overview of use To determine the seed set of a network using NetSeed>Web

Borenstein, Elhanan

342

ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM  

SciTech Connect (OSTI)

Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: ? Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. ? Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.

Martino, C.

2014-05-28T23:59:59.000Z

343

Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum...  

Broader source: Energy.gov (indexed) [DOE]

6: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing Fact 736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The...

344

NREL: News - NREL and Army Validate Energy Savings for Net Zero...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a net zero energy initiative that includes all of its installations across the state. Fort Bliss (Texas) and Fort Carson (Colo.) are piloting integrated net zero energy, water,...

345

Electronic governor for an internal combustion engine  

SciTech Connect (OSTI)

An electronic governor for an internal combustion engine provided with a fuel injection pump for supplying fuel to the engine and having a control rack for adjusting fuel injection amount is described comprising, means providing a designated speed signal Vno indicative of the desired rotational speed No of the internal combustion engine, a speed detector detecting the rotational speed N of the internal combustion engine and producing the speed detection signal Vn indicative of the rotational speed N, a rack position detector detecting the position of the rack and producing a rack position detection signal VL indicative of the position of the rack, a speed deviation operation circuit responsive to the speed detection signal Vn for producing a constant speed control signal Vnd for effecting control to maintain the deviation of the actual rotational speed N from the designated rotational speed No within a permissible range, a rack position deviation operation circuit for producing a maximum rack position control signal VLd for effecting control to maintain the deviation of the rack position, a control mode selector and means responsive to the output of the control mode selector for controlling the rack to cause the deviation of the actual rotational speed N from the designated rotational speed No or the rack position from the maximum rack position to be within a certain range.

Nanjyo, H.; Suzuki, H.

1987-11-24T23:59:59.000Z

346

Reprinted from International Journal of  

E-Print Network [OSTI]

-Science Publishing ISSN 1756-8250 Simple Representations of Zero-Net Mass-Flux Jets in Grazing Flow for Flow-Control Simulations by Ehsan Aram, Rajat Mittal and Louis Cattafesta #12;Simple Representations of Zero-Net Mass - 32611 Simple boundary conditions that can represent the flow emanating from zero-net mass- flux (ZNMF

Mittal, Rajat

347

Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59 19.72 20.97 22.34 23.81 25.26 26.72 28.22 29.87 31.51 33.13 34.82 36.61 38.48 40.48

348

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

349

Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual" b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.502753725,1.549729719,1.64272351,1.727259934,1.784039735,1.822135762,1.923203642,2.00781457,2.134768212,2.217425497,2.303725166,2.407715232,2.46134106,2.637086093,2.775389073,2.902293046,3.120364238,3.298013245 "AEO 1995",,1.4212343,1.462640338,1.488780998,1.545300242,1.585877053,1.619428341,1.668671498,1.7584219,1.803937198,1.890547504,1.968695652,2.048913043,2.134750403,2.205281804,2.281690821,2.375434783,2.504830918 "AEO 1996",,,1.346101641,1.350594221,1.369020126,1.391737646,1.421340737,1.458772082,1.496497523,1.561369914,1.619940033,1.674758358,1.749420803,1.800709877,1.871110564,1.924495246,2.006850327,2.048938234,2.156821499

350

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

351

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

352

File:Theoretical vs Actual Data Lesson Plan .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Theoretical vs Actual Data Lesson Plan .pdf Jump to: navigation, search File File history File usage Metadata File:Theoretical vs Actual Data Lesson Plan .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 257 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:33, 3 January 2014 Thumbnail for version as of 09:33, 3 January 2014 1,275 × 1,650, 2 pages (257 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools High School Curricula

353

Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63 21.08 21.50 21.98 22.44 22.94 23.50 24.12 AEO 1996 1994 16.81 16.98 17.37 17.98 18.61 19.27 19.92 20.47 20.97 21.41 21.86 22.25 22.61 22.97 23.34 23.70 24.08

354

Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste  

SciTech Connect (OSTI)

This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included caustic leaching for Al removal solids crossflow filtration through the cell unit filter (CUF) stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF oxidative leaching using sodium permanganate for removing Cr solids filtration with the CUF follow-on solids washing and filtration through the CUF ion exchange processing for Cs removal evaporation processing of waste stream recycle for volume reduction combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

2009-01-01T23:59:59.000Z

355

PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE  

SciTech Connect (OSTI)

Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

2011-11-01T23:59:59.000Z

356

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

357

21 11 13 INTERNATIONAL  

E-Print Network [OSTI]

31 E 32 F 32 #12; iv INTERNATIONAL ERGONOMICS ASSOCIATION #12; 3 INTERNATIONAL ERGONOMICS ASSOCIATION CODE OF CONDUCT ERGONOMICS ASSOCIATION (2006) http://www.iea.cc/browse.php?contID=international_ergonomics_association A6

Yamamoto, Hirosuke

358

International Student and  

E-Print Network [OSTI]

Admissions Disability Services International Student and Scholar Services International Student of Continuing Education Theresa Ganglghassemlouei and Beth Isensee, International Student and Scholar Services Colleges & Programs Student Outcomes: · Process improvements · Enhance orientation content based

Amin, S. Massoud

359

,"Weekly Blender Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Production" Blender Net Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Blender Net Production",20,"Weekly","12/13/2013","6/4/2010" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wprodb_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wprodb_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 10:39:19 AM"

360

,"Weekly Refiner Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production" Refiner Net Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Refiner Net Production",21,"Weekly","12/13/2013","6/4/2010" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wprodr_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wprodr_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 10:39:21 AM"

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

QuarkNet Workshop: Beyond Human Error  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Human Error Human Error QuarkNet Workshop for High School Science Teachers 8:30 am to 4:00 pm, August 1 -3, 2012 at Fermi National Accelerator Laboratory This was a three-day workshop for high school science teachers. Measurement and error are key ingredients for all science applications. Both align with the Next Generation Science Standards, but many high school students struggle to understand the importance of error analysis and prevention. Over the three days we examined multiple experiments going on at Fermilab and discussed the ways that scientists take measurements and reduce error on these projects. Participants met and worked with scientists from Fermilab and University of Chicago to look at how error analysis takes place at Fermilab and bridged those ideas into high school classes. Teachers discussed lesson plans available at Fermilab and their own methods of teaching error analysis. Additionally, participants heard from high school students who participated in summer research as they presented their findings and linked students' learning back to the teachers' understanding of error recognition and analysis.

362

Largest American Net Zero Energy Campus Community Embraces Clean Energy |  

Broader source: Energy.gov (indexed) [DOE]

Largest American Net Zero Energy Campus Community Embraces Clean Largest American Net Zero Energy Campus Community Embraces Clean Energy Largest American Net Zero Energy Campus Community Embraces Clean Energy April 9, 2012 - 4:10pm Addthis Based on its sustainable design, UC Davis' new net zero energy community is designed to generate as much energy as it consumes. | Video courtesy of the University of California at Davis. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? UC Davis is planning to incorporate a biodigester -- a source of renewable energy -- into plans for its new housing development. The biodigester will turn organic waste into electricity. The organic waste is burned and produces biogas that a turbine converts into electricity. A new housing development on the University of California at Davis (UC

363

Grid Net, Inc. Comments to DOE RFI 2010-11129  

Broader source: Energy.gov (indexed) [DOE]

Net, Inc. Comments to DOE RFI 2010-11129 2010 Net, Inc. Comments to DOE RFI 2010-11129 2010 DOE RFI 2010-11129 NBP RFI: Communications Requirements Titled "Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy" Submitted by Grid Net, Inc. July 12, 2010 Attention: Maureen C. McLaughlin, Senior Legal Advisor to the General Counsel Grid Net, Inc. Comments to DOE RFI 2010-11129 2010 Summary and Highlights Thank you for the opportunity to provide comments for the Department of Energy RFI 2010-11129, our detailed responses to your questions are below for your consideration. The key points we'd like to get

364

Estimated Annual Net Change in Soil Carbon per US County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimated Annual Net Change in Soil Carbon per US County These data represent the estimated net change (Megagram per year) in soil carbon due to changes in the crop type and tillage intensity. Estimated accumulation of soil carbon under Conservation Reserve Program (CRP)lands is included in these estimates. Negative values represent a net flux from the atmosphere to the soil; positive values represent a net flux from the soil to the atmosphere. As such, soil carbon sequestration is represented here as a negative value. The method of analysis is based on empirical relationshipsbetween land management and soil carbon. The method for modeling land management and estimating soil carbonchange, used to generate these data, is described in the following publication:

365

City of Danville - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Danville - Net Metering Danville - Net Metering City of Danville - Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Program Info State Virginia Program Type Net Metering For a renewable fuel generator with a capacity of 25 kilowatts (kW) or less, a notification form shall be submitted at least 30 days prior to the date the customer intends to interconnect their renewable fuel generator to the Utility's facilities. Renewable fuel generators with capacity over 25 kW are required to submit forms no later than 60 days prior to planned interconnection. The Utility will review and determine whether the requirements for Interconnection have been met. More information on this

366

Community Renewable Energy Success Stories Webinar: Net Zero Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Zero Energy Net Zero Energy Communities (text version) Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories - Net Zero Energy Communities," originally presented on October 16, 2012. Operator: The broadcast is now starting. All attendees are in listen-only mode. Ken Kelly: Good afternoon, and welcome to today's webinar sponsored by the U.S. Department of Energy. This is Ken Kelly, and Courtney Kendall broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and logon. So while we wait, Courtney was going to go over some of the logistics and then we'll begin with today's webinar.

367

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:57:42 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CO2"...

368

Fermilab | Newsroom | Press Releases | September 27, 2012: QuarkNet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Notre Dame were two of the initial QuarkNet centers. Marge Bardeen, head of the Fermilab Education Office, started the Fermilab center 15 years ago. Her vision was to inspire and...

369

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:33 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

370

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:32 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

371

Petri Net Based Research of Home Automation Communication Protocol  

Science Journals Connector (OSTI)

The popularity of home automation has been increasing greatly in recent years. ... distributed, uncertain or randomized protocol model) of home automation, many questions concerned. For instance, is ... net to de...

Guangxuan Chen; Yanhui Du; Panke Qin; Jin Du

2013-01-01T23:59:59.000Z

372

October 16, 2012, Webinar: Net-Zero-Energy Communities  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar was held October 16, 2012, and provided information on net-zero-energy communities in California and Hawaii. Download the presentations below, watch the webinar (WMV 159 MB), or view...

373

Transformation Nets -A Runtime Model for Transformation Languages  

E-Print Network [OSTI]

Transformation Nets - A Runtime Model for Transformation Languages Johannes Schoenboeck Institute transformation languages. Although numerous approaches are available, they lack convenient facilities for supporting debugging and understand- ing of the transformation logic. This is not least because

Hochreiter, Sepp

374

Robust manufacturing system design using petri nets and bayesian methods  

E-Print Network [OSTI]

robust design configuration, designers need accurate methods to model various uncertainties and efficient ways to search for feasible configurations. The dissertation work uses a multi-objective Genetic Algorithm (GA) and Petri net based modeling...

Sharda, Bikram

2008-10-10T23:59:59.000Z

375

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

376

Predicted and actual productions of horizontal wells in heavy-oil fields  

Science Journals Connector (OSTI)

This paper discusses the comparison of predicted and actual cumulative and daily oil production. The predicted results were obtained from the use of Joshi's equation, wherein, the effects of anisotropy and eccentricity were included. The cumulative production obtained from the use of equations developed by Borisov, Giger, Renard and Dupuy resulted in errors in excess of 100%, thus, they were not considered applicable for predicting cumulative and daily flows of heavy oils in horizontal wells. The wells considered in this analysis varied from 537 to 1201 metres with corresponding well bores of 0.089 to. 0.110 m. Using Joshi's equation, the predicted cumulative oil-production was within a 20% difference for up to 12 months of production for long wells and up to 24 months for short wells. Short wells were defined as those being under 1000 m.

Peter Catania

2000-01-01T23:59:59.000Z

377

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

378

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

379

The King Tide Photo Initiative is an international project which aims to  

E-Print Network [OSTI]

The King Tide Photo Initiative is an international project which aims to document areas flooded: Coastalatlas.net/kingtides 2. CLICK: Take the photos. The most striking photos show water next to something and orientation of your photo. 3. SHARE: Post your photos on OR's King Tide Flickr group. See our website to learn

Tullos, Desiree

380

Submitted to ApJ Letters, June 29, 2005 Are Presolar Silicon Carbide Grains from Novae Actually from Supernovae?  

E-Print Network [OSTI]

Submitted to ApJ Letters, June 29, 2005 Are Presolar Silicon Carbide Grains from Novae Actually stellar nucleosynthesis and mixing. The best-studied presolar phase, silicon carbide (SiC), exhibits

Nittler, Larry R.

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer  

E-Print Network [OSTI]

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

Miyashita, Yasushi

382

Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net  

E-Print Network [OSTI]

, the Elastic Net can yield a sparse esti- mate with more than n non-zero weights (Efron et al., 2004). One canExploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net Alexander Lorbert- tion called the Pairwise Elastic Net is pro- posed. Like the Elastic Net, it simultane- ously performs

Blei, David M.

383

Executing Transactions in Zero-Safe Nets ? Roberto Bruni and Ugo Montanari  

E-Print Network [OSTI]

Executing Transactions in Zero-Safe Nets ? Roberto Bruni and Ugo Montanari Dipartimento di in distributed systems by using zero-safe nets, which extend pt nets with a simple mechanism for transition synchronization. In particular, starting from the zero-safe net that represents a certain system, we give

Bruni, Roberto

384

Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net  

E-Print Network [OSTI]

. Furthermore, un- like the Lasso, the Elastic Net can yield a sparse esti- mate with more than n non-zero477 Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net Alexander to regression regulariza- tion called the Pairwise Elastic Net is pro- posed. Like the Elastic Net, it simultane

Low, Steven H.

385

Extending the Zero-Safe approach to Coloured, Recon gurable and Dynamic Nets ?  

E-Print Network [OSTI]

Extending the Zero-Safe approach to Coloured, Recon#12;gurable and Dynamic Nets ? Roberto Bruni their execution). Starting from zero-safe nets | a well-studied extension of Place/Transition Petri nets | we show how the zero-safe approach can be smoothly applied to a hierarchy of nets of increasing

Bruni, Roberto

386

Instructions for Submitting Documents to OpenNet  

Broader source: Energy.gov (indexed) [DOE]

Submitting Documents to OpenNet Submitting Documents to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't already have one, go to the OpenNet web site at: http://www.osti.gov/opennet. 1. Click on the LOGIN link on the top right. 2. Read the information and check the "I agree..." box. 3. Click on the "Request data submission access..." link at the bottom of the page. 4. Fill out the form. One of the required fields is the Site Input Code field. This field provides a drop down list of DOE Sites. All users with the same Site Input Code can edit all the records for that site. If your Site Code is not in the list or you need a site code more specific to your office than those listed,

387

STEP Intern Job Description  

Broader source: Energy.gov [DOE]

STEP Intern Job Description, from the Tool Kit Framework: Small Town University Energy Program (STEP).

388

Assessor Training International  

E-Print Network [OSTI]

NVLAP Assessor Training International Arrangements #12;Assessor Training 2009: International;Assessor Training 2009: International Arrangements 3 2009 is the 10th anniversary of the signing granted by a signatory to the ILAC Arrangement #12;Assessor Training 2009: International Arrangements 4

389

Conference Proceedings International Conference  

E-Print Network [OSTI]

Conference Proceedings 10th International Conference on Hand-Arm Vibration 7-11 June 2004 Flamingo, the entertainment capital of the world: The 10th International Hand-Arm Vibration Conference will be the second time this international conference has been hosted in the US. The first was the 2nd International Hand-Arm Vibration

Hemmers, Oliver

390

IN TODAY'S PAPER International  

E-Print Network [OSTI]

India's participation in the multi-billion-dollar International Thermonuclear Reactor project which aims

391

Internal Audit Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internal Audit Services Internal Audit Services Berkeley Lab Internal Audit Services Internal Audit Services Berkeley Lab Contacts Organizational Chart IAS Search Staff Only Lab Search Phone Book A-Z Index Privacy and Security Notice "Internal Auditing is an independent, objective assurance and consulting activity designed to add value and improve an organization's operations. It helps an organization accomplish its objectives by bringing a systematic, disciplined approach to evaluate and improve the effectiveness of risk management, control and governance processes." The Institute of Internal Auditors Standards for the Professional Practice of Internal Auditing About IAS | Audit Committee | Audit Planning | Ethics & Investigations | External Audit Coordination Advisory Services | Other Relevant Audit Links | Contacts | Organizational

392

Internal Audit Preparation Worksheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Internal Audit Preparation Job Aid 11_0304 Page 1 of 5 2 Internal Audit Preparation Job Aid 11_0304 Page 1 of 5 EOTA - Business Form Document Title: Internal Audit Preparation Job Aid Document Number: F-012 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-007, Internal Audit Process Notify of Changes: Internal Auditors Referenced Document(s): F-011 Internal Audit Report F-012 Internal Audit Preparation Job Aid 11_0304 Page 2 of 5 Revision History: Rev. Description of Change A Initial Release 11_0304 Change title from Worksheet to Job Aid and changed revision from alpha to numeric for consistency. F-012 Internal Audit Preparation Job Aid 11_0304 Page 3 of 5 Internal Audit Preparation Worksheet F-012 Internal Audit Preparation Job Aid 11_0304 Page 4 of 5

393

Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

870 870 July 2010 Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice Preprint Paul Torcellini, Shanti Pless, and Chad Lobato National Renewable Energy Laboratory Tom Hootman RNL Design Presented at the ASME 2010 4 th International Conference on Energy Sustainability Phoenix, Arizona May 17-22, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

394

BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

2008-09-25T23:59:59.000Z

395

Table 12. Coal Prices to Electric Generating Plants, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices to Electric Generating Plants, Projected vs. Actual Coal Prices to Electric Generating Plants, Projected vs. Actual (nominal dollars per million Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2.03 2.17 2.33 2.52 2.73 2.99 AEO 1983 1.99 2.10 2.24 2.39 2.57 2.76 4.29 AEO 1984 1.90 2.01 2.13 2.28 2.44 2.61 3.79 AEO 1985 1.68 1.76 1.86 1.95 2.05 2.19 2.32 2.49 2.66 2.83 3.03 AEO 1986 1.61 1.68 1.75 1.83 1.93 2.05 2.19 2.35 2.54 2.73 2.92 3.10 3.31 3.49 3.68 AEO 1987 1.52 1.55 1.65 1.75 1.84 1.96 2.11 2.27 2.44 3.55 AEO 1989* 1.50 1.51 1.68 1.77 1.88 2.00 2.13 2.26 2.40 2.55 2.70 2.86 3.00 AEO 1990 1.46 1.53 2.07 2.76 3.7 AEO 1991 1.51 1.58 1.66 1.77 1.88 1.96 2.06 2.16 2.28 2.41 2.57 2.70 2.85 3.04 3.26 3.46 3.65 3.87 4.08 4.33 AEO 1992 1.54 1.61 1.66 1.75 1.85 1.97 2.03 2.14 2.26 2.44 2.55 2.69 2.83 3.00 3.20 3.40 3.58 3.78 4.01 AEO 1993 1.92 1.54 1.61 1.70

396

Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts  

SciTech Connect (OSTI)

In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

John Smart; Thomas Bradley; Stephen Schey

2014-04-01T23:59:59.000Z

397

Jordan Boyd-Graber, Christiane Fellbaum, Daniel Osherson, and Robert Schapire. Adding Dense, Weighted, Connections to WordNet. Proceedings of the Global WordNet Conference, 2006.  

E-Print Network [OSTI]

Jordan Boyd-Graber, Christiane Fellbaum, Daniel Osherson, and Robert Schapire. Adding Dense, Weighted, Connections to WordNet. Proceedings of the Global WordNet Conference, 2006. @inproceedings{Boyd of the Global {WordNet} Conference}, Author = {Jordan Boyd-Graber and Christiane Fellbaum and Daniel Osherson

Boyd-Graber, Jordan

398

Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado  

SciTech Connect (OSTI)

To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

Arena, L.; Williamson, J.

2013-11-01T23:59:59.000Z

399

Self-organized Criticality Model for Ocean Internal Waves  

Science Journals Connector (OSTI)

In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of 2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.

Wang Gang; Lin Min; Qiao Fang-Li; Hou Yi-Jun

2009-01-01T23:59:59.000Z

400

NREL: TroughNet - Parabolic Trough Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parabolic Trough Workshops Parabolic Trough Workshops Here you'll find information about workshops and forums concerning parabolic trough technology and concentrating solar power. Also, see upcoming events on concentrating solar power. Past Workshops and Forums 2007 Parabolic Trough Technology Workshop March 8-9, 2007 Golden, CO 2007 Solar Power Tower, Dish Stirling and Linear Fresnel Technologies Workshop March 7, 2007 Golden, CO 2006 Parabolic Trough Technology Workshop February 14-16, 2006 Incline Village, NV 2004 Solar Thermal Electric International Project Development Forum July 13, 2004 Portland, OR 2003 Parabolic Trough Thermal Energy Storage Workshop February 20-21, 2003 Golden, CO 2001 Solar Energy Forum: The Power to Choose April 21-25, 2001 Washington, D.C. 2000 Parabolic Trough Technology Workshop

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Time in ARM NetCDF Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govDataTime in ARM NetCDF Files govDataTime in ARM NetCDF Files Page Contents Introduction Time Zones Epoch Time Time Variables Conversion Examples and Hints Perl Example C Example Fortran Example IDL Example Notes on Generating Epoch Times Contact Information Time in ARM NetCDF Files Introduction This document explains most of the issues related to the use of time in ARM netCDF data files. Time Zones All ARM netCDF files are in UTC. Note that this has some implications for solar-based data; we tend to split our files at midnight, but the sun is still up at 0000 UTC at SGP in the late spring and summer, and all the time at TWP. This means a given solar arc may be broken across two different files. That's just the way it is; using local time in ARM files would have been a bigger mess. Note that splitting files at 0000 UTC is not an ARM standard, and many

402

International Standards for Telecommunications  

Science Journals Connector (OSTI)

...research-article International Standards for Telecommunications M. B. Williams As soon as telegraph...surprising that the International Telecommunications Union, the forum for world-wide...and evolution of all branches of telecommunications. Increasingly, the distinction...

M. B. Williams

1978-01-01T23:59:59.000Z

403

Essays in international trade  

E-Print Network [OSTI]

This thesis is a collection of essays on the effect of trade costs on international trade. Chapter 1 derives and empirically examines how factor proportions determine the structure of commodity trade when international ...

Romalis, John

2001-01-01T23:59:59.000Z

404

International aeronautical user charges  

E-Print Network [OSTI]

Introduction: 1.1 BACKGROUND AND MOTIVATION Very few issues relating to the international air transportation industry are today as divisive as those pertaining to user charges imposed at international airports and enroute ...

Odoni, Amedeo R.

1985-01-01T23:59:59.000Z

405

Historic Railroad Building Goes Net Zero | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

406

Historic Railroad Building Goes Net Zero | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

407

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

408

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

409

EIA-Assumptions to the Annual Energy Outlook - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2007 International Energy Module The International Energy Module (IEM) performs two tasks in all NEMS runs. First, the module reads exogenously derived supply curves, initial price paths and international regional supply and demand levels into NEMS. These quantities are not modeled directly in NEMS because NEMS is not an international model. Previous versions of the IEM adjusted these quantities after reading in initial values. In an attempt to more closely integrate the AEO2007 with the IEO2006 and the STEO some functionality was removed from the IEM. More analyst time was devoted to analyzing price relationships between marker crude oils and refined products. A new exogenous oil supply model, Generate World Oil Balances (GWOB), was also developed to incorporate actual investment occurring in the international oil market through 2015 and resource assumptions through 2030. The GWOB model provides annual country level oil production detail for eight conventional and unconventional oils.

410

International Freshwater Agreements  

E-Print Network [OSTI]

Population Distribution ..................................................... 16 Population Density per, circa 1995............................................... 20 Dam Density per International River Basin ............................ 25 Africa ................................................................

Wolf, Aaron

411

REQUEST BY HEIL. TRAILER INTERNATIONAL FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

HEIL. TRAILER INTERNATIONAL FOR AN ADVANCE WAIVER HEIL. TRAILER INTERNATIONAL FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000027094 UNDER PRIME CONTRACT NO. DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)2003-054 [ORO-786] Heil Trailer International (Heil) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under UT-Battelle, LLC Subcontract No. 4000027094 entitled, "Liburndas Project" under UT-Battelle Prime Contract No. DE-AC05- 00OR22725. The scope of work involves reducing the aluminum tank semi-trailer's net weight by 20% by redesigning the barrel to a more cylindrical shape. The work is sponsored by the Office of FreedomCar and Vehicle Technologies.

412

International Commitments Primer | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Commitments International Commitments Primer International Commitments Primer Overview of International Commitment Process DOE pursues a variety of science and...

413

International Student Guide Mathematics  

E-Print Network [OSTI]

International Student Guide Mathematics www.swansea.ac.uk/maths www.swansea.ac.uk/science/international #12;Reasons to study at Swansea University Mathematics at Swansea University Established in 1920, 36th and more Over 15,000 students / Over 2,000 International students Strongest in Wales for Mathematics

Harman, Neal.A.

414

Wood Resources International  

E-Print Network [OSTI]

Wood Resources International Wood Raw Material Consumption on the Rise Despite Weak Global Economy UNECE Timber Committee Meeting October 7-8, 2003 Geneva, Switzerland Håkan Ekström Wood Resources International #12;Wood Resources International Outline · Roundwood Removals · Roundwood Consumption · Raw

415

A modified greedy channel router with net assignment at the left edge  

E-Print Network [OSTI]

the vertical constraint graph is updated by the algorithm. At the first iteration, since netl, net3, and net5 end at zone 1, and net6 starts from zone 2, L becomes ( 1, 3, 5 ) and R becomes ( 6 ) at step s3 and s4 respectively. 15 TABLE I. Zone..., 7 5, 6 9 5, 6, 9 3, 8 (c) 4, 10 - - Track 1 1 7 ? ? Track 2 5, 6, 9 - - Track 3 Track4-- 2 3, 8 - - Track 5 Fig. 8. Illustration of algorithm. 17 At step s5, either netl and net6 or net3 and net6 can not be merged because the merging...

Oh, Chuldong

2012-06-07T23:59:59.000Z

416

Demand response compensation, net Benefits and cost allocation: comments  

SciTech Connect (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

417

Net?exchange analysis of the Earth greenhouse effect increase  

Science Journals Connector (OSTI)

In this paper we propose an analysis of the greenhouse effect on the basis of a net?exchange formulation for clear sky atmospheres. This formulation allows access to exchanges beetwen the differents elements of the atmosphere (gas layers the ground and space). When the greenhouse gas concentration increases we first use a simple configuration to analyse the variations of analytic monochromatic net exchange rates. The same type of analysis is then applied to the Earth atmosphere for a clear?sky middle latitude summer configuration with an increase in water vapour of 20% at all altitudes.

Nicolas Meilhac; Jean?Louis Dufresne; Vincent Eymet; Richard Fournier

2009-01-01T23:59:59.000Z

418

Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Targeting Net Zero Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations Prepared for the U.S. Department of Energy Federal Energy Management Program By National Renewable Energy Laboratory Kate Anderson, Tony Markel, Mike Simpson, John Leahey, Caleb Rockenbaugh, Lars Lisell, Kari Burman, and Mark Singer October 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

419

EIA - International Energy Outlook 2008-Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2008 Chapter 5 - Electricity World electricity generation nearly doubles in the IEO2008 reference case from 2005 to 2030. In 2030, generation in the non-OECD countries is projected to exceed generation in the OECD countries by 46 percent. Figure 52. Growth in World Electric Power Generation and Total Energy Consumption and Total Energy Consumption, 1990-2030 (Index, 1990 = 1). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 53. World Net Electric Power Generation, 1990-2030 (Trillion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 34. World Electricity Generation by Fuel, 2005-2030 (Trillion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

420

Compensation of Handicap and Autonomy Loss through e-Technologies and Home Automation for Elderly People in Rural Regions: An Actual Need for International Initiatives Networks  

Science Journals Connector (OSTI)

To face the problems of elderly and disabled people in a rural environment, the district of Guret (department of Creuse, France) has set up the Home automation and Health Pole. In association with ... on the u...

Laurent Billonnet; Jean-Michel Dumas; Emmanuel Desbordes

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Building Energy Report Card is used to compare the actual annual energy consumption of buildings to a  

E-Print Network [OSTI]

The Building Energy Report Card is used to compare the actual annual energy consumption Thermal Unit (Btu). For convenience, this annual energy consumption is expressed as thousands of Btus (i of buildings to a State of Minnesota "target." This target represents the amount of energy that would

Ciocan-Fontanine, Ionut

422

General Project Sequence The following are typical steps on many projects. Actual required steps may vary from project to project  

E-Print Network [OSTI]

General Project Sequence The following are typical steps on many projects. Actual required steps may vary from project to project depending upon the scope, complexity, and specific features. Time periods indicated will vary depending on the nature of the project and needs of the user group

Mather, Patrick T.

423

An experimental and computational leakage investigation of labyrinth seals with rub grooves of actual size and shape  

E-Print Network [OSTI]

to that of a modified convex wall geometry. The test facility is a 33 times enlargement of the actual seal. The pressure drop leakage rate and flow visualization digital images for the standard geometry seal were measured at various Reynolds numbers...

Ambrosia, Matthew Stanley

2001-01-01T23:59:59.000Z

424

1 Copyright 2011 by ASME Proceedings of the ASME 2011 International Design Engineering Technical Conferences &  

E-Print Network [OSTI]

solutions in a global, economic, environmental, and societal context," [1]. Providing engineering students, social, economic and environmental issues in engineering, with no funds to support the actual overseas1 Copyright © 2011 by ASME Proceedings of the ASME 2011 International Design Engineering Technical

Lewis, Kemper E.

425

Internal Viscosity of the Red Cell and a Blood Viscosity Equation  

Science Journals Connector (OSTI)

... The determination of the actual numerical values of the internal viscosity of the red cell is not simple. A direct ingress on the interior of ... visualized in which suspensions of the red cells could be studied in fluids of different viscosities. Such fluids could be solutions of high molecular weight dextran, solutions of macroglobulin or ...

LEOPOLD DINTENFASS

1968-08-31T23:59:59.000Z

426

First International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain, May 2010  

E-Print Network [OSTI]

First International Symposium on Fishing Vessel Energy Efficiency E-Fishing, Vigo, Spain, May 2010 automatic optimisation tools to design efficient trawls in terms of energy consumption. The developed tool should provide a substantial gain on the fuel consumed of actual fishing devices while maintaining

Lewandowski, Roger

427

GEO NET Umweltconsulting GmbH | Open Energy Information  

Open Energy Info (EERE)

GEO NET Umweltconsulting GmbH GEO NET Umweltconsulting GmbH Jump to: navigation, search Name GEO-NET Umweltconsulting GmbH Place Hannover, Germany Zip 30161 Sector Wind energy Product Undertakes environmental planning and consulting in wind and other sectors. Part of the GEO-NET interdisciplinary technology-oriented research, consulting and service agency. Coordinates 52.372278°, 9.738157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.372278,"lon":9.738157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Massachusetts Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Net Withdrawals (Million Cubic Feet) Massachusetts Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -3,383 2,585 -1,618 -700 2,734 45 593 -2,043 -1,644 -6,447 1990's 308 -3,967 -1,844 -2,368 -6,820 -3,134 -5,364 -3,517 -7,243 -2,447 2000's -7,518 350 767 4,359 1,584 3,129 156 -1,560 -1,694 -1,221 2010's -963 -753 -1,384 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Net Withdrawals of Liquefied Natural Gas from Storage Massachusetts Liquefied Natural Gas Additions to and Withdrawals

429

Using GeoWordNet for Geographical Information Retrieval  

E-Print Network [OSTI]

- ambiguated and assigned their coordinates on the world map. Documents are first searched for by means of a term-based search method, and then re-ranked according to the geographical information. The results knowledge at keyword level in the Lucene1 search engine, focusing on the use of the WordNet [3] ontology

Rosso, Paolo

430

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem  

E-Print Network [OSTI]

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem Exchange Data Luther in the context of a deterministic com- partmental carbon sequestration system. Sensitivity and approximation usefulness in the estimation of parameters within a compartmental carbon sequestration model. Previously we

White, Luther

431

AVOIDANCE OF TOWED NETS BY THE EUPHAUSIID NEMATOSCELIS MEGALOPS 1  

E-Print Network [OSTI]

problem. Avoidance is variable, depending upon such factors as time of day; light regime; size, shape to the approach of the net at a greater distance. Other theoretical predictions which depend upon the assumption and Holland 1968; Wiebe 1971). This factor is perhaps the most im- portant determinant of the accuracy of abun

432

Network Planning Aspects of the HeliNet Telecommunications Architecture  

E-Print Network [OSTI]

Network Planning Aspects of the HeliNet Telecommunications Architecture Zs. Pándi*°, T. V. Do*, Cs. Király* *Department of Telecommunications, Budapest University of Technology and Economics Magyar Tudósok of a telecommunication infrastructure based on HAVE (High Altitude Very long Endurance) unmanned solar aerodynamic

Do, Tien Van

433

THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)  

E-Print Network [OSTI]

1 THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY) Hosein Shapouri*, U.S. Department of corn ethanol utilizing the latest survey of U.S. corn producers and the 2001 U.S. survey of ethanol to produce ethanol and byproducts. The results indicate that corn ethanol has a positive energy balance, even

Patzek, Tadeusz W.

434

Ladder Metamodeling & PLC Program Validation through Time Petri Nets  

E-Print Network [OSTI]

Ladder Metamodeling & PLC Program Validation through Time Petri Nets Darlam Fabio Bender1,2, Benoît for Programmable Logical Controllers (PLCs). A PLC is a special purpose industrial computer used to automate the sequential, state-dependent logic in- herent in the program design [1]. Not found bugs in PLC programs

Paris-Sud XI, Université de

435

Transportation Security SensorNet: a service-oriented  

E-Print Network [OSTI]

Transportation Security SensorNet: a service-oriented architecture for cargo monitoring Martin solution of developing a service-oriented architecture (SOA) for cargo monitoring and its individual and handovers. Tracking trade is difficult to manage in different formats and legacy applications Web services

Kansas, University of

436

Zero-Safe Nets: Modeling Transactions via Transition Synchronization  

E-Print Network [OSTI]

Montanari Dipartimento di Informatica, Universit#18;a di Pisa, Italia P/T Petri nets [Rei85] are unanimously- visible to external observers, while stable markings, which just consist of tokens in stable places, de#12 at some stable marking, evolves through hidden states (i.e., markings with some tokens in zero places

Bruni, Roberto

437

The Net Environmental Effects of Carbon Dioxide Reduction Policies  

E-Print Network [OSTI]

of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all

438

Predicting Daily Net Radiation Using Minimum Climatological Data1  

E-Print Network [OSTI]

Predicting Daily Net Radiation Using Minimum Climatological Data1 S. Irmak, M.ASCE2 ; A. Irmak3 ; J for predicting daily Rn have been widely used. However, when the paucity of detailed climatological data with National Weather Service climatological datasets that only record Tmax and Tmin on a regular basis. DOI: 10

439

Sam, Booth, Targeting Net Zero DoD Project Review  

Broader source: Energy.gov (indexed) [DOE]

15,000 20,000 Square F eet 0 500 1,000 1,500 2,000 O f B uildings 0 100 200 300 400 EUI ---60.00 ---40.00 ---20.00 0.00 20.00 40.00 60.00 % C hange E UI 2 0032010 Net zero...

440

RESEARCH Open Access Spatial variation of net radiation and its  

E-Print Network [OSTI]

RESEARCH Open Access Spatial variation of net radiation and its contribution to energy balance the uncertainties of carbon, water, and energy measurements and has thus hampered the urgent research of scaling up closures in grassland ecosystems Changliang Shao1,2 , Linghao Li2 , Gang Dong3 and Jiquan Chen1,2* Abstract

Chen, Jiquan

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Statewide Benefits Of Net-Metering In California  

E-Print Network [OSTI]

on the costs and benefits of NEM to the Governor and Legislature. 4 Id. 5 California Solar Future: Growing to the total, "bundled" energy rate, which includes not only the cost of generation, but transmission of 2013 3 See Net Energy Metering Cost-Effectiveness Evaluation, Energy and Environmental Economics, Inc

Kammen, Daniel M.

442

A pattern recognition approach to geophysical inversion using neural nets  

Science Journals Connector (OSTI)

......applying current processing technology to R,,. In the case of...establishment of both inter- and intranet weights. Although the different...current artificial intelligence technology. The output section would...will show that neural net technology has achieved remarkable successes......

Art Raiche

1991-06-01T23:59:59.000Z

443

Using Colored Petri Nets to Construct Coalescent Hidden Markov Models  

E-Print Network [OSTI]

. Recently a new analysis method, CoalHMMs, has been developed, that makes it computationally feasible the analysis models needed. In this paper we de- scribe how to use colored stochastic Petri nets to build Coal to whole-genome analysis. CoalHMMs model the dependence of the genealogies (tree relationships) between

Mailund, Thomas

444

Fact #838: September 15, 2014 Net Imports of Petroleum were Only...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8: September 15, 2014 Net Imports of Petroleum were Only 33% of U.S. Consumption in 2013 Fact 838: September 15, 2014 Net Imports of Petroleum were Only 33% of U.S. Consumption in...

445

REMARKS ON THE BOX PROBLEM. Nets Hawk Katz, Elliot Krop, Mauro Maggioni  

E-Print Network [OSTI]

REMARKS ON THE BOX PROBLEM. Nets Hawk Katz, Elliot Krop, Mauro Maggioni Washington University §0 by a National Science Foundation grant Typeset by AMS-TEX 1 #12;2 NETS HAWK KATZ, ELLIOT KROP, MAURO MAGGIONI

Maggioni, Mauro

446

U.S. Fish and Wildlife Service Moves toward Net-Zero Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fish and Wildlife Service Moves toward Net-Zero Buildings U.S. Fish and Wildlife Service Moves toward Net-Zero Buildings This fact sheet is an overview of the U.S. Fish and...

447

The BikeNet mobile sensing system for cyclist experience mapping  

Science Journals Connector (OSTI)

We describe our experiences deploying BikeNet, an extensible mobile sensing system for cyclist experience mapping leveraging opportunistic sensor networking principles and techniques. BikeNet represents a multifaceted sensing system and explores personal, ... Keywords: applications, bicycling, recreation, systems

S. B. Eisenman; E. Miluzzo; N. D. Lane; R. A. Peterson; G-S. Ahn; A. T. Campbell

2007-11-01T23:59:59.000Z

448

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES  

E-Print Network [OSTI]

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES ........................................................................................................ 2 2.2 Net Basin Supplies . . . . . . . . . . . 4 Table lb.--Lag-Zero Cross Covariances and Cross Correlations Among Great Lakes Annual Connecting

449

Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project  

E-Print Network [OSTI]

Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project Sponsor: Columbia. Principal goals are to assess survival and straying at adulthood. Net pens are proposed as a low cost

450

SEARLE SCHOLARS PROGRAM (http://www.searlescholars.net/go.php?id=23)  

E-Print Network [OSTI]

SEARLE SCHOLARS PROGRAM (http://www.searlescholars.net/go.php?id=23) The University of Pittsburgh at http://www.searlescholars.net/go.php?id=49. The University is invited to submit one nomination

Sibille, Etienne

451

Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)  

SciTech Connect (OSTI)

Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

Heeter, J.; Bird, L.; Gelman, R.

2014-10-01T23:59:59.000Z

452

Status of Net Metering: Assessing the Potential to Reach Program Caps  

SciTech Connect (OSTI)

Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

Heeter, J.; Gelman, R.; Bird, L.

2014-09-01T23:59:59.000Z

453

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

net metering, and policies for supporting solar deployment.net metering, and policies for supporting solar deployment.Energy Policy, 36: MRW & Associates. 2007. Solar PV and

Darghouth, Naim

2010-01-01T23:59:59.000Z

454

Petri Nets and the Real World Ekkart Kindler and Frank Nillies  

E-Print Network [OSTI]

extended Petri nets by a simple but powerful concept for interactively animating systems as a 3D the simulation of tokens of the Petri net with these objects in the virtual 3D-world. In this paper, we take of the real world. This way, a Petri net can be used as a controller of some plant. In principle, this idea

Kindler, Ekkart

455

Dynamics of Airfoil Separation Control Using Zero-Net Mass-Flux Forcing  

E-Print Network [OSTI]

Dynamics of Airfoil Separation Control Using Zero-Net Mass-Flux Forcing Reni Raju and Rajat Mittal, Gainesville, Florida 32611 DOI: 10.2514/1.37147 Zero-net mass-flux jet based control of flow separation over using zero-net mass-flux actuation can either control/delay boundary layer separation or lead to global

Mittal, Rajat

456

Simple Models of Zero-Net Mass-Flux Jets for Flow Control Simulations  

E-Print Network [OSTI]

Simple Models of Zero-Net Mass-Flux Jets for Flow Control Simulations Reni Raju Dynaflow Inc for modeling the dynamics of zero- net mass-flux (ZNMF) actuators, the computational costs associated-flow model. 1. INTRODUCTION Zero-net mass-flux (ZNMF) actuators or "synthetic jets" have potential

Mittal, Rajat

457

TriopusNet: Automating Wireless Sensor Network Deployment and Replacement in Pipeline Monitoring  

E-Print Network [OSTI]

TriopusNet: Automating Wireless Sensor Network Deployment and Replacement in Pipeline Monitoring sensor net- work system for autonomous sensor deployment in pipeline monitoring. TriopusNet works by automatically releasing sensor nodes from a centralized repository located at the source of the water pipeline

Chu, Hao-hua

458

Tinkering with Turtles An Overview of NetLogo's Extensions API  

E-Print Network [OSTI]

Tinkering with Turtles An Overview of NetLogo's Extensions API Forrest Stonedahl, Daniel KornhauserLogo Extensions API provides facilities for programmers to ex- tend the NetLogo language by creating user with the JVM). While the NetLogo Extensions API has quietly existed for several years, recent changes have

Wilensky, Uri

459

THE INTERNATIONAL GEOLOGICAL CONGRESS  

Science Journals Connector (OSTI)

... , sections, plans, models in relief, c., to be found in the Exposition Universelle, will realise the expectations expressed in the circular of the International Committee, of an ...

T. STERRY HUNT

1878-06-06T23:59:59.000Z

460

HydroVision International  

Broader source: Energy.gov [DOE]

The HydroVision International Conference and Exhibition offers attendees countless opportunities to network, share best practices, meet with product and service providers, and more. Held over five...

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

International petroleum statistics report  

SciTech Connect (OSTI)

This report provides information on current international petroleum production, demand, imports, and stocks. World oil demand and OECD demand data are presented for the years 1970 thru 1995.

NONE

1996-08-01T23:59:59.000Z

462

Internal Controls Evaluations  

Broader source: Energy.gov (indexed) [DOE]

assurance reviews need to be completed prior to the submission of quarterly and annual reports. Page | 6 Table 1: DOE Internal Controls Assessment Process Important Dates Date...

463

Industrial Energy Conservation, Forced Internal Recirculation Burner  

SciTech Connect (OSTI)

The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

Joseph Rabovitser

2003-06-19T23:59:59.000Z

464

Correlation cross sections along the international border  

SciTech Connect (OSTI)

The Manitoba-North Dakota (Canada-US) stratigraphic correlation project is a joint study between the Petroleum Branch of Manitoba Energy and Mines and the North Dakota Geological Survey. It is an attempt to correlate the differing stratigraphic terminologies established in the two jurisdictions by providing a reference cross section across the international boundary. The study involves the subsurface correlation of logs of the Paleozoic and Mesozoic sequences in the Manitoba and North Dakota portions of the Williston basin. The Paleozoic and Mesozoic sequences are subdivided for presentation into the following stratigraphic intervals: (a) Cambrian-Ordovician-Silurian, (b) Devonian, (c) Mississippian, (d) Jurassic, and (e) Cretaceous. Wireline logs show the actual stratigraphic correlations. A nomenclature chart is also presented from each sequence. In addition, the sections include a generalized description of lithologies, thicknesses, environments of deposition, and petroleum potential for each geographic area.

Martiniuk, C.D. (Manitoba Energy and Mines, Winnipeg (Canada)); Le Fever, J.A.; Anderson, S.B. (North Dakota Geological Survey, Grand Forks (United States))

1991-06-01T23:59:59.000Z

465

Actual Crimes Reported For: Offense Type (includes attempts) 2010 2011 2012 2010 2011 2012 2010 2011 2012  

E-Print Network [OSTI]

0 0 0 0 0 Referral 0 0 0 0 0 0 0 0 0 Drug Law Violations Arrest 0 3 4 0 1 0 0 4 4 Referral 0 0 0 0 0 0 0 0 0 Liquor Law Violations Arrest 0 0 0 0 0 0 0 0 0 Referral 0 0 0 0 0 0 0 0 0 OSU-Tulsa Campus Crime Statistics Act. Number of Arrests/Referrals for Select Offenses #12;Actual Crimes Reported For

Veiga, Pedro Manuel Barbosa

466

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

467

International Programs in Agriculture  

E-Print Network [OSTI]

International Programs in Agriculture MessagefromtheDirector­ Staying Ahead of Globalization and more prosperous place for all. Fortunately, Purdue International Programs in Agriculture (IPIA) has natural disasters caution us to remember the power of nature. The United Nations Food and Agriculture

468

International for Advanced Studies  

E-Print Network [OSTI]

and Technology at the University of Ulm ICAS-Affiliations The International Center for Advanced Studies in Health in medical technology and pharma- ceutical industry. The International Advisory Panel of ICAS consists, transfer of state-of-the-art clinical technologies, and utilization of methodologies appropriate

Pfeifer, Holger

469

International Conference Water Efficiency  

E-Print Network [OSTI]

International Conference Water Efficiency in Urban Areas Concepts, Technologies, Socio Economics for PostersRegistration via Fax: +49 941 29688-17 Yes, I will participate International Conference Water of the invoice. Payment must be received no later than 14 days before the conference begins (it has to be sett

Wehrli, Bernhard

470

STUDENT HANDBOOK INTERNATIONAL  

E-Print Network [OSTI]

STUDENT HANDBOOK INTERNATIONAL 2011-12 #12;2 International Student Handbook 2011-12 Contents Volunteering 30 Sport and physical activity 31 Local transport 32 Exploring Leeds and the UK 36 Families to start a new period in your life. We hope this handbook will help you to make the most of your time

Haase, Markus

471

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

472

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

473

Microsoft Word - QuarkNet Friday Flyer.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flyer, March 15, 2013 SPECIAL EDITION Flyer, March 15, 2013 SPECIAL EDITION QuarkNet Workshops Since 1999, QuarkNet has introduced teachers to inquiry-based investigations using particle physics data. Select workshops from this menu for your center programs. Contacts can answer your questions and schedule a workshop. Teaching and Learning Workshop (2-3 days) - Contact Tom: jordant@fnal.gov This workshop introduces teachers to inquiry-based resources that incorporate particle physics content. We tailor this workshop to the needs and interests of the center and provide teachers with investigations that can be used in a high school classroom. The following workshops prepare teachers to facilitate data analysis for students, from scaffolding to investigation and reporting using different datasets.

474

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

475

Neural net application to transmission line fault detection and classification  

E-Print Network [OSTI]

NEURAL NET APPLICATION TO TRANSMISSION LINE FAULT DETECTION AND CLASSIFICATION A Thesis by IGOR RIKALO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approve as to style... Applicanon to Transmission Line Fault Detection and Classification. (December 1994) Igor Rikalo, B. S. University of Sarajevo Chair of Advisory Committee: Dr. Mladen Kezunovic Today, in electric power systems, a large amount of data is made readily...

Rikalo, Igor

2012-06-07T23:59:59.000Z

476

Nuclear matter at high temperature and low net baryonic density  

SciTech Connect (OSTI)

We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

Costa, R. S.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Dr. Xavier Sigaud, 150 Urca 22290-180, Rio de Janeiro, RJ (Brazil); Oliveira, J. C. T. [Departamento de Fisica, Universidade Federal de Roraima, Campus do Paricarana, s/n, 69310-270, Boa Vista, RR (Brazil); Rodrigues, H. [Centro Federal de Educacao Tecnologica do Rio de Janeiro, Av. Maracana, 249 Maracana 20271-110, Rio de Janeiro, RJ (Brazil); Chiapparini, M. [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524 Maracana, Rio de Janeiro, RJ (Brazil)

2010-11-12T23:59:59.000Z

477

Table 11.2 Electricity: Components of Net Demand, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Electricity: Components of Net Demand, 2010; 2 Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Electricity Components; Unit: Million Kilowatthours. Sales and Net Demand Economic Total Onsite Transfers for Characteristic(a) Purchases Transfers In(b) Generation(c) Offsite Electricity(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 91,909 Q 1,406 194 93,319 20-49 86,795 81 2,466 282 89,060 50-99 90,115 215 2,593 1,115 91,808 100-249 124,827 347 11,375 5,225 131,324 250-499 116,631 2,402 24,079 5,595 137,516 500 and Over 225,242 6,485 91,741 20,770 302,699 Total 735,520 9,728 133,661 33,181 845,727 Employment Size Under 50

478

Net Power Technology NP Holdings or NPH | Open Energy Information  

Open Energy Info (EERE)

Net Power Technology NP Holdings or NPH Net Power Technology NP Holdings or NPH Jump to: navigation, search Name Net Power Technology (NP Holdings or NPH) Place Chanchun, Jilin Province, China Sector Efficiency, Renewable Energy Product China-based company, focused on electricity storage systems based on zinc-bromide redox flow cells for renewable energy and energy efficiency applications. Coordinates 40.911701°, 45.354198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.911701,"lon":45.354198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Weighting and Bayes Nets for Rollup of Surveillance Metrics  

SciTech Connect (OSTI)

The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

2012-04-30T23:59:59.000Z

480

RadNet: Open network protocol for radiation data  

SciTech Connect (OSTI)

Safeguards instrumentation is increasingly being incorporated into remote monitoring applications. In the past, vendors of radiation monitoring instruments typically provided the tools for uploading the monitoring data to a host. However, the proprietary nature of communication protocols lends itself to increased computer support needs and increased installation expenses. As a result, a working group of suppliers and customers of radiation monitoring instruments defined an open network protocol for transferring packets on a local area network from radiation monitoring equipment to network hosts. The protocol was termed RadNet. While it is now primarily used for health physics instruments, RadNet`s flexibility and strength make it ideal for remote monitoring of nuclear materials. The incorporation of standard, open protocols ensures that future work will not render present work obsolete; because RadNet utilizes standard Internet protocols, and is itself a non-proprietary standard. The use of industry standards also simplifies the development and implementation of ancillary services, e.g. E-main generation or even pager systems.

Rees, B.; Olson, K. [Los Alamos National Lab., NM (United States); Beckes-Talcott, J.; Kadner, S.; Wenderlich, T.; Hoy, M.; Doyle, W. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Koskelo, M. [Canberra Industries, Meriden, CT (United States)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "actual net internal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 11.1 Electricity: Components of Net Demand, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010; 1.1 Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 75,652 21 5,666 347 80,993 3112 Grain and Oilseed Milling 16,620 0 3,494 142 19,972 311221 Wet Corn Milling 7,481 0 3,213 14 10,680 31131 Sugar Manufacturing 1,264 0 1,382 109 2,537 3114 Fruit and Vegetable Preserving and Specialty Foods 9,258 0 336 66 9,528 3115 Dairy Products 9,585 2 38 22 9,602 3116 Animal Slaughtering and Processing 20,121 15 19 0 20,155 312 Beverage and Tobacco Products

482

Renewable Energy Resources Inc formerly Internal Hydro International Inc |  

Open Energy Info (EERE)

Internal Hydro International Inc Internal Hydro International Inc Jump to: navigation, search Name Renewable Energy Resources Inc (formerly Internal Hydro International Inc) Place Tampa, Florida Zip 33603 Sector Hydro Product Internal Hydro's technology takes waste, pumped pressures of fluids, gases or the constantly available natural flows of water and extracts power from them via a turbine. References Renewable Energy Resources Inc (formerly Internal Hydro International Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources Inc (formerly Internal Hydro International Inc) is a company located in Tampa, Florida . References ↑ "Renewable Energy Resources Inc (formerly Internal Hydro

483

On the impact of on-chip inductance on signal nets under the influence of power grid noise  

Science Journals Connector (OSTI)

It has been well recognized that the impact of on-chip inductance on some critical nets, such as clock nets, is significant and cannot be ignored in delay modeling for these nets. However, the impact of on-chip inductance on signal nets in general is ... Keywords: on-chip inductance, power grid, very large scale integration (VLSI)

Tom Chen

2005-03-01T23:59:59.000Z

484

International petroleum statistics report  

SciTech Connect (OSTI)

The International Petroleum Statistics Report is a monthly publication that provides current international oil data. This report presents data on international oil production, demand, imports, exports and stocks. The report has four sections. Section 1 contains time series data on world oil production, and on oil demand and stocks in the Organization for Economic Cooperation and Development (OECD). Section 2 presents an oil supply/demand balance for the world, in quarterly intervals for the most recent two years. Section 3 presents data on oil imports by OECD countries. Section 4 presents annual time series data on world oil production and oil stocks, demand, and trade in OECD countries.

NONE

1995-10-01T23:59:59.000Z

485

Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement  

SciTech Connect (OSTI)

Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image-guided radiation therapy procedure.

Matsubara, Kana, E-mail: matsubara-kana@hs.tmu.ac.jp [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan); Kohno, Ryosuke [National Cancer Center Hospital East, Chiba (Japan); National Cancer Center Research Institute, Chiba (Japan); Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo [National Cancer Center Hospital East, Chiba (Japan); Saitoh, Hidetoshi [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan)

2013-07-01T23:59:59.000Z

486

www.free4vn.org oldroad www.vsofts.net oldroadwww.free4vn.org oldroad  

E-Print Network [OSTI]

www.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www

Giridhar, K.

487

NUCLEAR ISLANDS International Leasing  

Broader source: Energy.gov (indexed) [DOE]

ISLANDS ISLANDS International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use Christopher E. Paine and Thomas B. Cochran Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium's relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel

488

admission guide International  

E-Print Network [OSTI]

2015/ 2016 admission guide International First-Year Students #12;2 3 WORLDWIDE RECOGNITION (2008 and Digital Media Critical Studies* Integrated Critical Practice* Production* German Studies Global Economics Networks Computer Science Computer Science: Computer Game Design Electrical Engineering Communications

California at Santa Cruz, University of

489

International Summer School2014  

E-Print Network [OSTI]

International Summer Camp 11 Session 3 Intensive Training on Chinese Language 15 About Dalian 19 #12;#12;About a century, and having gone through the persistent efforts of several generations, DUT has developed

Haviland, David

490

International Energy Agency  

Broader source: Energy.gov [DOE]

The International Energy Agency (IEA) provides a mechanism for member countries to task- and cost-share research activities through two agreementsone supporting hydrogen activities and another...

491

International petroleum statistics report  

SciTech Connect (OSTI)

This report presents data on international oil production, demand, imports, exports, and stocks. World oil production and OECD demand data are for the years 1970 through 1994; OECD stocks from 1973 through 1994; and OECD trade from 1984 through 1994.

NONE

1996-03-01T23:59:59.000Z

492

International petroleum statistics report  

SciTech Connect (OSTI)

This report presents data on international oil production, demand, imports, and stocks. World oil production and OECD demand data are for the years 1970 through 1995; stocks from 1973 through 1995, and trade from 1985 through 1995.

NONE

1996-12-01T23:59:59.000Z

493

CCPPolicyBriefing International  

E-Print Network [OSTI]

: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Modelling international wind energy diffusion: www.uea.ac.uk/ccp T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ

Feigon, Brooke

494

Internal Dose Estimates from  

E-Print Network [OSTI]

Appendix F Internal Dose Estimates from NTS Fallout F-1 #12;Radiation Dose to the Population;TABLE OF CONTENTS Page F- Part I. Estimates of Dose...........................................................................................40 Comparison to dose estimates from global fallout

495

INTERNATIONAL PACIFIC RESEARCH CENTER  

E-Print Network [OSTI]

INTERNATIONAL PACIFIC RESEARCH CENTER APRIL 2004­MARCH 2005 REPORT SCHOOL OF OCEAN AND EARTH RESEARCH HIGHLIGHTS Indo-Pacific Ocean Climate Pacific Research Center Design by: Susan Yamamoto Printed by: Hagadone Printing Company Photo: Waikiki

Wang, Yuqing

496

INTERNATIONAL ENERGY AND ENVIRONMENT  

E-Print Network [OSTI]

in a heat pump cooling system, thereby alleviating peak electricity consumption and associated emissions substituting for banned fluorocarbon refrigerants, coping with carbon costing and reducing water consumptionINTERNATIONAL ENERGY AND ENVIRONMENT FOUNDATION Computational Fluid Dynamics Modeling

497

international | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activity in Gasification and Coal to Liquids Development News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project...

498

SRI International | Open Energy Information  

Open Energy Info (EERE)

SRI International Jump to: navigation, search Name: SRI International Region: United States Sector: Marine and Hydrokinetic Website: http:www.sri.com This company is listed in...

499

Greenlife International | Open Energy Information  

Open Energy Info (EERE)

Francisco, California Zip: 94111 Product: GreenLife International is a biodiesel manufacturer and equipment saler References: Greenlife International1 This article is a stub....

500

Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

In 2009, Transformations, Inc. partnered with U.S. Department of Energy (DOE) Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE's Challenge Home. The super-insulated houses provide data for several research topics in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners' perceptions of equipment performance. BSC also examined the developer's financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.

Not Available

2013-11-01T23:59:59.000Z