Powered by Deep Web Technologies
Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

2

Biomass Supply and Carbon Accounting for  

E-Print Network [OSTI]

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

3

Flash Carbonization of Biomass  

Science Journals Connector (OSTI)

Biomass feedstocks included woods (Leucaena and oak) and agricultural byproducts (macadamia nut shells and corncob). ... Biomass feedstocks employed in this study are listed in Table 1. ... 4 We presume that these differences represent the inherent variability of biomass feedstocks from one year, location, etc. to the next. ...

Michael Jerry Antal, Jr.; Kazuhiro Mochidzuki; Lloyd S. Paredes

2003-07-11T23:59:59.000Z

4

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

5

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3. Files in this numeric data package 3. Files in this numeric data package File File size Projection number File name (kbytes) File description type File type 1 ndp068.txt 94 Descriptive file (i.e., this n/a ASCII text document) 2 Biomass.e00 59,468 Exported ARC/INFO gridded Albers ARC/INFO (3.75-km) estimates of actual export GRID and potential biomass carbon 3 Biomassx.e00 1,534 Exported ARC/INFO gridded Geographic ARC/INFO (0.25-degree) estimates of export GRID actual and potential biomass carbon 4 ac.dat 24,607 ASCII file of ungenerated Albers GRIDASCII ARC/INFO gridded (3.75- ASCII data

6

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large Wildfires  

E-Print Network [OSTI]

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large: Global Biomass Burning & Carbon Emissions Standard Emissions Inventories: Burned Area & GFED recently daily. Fire occurrenceoccurrence Roy et al.Roy et al. Carbon emissions (C) = burned area . fuel

7

Forest Carbon and Biomass Energy - LCA Issues and Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forest Carbon and Biomass Energy - LCA Issues and Challenges Forest Carbon and Biomass Energy - LCA Issues and Challenges Breakout Session 2D-Building Market Confidence and...

8

Biomass Energy in a Carbon Constrained Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

9

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4. Item descriptions for the ten ARC/INFO export grids 4. Item descriptions for the ten ARC/INFO export grids 3.75-km grid 0.25-degree Item Input Output Variable name grid name Column name width width Item type description BIOMASS BIOMASSX 1 Value 4 10 Binary Unique value for (2,200 records (2,209 records each grid cell in .vat file) in .vat file) 5 Count 4 10 Binary Cell count associated with each unique value 9 ac 4 16 Binary Actual biomass carbon (Mg C/ha) 13 pc 4 16 Binary Potential biomass carbon (Mg C/ha) CLIMATE CLIMATEX 1 Value 4 10 Binary Unique value for

10

Stability of Biomass-derived Black Carbon in Soils . | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stability of Biomass-derived Black Carbon in Soils . Stability of Biomass-derived Black Carbon in Soils . Abstract: Black carbon (BC) may play an important role in the global C...

11

Life cycle assessment and biomass carbon accounting  

U.S. Energy Information Administration (EIA) Indexed Site

Biomass feedstocks Biomass feedstocks and the climate implications of bioenergy Steven Hamburg Environmental Defense Fund Slides adapted from Reid Miner NCASI On the landscape, the single-plot looks like this 75 Harvested and burned for energy In year zero, the plot is harvested and the wood is burned for energy 1.1 Year 1 After regeneration begins, the growing biomass sequesters small amounts of CO2 annually 2.1 Year 2 2.8 Year 3 ??? Year X, until next harvest Σ = . Over time, if carbon stocks are returned to pre-harvest levels... ...the net emissions over this time are zero. single plot analysis Net Cumulative CO2 combustion emissions Cumulative CO2 combustion emissions Time Time Biomass energy Fossil fuel energy single plot analysis Net Cumulative CO2 combustion emissions Cumulative

12

Energy Densification of Lignocellulosic Biomass via Hydrothermal Carbonization and Torrefaction .  

E-Print Network [OSTI]

??The work presented in this study demonstrated the potential of hydrothermal carbonization (HTC) of biomass for the production of carbon-rich solid fuel, known as hydrochar… (more)

Kambo, Harpreet Singh

2014-01-01T23:59:59.000Z

13

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire  

E-Print Network [OSTI]

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

14

Updating Biomass into Functional Carbon Material in Ionothermal Manner  

Science Journals Connector (OSTI)

Updating Biomass into Functional Carbon Material in Ionothermal Manner ... The development of meaningful ways to transfer biomass into useful materials, more efficient energy carriers, and/or carbon storage deposits is a profound challenge of our days. ... This ITC method relies on the synergistic use of structure-directing effect, good biomass solubility, and excellent thermal stability of ILs, and provides a sustainable strategy for exploiting biomass. ...

Pengfei Zhang; Yutong Gong; Zhongzhe Wei; Jing Wang; Zhiyong Zhang; Haoran Li; Sheng Dai; Yong Wang

2014-07-08T23:59:59.000Z

15

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

16

Forest Carbon and Biomass Energy – LCA Issues and Challenges  

Broader source: Energy.gov [DOE]

Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon and Biomass Energy – LCA Issues and Challenges Reid Miner, Vice President, NCASI

17

Biomass carbon sequestration by planted forests in China  

Science Journals Connector (OSTI)

The planted forest area and carbon sequestration have increased significantly in China, because of ... based volume-to-biomass method to estimate the carbon storage by planted forests in China in ... inventories....

Xinliang Xu; Kerang Li

2010-08-01T23:59:59.000Z

18

GEOGRAPHICAL DISRIBUTION OF WOODY BIOMASS CARBON IN TROPICAL AFRICA: AN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geographical Distribution of Woody Biomass Carbon in Tropical Africa: An Geographical Distribution of Woody Biomass Carbon in Tropical Africa: An Updated Database for 2000, NDP-055b TABLES Please cite as: Gibbs, H.K. and S. Brown. 2007. Geographical Distribution of Woody Biomass Carbon in Tropical Africa: An Updated Database for 2000, NDP-055b. Available at [http://cdiac.ornl.gov/epubs/ndp/ndp055/ndp055b.html] from the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. Tables 1-4 Files in this numeric data package Variable formats of af_biomass.vat Variable formats of af_carbon.vat Variable formats of glc_subset_af.vat Variable formats of land_geo.vat Variable formats of pb_geo.vat Table 1. Files in this numeric data package File No. File name File size (bytes) File description

19

Combustion of biomass as a global carbon sink  

E-Print Network [OSTI]

This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

Ball, Rowena

2008-01-01T23:59:59.000Z

20

Method for creating high carbon content products from biomass oil  

DOE Patents [OSTI]

In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

Parker, Reginald; Seames, Wayne

2012-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Biomass energy with carbon capture and storage (BECCS): a review  

E-Print Network [OSTI]

Biomass energy with carbon capture and storage (BECCS): a review Claire Gough, Paul Upham December are alternative terms for the coupling of bioenergy with carbon capture and storage (CCS). The paper follows from a workshop held in December 2009, hosted by the Scottish Centre for Carbon Capture and Storage

Matthews, Adrian

22

Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California  

E-Print Network [OSTI]

fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BBEmission characteristics of black carbon in anthropogenic and biomass burning plumes over. (2012), Emission characteristics of black carbon in anthropogenic and biomass burning plumes over

Jimenez, Jose-Luis

23

Estimation of biomass and carbon stocks: the case of the Atlantic Forest  

E-Print Network [OSTI]

S.E. 2008. Estimation of biomass and carbon stocks: the casein Amazonian forest biomass. Global Change Biol. 10:545-562R. 2004b. Increasing biomass in Amazonian forest plots.

2008-01-01T23:59:59.000Z

24

Biomass Chronosequences of United States Forests: Implications for Carbon Storage  

E-Print Network [OSTI]

Chapter 14 Biomass Chronosequences of United States Forests: Implications for Carbon Storage, if the harvested wood has a sufficiently long residence time or is used to offset fossil fuel emissions, repeated and Schlamadinger 1997). For a given parcel of land, the relative merits of plantation forestry vs old

Lichstein, Jeremy W.

25

Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055) Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055) DOI: 10.3334/CDIAC/lue.ndp055 data Data PDF PDF graphics Graphics Please note: these data have been updated for the year 2000 Contributors Sandra Brown1 Greg Gaston2 Work on this project was initiated while at the Department of Natural Resources and Environmental Sciences University of Illinois Urbana, Illinois 61801, U.S.A. 1Present address: Winrock International, Arlington, Virgina. 2Present address: Department of Geosciences, Oregon State University. Prepared by T.W. Beaty, and L.M. Olsen. Carbon Dioxide Information Analysis Center Environmental Sciences Division OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6290 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY

26

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database (NDP-068) DOI: 10.3334/CDIAC/lue.ndp068 data Data PDF PDF Appendix A is reprint of Brown et al. paper in Geocarto International, Vol. 8; copyright 1993 Geocarto International Centre and reprinted with kind permission from the publisher) image Contributors Sandra Brown1 Louis R. Iverson2 Anantha Prasad2 Department of Natural Resources and Environmental Sciences University of Illinois Urbana, Illinois 1Present address: Winrock International, Arlington, Virginia 2Present address: United States Forest Service, Northeast Research Station, Delaware, Ohio Prepared by Tammy W. Beaty, Lisa M. Olsen, Robert M. Cushman, and Antoinette L. Brenkert Carbon Dioxide Information Analysis Center

27

EIA - AEO2010 - Accounting for carbon dioxide emissions from biomass energy  

Gasoline and Diesel Fuel Update (EIA)

Accounting for carbon diioxide emissions from biomass energy combustion Accounting for carbon diioxide emissions from biomass energy combustion Annual Energy Outlook 2010 with Projections to 2035 Accounting for carbon dioxide emissions from biomass energy combustion CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention [76], carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time [77]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

28

ORIGINAL PAPER Estimation of tree biomass, carbon pool and net primary  

E-Print Network [OSTI]

ORIGINAL PAPER Estimation of tree biomass, carbon pool and net primary production of an old Science+Business Media B.V. 2011 Abstract & Background The data on carbon pool and biomass distribution in north-eastern India, using biomass equations developed from 40 harvested trees between 9 and 63 cm

Paris-Sud XI, Université de

29

A large carbon sink in the woody biomass of Northern forests  

E-Print Network [OSTI]

A large carbon sink in the woody biomass of Northern forests R. B. Myneni* , J. Dong* , C. J fossil fuels and industrial activities. Some of the missing carbon is sequestered in vegetation biomass, industrialized nations can use certain forest biomass sinks to meet their green- house gas emissions reduction

Goldberg, Bennett

30

Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass environments  

E-Print Network [OSTI]

Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass induced an increase in phytoplankton biomass, but do not necessarily trigger increases in carbon export particles via coagulation. We demonstrate that in low biomass regions, where concentrations do not reach

Jackson, George

31

Utilization of aqueous product generated by hydrothermal carbonization of waste biomass.  

E-Print Network [OSTI]

??Hydrothermal carbonization (HTC) is a thermochemical treatment process that allows for the conversion of relatively dilute biomass slurries into value added products which are hydrochar… (more)

Vozhdayev, Georgiy Vladimirovich

2014-01-01T23:59:59.000Z

32

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

34

Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)  

Reports and Publications (EIA)

Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

2010-01-01T23:59:59.000Z

35

Energy Department Announces $12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced up to $12 million in funding to advance the production of cost-competitive, high-performance carbon fiber material from renewable non-food-based feedstocks such as agricultural residues and woody biomass.

36

Catalytic Conversion of Tars, Carbon Black and Methane from Pyrolysis/Gasification of Biomass  

Science Journals Connector (OSTI)

The use of catalysts in biomass gasification has been suggested for a long time.1 Fung and Graham found that potassium carbonate and calcium oxide have catalytic influences on the gasification rate and the produc...

Clas Ekström; Nils Lindman; Rune Pettersson

1985-01-01T23:59:59.000Z

37

Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets  

Broader source: Energy.gov [DOE]

Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets David Cleaves, Climate Change Advisor to the Chief, U.S. Forest Service, U.S. Department of Agriculture

38

Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight  

E-Print Network [OSTI]

Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence that the contermi- nous U.S. annually sequesters 149­330 Tg C year�1 , with forests, urban trees, and wood products Keywords: Afforestation Carbon sequestration Competition Forest restoration Plantation establishment A B

39

Stable carbon fractionation in size-segregated aerosol particles produced by controlled biomass burning  

Science Journals Connector (OSTI)

Abstract Six different biomass fuel types (wood pellets, sunflower stalk pellets, straw pellets, buckwheat shells, mixed biomass waste pellets, and grain screenings) and wastewater sludge pellets were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size-segregated particles. Aerosol particles were sampled using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles (size <1 µm) in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The isotopic fractionation between aerosol particles and original biomass material varied from ?0.94±0.23‰ to 1.12±0.16‰. The largest negative fractionation ?0.94±0.23‰ was obtained for the wood pellet fuel type while the largest positive isotopic fractionation (1.12±0.16‰) was observed during the grain screenings combustion. The carbon isotope composition of MOUDI samples compared very well with the isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in size-segregated aerosol particles suggested that combustion processes could strongly affect isotopic fractionation in aerosol particles of different sizes thereby potentially affecting an interpretation of ambient atmospheric observations.

A. Garbaras; A. Masalaite; I. Garbariene; D. Ceburnis; E. Krugly; V. Remeikis; E. Puida; K. Kvietkus; D. Martuzevicius

2015-01-01T23:59:59.000Z

40

Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica  

E-Print Network [OSTI]

it mainly in hard biomass (wood) with a slow turnover rate of 14­19 years for native forests in ChileCarbon accumulation in the biomass and soil of different aged secondary forests in the humid Received in revised form 17 June 2011 Accepted 21 June 2011 Available online 23 July 2011 Keywords: Biomass

Rey Benayas, José María

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6. Item statistics for the data files in this numeric data package 6. Item statistics for the data files in this numeric data package Number Number of Number Number of unique Standard File name Cell size columns of rows of records values Item(s) Minimum Maximum Mean deviation Biomass.e00 3.75 km 2598 1608 n/a 2200 ac,pc 1 2200 270.32 503.09 Biomassx.e00 0.25 deg 421 238 n/a 2209 ac,pc 1 2209 376.30 636.81 ac.dat 3.75 km 2598 1608 1614 281 ac 7 383 145.17 61.72 acx.dat 0.25 deg 421 238 244 279 ac 7 336 143.33 61.28

42

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1. Redistribution of the data as a result of the resampling process 1. Redistribution of the data as a result of the resampling process Variable Number of name unique values Minimum Maximum Cell size Grid name AC 281 7 383 3.75 km BIOMASS AC 279 7 336 0.25 degree BIOMASSX PC 30 14 393 3.75 km BIOMASS PC 288 43 402 0.25 degree BIOMASSX CLIMI 20 1 20 3.75 km CLIMATE CLIMI 20 1 20 0.25 degree CLIMATEX PRECIP 13 1 13 3.75 km CLIMATE PRECIP 13 1 13 0.25 degree CLIMATEX POP 14 1 14 3.75 km DEMOG

43

Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics  

Science Journals Connector (OSTI)

...and J.-M Ottorini2001Root biomass and biomass increment in a beech (Fagus sylvatica...McMurtrie, and H McGilvray2002Does conversion of forest to agricultural land...H , and O Nagel2000The role of biomass allocation in the growth response...

2007-01-01T23:59:59.000Z

44

Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics  

Science Journals Connector (OSTI)

...the time when foliage, wood, debris, roots and...and 97% of global root biomass (Jackson et al. 1996...tropical woodland or plantation classes defined by Mokany...not rely exclusively on biomass inventories? The 1990-2005...rules for patterns of biomass partitioning in seed...

2007-01-01T23:59:59.000Z

45

Assessment of carbon stores in tree biomass for two management scenarios in Russia  

Science Journals Connector (OSTI)

Accurate quantification of terrestrial carbon storage and its change is of key importance to improved understanding of global carbon dynamics. Forest management influences carbon sequestration and release patterns, and gap models are well suited for evaluating carbon storage. An individual-based gap model of forest dynamics, FAREAST, is applied across Russia to estimate aboveground carbon storage under management scenarios. Current biomass from inventoried forests across Russia is compared to model-based estimates and potential levels of biomass are estimated for a set of simplified forestry practices. Current carbon storage in eastern Russia was lower than for the northwest and south, and lower than model estimates likely due to high rates of disturbance. Model-derived carbon storage in all regions was not significantly different between the simulated 'current' and hypothetical 'even-aged' management strategies using rotations of 150 and 210 years. Simulations allowing natural maturation and harvest after 150 years show a significant increase in aboveground carbon in all regions. However, it is unlikely that forests would be left unharvested to 150 years of age to attain this condition. These applications indicate the value of stand simulators, applied over broad regions such as Russia, as tools to evaluate the effect of management regimes on aboveground carbon storage.

Jacquelyn K Shuman; Herman H Shugart; Olga N Krankina

2013-01-01T23:59:59.000Z

46

Energy Department Announces $11 Million to Advance Renewable Carbon Fiber Production from Biomass  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced today up to $11.3 million for two projects that aim to advance the production of cost-competitive, high-performance carbon fiber material from renewable, non-food-based feedstocks, such as agricultural residues and woody biomass.

47

Attributing land-use change carbon emissions to exported biomass  

SciTech Connect (OSTI)

In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.

Saikku, Laura, E-mail: laura.saikku@helsinki.fi [University of Helsinki, P.O Box 65, 00014 University of Helsinki (Finland); Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland); Pingoud, Kim, E-mail: kim.pingoud@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland)

2012-11-15T23:59:59.000Z

48

Tropical Africa: Total Forest Biomass (By Country)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

49

A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems  

SciTech Connect (OSTI)

Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

2013-01-01T23:59:59.000Z

50

Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase  

Science Journals Connector (OSTI)

Abstract The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300 °C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

John Matthiesen; Thomas Hoff; Chi Liu; Charles Pueschel; Radhika Rao; Jean-Philippe Tessonnier

2014-01-01T23:59:59.000Z

51

Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase  

SciTech Connect (OSTI)

The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300?) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

Matthiesen, John; Hoff, Thomas; Liu, Chi; Pueschel, Charles; Rao, Radhika; Tessonnier, Jean-Philippe

2014-06-01T23:59:59.000Z

52

57Journal of Tropical Forestry and Environment Vol. 01, No. 01 (2011) 57-71 Estimation of Above Ground Tree Biomass and Carbon of Pinus  

E-Print Network [OSTI]

Ground Tree Biomass and Carbon of Pinus caribaea (Morelet) S.M.C.U.P. Subasinghe*, G.B. Munasinghe stocks as forest biomass. This study was conducted using an empirical method to understand the biomass and stored carbon by forest plantations in Sri Lanka. Further, in this study, the possibility of predicting

53

Biomass burning contribution to black carbon in the Western United States Mountain Ranges  

E-Print Network [OSTI]

and the atmosphere from biomass burning, Climatic Change, 2,Chemistry and Physics Biomass burning contribution to black2011 Y. H. Mao et al. : Biomass burning contribution to

2011-01-01T23:59:59.000Z

54

Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization  

Science Journals Connector (OSTI)

Abstract Lignocellulosic biomass has the potential to produce sustainable clean-green energy and other bio-based materials. However, due to the inferior physicochemical properties compared to coal, biomass is not regarded as an ideal feedstock for industrial applications. The work presented in this study evaluates the feasibility of two different thermal pre-treatments, torrefaction and hydrothermal carbonization (HTC), followed by densification. The densified and pretreated samples obtained from miscanthus feedstock were characterized in terms of the strength, storage, and combustion properties for energy applications. The results showed that both the thermal pre-treatments are promising methods for upgrading biomass. However, the HTC pellets showed considerably superior physicochemical properties when compared to the raw and torrefied pellets. The mass density (mass per unit volume) and volumetric energy density (HHV per unit volume) of the pellets produced via HTC at 260 °C was significantly higher (1036 kg/m3, 26.9 GJ/m3) compared to raw pellets (834 kg/m3, 15.7 GJ/m3) and torrefied pellets (820 kg/m3, 16.7 GJ/m3). Moreover, the HTC pellets showed improved hydrophobicity, reduction in ash content, reduction in alkali and alkaline earth metal content, and a considerable increase in the carbon content. Based on these results, the HTC pellets have potential for the heat and power applications, including replacing coal in the existing coal-fired power plants without any significant modifications.

Harpreet Singh Kambo; Animesh Dutta

2014-01-01T23:59:59.000Z

55

Gasification Characteristics of Hydrothermal Carbonized Biomass in an Updraft Pilot-Scale Gasifier  

Science Journals Connector (OSTI)

Gasification Characteristics of Hydrothermal Carbonized Biomass in an Updraft Pilot-Scale Gasifier ... At elevated temperatures near 200–250 °C at or above the saturation pressure, the process is carried out in a medium of water with a residence time varying between 3 and 8 h. ... When the gasification experiments were performed in a pilot-scale gasifier and air preheated to 900 °C was used as the gasifying medium, the H2, CO2, and hydrocarbon contents decreased with the ER value and the CO content increased. ...

Duleeka Sandamali Gunarathne; Andreas Mueller; Sabine Fleck; Thomas Kolb; Jan Karol Chmielewski; Weihong Yang; Wlodzimierz Blasiak

2014-02-20T23:59:59.000Z

56

Impact of the Presence of Carbon Monoxide and Carbon Dioxide on Gas Oil Hydrotreatment: Investigation on Liquids from Biomass Cotreatment with Petroleum Cuts  

Science Journals Connector (OSTI)

Impact of the Presence of Carbon Monoxide and Carbon Dioxide on Gas Oil Hydrotreatment: Investigation on Liquids from Biomass Cotreatment with Petroleum Cuts ... A potential way of utilizing these bioliquids as fuels could be the direct hydrotreatment(6) or the cohydrotreatment with petroleum fractions,(7) such as atmospheric gas oils, to achieve the technical and environmental fuel standards, especially in terms of sulfur content. ...

Ana Pinheiro; Nathalie Dupassieux; Damien Hudebine; Christophe Geantet

2011-01-18T23:59:59.000Z

57

Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon  

E-Print Network [OSTI]

Click Here for Full Article Assessing general relationships between aboveground biomass 2010; published 23 June 2010. [1] Lidarbased aboveground biomass is derived based on the empirical relationship between lidarmeasured vegetation height and aboveground biomass, often leading to large

Ni-Meister, Wenge

58

Reducing the uncertainties in carbon emissions fromReducing the uncertainties in carbon emissions from tropical deforestation -the BIOMASS mission  

E-Print Network [OSTI]

from tropical deforestation - the BIOMASS mission Shaun Quegan University of Sheffield x average biomassCem = deforested area x average biomass (UN Framework Convention on Climate Change Good Practice Guide 2003) #12;How well is biomass known? Model Model + SatelliteInterpolation Model

59

Dynamic molecular structure of plant biomass-derived black carbon (biochar)  

SciTech Connect (OSTI)

Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

2009-11-15T23:59:59.000Z

60

Year-round observations of carbon biomass and flux variability in the Southern Ocean  

SciTech Connect (OSTI)

Three Carbon Explorer (CE) floats profiling to kilometer depths in the Southern Ocean tracked dawn-dusk variations of mixing/stratification, particulate organic carbon (POC), and light scattering and sedimentation at 100, 250, and 800 m continuously from January 2002 to April 2003. Data were analyzed in conjunction with contemporaneous satellite winds and chlorophyll and derived subsurface light fields. The CE deployed at 66{sup o}S 172{sup o}W operated in the ice edge zone in absence of light. Two CEs deployed at 55{sup o}S 172{sup o}W recorded wintertime mixing to {approx}400 m, yet observed very different bloom dynamics and sedimentation the following spring. Four hypotheses are explored. The strongest is that shallow transient stratification of the deep winter mixed layer to shallower than photosynthetic critical depth occurred more frequently in the non-bloom/higher sedimentation case. The lower particle export to 800 m under the bloom was hypothesized to be due to higher interception of sinking carbon by a relatively starved over wintering zooplankton population. In the Southern Ocean surface phytoplankton biomass may counter indicate particle flux at kilometer depths.

Bishop, James K.B.; Wood, Todd

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications  

Science Journals Connector (OSTI)

Abstract Reactivities of four biomass samples were investigated in four combustion atmospheres using non-isothermal thermogravimetric analysis (TGA) under two heating rates. The chosen combustion atmospheres reflect carbon capture and storage (CCS) applications and include O 2 and CO 2 -enrichment. Application of the Coats–Redfern method assessed changes in reactivity. Reactivity varied due to heating rate: the reactivity of char oxidation was lower at higher heating rates while devolatilisation reactions were less affected. In general, and particularly at the higher heating rate, increasing [ O 2 ] increased combustion reactivity. A lesser effect was observed when substituting N 2 for CO 2 as the comburent; in unenriched conditions this tended to reduce char oxidation reactivity while in O 2 -enriched conditions the reactivity marginally increased. Combustion in a typical, dry oxyfuel environment (30% O 2 , 70% CO 2 ) was more reactive than in air in TGA experiments. These biomass results should interest researchers seeking to understand phenomena occurring in larger scale CCS-relevant experiments.

S. Pickard; S.S. Daood; M. Pourkashanian; W. Nimmo

2014-01-01T23:59:59.000Z

62

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

63

Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation  

E-Print Network [OSTI]

Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near Keywords: salt marsh organic sediments accretion sea-level rise belowground biomass carbon storage a b model we explore how marsh stratigraphy responds to sediment supply and the rate of sea- level rise

64

High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage  

Science Journals Connector (OSTI)

Themochemically converting the waste biomass to functional carbon nanomaterials and bio-oil is an environmentally friendly apporach by reducing greenhouse gas emissions and air pollution caused by open burning. ...

Wu-Jun Liu; Ke Tian; Yan-Rong He; Hong Jiang; Han-Qing Yu

2014-11-05T23:59:59.000Z

65

Bio-mass derived mesoporous carbon as super electrode in all vanadium redox flow battery with multicouple reactions  

Science Journals Connector (OSTI)

Abstract We first report the multi-couple reaction in all vanadium redox flow batteries (VRFB) while using bio-mass (coconut shell) derived mesoporous carbon as electrode. The presence of V3+/V4+ redox couple certainly supplies the additional electrons for the electrochemical reaction and subsequently provides improved electrochemical performance of VRFB system. The efficient electro-catalytic activity of such coconut shell derived high surface area mesoporous carbon is believed for the improved cell performance. Extensive power and electrochemical studies are performed for VRFB application point of view and described in detail.

Mani Ulaganathan; Akshay Jain; Vanchiappan Aravindan; Sundaramurthy Jayaraman; Wong Chui Ling; Tuti Mariana Lim; M.P. Srinivasan; Qingyu Yan; Srinivasan Madhavi

2014-01-01T23:59:59.000Z

66

Fischer?Tropsch Synfuels from Biomass: Maximizing Carbon Efficiency and Hydrocarbon Yield  

Science Journals Connector (OSTI)

This paper collects yield and efficiency estimates for FT synfuel production from biomass feedstocks. ... In comparison to other biofuels, advantages include (i) flexible use of all kinds of biomass feedstocks (including waste materials) and, therefore, no competition with the production of food, (ii) relatively high yields per arable land (100?180 GJ ha?1 year?1), and (iii) high fuel qualities to be used in present distribution infrastructures and high-efficiency engine technologies. ... Flow scheme for the conversion of biomass feedstocks to liquid hydrocarbon fuels (BTL) and formal chemical reactions. ...

Dominik Unruh; Kyra Pabst; Georg Schaub

2010-03-30T23:59:59.000Z

67

Economic Approach to Assess the Forest Carbon Implications of Biomass Energy  

Science Journals Connector (OSTI)

The model has been updated for this analysis with demand functions for biomass energy in five regions of the U.S. (Northeast, South, North Central, West, and Pacific Northwest), that include forest-specific cost functions that average about $40/m3 for harvesting and transporting forest residues and industrial roundwood to meet these demands. ... We test the influence of significantly higher biomass energy demand for both rates of annual growth in global GDP per capita. ...

Adam Daigneault; Brent Sohngen; Roger Sedjo

2012-04-19T23:59:59.000Z

68

A mixed integer nonlinear programming (MINLP) supply chain optimisation framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK  

Science Journals Connector (OSTI)

Abstract The co-firing of biomass and fossil fuels in conjunction with CO2 capture and storage (CCS) has the potential to lead to the generation of relatively inexpensive carbon negative electricity. In this work, we use a mixed integer nonlinear programming (MINLP) model of carbon negative energy generation in the UK to examine the potential for existing power generation assets to act as a carbon sink as opposed to a carbon source. Via a Pareto front analysis, we examine the technical and economic compromises implicit in transitioning from a dedicated fossil fuel only to a carbon negative electricity generation network. A price of approximately £30–50/t CO2 appears sufficient to incentivise a reduction of carbon intensity of electricity from a base case of 800 kg/MWh to less than 100 kg/MWh. However, the price required to incentivise the generation of carbon negative electricity is in the region of £120–175/t of CO2. In order for biomass to energy with CCS (BECCS) to be commercially attractive, the power plants in question must operate at a high load factor and high rates of CO2 capture. The relative fuel cost is a key determinant of required carbon price. Increasing biomass availability also reduces the cost of generating carbon negative electricity; however one must be cognisant of land use change implications.

O. Akgul; N. Mac Dowell; L.G. Papageorgiou; N. Shah

2014-01-01T23:59:59.000Z

69

Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii  

E-Print Network [OSTI]

March 2003. [1] A multi-platform sampling strategy was used to investigate carbon cycling in a cold Oceanography: Biological and Chemical: Carbon cycling; 4855 Oceanography: Biological and Chemical: Plankton; 4866 Oceanography: Biological and Chemical: Sorptive scavenging; 4870 Oceanography: Biological

Hawai'i at Manoa, University of

70

Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan  

Science Journals Connector (OSTI)

where H is the tree height (m); DBH is the diameter at breast height (cm); and V is the stem volume (m3). Stem wood volume was then multiplied by the basic stem density to estimate stem biomass. A recently report...

Chih-Hsin Cheng; Chih-Yu Hung; Chiou-Peng Chen; Chuang-Wun Pei

2013-12-01T23:59:59.000Z

71

Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs  

Science Journals Connector (OSTI)

Abstract Studies of carbon sources in plankton communities are important because carbon content has become the main currency used in functional studies of aquatic ecosystems. We evaluated the contribution to the total organic carbon pool from different plankton communities (phytoplankton, bacterioplankton, and zooplankton – C-biota) and its drivers in eight tropical hydroelectric reservoirs with different trophic and hydrological status and different physical features. Our systems were separated into three groups based on trophic status and water residence time: (i) mesotrophic with low residence time (ML); (ii) mesotrophic with high residence time (MH); and (iii) eutrophic with low residence time (EL). Our hypothesis that reservoirs with low water residence times and low nutrient concentrations would show the lowest C-biota was supported. Phytoplankton carbon (C-phy) showed the highest concentrations in the EL, followed by MH and ML systems. The EL group also showed significantly higher zooplankton carbon (C-zoo). No significant difference was observed for bacteria carbon (C-bac) among the three system groups. In addition to trophic status and water residence time, regression analyses revealed that water temperature, light, pH, and dissolved organic carbon concentrations were the main drivers of plankton communities in these large tropical hydroelectric reservoirs.

Lúcia H.S. Silva; Vera L.M. Huszar; Marcelo M. Marinho; Luciana M. Rangel; Jandeson Brasil; Carolina D. Domingues; Christina C. Branco; Fábio Roland

2014-01-01T23:59:59.000Z

72

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

73

Nitrogen cycling, plant biomass, and carbon dioxide evolution in a subsurface flow wetland  

E-Print Network [OSTI]

to ascertain the fate of nitrogen in a constructed wetland and the rate of bioremediation as indicated by carbon dioxide evolution. Research included a study of nitrogen uptake by plants and nitrification. A tracer isotope of nitrogen,¹?N, was used to follow...

Lane, Jeffrey J

2012-06-07T23:59:59.000Z

74

The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU  

Science Journals Connector (OSTI)

Abstract This study examines how subsidies for wood-fired heat and power plants and wood with coal co-fired power plants influence the use of wood biomass for energy in the short (2020) to medium (2030) term in the EU (European Union). Analysis shows that without subsidies wood-fired electricity will take only a marginal market share due to limited availability of low-cost wood from logging residues. A high CO2 price of 100 €/t without subsidies results in 30 million m3 of industrial wood used for energy production, which is sourced from the reduction of 12 million m3 for wood products, 10 million m3 additional imports and 8 million m3 additional harvest. With a subsidy level of 30 €/MWh in the four EU member countries Denmark, Germany, Netherlands and UK, the total amount of industrial wood used for energy becomes 158 million m3. In the latter case, reduction of wood for wood-based products is 35 million m3, additional harvest in the EU is 21 million m3, and import to the EU is 102 million m3. Subsidies to wood-fired and especially coal with wood co-fired mills substantially increase the use of wood and especially industrial wood for energy. However, even with a high 100 €/tCO2 price and subsidy, mostly gas-fired electricity is projected to be displaced in 2030 by the increasing use of industrial wood, which is not beneficial regarding reducing the high CO2 emission from power production using coal. To a large extent, subsidies for wood co-firing maintain the coal power share, which will otherwise be reduced at high carbon emission price level. In addition, the model results show that the main sources of the growing use of industrial wood for energy are imports from regions outside of the EU, which thus creates considerable carbon leakages.

Alexander Moiseyev; Birger Solberg; A. Maarit I. Kallio

2014-01-01T23:59:59.000Z

75

Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL  

E-Print Network [OSTI]

9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY disturbance of the natural global carbon cycle. The "carbon-neutral" renewable energy carrier biomass seems of biomass for energy purposes. The CEBM comprises a biospheric part being based on the "Osnabrück Biosphere

Keeling, Stephen L.

76

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network [OSTI]

from Smoldering Biomass Combustion. Atmos. Chem. Phys. , 10,aerosols emitted during biomass combustion [Robinson et al.burning samples. Combustion of biomass produces EC a and

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

77

Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere  

Science Journals Connector (OSTI)

The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2...emissions from biomass conversion processes can also be captured. If that is done...

Christian Azar; Kristian Lindgren; Eric Larson; Kenneth Möllersten

2006-01-01T23:59:59.000Z

78

Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass  

E-Print Network [OSTI]

bacteria for lignocellulosic biomass utilization CCR forfermentation of lignocellulosic biomass Jae-Han Kim & DavidAbstract Lignocellulosic biomass is an attractive carbon

Kim, Jae-Han; Block, David E.; Mills, David A.

2010-01-01T23:59:59.000Z

79

High Biomass Low Export Regimes in the Southern Ocean  

E-Print Network [OSTI]

of enhanced carbon biomass and export at 55 degrees S duringHigh Biomass Low Export Regimes in the Southern Ocean PhoebeSurface waters with high biomass levels and high proportion

Lam, Phoebe J.; Bishop, James K.B.

2006-01-01T23:59:59.000Z

80

Carbon sequestration  

Science Journals Connector (OSTI)

...Leaver and Howard Dalton Carbon sequestration Rattan Lal * * ( lal.1...and biotic technologies. Carbon sequestration implies transfer of atmospheric...and biomass burning. 3. Carbon sequestration Emission rates from fossil...

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Woodland owners' attitudes towards energy from forest biomass in a carbon-intensive jurisdiction: Case study of Nova Scotia, Canada  

Science Journals Connector (OSTI)

Abstract The use of forest biomass in thermal generation processes has been recognized by the Government of Nova Scotia (NS) as one option that could help meet its renewable electricity goals (25% by 2015 and 40% by 2020). Over half of the woodland in NS is owned by small-private woodland owners (51%), indicating that they could significantly influence the future of NS forests and its potential use for energy purposes. This paper presents the results of a survey of small-woodland owners on their attitudes towards using energy from forest biomass. 489 small-woodland owners responded to mail-out surveys and 14 rural community members participated in three focus groups. Three major findings emerged. First, it was found that the acceptability of using forest products varied depending on multiple factors – the source of biomass, harvesting methods, and [predicted] end-use. Second, forest sustainability and keeping resources local were the two most important concerns amongst respondents. Finally, respondents felt that better collaboration with other stakeholders and education around the issues would be the best strategies for overcoming these concerns. The paper also highlights the barriers and drivers as perceived by the woodland owners as they relate to the possibility of using more biomass for energy in the future.

Margo MacGregor; Michelle Adams; Peter Duinker

2014-01-01T23:59:59.000Z

82

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the world’s annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

83

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan…

2007-01-01T23:59:59.000Z

84

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

85

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

86

Mediterranean land abandonment and associated biomass variation.  

E-Print Network [OSTI]

??Biomass is an important factor in environmental processes, such as erosion, carbon storage, climate change and land degradation. Human-induced changes in plant community systems and… (more)

Hoogeveen, S.S.

2011-01-01T23:59:59.000Z

87

Biomass pretreatment  

SciTech Connect (OSTI)

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

88

Biomass of the cryptoendolithic microbiota from the Antarctic desert.  

Science Journals Connector (OSTI)

...the results of the combustion or total- organic-matter...DISCUSSION The biomass of the cryptoendolithic...the Kjeldahl or combustion method (Tables...regardless of where the biomass was located in the...Kjeldahl carbon. When combustion carbon was compared...range of viable biomass to total carbon...

J R Vestal

1988-04-01T23:59:59.000Z

89

Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Coal-Combustion and Biomass-Pyrolysis Products  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contacts contacts Sean Plasynski Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4867 sean.plasynski@netl.doe.gov Heino Beckert Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 MS C04 Morgantown, WV 26507 304-285-4132 heino.beckert@netl.doe.gov 04/2008 Carbon Sequestration Enhancing carbon SEquEStration and rEclamation of dEgradEd landS with coal-combuStion and biomaSS-PyrolySiS ProductS Background Terrestrial sequestration of carbon can occur by three mechanisms, all of which first require "capture" or fixation of atmospheric carbon by photosynthesis into plant tissues. If captured by herbaceous plants, much of the carbon is quickly

90

Also inside this issue: Bioengineering Better Biomass  

E-Print Network [OSTI]

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

91

5, 1045510516, 2005 A review of biomass  

E-Print Network [OSTI]

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

92

Researchers at the Biomass Energy Center  

E-Print Network [OSTI]

HARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David into fuels and other energy products. Like petroleum and coal, biomass contains carbon taken from the atmosphere via photosynthesis: turning sunlight into energy. Unlike fossil fuels, however, biomass

Lee, Dongwon

93

Chemical-Looping Gasification of Biomass for Hydrogen-Enriched Gas Production with In-Process Carbon Dioxide Capture  

Science Journals Connector (OSTI)

This may help to increase the carbon dioxide capture on one hand but, on other hand, also increases the size of the gasifier and regenerator and the heat requirement of the regenerator. ... Steam was used as the fluidizing medium. ...

Bishnu Acharya; Animesh Dutta; Prabir Basu

2009-09-03T23:59:59.000Z

94

SPACE TECHNOLOGY Actual Estimate  

E-Print Network [OSTI]

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

95

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

96

Minimally refined biomass fuel  

DOE Patents [OSTI]

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

97

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

98

Forest Carbon - Sustaining an Important Climate Service: Roles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forest Carbon - Sustaining an Important Climate Service: Roles of Biomass Use and Markets Forest Carbon - Sustaining an Important Climate Service: Roles of Biomass Use and Markets...

99

Biomass Basics  

Broader source: Energy.gov [DOE]

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

100

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN COFIRING BIOMASS WITH COAL  

SciTech Connect (OSTI)

This is the first Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The project goals and detailed plans were presented in two project kickoff meetings; one at NETL in Pittsburgh and one in Birmingham, AL at Southern Research Institute. Progress has been made in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Preparations are under way for the initial pilot-scale combustion experiments.

Larry G. Felix; P. Vann Bush; Stephen Niksa

2001-01-24T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Forests, carbon and global climate  

Science Journals Connector (OSTI)

...through fossil-fuel combustion and land-use change...Atmosphere analysis Biomass Carbon metabolism Carbon...through fossil-fuel combustion and land-use change...during fossil fuel and biomass combustion and the release of ammo...

2002-01-01T23:59:59.000Z

102

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network [OSTI]

B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

103

Biomass: Potato Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

104

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

105

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

106

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

107

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water† ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

108

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion  

E-Print Network [OSTI]

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

Singh, Anup

109

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

110

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

111

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

112

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

113

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

114

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

115

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

116

Ecosystem-scale measurements of biomass water using cosmic ray neutrons  

E-Print Network [OSTI]

Ecosystem-scale measurements of biomass water using cosmic ray neutrons Trenton E. Franz,1,2 Marek 2013. [1] Accurate estimates of biomass are imperative for under- standing the global carbon cycle. However, measurements of biomass and water in the biomass are difficult to obtain at a scale consistent

Zreda, Marek

117

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

119

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

120

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

122

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

123

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

124

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

125

Advanced liquid fuel production from biomass for power generation  

SciTech Connect (OSTI)

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

126

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell, Massachusetts....

127

NREL: Biomass Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Research Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo...

128

Sandia National Laboratories: Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

129

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

130

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

131

Carbon Sequestration and Turnover in Semiarid Savannas and Dry Forest  

Science Journals Connector (OSTI)

Data on carbon and biomass budgets under different land use in tropical savannas and some dry forests are reviewed. Global data show wide ranges of biomass carbon stocks (20-150 Mg C ha-1), net primary product...

H. Tiessen; C. Feller; E.V.S.B. Sampaio; P. Garin

1998-09-01T23:59:59.000Z

132

Energie aus Biomasse  

Science Journals Connector (OSTI)

Biomasse ist Sonnenenergie, die mithilfe von Pflanzen über den Prozess der Photosynthese in organische Materie umgewandelt wird und in dieser Form zur Deckung der Energienachfrage genutzt werden kann. Biomasse...

Martin Kaltschmitt; Wolfgang Streicher

2009-01-01T23:59:59.000Z

133

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

135

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

136

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

137

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

138

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article is a stub. You can help OpenEI by expanding it. Star Biomass...

139

Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass.  

E-Print Network [OSTI]

??Lignocellulosic biomass is the most abundant source of organic carbon on Earth with the highest potential to economically and sustainably replace fossil resources for large-scale… (more)

Cai, Charles Miao-Zi

2014-01-01T23:59:59.000Z

140

Study of the mechanism of pyrolysis and gasification of Mallee biomass.  

E-Print Network [OSTI]

??Mechanisms of pyrolysis/gasification (steam and carbon dioxide) of mallee biomass were investigated. Wood biochar obtained under slow pyrolysis kept botanical structure but lost its original… (more)

Yang, Yanwu

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

142

Permeabilities of coal-biomass mixtures for high pressure gasifier feeds.  

E-Print Network [OSTI]

??Complete measurements of permeability on coal-biomass mixtures as a potential feedstock to gasifiers to reduce net carbon emissions were performed. Permeability is measured under anticipated… (more)

Belvalkar, Rohan

2012-01-01T23:59:59.000Z

143

Biomass electricity plant allocation through non-linear modeling and mixed integer optimization.  

E-Print Network [OSTI]

?? Electricity generation from the combustion of biomass feedstocks provides low-carbon energy that is not as geographically constricted as other renewable technologies. This dissertation uses… (more)

Smith, Robert Kennedy

2012-01-01T23:59:59.000Z

144

Issues Impacting Refractory Service Life in Biomass/Waste Gasification  

SciTech Connect (OSTI)

Different carbon sources are used, or are being considered, as feedstock for gasifiers; including natural gas, coal, petroleum coke, and biomass. Biomass has been used with limited success because of issues such as ash impurity interactions with the refractory liner, which will be discussed in this paper.

Bennett, J.P.; Kwong, K.-S.; Powell, C.A.

2007-03-01T23:59:59.000Z

145

AVAILABLE NOW! Biomass Funding  

E-Print Network [OSTI]

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

146

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

147

BNL | Biomass Burns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

148

Effects of an acute dose of gamma radiation exposure on stem diameter growth, carbon gain, and biomass partitioning in Helianthus annuus  

SciTech Connect (OSTI)

Nineteen-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) received a variable dose (0-40 Gy) from a cobalt-60 gamma source. A very sensitive stem monitoring device, developed at Battelle's Pacific Northwest Laboratories, Richland, Washington was used to measure real-time changes in stem diameter. Exposure of plants caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that nonreversible morphological growth changes could be induced by very low doses of radiation. Carbohydrate analysis of 40-Gy irradiated plants demonstrated significantly more starch content in leaves and significantly less starch content in stems 18 days after exposure than did control plants. In contrast, the carbohydrate content in roots of 40-Gy irradiated plants were not significantly different from unirradiated plants 18 days after exposure. These results indicate that radiation either decreased phloem transport or reduced the availability of sugar reducing enzymes in irradiated plants. 44 refs., 12 figs.

Thiede, M.E.

1988-05-25T23:59:59.000Z

149

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

150

Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR  

E-Print Network [OSTI]

Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR Mark Keywords: Earth Observing System Forest Structure Biomass Carbon Disturbance Multi-angle BRDF Modeling Land (dimensionless), mean canopy height (m), and aboveground woody biomass (Mg ha- 1 ) on a 250 m grid. Model

Kurapov, Alexander

151

IEA/H2/TR-02/001 Hydrogen from Biomass  

E-Print Network [OSTI]

........................................................... 14 Biomass Pyrolysis to Hydrogen and Carbon or Methanol................................. 17-Derived Pyrolysis Oils............................................ 18 Hydrogen from Biomass-Derived MethanolIEA/H2/TR-02/001 Hydrogen from Biomass State of the Art and Research Challenges Thomas A. Milne

152

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

153

Kinetics Of Carbon Gasification  

Science Journals Connector (OSTI)

Kinetics Of Carbon Gasification ... The steam–carbon reaction, which is the essential reaction of the gasification processes of carbon-based feed stocks (e.g., coal and biomass), produces synthesis gas (H2 + CO), a synthetically flexible, environmentally benign energy source. ... Coal Gasification in CO2 and Steam:? Development of a Steam Injection Facility for High-Pressure Wire-Mesh Reactors ...

C. W. Zielke; Everett. Gorin

1957-03-01T23:59:59.000Z

154

NREL: Biomass Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

155

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

156

Chapter 7 - Hydrolysis in Near- and Supercritical Water for Biomass Conversion and Material Recycling  

Science Journals Connector (OSTI)

Abstract Supercritical water (SCW) has been investigated for about 20 years for chemical reactions and processes. Water above its critical point (Tc = 374 °C, pc = 22.1 MPa, ?c = 0.322 g/cm3) has remarkable tunable properties and has been at the origin of a number of major developments especially due to its environmental innocuousness. SCW has been extensively used in the last 15 years to perform hydrolysis reactions. We propose to discuss in this book chapter the main fields of the application of the SCW hydrolysis reactions: (1) biomass liquefaction toward biofuels and platform molecules and (2) material recycling. SCW has been identified as an efficient medium in the transformation of biomass. Actually, Supercritical Biomass Valorization is a new generation of SCW-based technology, following the R&D development performed in SCW Oxidation. Two main routes can be investigated: the SuperCritical Biomass Gasification process and the SuperCritical Biomass Liquefaction process. Moreover, at present, the increase in the plant sourcing in the chemical industry is inescapable because of the social request for low environmental impact products and the high prices of products from fossil resources. In this context, biomass is particularly interesting because it is abundant and can be easily mobilized. Since lignocellulosic materials constitute approximately 95% of the total plant biomass, the discovery and the investigation of novel and effective pathways for their conversion are very important. In this chapter, we will present the direct SCW liquefaction of this new resource of carbon in order to produce two types of “biobased” products: 2G biofuels and platform molecules. In the context of a sustainable society, material recycling has an important role to play. Nowadays, the industry cannot produce consumer goods or industrial products without thinking about the future of each product in an environment and energetic point of view. Therefore in the field of environmentally friendly processes, a major challenge is the recycling of man-made materials. SCW has also been identified as an interesting medium for this aim. In this chapter, we will present two major aspects of material recycling using SCW: recycling of plastics and composite materials. We will see that hydrolysis reactions can be completed with alcoholysis reactions using near- and supercritical alcohols.

Anne Loppinet-Serani; Cyril Aymonier

2014-01-01T23:59:59.000Z

157

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

158

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

renewable energy resources include biomass, solar thermal resources”:  wind,  closed?loop  biomass,  open? loop  biomass,  geothermal  energy,  solar 

Cattolica, Robert

2009-01-01T23:59:59.000Z

159

Downdraft gasification of biomass.  

E-Print Network [OSTI]

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with… (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

160

Biomass: Biogas Generator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

162

DOE 2014 Biomass Conference  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 72814 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle...

163

Biomass Resource Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with universities and industry partners to maintain a library of herbaceous and woody biomass samples. All analyses performed on these samples, including moisture content,...

164

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

165

NREL: Biomass Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

166

Biomass Indirect Liquefaction Workshop  

Broader source: Energy.gov [DOE]

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

167

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

168

Biomass 2014 Draft Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft...

169

Biomass 2011 Conference Agenda | Department of Energy  

Office of Environmental Management (EM)

1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010...

170

Biomass 2009 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009fullagenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011...

171

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

172

Driving on Biomass  

Science Journals Connector (OSTI)

...for future liquid biofuels might be better directed...because of higher energy density and at...priority for future biofuel research. However...perhaps including algae or thermochemical...support research alternatives that look beyond...biomass yields and the energy density of biomass...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

173

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

174

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

175

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

176

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

177

NREL: Biomass Research - Thermochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

178

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

179

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

180

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

182

Developing better biomass feedstock | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing better biomass feedstock Developing better biomass feedstock Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research scientist, is bioengineering...

183

NREL: Biomass Research - Video Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

184

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

185

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

186

A component based model for the prediction of the product yields of the pyrolysis of a biomass particle.  

E-Print Network [OSTI]

??Pyrolysis of biomass can produce several useful, renewable products: biochar for soil amendment and long-term carbon sequestration; tars for chemicals and biofuels; and syngas as… (more)

Eberly, Brian C.

2010-01-01T23:59:59.000Z

187

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

188

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network [OSTI]

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

189

Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA)  

Broader source: Energy.gov [DOE]

The Department of Energy's (DOE's) BETO announces $12 million funding opportunity for technologies to produce renewable carbon fiber from biomass.

190

Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production  

E-Print Network [OSTI]

synthesis from biomass pyrolysis with in situ carbon dioxideof pyrolysis, combustion and gasification of three biomassand biomass, undergoes several different processes and/or reactions: dehydration, pyrolysis,

Liu, Zhongzhe

2013-01-01T23:59:59.000Z

191

NREL: Computational Science - Enzymatic Conversion of Biomass to Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enzymatic Conversion of Biomass to Fuels Enzymatic Conversion of Biomass to Fuels Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) and their partners use the latest terascale high-performance computers to probe the complex enzymatic cellulose depolymerization (i.e., breakdown) at the molecular level as biomass is converted to fuels. For a sustainable and economically viable liquid-fuel economy, America needs a carbon-neutral alternative to fossil fuels. Lignocellulosic biomass (i.e., agricultural residues, energy crops, and wood) could serve as the dominant feedstock for biofuels, if it can be efficiently and economically converted to its component sugars for microbial fermentation. One major obstacle to the use of biomass is the high resistance of crystalline

192

Biomass | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

193

CLC of biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

194

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

195

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

196

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

197

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

198

AGCO Biomass Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to update any forward-looking statements except as required by law. Who is AGCO? AGCO Biomass - A History * Started approximately 5 years ago - First OEM to have a department...

199

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

200

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network [OSTI]

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

202

Hydrogen from Biomass - State of the Art and Research Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEA/H2/TR-02/001 IEA/H2/TR-02/001 Hydrogen from Biomass State of the Art and Research Challenges Thomas A. Milne, Carolyn C. Elam and Robert J. Evans National Renewable Energy Laboratory Golden, CO USA A Report for the International Energy Agency Agreement on the Production and Utilization of Hydrogen Task 16, Hydrogen from Carbon-Containing Materials Table of Contents Preface.......................................................................................................... i Executive Summary.......................................................................................... 1 Routes to Hydrogen from Biomass....................................................................... 5 Introduction................................................................................................ 5

203

Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires  

E-Print Network [OSTI]

., 2000), making SOA from fossil fuel combustion, biogenic, and biomass burning emissions a potentiallyOxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California in revised form 20 July 2010 Accepted 21 July 2010 Keywords: Organic carbon particles Ketone Biomass burning

Russell, Lynn

204

CARBON LIFE-CYCLE AND ECONOMIC ANALYSIS OF FOREST CARBON SEQUESTRATION AND WOODY BIOENERGY PRODUCTION.  

E-Print Network [OSTI]

??Sequestering carbon in standing biomass, using woody bioenergy, and using woody products are the three potential ways to utilize forests in reducing greenhouse gases (GHGs)… (more)

Shrestha, Prativa

2013-01-01T23:59:59.000Z

205

Carbon for Farmers: Assessing the Potential for Soil Carbon Sequestration in the Old Peanut Basin of Senegal  

Science Journals Connector (OSTI)

Carbon sequestration in soil organic matter of degraded Sahelian ... could play a significant role in the global carbon (C) uptake through terrestrial sinks while,...in situ soil and biomass carbon

Petra Tschakert

2004-12-01T23:59:59.000Z

206

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

207

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

208

Benchmarking Biomass Gasification Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

209

Biomass 2010 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications QTR Cornerstone Workshop Agenda 2014 Biomass...

210

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

211

Biomass 2012 Agenda | Department of Energy  

Office of Environmental Management (EM)

2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment...

212

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba Sector Biomass Owner Community Recycling, Inc. Location Dinuba, California...

213

November 2011 Model documentation for biomass,  

E-Print Network [OSTI]

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

214

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

215

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

216

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

217

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

218

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

219

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid3...

220

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name: Haryana Biomass Power Ltd. Place: Mumbai, Haryana, India Zip: 400025 Sector: Biomass Product: This is a JV consortium...

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL: Biomass Research - David W. Templeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

222

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

223

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

224

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

225

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

226

Opportunities for Farmers in Biomass Feedstock Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm...

227

NREL: Climate Neutral Research Campuses - Biomass Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basics and biomass organizations. Technology Basics The following resources explain the fundamentals of biomass energy technologies: Biomass Energy Basics: NREL publishes this...

228

R&D to Prepare and Characterize Robust Coal/Biomass Mixtures for Direct Co-Feeding into Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Prepare and Characterize Robust to Prepare and Characterize Robust Coal/Biomass Mixtures for Direct Co-Feeding into Gasification Background Domestically abundant coal is a significant primary energy source and, when mixed with optimum levels of biomass, has lower carbon footprint compared to conventional petroleum fuels. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to produce liquid fuels and

229

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Fixed Bed Biomass Gasifier  

SciTech Connect (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

231

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

232

Carbon-Neutral Energy Sources  

Science Journals Connector (OSTI)

Among the main approaches to decarbonizing global economy, the switching to carbon-neutral energy sources such as nuclear and renewables (solar, wind, biomass, etc.) is mentioned most often. Nuclear energy is ...

Nazim Muradov

2014-01-01T23:59:59.000Z

233

WithCarbonSequestration Biological-  

E-Print Network [OSTI]

WithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Biological BARRIERS · Cost · Feedstock availability · Fermentative micro-organisms #12;Targets and Status 322726Net

234

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

235

Biomass in a petrochemical world  

Science Journals Connector (OSTI)

...refinery, mapping out the possible routes from biomass feedstocks to fuels and petrochemical-type products, drawing...biorefinery enables the conversion of a range of biomass feedstocks into fuels and chemical feedstocks [6]. As with...

2013-01-01T23:59:59.000Z

236

Water – A magic solvent for biomass conversion  

Science Journals Connector (OSTI)

Abstract Hydrothermal biomass conversion processes provide the opportunity to use feedstocks with high water content for the formation of energy carriers or platform chemicals. The water plays an active role in the processes as solvent, reactant and catalyst or catalyst precursor. In this paper, the different hydrothermal processes of carbonization, gasification and liquefaction are introduced and the specific role of water is discussed for each of them. The high reactivity of the polar components of biomass in hot compressed water and its changing properties with temperature are the key to obtain high selectivities of the desired products. Despite the obvious advantages of hydrothermal conversion examples for industrial applications are rare. The main reason for not commercial application of water in the high temperature state is that there are no products that can be sold with profit and cannot be produced cheaper, with less capital risk, and with more simple processes.

Andrea Kruse; Nicolaus Dahmen

2014-01-01T23:59:59.000Z

237

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

238

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

239

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

240

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

242

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

243

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

244

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

245

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

246

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

247

Department of Energy Planning Cookstoves Research, Releases Biomass  

Broader source: Energy.gov (indexed) [DOE]

Planning Cookstoves Research, Releases Biomass Planning Cookstoves Research, Releases Biomass Technical Meeting Summary Department of Energy Planning Cookstoves Research, Releases Biomass Technical Meeting Summary May 10, 2011 - 12:02pm Addthis Improved cookstove in village of Santa Cruz de Lanchi, installed through Peru’s national cookstove program. | Photo credit: Ranyee Chiang, DOE Improved cookstove in village of Santa Cruz de Lanchi, installed through Peru's national cookstove program. | Photo credit: Ranyee Chiang, DOE Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What does this mean for me? Clean-burning cookstoves in the developing world will reduce carbon emissions and lessen the effects of deforestation. Cookstoves may seem like a strange fit for the Department of Energy, an

248

Transportation fuels from biomass via fast pyrolysis and hydroprocessing  

SciTech Connect (OSTI)

Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

Elliott, Douglas C.

2013-09-21T23:59:59.000Z

249

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

250

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

251

Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments  

Science Journals Connector (OSTI)

burial of crop residues in the deep ocean (hereafter, CROPS: Crop Residue Oceanic Permanent Sequestration). ... As long as fuels exist with higher energy yield-to-carbon content (E/C) ratios than biomass, it will always be more energy efficient and less carbon polluting to sequester the biomass in the deep oceans, and use those fuels with higher E/C ratios for power generation, rather than to burn biomass for power generation. ...

Stuart E. Strand; Gregory Benford

2009-01-12T23:59:59.000Z

252

Progress in the technology of energy conversion from woody biomass in Indonesia  

Science Journals Connector (OSTI)

Sustainable and renewable natural resources as biomass that contains carbon and hydrogen elements can ... conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations

Tjutju Nurhayati; Yani Waridi; Han Roliadi

2006-09-01T23:59:59.000Z

253

Design and construction of modular genetic devices and the enzymatic hydrolysis of lignocellulosic biomass   

E-Print Network [OSTI]

The enzymatic deconstruction of lignocellulosic plant biomass is performed by specialist microbial species. It is a ubiquitous process within nature and central to the global recycling of carbon and energy. Lignocellulose ...

Barnard, Damian Kelly

2012-11-29T23:59:59.000Z

254

Assessing Options for Electricity Generation from Biomass on a Life Cycle Basis: Environmental and Economic Evaluation  

Science Journals Connector (OSTI)

Co-firing biomass with coal is being increasingly seen in the EU ... direct emissions of pollutants generated during combustion of coal, including carbon dioxide, sulphur dioxide and ... cycle approach to evaluat...

Harish Kumar Jeswani; Haruna Gujba; Adisa Azapagic

2011-02-01T23:59:59.000Z

255

Uncovering Role of Symbiotic Fungi in Soil Carbon Storage | U...  

Office of Science (SC) Website

scarce for other carbon decomposers in the soil and consequently reducing their biomass and rates of decomposition. By contrast, arbuscular mycorrhizal fungi lack many of...

256

Coal and Biomass to Liquids | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal to Liquids » Coal and Coal to Liquids » Coal and Biomass to Liquids Coal and Biomass to Liquids Over the last several decades, the Office of Fossil Energy performed RD&D activities that made significant advancements in the areas of coal conversion to liquid fuels and chemicals. Technology improvements and cost reductions that were achieved led to the construction of demonstration-scale facilities. The program is now supporting work to reduce the carbon footprint of coal derived liquids by incorporating the co-feeding of biomass and carbon capture. In the area of direct coal liquefaction, which is the process of breaking down coal to maximize the correct size of molecules for liquid products, the U.S. DOE made significant investments and advancements in technology in the 1970s and 1980s. Research enabled direct coal liquefaction to produce

257

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

258

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

259

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

260

Carbon pools recover more quickly than plant biodiversity in tropical secondary forests  

Science Journals Connector (OSTI)

...biomass, below-ground biomass, soil carbon content...succession, which included conversion to pasture, cropland...play important roles in biomass recovery [55]. For...that above-ground biomass is lower in secondary...experienced multiple cycles of conversion for shifting agriculture...

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

262

The relationships between biomass burning, land-cover/use change, and the distribution of carbonaceous aerosols in mainland Southeast Asia: A review and synthesis  

E-Print Network [OSTI]

1 The relationships between biomass burning, land-cover/use change, and the distribution. 793, The Ohio State University March 3, 2007 Biomass burning is a major source of black carbon directly and indirectly. Uncertainty regarding the contribution of biomass burning to the concentration

Shi, Tao

263

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

264

Low oxygen biomass-derived pyrolysis oils and methods for producing the same  

DOE Patents [OSTI]

Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

2013-08-27T23:59:59.000Z

265

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

268

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z

269

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Southern Research Institute Project Number: FE0010231 Project Description Fischer-Tropsch (FT) process converts a mixture of carbon monoxide and hydrogen, called syngas, into liquid hydrocarbons. It is a leading technology for converting syngas derived from gasification of coal and coal-biomass mixtures to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FTS catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. The objectives of this project are (i) to demonstrate potential for CBTL cost reduction by maximizing the production of C5-C20 hydrocarbon liquids using a selective FTS catalyst and (ii) to evaluate the impacts of the addition of biomass to coal on product characteristics, carbon foot print, and economics.

270

Carbon dioxide capture and storage: Seven years after the IPCC special report  

Science Journals Connector (OSTI)

Carbon dioxide capture and storage (CCS) entails separating carbon dioxide from coal-, biomass- or gas ... or other large industrial sources, transporting the carbon dioxide by pipeline, injecting it deep undergr...

Haroon Kheshgi; Heleen de Coninck…

2012-08-01T23:59:59.000Z

271

Carbon Dynamics in Aquatic Ecosystems in Response to Elevated Atmospheric CO2 and Altered Nutrients Availability  

E-Print Network [OSTI]

. Our results show that elevated CO2 led to enhanced photosynthetic carbon uptake and dissolved organic carbon (DOC) production. DOC occupied larger percentage in total organic carbon production in high CO2 environment. N addition stimulated biomass...

Song, Chao

2011-04-26T23:59:59.000Z

272

Relationship between thermal behaviour of lignocellulosic components and properties of biomass  

Science Journals Connector (OSTI)

Abstract Five different biomass samples were selected for this study, including miscanthus, distillers dried grain (DDG), wheat shorts, wheat straw and UK wood. These samples were thermochemically treated to alter the lignin, cellulose and hemicellulose composition. Thermogravimetric tests were carried out on these samples to determine thermal behaviours of biomass and its individual lignocellulosic components. The relationship between thermal behaviour of biomass and its corresponding lignocellulosic composition was revealed. The reliability of this relationship was proved by thermogravimetric analysis of samples of artificial biomass prepared by mixing commercially obtained lignin, cellulose and hemicellulose at various blending ratios. It is shown that actual biomass profiles can be predicted with some degree of accuracy based on the lignocellulosic composition.

Cheng Heng Pang; Sanyasi Gaddipatti; Gregory Tucker; Edward Lester; Tao Wu

2014-01-01T23:59:59.000Z

273

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

274

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network [OSTI]

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

275

Geographical DistributionGeographical Distribution of Biomass Carbon inof Biomass Carbon in  

E-Print Network [OSTI]

Louis R.Louis R. IversonIverson Anantha PrasadAnantha Prasad University of Illinois Illinois Natural of Illinois Urbana, Illinois and Illinois Natural History Survey Champaign, Illinois 1 Present address-6335 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 #12;iii

276

Biomass 2014: Breakout Speaker Biographies  

Broader source: Energy.gov [DOE]

This document outlines the biographies of the breakout speakers for Biomass 2014, held July 29–July 30 in Washington, D.C.

277

Biomass 2009: Fueling Our Future  

Broader source: Energy.gov [DOE]

We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

278

NREL: Biomass Research - Joseph Shekiro  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

279

Biomass IBR Fact Sheet: POET  

Broader source: Energy.gov (indexed) [DOE]

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

280

NREL: Biomass Research - Michael Resch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

World Forests: The Area for Afforestation and their Potential for Fossil Carbon Sequestration and Substitution  

Science Journals Connector (OSTI)

A crucial factor in maintaining the carbon balance by forest plantations is to follow-up such programs by substituting fossil fuel by biomass. The amount of fossil fuel that 1 PJ of biomass energy can substitute ...

Wolfgang Schopfhauser

1998-01-01T23:59:59.000Z

282

Hebei Milestone Biomass Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based biomass project developer. References: Hebei Milestone Biomass...

283

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

284

County-level Estimates for Carbon Distribution in U.S. Croplands, 1990-2005 Method of Estimation  

E-Print Network [OSTI]

to estimate total above-ground biomass. Multiplying aboveground biomass with the root:shoot ratio provides an estimate of below-ground biomass. Finally, summing above- and below-ground biomass provides an estimate-carbon for U.S. crops. Crop Reporting units mass per unit (kg) Conversion to Dry matter Harvest Index Root

285

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

286

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

287

Air Gasification of Biomass in a Downdraft Fixed Bed:? A Comparative Study of the Inorganic and Organic Products Distribution  

Science Journals Connector (OSTI)

The gasification of lignocellulosic residues by means of such simple and versatile plants is dictated by the necessity of developing technologies capable of processing different biomass feedstocks for small-scale power production (e.g. ... Elemental Composition (wt %) and Fixed Carbon on Dry Matter of the Three Biomass Feedstocks ... Table 2.? Meana Trace Metal Contents (mg/Kg in ash) of Three Different Biomass Feedstocks ...

I. De Bari; D. Barisano; M. Cardinale; D. Matera; F. Nanna; D. Viggiano

2000-06-08T23:59:59.000Z

288

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

26 January 1983 research-article Ethanol from Cellulosic Biomass [and Discussion...of cellulosic biomass to liquid fuel, ethanol. Within the scope of this objective...maximize the conversion efficiency of ethanol production from biomass. This can be...

1983-01-01T23:59:59.000Z

289

The annual cycles of phytoplankton biomass  

Science Journals Connector (OSTI)

...Forrest The annual cycles of phytoplankton biomass Monika Winder 1 * James E. Cloern 2...Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual...compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate...

2010-01-01T23:59:59.000Z

290

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Ethanol from Cellulosic Biomass [and Discussion] D. I. C. Wang G...microbiological conversion of cellulosic biomass to liquid fuel, ethanol. Within the...efficiency of ethanol production from biomass. This can be achieved through the effective...

1983-01-01T23:59:59.000Z

291

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network [OSTI]

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

292

Biomass 2013 Agenda | Department of Energy  

Office of Environmental Management (EM)

3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass2013agenda.pdf More Documents &...

293

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass Energy, LLC1 This article is a stub. You can help OpenEI by...

294

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

295

Treatment of biomass to obtain fermentable sugars  

DOE Patents [OSTI]

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

296

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Broader source: Energy.gov [DOE]

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

297

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

298

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

299

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

300

NREL: Biomass Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

302

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

303

WeBiomass Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: http:www.webiomass.com Coordinates: 43.58070919775,...

304

Biomass Program Peer Review Sustainability Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2000. "Biomass and Bioenergy Applications of the POLYSYS Modeling Framework," Biomass & Bioenergy 4(3):1-18. * County model anchored to USDA 10-year baseline & extended to 2030 -...

305

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

306

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

307

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

308

Biomass 2014: Additional Speaker Biographies | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Additional Speaker Biographies Biomass 2014: Additional Speaker Biographies This document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July...

309

Biomass Indirect Liquefaction Presentation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Indirect Liquefaction Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D Needs burciagatri.pdf More Documents & Publications...

310

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

311

ARM - Biomass Burning Observation Project (BBOP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

312

Biomass Renewable Energy Opportunities and Strategies | Department...  

Broader source: Energy.gov (indexed) [DOE]

Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power...

313

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

314

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

315

Biomass Webinar Presentation Slides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

316

Pelleting characteristics of torrefied forest biomass.  

E-Print Network [OSTI]

??Forest biomass (pine wood chips) was torrefied at different temperature (225 to 300 °C) to generate energy dense and hydrophobic biomass suitable for producing pellets.… (more)

Phanphanich, Manunya

2010-01-01T23:59:59.000Z

317

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

318

Heat transfer efficiency of biomass cookstoves.  

E-Print Network [OSTI]

??Nearly half of the world’s human population burns biomass fuel to meet home energy needs for heating and cooking. Biomass combustion often releases harmful chemical… (more)

Zube, Daniel Joseph

2010-01-01T23:59:59.000Z

319

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

320

Driving on Biomass  

Science Journals Connector (OSTI)

...ethanol. Since the introduction of the DOE billionton...burning carbon-based fuels is only 30 to 40...The increased fuel efficiency of diesel...tax incentives and fuel cost recoveries...Increasing supplies of biodiesel is one priority...Targets might include engineering crops to retain...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microsoft Word - Cropland Carbon metadata.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimates for Carbon Distribution in U.S. Croplands, 1990-2005 Estimates for Carbon Distribution in U.S. Croplands, 1990-2005 Method of Estimation The United Sates Department of Agriculture (USDA), National Agricultural Statistics Survey (NASS) produces estimates of crop yields per county per year. These yield estimates can be converted to carbon by converting units reported by NASS to one standard unit (kg), converting to dry matter, and multiplying by a carbon content factor of 0.45 (Brady and Weil, 1996). Yield estimates are divided by the harvest index to estimate total above-ground biomass. Multiplying aboveground biomass with the root:shoot ratio provides an estimate of below-ground biomass. Finally, summing above- and below-ground biomass provides an estimate for total net primary productivity (NPP). This method follows approaches used by Prince et al. (2001), Hicke and

322

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Lédé

2012-01-01T23:59:59.000Z

323

An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types  

Science Journals Connector (OSTI)

Abstract An extended overview of the phase–mineral transformations of organic and inorganic matter during biomass combustion was conducted in Part I of the present work. The ash fusion and ash formation mechanisms of biomass types and sub-types during combustion are described in the present Part II. For that purpose the identified systematic associations based on the occurrence, content and origin of elements and phases in the biomass ash (BA) system, namely (1) Si–Al–Fe–Na–Ti (mostly glass, silicates and oxyhydroxides); (2) Ca–Mg–Mn (commonly carbonates, oxyhydroxides, glass, silicates and some phosphates and sulphates); and (3) K–P–S–Cl (normally phosphates, sulphates, chlorides, glass and some silicates and carbonates); were used as classification of \\{BAs\\} into four types (“S”, “C”, “K” and “CK”) and six sub-types with high, medium and low acid tendencies and their description was given. Then, topics related to ash fusion behaviour such as: some general considerations and observations about ash melting; ash fusion temperatures (AFTs) of biomass and their comparisons with coal; relationships between \\{AFTs\\} and inorganic composition of biomass and coal; and ash fusion mechanisms of biomass and coal are characterized. Further, issues connected with the ash formation mechanisms of BA types and sub-types are discussed. Subsequently, aspects related to potential applications of ash formation mechanisms for BA types and sub-types, namely some key technological problems (fusion, slagging and fouling predictions, low ash fusion temperatures, co-combustion and application of BA) and environmental risks (volatilization, capture and water leaching of hazardous elements) are described. Finally, it is emphasized that the application of this new classification approach based on combined phase–mineral and chemical composition of biomass and BA has not only fundamental importance, but also has potential applications in prediction of behaviour and properties connected with the innovative and sustainable utilization of biomass and BA. It is also demonstrated that the definitive utilization, technological and environmental advantages and challenges related to biomass and BA associate preferentially with their specific types and sub-types and they could be predictable to some extent by using the above or similar combined chemical and phase–mineral classification approaches.

Stanislav V. Vassilev; David Baxter; Christina G. Vassileva

2014-01-01T23:59:59.000Z

324

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-04-01T23:59:59.000Z

325

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

326

Investigating and Using Biomass Gases  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

327

Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions  

Science Journals Connector (OSTI)

Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal–coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H2 and CH4) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H2-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H2 concentration increased with increasing temperature.

Magín Lapuerta; Juan J. Hernández; Amparo Pazo; Julio López

2008-01-01T23:59:59.000Z

328

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

329

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

330

Biomass conversion in South Africa  

Science Journals Connector (OSTI)

South Africa is using or is investigating the potential of forest biomass sugar-cane, maize, grain sorghum, cannery...6...GJ per annum. These materials can also be utilized for the production of chemicals and foo...

Hans Jurgens Potgieter

1981-01-01T23:59:59.000Z

331

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research

332

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

333

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

334

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2012-01-01T23:59:59.000Z

335

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2013-01-01T23:59:59.000Z

336

C3Bio.org - Resources: NIFA - Carbon and Energy Efficient Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations NIFA - Carbon and Energy Efficient Conversion of Biomass to Biofuels About 0 review(s) (Review this) Share: ... Share this resource: Facebook Twitter...

337

Global (International) Energy Policy and Biomass  

SciTech Connect (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

338

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network [OSTI]

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

339

Vanadium catalysts break down biomass for fuels  

E-Print Network [OSTI]

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

340

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network [OSTI]

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

342

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

343

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

344

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

345

Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations  

SciTech Connect (OSTI)

This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.

Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.; Manowitz, David H.; Zhang, Xuesong

2013-03-01T23:59:59.000Z

346

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current… (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

347

A review on torrefied biomass pellets as a sustainable alternative to coal in power generation  

Science Journals Connector (OSTI)

Abstract The torrefaction of biomass is a thermochemical process based on the de composition of hemicellulose, which is the dominant reaction, while the cellulose and lignin fractions remain almost unaffected. Torrefaction of biomass improves its physical properties like grindability, particle shape, size, and distribution, pelletability, and composition properties like moisture, carbon and hydrogen contents, and calorific value. The already higher energy density can be increased further by a pelletizing step after torrefaction. These improved properties make torrefied biomass particularly suitable for co-firing in power plants. Co-firing biomass with fossil fuels is one of the solutions to reduce the greenhouse gas emissions of existing power plants. Several studies on torrefaction of biomass for heat and power applications have been documented in the literature, which need to be reviewed and analyzed for further actions in the field, because significant gaps remain in the understanding of the biomass torrefaction process, which necessitate further study, mainly concerning the characterization of the torrefaction chemical reactions, investigation of equipment performance and design, and elucidation of supply chain impacts. This is the main objective of the present review study, which consists in three parts. The first part focuses on the mechanism of biomass torrefaction. It is followed by a review of biomass co-firing with coal. Finally, market opportunities for the process are discussed.

L.J.R. Nunes; J.C.O. Matias; J.P.S. Catalão

2014-01-01T23:59:59.000Z

348

Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels  

Science Journals Connector (OSTI)

Forest Bioenergy or Forest Carbon? ... Forest carbon consequences of biomass harvest for bioenergy production can significantly delay and reduce GHG mitigation and should be included in life cycle studies. ... The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. ...

Jon McKechnie; Steve Colombo; Jiaxin Chen; Warren Mabee; Heather L. MacLean

2010-12-10T23:59:59.000Z

349

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005...

350

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

351

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions  

E-Print Network [OSTI]

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions Liquid Hydrogen. Note: Black carbon does not deplete ozone. What happens is the black carbon emissions from the rocket. Other black carbon emissions: The number one contributor to black carbon is burning biomass. Also

Toohey, Darin W.

352

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

353

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

354

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

storage and transport, biomass conversion to hydrogen, andvehicle served by biomass ($) Conversion facility size (kg/the lowest biomass gasi?cation energy conversion ef?ciency

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

355

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

pretreatment to enhance biomass conversion to ethanol. Appl.pretreatment to enhance biomass conversion to ethanol. Appl.earliest use of acid in biomass conversion that provided a

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

356

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

Follow Xylan Deconstruction in Biomass Conversion . 61 3.1in lignocellulosic biomass conversion, however, is torecalcitrance to biomass conversion, a better understanding

Li, Hongjia

2012-01-01T23:59:59.000Z

357

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

358

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

359

August 2012 Biomass Program Monthly News Blast | Department of...  

Broader source: Energy.gov (indexed) [DOE]

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

360

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Feedstock Supply and Logistics: Biomass as a Commodity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

362

Biomass Program Monthly News Blast: October | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

363

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

364

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

365

Biomass Program Monthly News Blast: July | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

366

Buena Vista Biomass Power LCC | Open Energy Information  

Open Energy Info (EERE)

Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW biomass...

367

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

368

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

369

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

370

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

371

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

372

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

373

Biomass Program Monthly News Blast: August | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

374

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

375

Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Liuzhou Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product:...

376

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

377

Biomass Program Monthly News Blast: June | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

378

April 2012 Biomass Program News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

379

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network [OSTI]

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

380

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Producing Beneficial Materials from Biomass and Biodiesel Byproducts...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National...

382

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

383

A Single Multi-Functional Enzyme for Efficient Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy...

384

Woodlake Sanitary Services Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Woodlake Sanitary Services Biomass Facility Jump to: navigation, search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility...

385

Covanta Fairfax Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type...

386

A survey of state clean energy fund support for biomass  

E-Print Network [OSTI]

with the planting of biomass energy crops Pike Countya regional agricultural biomass energy workshop and relatedrenewable energy,” biomass energy sources are included in

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

387

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

388

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

389

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

390

Huaian Huapeng Biomass Electricity Co | Open Energy Information  

Open Energy Info (EERE)

Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

391

Biomass Energy Resources and Technologies | Department of Energy  

Energy Savers [EERE]

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture...

392

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

393

NREL: Renewable Resource Data Center - Biomass Resource Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

394

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

Catalysts in thermal biomass conversion, Applied Catalysisfor a description of biomass conversion processes. TheseBiomass Feedstock Biomass Conversion Biomass Energy Forestry

FAN, XIN

2012-01-01T23:59:59.000Z

395

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

396

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

397

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

398

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

399

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

400

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One LP1 This article is a stub. You...

402

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels from Biomass Liquid Fuels from Biomass Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel...

403

Biomass Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1 This article is a stub. You can help OpenEI by...

404

Treatment of biomass to obtain ethanol  

DOE Patents [OSTI]

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

405

Biomass 2013: Welcome | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2013: Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting Director, BETO, U.S. Department of Energy b13reedday1-welcome.pdf More...

406

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

407

Biomass Webinar Text Version | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

408

Trading biomass or GHG emission credits?  

Science Journals Connector (OSTI)

Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the countr...

Jobien Laurijssen; André P. C. Faaij

2009-06-01T23:59:59.000Z

409

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

410

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori…

2007-01-01T23:59:59.000Z

411

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

412

Volatile Organic Compounds — Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.5–10 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

413

Biomass Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Data Book Biomass Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset Website: cta.ornl.gov/bedb/ References: Program Website[1] Logo: Biomass Energy Data Book The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of

414

Biomass combustion with CO2 capture by chemical looping with oxygen uncoupling (CLOU)  

Science Journals Connector (OSTI)

Abstract Economic benefits can be expected in the future if CO2 capture and storage are implemented in energy generation from biomass combustion. The aim of this work is to investigate the combustion of biomass in a chemical looping with oxygen uncoupling (CLOU) process with inherent CO2 separation. The performance of biomass combustion in a continuously operated 1.5 kWth CLOU unit is presented. Particles prepared by spray drying containing 60 wt.% CuO were used as an oxygen carrier. Milled pine wood chips were used as fuel. The work focused on the effect of fuel reactor temperature on the CO2 capture and the combustion efficiency of the CLOU process with biomass. Under CLOU operation, biomass combustion was complete to CO2 and H2O without the presence of any unburnt material, including tars. Moreover, high carbon capture efficiencies were achieved using very low oxygen carrier inventories and without a carbon separation unit. This is the first time that the CLOU concept has been demonstrated in a continuous CLC unit using biomass as fuel.

I. Adánez-Rubio; A. Abad; P. Gayán; L.F. de Diego; F. García-Labiano; J. Adánez

2014-01-01T23:59:59.000Z

415

ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Biomass Program Peer...

416

Dairy Biomass as a Renewable Fuel Source  

E-Print Network [OSTI]

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

417

Biomass Derivatives Competitive with Heating Oil Costs.  

Broader source: Energy.gov [DOE]

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

418

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network [OSTI]

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

419

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend  

Science Journals Connector (OSTI)

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend ... Biomass is a form of energy that is CO2-neutral. ... However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. ...

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

2008-12-09T23:59:59.000Z

420

O P I N I O N Biogenic vs. geologic carbon emissions and forest  

E-Print Network [OSTI]

greenhouse gas (GHG) accounting of woody biomass energy generation. While there are many other environmental, biogenic carbon, carbon debt, forest biomass, greenhouse gas accounting Received 20 April 2011; revised the amount of car- bon in the cycle'. This view recently has been reiterated by many (e.g. Hale, 2010; Lucier

Vermont, University of

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Increasing biomass in Amazonian forest plots  

Science Journals Connector (OSTI)

...Malhi and O. L. Phillips Increasing biomass in Amazonian forest plots Timothy R...by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian...Therefore we present a new analysis of biomass change in old-growth Amazonian forest...

2004-01-01T23:59:59.000Z

422

4, 52015260, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

423

4, 707745, 2007 Proxies of biomass  

E-Print Network [OSTI]

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

424

Biomass Gasification at The Evergreen State College  

E-Print Network [OSTI]

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

425

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

426

Thermodynamics of Energy Production from Biomass  

E-Print Network [OSTI]

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

427

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network [OSTI]

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

428

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network [OSTI]

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

429

Woody Biomass Logistics Robert Keefe1  

E-Print Network [OSTI]

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

430

4, 51355200, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

431

Energy from Forest Biomass: Potential Economic Impacts  

E-Print Network [OSTI]

Energy from Forest Biomass: Potential Economic Impacts in Massachusetts Prepared for: Massachusetts Bioenergy Initiative, a multifaceted study of biomass energy potential in Massachusetts. The economic impact study looks specifically at impacts in the 5 western counties of the Commonwealth, where biomass energy

Schweik, Charles M.

432

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

433

UK CARBON CAPTURE AND STORAGE, WHERE IS IT ? Stuart Haszeldine  

E-Print Network [OSTI]

437 UK CARBON CAPTURE AND STORAGE, WHERE IS IT ? Stuart Haszeldine Professor of Carbon Capture.haszeldine@ed.ac.uk SUMMARY Carbon capture and storage, to capture CO2 from power plants and big industry, remains much strategy ­ either co-firing with biomass, or direct capture form the air ­ both need to bury CO2. How

Haszeldine, Stuart

434

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

435

COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE  

SciTech Connect (OSTI)

Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.

Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

2005-07-14T23:59:59.000Z

436

Generation of a Gaseous Fuel by Pyrolysis or Gasification of Biomass for Use as Reburn Gas in Coal-Fired Boilers  

Science Journals Connector (OSTI)

Biofliels attract increasing interest in power plant technology as sources of carbon dioxide neutral fuels. Besides using solid pulverised biomass as an additional fuel in coal-fired boilers a further possibil...

C. Storm; H. Spliethoff; K. R. G. Hein

2002-01-01T23:59:59.000Z

437

Exergy Analysis of the Process for Dimethyl Ether Production through Biomass Steam Gasification  

Science Journals Connector (OSTI)

About 6.37% of the total carbon is released to the environment in the form of wastewater and waste gas. ... If the heat for gasifying the biomass could be obtained from other energy resource, the carbon atom utilization could be increased greatly, and the CO2 emissions could be decreased considerably. ... A Cost?Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry: Volume 1 Main Report; Princeton University: Princeton, NJ, 2006. ...

Xiangping Zhang; Christian Solli; Edgar G. Hertwich; Xiao Tian; Suojiang Zhang

2009-11-09T23:59:59.000Z

438

A Review on Biomass Torrefaction Process and Product Properties for Energy Applications  

SciTech Connect (OSTI)

Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

2011-10-01T23:59:59.000Z

439

Estimation of Regional Actual Evapotranspiration in the Panama Canal Watershed  

Science Journals Connector (OSTI)

The upper Río Chagres basin is a part of the Panama Canal Watershed. The least known water balance...SEBAL...). We use an image from March 27, 2000, for estimation of the distribution of the regional actual evapo...

Jan M.H. Hendrickx; Wim G.M. Bastiaanssen; Edwin J.M. Noordman…

2005-01-01T23:59:59.000Z

440

Soil microbial biomass: an estimator of soil development in reclaimed lignite mine soil  

E-Print Network [OSTI]

A two-year study was conducted at the Big Brown lignite mine in Fairfield, Texas, to determine the rate and extent of recovery of the soil microbial biomass (SMB) in mixed overburden. The relationships between SMB carbon (SMBC), basal respiration...

Swanson, Eric Scott

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Conversion of open lands to short-rotation woody biomass crops: site variability affects nitrogen cycling  

E-Print Network [OSTI]

· The importance of forests in global carbon and greenhouse emissions · Case Study on greenhouse gas emissions. 2 #12;Ecosystems - Management 3 Support Processes Soil Conversion Fuel DistribuKon End Use Biomass Produc1on: Model changes in C stocks

Turner, Monica G.

442

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

443

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

444

Carbon Mineralization: From Natural Analogues to Engineered Systems  

Science Journals Connector (OSTI)

...environments: A short review. Geomicrobiol J 20...Biodiesel Production. BioEnergy Res 1:20-43 Schlesinger...mineral carbonation: Literature review update 2005-2007...biomass feedstocks: Review analysis of the biochemistry...

Ian M. Power; Anna L. Harrison; Gregory M. Dipple; Siobhan A. Wilson; Peter B. Kelemen; Michael Hitch; Gordon Southam

445

Colusa Biomass Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Colusa Biomass Energy Corporation Colusa Biomass Energy Corporation Jump to: navigation, search Name Colusa Biomass Energy Corporation Place Colusa, California Zip 95932 Sector Biomass Product Colusa Biomass Energy Corporation is dedicated to converting biomass to energy for transport, and holds a US patent to make ethanol from waste biomass. Coordinates 39.21418°, -122.008594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.21418,"lon":-122.008594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

447

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

448

Black Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product?  

E-Print Network [OSTI]

for different materials and combustion temperatures. It is less than 1% for thermally altered biomass at combusBlack Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product? Simone resistant product of incomplete combustion, and consists out of a range of combustion products such as char

Fischlin, Andreas

449

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network [OSTI]

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Déborah Xanat, 1978-

2008-01-01T23:59:59.000Z

450

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

451

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

452

Sandbag Carbon Offset Map | Open Energy Information  

Open Energy Info (EERE)

Sandbag Carbon Offset Map Sandbag Carbon Offset Map Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sandbag Carbon Offset Map Agency/Company /Organization: Sandbag Sector: Energy, Land Focus Area: Renewable Energy, Biomass, Energy Efficiency, Forestry, Geothermal, Hydrogen, Industry, Solar, Wind Topics: Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: sandbag.org.uk/carbondata/cers Sandbag Carbon Offset Map Screenshot References: Sandbag Carbon Offset Map[1] Thinking about climate change can be a depressing occupation. It's a massive issue and personal actions like switching off lights and unplugging televisions can feel like small contributions. Background "Thinking about climate change can be a depressing occupation. It's a

453

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

454

Carbon Sequestered, Carbon Displaced and the Kyoto Context  

SciTech Connect (OSTI)

The integrated system that embraces forest management, forest products, and land-use change impacts the global carbon cycle - and hence the net emission of the greenhouse gas carbon dioxide - in four fundamental ways. Carbon is stored in living and dead biomass, carbon is stored in wood products and landfills, forest products substitute in the market place for products made from other materials, and forest harvests can be used wholly or partially to displace fossil fuels in the energy sector. Implementation of the Kyoto Protocol to the United Nations Framework Convention on Climate Change would result in the creation of international markets for carbon dioxide emissions credits, but the current Kyoto text does not treat all carbon identically. We have developed a carbon accounting model, GORCAM, to examine a variety of scenarios for land management and the production of forest products. In this paper we explore, for two simple scenarios of forest management, the carbon flows that occur and how these might be accounted for under the Kyoto text. The Kyoto protocol raises questions about what activities can result in emissions credits, which carbon reservoirs will be counted, who will receive the credits, and how much credit will be available? The Kyoto Protocol would sometimes give credits for carbon sequestered, but it would always give credits when fossil-fuel carbon dioxide emissions are displaced.

Marland, G.; Schlamadinger, B.

1999-04-18T23:59:59.000Z

455

The Carbon balance of sorghum from anthesis to black layer  

E-Print Network [OSTI]

Measured Changes in Y and m The Integrated Carbon Balance Parameters dS, dW, and dSm as Functions of Biomass Page 87 96 Effects of Tissue Composi tion on Y g V CONCLUSIONS REFERENCES VI TA 101 117 122 125 LIST OF FIGURES Figure Page 2. 1 2... dSm and dR plotted as functions of biomass, W. 4. 7 Plot of organ biomass, by organ, over time. 97 98 109 4. 8 Plot of the total biomass of a simulated plant, over time, in the model of Y 9 4. 9 Plot of the change in Y due to a simulated...

Stahl, Randal Scott

2012-06-07T23:59:59.000Z

456

Microsoft Word - Draft Ft Yukon Biomass System EA_0220  

Broader source: Energy.gov (indexed) [DOE]

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION FEBRUARY 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

457

Biomass Energy Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Program Biomass Energy Program Biomass Energy Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools State Government Savings Category Bioenergy Maximum Rebate $75,000 Program Info State Alabama Program Type State Grant Program Rebate Amount Varies by project and interest rate Provider Alabama Department of Economic and Community Affairs The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on loans to install approved biomass projects. Technical assistance is also available through the program. Industrial, commercial and institutional facilities; agricultural property owners; and city, county, and state government entities are eligible.

458

Self-actualization as it relates to aerobic physical fitness  

E-Print Network [OSTI]

higher than the aerobic and archery group on the TC, Ex, and C scales. The archery group was significantly higher than the preaerobic and aerobic groups on the Fr and S scales. Females from the preaerobic group were significantly lower than archery... Inventory Sav Self-actualization values measures how well a person holds and lives by values of se 1f- ac tualizing people Ex Existentiality measures ability to flexibly apply self-actualizing values to one's own life Fr Feeling reactivity measures...

Russell, Kathryn Terese Vecchio

2012-06-07T23:59:59.000Z

459

A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization  

SciTech Connect (OSTI)

It is now a well-acclaimed fact that burning fossil fuels and deforestation are major contributors to climate change. Biomass from plants can serve as an alternative renewable and carbon-neutral raw material for the production of bioenergy. Low densities of 40–60 kg/m3 for lignocellulosic and 200–400 kg/m3 for woody biomass limits their application for energy purposes. Prior to use in energy applications these materials need to be densified. The densified biomass can have bulk densities over 10 times the raw material helping to significantly reduce technical limitations associated with storage, loading and transportation. Pelleting, briquetting, or extrusion processing are commonly used methods for densification. The aim of the present research is to develop a comprehensive review of biomass processing that includes densification, preprocessing, modeling and optimization. The specific objective include carrying out a technical review on (a) mechanisms of particle bonding during densification; (b) methods of densification including extrusion, briquetting, pelleting, and agglomeration; (c) effects of process and feedstock variables and biomass biochemical composition on the densification (d) effects of preprocessing such as grinding, preheating, steam explosion, and torrefaction on biomass quality and binding characteristics; (e) models for understanding the compression characteristics; and (f) procedures for response surface modeling and optimization.

Jaya Shankar Tumuluru; Christopher T. Wright

2010-06-01T23:59:59.000Z

460

Multiscale molecular modeling can be an effective tool to aid the development of biomass conversion technology: A perspective  

Science Journals Connector (OSTI)

Abstract Lignocellulosic biomass is an alternate and renewable source of carbon. However, due to high oxygen content and diverse functionality, its conversion to fuels and chemicals is technologically challenging. Since physico-chemical characteristics of biomass and its derived components are very different from petroleum, fundamental understanding of their interactions with catalysts and solvents and of their behavior during thermochemical processing needs to be developed. In the present paper, we provide a perspective on how multiscale molecular modeling can assist in developing the science of biomass processing. The scope of this paper is limited to liquid phase catalytic and pyrolytic conversion of biomass. Car–Parrinello molecular dynamics (CPMD), a multiscale method that combines quantum mechanics and classical molecular dynamics and is an excellent choice to simulate biomass interactions in the condensed phase, is discussed. An overview of metadynamics, a method to accelerate CPMD dynamics, is also given. Revealing the chemistry of biomass pyrolysis, identifying liquid phase catalytic reaction mechanisms and developing a fundamental understanding of the role of solvents in biomass processing are the three main areas highlighted in this paper. Molecular modeling based investigations in these areas are reviewed and key findings are summarized. Limitations of the current approaches are discussed and the relevance of multiscale methods like CPMD and metadynamics is discussed. Potential studies that could implement multiscale molecular modeling methods to solve some of the challenging problems in developing biomass conversion technology are elaborated and an outlook is provided.

Samir H. Mushrif; Vallabh Vasudevan; Chethana B. Krishnamurthy; Boddu Venkatesh

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biomass combustion for electric power: Allocation and plant siting using non-linear modeling and mixed integer optimization  

Science Journals Connector (OSTI)

Electricity generation from the combustion of biomass feedstocks provides low-carbon energy that is not as geographically constricted as other renewable technologies. This study uses non-linear programming to provide policymakers with scenarios of possible sources of biomass for power generation as well as locations and types of electricity generation facilities utilizing biomass. The scenarios are obtained by combining the output from existing agricultural optimization models with a non-linear mathematical program that calculates the least-cost ways of meeting an assumed biomass electricity standard. The non-linear program considers region-specific cultivation and transportation costs of biomass fuels as well as the costs of building and operating both coal plants capable of co-firing biomass and new dedicated biomass combustion power plants. The results of the model provide geographically detailed power plant allocation patterns that minimize the total cost of meeting the generation requirements which are varying proportions of total U.S. electric power generation under the assumptions made. The amount of each cost component comprising the objective functions of the various requirements are discussed and the results show that approximately two-thirds of the total cost of meeting a biomass electricity standard occurs on the farms and forests that produce the biomass. Plant capital costs and biomass transportation costs comprise the largest share of the remaining costs. The most important policy conclusion is that biomass use in power plants will require significant subsidies perhaps as much as half of their cost if they are to achieve significant penetrations in U.S. electricity markets.

2013-01-01T23:59:59.000Z

462

Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal  

SciTech Connect (OSTI)

There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40%) with coal.

Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

2012-06-01T23:59:59.000Z

463

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products  

Science Journals Connector (OSTI)

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products ... One of the most promising options to produce transportation fuels from biomass is the so-called biomass-to-liquids (BtL) route, in which biomass is converted to syngas from which high-quality Fischer?Tropsch (FT) fuels are synthesized. ... Alternatively to converting biomass into liquids or coal-like material, new and dedicated feeding systems for biomass can be developed. ...

Robin W. R. Zwart; Harold Boerrigter; Abraham van der Drift

2006-08-29T23:59:59.000Z

464

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

465

NREL: Biomass Research - Josh Schaidle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Josh Schaidle Josh Schaidle Photo of Josh Schaidle Josh Schaidle works in the Thermochemical Catalysis Research and Development group, headed by Jesse Hensley. He manages a $500,000 per year task focused on developing catalysts, processes, and reactor systems for the catalytic upgrading of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices Photochemical and electrochemical routes for fuel production Rational design of catalysts through the combination of experiment and theory Early transition metal carbide and nitride catalysts Process design and optimization Life-cycle Assessment (LCA) Catalysts for automotive exhaust treatment Education Ph.D., Chemical Engineering; Concentration in Environmental

466

Solubilization of Biomass Components with Ionic Liquids Toward Biomass Energy Conversions  

Science Journals Connector (OSTI)

Cellulosic biomass essentially consists of cellulose, hemicellulose, and lignin. To obtain energy from cellulosic biomass with minimum given energy, following three steps are required, namely...3, 4...]. Since or...

Mitsuru Abe; Hiroyuki Ohno

2014-01-01T23:59:59.000Z

467

Strategic Biomass Solutions (Mississippi) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Retail Supplier Utility Program Info State Mississippi Program Type Industry Recruitment/Support Training/Technical Assistance Provider Mississippi Technology Alliance The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors and economic developers in the renewable energy sector. It offers companies strategic guidance for making their technology investor ready and connects companies to early stage private capital and available tax incentives. SBS assists

468

Biomass Energy Program Grants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Program Grants Biomass Energy Program Grants Biomass Energy Program Grants < Back Eligibility Local Government Nonprofit Schools State Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Varies Program Info Funding Source U.S. Department of Energy's State Energy Program (SEP) State Michigan Program Type State Grant Program Rebate Amount Varies by solicitation; check website for each solicitation's details Provider Michigan Economic Development Corporation '''''The application window for the most recent grant opportunity closed November 26, 2012.''''' The Michigan Biomass Energy Program (MBEP) provides funding for state bioenergy and biofuels projects on a regular basis. Funding categories typically include biofuels and bioenergy education, biofuels

469

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

Cattolica, Robert

2009-01-01T23:59:59.000Z

470

Biomass Program Monthly News Blast - May 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012; Travis Tempel; Atlanta, Georgia U.S. Environmental Protection Agency's Biogas Technology Market Summit, May 14, 2012, Brian Duff; Washington, D.C. Biomass R&D...

471

April 2012 Biomass Program News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chain & Logistics Conference, May 10-11, 2012, Travis Tempel, Atlanta, Georgia EPA Biogas Technology Market Summit, May 14, 2012, Brian Duff, Washington, DC Biomass R&D...

472

Biomass Program Monthly News Blast: August  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The updated report and its supporting data improve our understanding of future biomass markets and will be a critical resource for landowners, businesses, and other potential...

473

Biomass Program Monthly News Blast - March 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Past and Upcoming Events with Biomass Representation International Energy Agency Bioenergy Task 42 Meeting, February 27-March 3, 2012, Melissa Klembara, Copenhagen,...

474

Biomass Renewable Energy Opportunities and Strategies Forum  

Broader source: Energy.gov [DOE]

The forum will give tribal leaders and staff an opportunity to interact with other Tribes, federal agencies, and industry to learn more about biomass energy development.

475

Decentralised energy systems based on biomass.  

E-Print Network [OSTI]

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation… (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

476

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

use biomass, waste, or renewable resources (including wind, and  emerging  renewable  resource  technologies.   new,  and  emerging  renewable  resources.   The  goal  of 

Cattolica, Robert

2009-01-01T23:59:59.000Z

477

Determination of Extractives in Biomass: Laboratory Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

478

SSF Experimental Protocols -- Lignocellulosic Biomass Hydrolysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSF Experimental Protocols - Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure (LAP) Issue Date: 10302001 N. Dowe and J. McMillan Technical...

479

Los Alamos scientists advance biomass fuel production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan....

480

NREL: Biomass Research - Thermochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

Note: This page contains sample records for the topic "actual biomass carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enzymatic Saccharification of NRELTP-510-42629 Lignocellulosic Biomass March 2008 Laboratory Analytical Procedure (LAP) Issue Date: 3212008 M. Selig, N. Weiss, and Y. Ji NREL is...

482

NREL: Biomass Research - Courtney E. Payne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

483

Biomass Indirect Liquefaction Strategy Workshop: Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

484

Biomass Indirect Liquefaction Strategy Workshop: Summary Report  

Broader source: Energy.gov [DOE]

This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop.

485

Biomass Program Peer Review Sustainability Platform | Department...  

Broader source: Energy.gov (indexed) [DOE]

Program Peer Review Sustainability Platform Biomass Program Peer Review Sustainability Platform Presentation on the Update to the Billion-Ton Study, including differences between...

486

NREL: Biomass Research - Justin B. Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

487

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

488

NREL: Biomass Research - Capabilities in Integrated Biorefinery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pilot plant, researchers study biochemical processes for converting lignocellulosic biomass to ethanol. At NREL, teams of researchers focus on developing an integrated...

489

NREL: Biomass Research - Mark R. Nimlos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

490

Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

491

NREL: Biomass Research - Working With Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research expertise. Working with outside organizations is the key to moving advanced biomass conversion technology and processes for the production of bio-based products-i.e.,...

492

Utility Promoters for Biomass Feedstock Biotechnology - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Efficiency Find More Like This Return to Search Utility Promoters for Biomass Feedstock Biotechnology Inventors: Kyung-Hwan Han, Jae-Heung Ko Great Lakes Bioenergy...

493

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. April 26, 2013 Combining Strategies Speeds the Work...

494

Life Cycle Assessment of Biomass Conversion Pathways.  

E-Print Network [OSTI]

??This study has investigated the life cycle of three biomass feedstocks including forest residue, agricultural residue, and whole forest for biohydrogen and biopower production in… (more)

Kabir, Md R

2012-01-01T23:59:59.000Z

495

Utilization of durian biomass for biorenewable applications.  

E-Print Network [OSTI]

??The utilization of tropical fruit biomass as feedstock for biorenewable resources is an attractive proposition due to its abundance and potential to reduce reliance on… (more)

Bin Bujang, Ahmad Safuan

2014-01-01T23:59:59.000Z

496

BIOMASS PRODUCTION FOR ENERGY IN DEVELOPING COUNTRY.  

E-Print Network [OSTI]

?? Most developing countries of the world still uses biomass for domestic energy, this is mostly used in the rural areas and using our case… (more)

Liu, Xiaolin

2012-01-01T23:59:59.000Z

497

NREL: Learning - Student Resources on Biomass Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resources can provide you with more information on biomass energy. Alternative Fuels Data Center U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy...

498

Developing Functionalized Graphene Materials for Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

499

Characterization of Catalysts for Aftertreatment and Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for...

500

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...