National Library of Energy BETA

Sample records for acton basic rate

  1. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics Basics ATLAS users belong to the "atlas" NERSC repository, and the Principal Investigator (PI) for ATLAS computing at NERSC is Ian Hinchliffe. ALICE users work in the sl53 chos environment. See the Chos page for more information. For more information about ATLAS computing at PDSF see the ATLAS twiki webpages which are maintained by ATLAS users. Last edited: 2016-04-29 11:34:26

  2. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    SciTech Connect (OSTI)

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  3. Energy Basics

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will complete a scavenger hunt worksheet in order to learn about the basics of energy and its sources.

  4. Acton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in York County, Maine.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  5. Acton, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4850931, -71.43284 Show Map Loading map... "minzoom":false,"mappingservice":"...

  6. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  7. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ... The DOE Office of Science's Basic Energy Sciences program equips scientists with a ...

  8. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century materials and energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the

  9. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  10. Biofuels Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most ...

  11. EA-1731: Mitigation Acton Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Walla Walla-Tucannon River Transmission Line Rebuild Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Walla...

  12. Solar Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from ...

  13. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  14. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

  15. Geothermal Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  16. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  17. Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics

  18. Biomass Basics Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 27, 2015 Biomass Basics Alexis Martin Fellow, Bioenergy Technologies Office Department of Energy 2 | Bioenergy Technologies Office Agenda * Overview of Bioenergy * Biomass to Biofuels Life Cycle * Importance of Bioenergy * 2016 BioenergizeME Infographic Challenge 3 | Bioenergy Technologies Office Questions and Comments Please record any questions and comments you may have during the webinar and send them to BioenergizeME@ee.doe.gov As a follow-up to the webinar, the presenter(s) will

  19. FTA Basic Event & Cut Set Ranking.

    Energy Science and Technology Software Center (OSTI)

    1999-05-04

    Version 00 IMPORTANCE computes various measures of probabilistic importance of basic events and minimal cut sets to a fault tree or reliability network diagram. The minimal cut sets, the failure rates and the fault duration times (i.e., the repair times) of all basic events contained in the minimal cut sets are supplied as input data. The failure and repair distributions are assumed to be exponential. IMPORTANCE, a quantitative evaluation code, then determines the probability ofmore » the top event and computes the importance of minimal cut sets and basic events by a numerical ranking. Two measures are computed. The first describes system behavior at one point in time; the second describes sequences of failures that cause the system to fail in time. All measures are computed assuming statistical independence of basic events. In addition, system unavailability and expected number of system failures are computed by the code.« less

  20. Wind Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  1. Hydrogen Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen does not exist freely in nature: it is only produced from other sources of energy, so it is often referred to as an energy carrier, that is, an efficient way to store and transport energy. A photo of a Ford hydrogen-powered internal combustion engine (H2ICE) bus at NREL's National Wind Technology Center (NWTC). A

  2. Biomass Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal and industrial wastes. Even the fumes from landfills (which are

  3. BasicODT

    Energy Science and Technology Software Center (OSTI)

    2007-09-25

    BasicODT is a Monte Carlo simulation that numerically implements One-Dimensional Turbulence (ODT), a stochastic model of turbulent flow that was developed by the author of the code. This code is set up to simulate channel flow, which is the flow between two parallel flat walls driven by a fixed pressure gradient, with no-slip conditions at the walls. The code writes output files containing flow statistics gathered during the simulation. The code is accompanied by documentationmore » that explains how ODT modeling principles are numerically implemented within the code. The code and documentation are intended as an introduction to ODT for use as a learning tool for people who are unfamiliar with the model and its numerical implementation. ODT is fully described in published literature.« less

  4. Infrared Basics | Open Energy Information

    Open Energy Info (EERE)

    Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

  5. LED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics » LED Basics LED Basics Unlike incandescent lamps, LEDs are not inherently white light sources. Instead, LEDs emit nearly monochromatic light, making them highly efficient for colored light applications such as traffic lights and exit signs. However, to be used as a general light source, white light is needed. White light can be achieved with LEDs in three ways: Phosphor conversion, in which a phosphor is used on or near the LED to convert the colored light to white light RGB

  6. Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting & Daylighting » Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light

  7. Biofuels Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Biofuels Basics Biofuels Basics Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research supported by the Bioenergy Technologies Office. Biofuels for Transportation Ethanol Biodiesel Renewable Diesel Biofuels for Transportation Most vehicles on the road today are fueled by gasoline and

  8. Office of Basic Energy Sciences; ...

    Office of Scientific and Technical Information (OSTI)

    Final Technical Report submitted to the Department of Energy - Office of Basic Energy Sciences; Dr. Lane C. Wilson, Program Manager Period of performance for Sept 15, 2010 - Sept ...

  9. Solar Photovoltaic Technology Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process ...

  10. Solar Process Heat Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for ...

  11. NREL: Learning - Solar Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain ... & Renewable Energy Solar Energy Conversion Data U.S. Energy Information Administration

  12. Hydropower Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Hydropower Hydropower Resource Basics Hydropower Resource Basics August 16, 2013 ... Energy Basics Home Renewable Energy Biomass Geothermal Hydrogen & Fuel Cells ...

  13. Resonant thermonuclear reaction rate

    SciTech Connect (OSTI)

    Haubold, H.J.; Mathai, A.M.

    1986-08-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.

  14. Alternative Fuels Data Center: Hydrogen Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production

  15. Alternative Fuels Data Center: Propane Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production &

  16. OLED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics » OLED Basics OLED Basics OLEDs are organic LEDs, which means that their key building blocks are organic (i.e., carbon-based) materials. Unlike LEDs, which are small-point light sources, OLEDs are made in sheets that are diffuse-area light sources. OLED technology is developing rapidly, and there are a handful of product offerings with efficacy, lifetime, and color quality specs that are comparable to their LED counterparts. However, OLEDs are still some years away from widespread

  17. Fuel Cell Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be used in vehicles to provide electricity for propulsion as well as for a car's electric and electronic ...

  18. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived...

  19. NREL: Learning - Geothermal Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada. Many technologies have been developed to take...

  20. SSL Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics SSL Basics Solid-state lighting (SSL) differs from other kinds of lighting in that it's based on light-emitting diodes (LEDs) or organic LEDs (OLEDs) instead of filaments, plasma, or gases. In addition to having the potential to be more energy efficient than any other existing lighting technology, it also has a number of other advantages-including directionality, controllability, vibration resistance, long life, color tunability, and aesthetic appeal. But SSL is still at a relatively

  1. Biofuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Most vehicles on the road today run on gasoline and diesel fuels, which are produced from oil-a non-renewable resource, meaning supplies are limited. Renewable resources, in contrast, are constantly replenished and are unlikely to run out. Biomass is one type of renewable resource that can be converted into liquid fuels (biofuels) for transportation.

  2. Biomass Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics Biomass Basics Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae, sewage, and other organic substances that may be used to make energy through chemical processes. Biomass currently supplies about 3% of total U.S. energy consumption in the form of electricity, process heat, and

  3. Bioproducts Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts Basics Bioproducts Basics Today, petroleum is refined to make chemical feedstocks used in thousands of products. Many of these petroleum-based feedstocks could be replaced with value-added chemicals produced from biomass to manufacture clothing, plastics, lubricants, and other products. The emerging U.S. biobased products industry combines expertise and technology from the agriculture, forest products, and chemical industries to create plastics, chemicals, and composite materials

  4. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  5. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    repository and the Principal Investigator (PI) for ALICE computing at NERSC is Jeff Porter. ALICE users work in the sl53 chos environment. See the Chos page for more...

  6. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPSS. The Principal Investigator (PI) for STAR computing at NERSC is Jeff Porter. In general STAR users should work in the chos environment sl53. This means that upon...

  7. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daya Bay has two "production accounts". The dayabay account is used for the automated software builds on common as well as for the diagnostic testing of the processed raw data...

  8. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  9. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  10. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  11. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  12. Basic research for environmental restoration

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The Department of Energy (DOE) is in the midst of a major environmental restoration effort to reduce the health and environmental risks resulting from past waste management and disposal practices at DOE sites. This report describes research needs in environmental restoration and complements a previously published document, DOE/ER-0419, Evaluation of Mid-to-Long Term Basic Research for Environmental Restoration. Basic research needs have been grouped into five major categories patterned after those identified in DOE/ER-0419: (1) environmental transport and transformations; (2) advanced sampling, characterization, and monitoring methods; (3) new remediation technologies; (4) performance assessment; and (5) health and environmental effects. In addition to basic research, this document deals with education and training needs for environmental restoration. 2 figs., 6 tabs.

  13. Tool Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Analysis Tools » Energy Asset Score » Tool Basics Tool Basics Asset Score Scale The Asset Score uses a 10-point scale to evaluate the energy efficiency of a building's physical characteristics and major energy-related systems. The point value is assigned based on a building's predicted source energy use intensity (EUI) according to the energy simulation results. Scores are rounded to the nearest half-point increment (i.e., "6", "6.5", "7",

  14. Financing Basics for RE Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics for RE Projects 1 Agenda: * Overview & Summary Findings * Introduction to Project Finance * The Role of the Players * Structure and Negotiation of Key Documents * Conclusions 2 Overview & Summary Findings 3 Renewable Energy Options: * Wind * PV * Solar * Bio * The evaluative parameters used by financiers is different for each of these technologies - Example: DSC for Wind = 1.4 - 1.5; and DSC for Bio (due to fuel risk) = 1.5 - 1.6 4 Basic Elements #1: * Lots of money now available

  15. Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Hydropower Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam-a huge facility harnessing the power of an entire river behind its walls-but hydropower facilities come in all sizes. Some may be very large, but they can be tiny too, taking advantage of water flows in municipal water facilities or irrigation ditches. They can even be "dam-less,"

  16. KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL...

    Office of Scientific and Technical Information (OSTI)

    KineticsFinal Report Cover Page Bakajin, O 59 BASIC BIOLOGICAL SCIENCES; 42 ENGINEERING; CONSUMPTION RATES; DEAD TIME; DETECTION; DIFFUSION; DNA; ENERGY TRANSFER; FABRICATION;...

  17. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per

  18. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics DOE ... More Documents & Publications Basic Energy Sciences Overview Progress from DOE EF RC: ...

  19. BPA issues final decision on oversupply rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is consistent with our multiple statutory responsibilities, is rooted in the basic principles of cost causation and fairness that underlie BPA's rate directives, and...

  20. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  1. Solar Photovoltaic Technology Basics | Department of Energy

    Energy Savers [EERE]

    Solar Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics August ... Photovoltaic (PV) materials and devices convert sunlight into electrical energy. A single ...

  2. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there....

  3. Basic Matrix Library (bml), Version 0.x

    Energy Science and Technology Software Center (OSTI)

    2015-11-24

    The basic matrix library (bml) is a collection of various matrix data formats (in dense and sparse) and their associated algorithms for basic matrix operations.

  4. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    Basic energy properties of electrolytic solutions database. Viscosity, thermal conductivity, density, enthalpy Citation Details In-Document Search Title: Basic energy properties ...

  5. Health Care Buildings : Basic Characteristics Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Basic Characteristics Tables Buildings and Size Data by Basic Characteristics for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million...

  6. Basic Research Needs: Catalysis for Energy

    SciTech Connect (OSTI)

    Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

    2008-03-11

    The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

  7. Solar Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Solar Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a ...

  8. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Fact sheet providing questions and answers on ...

  9. Crystalline Silicon Photovolatic Cell Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics ... This lattice comprises the solid material that forms the photovoltaic (PV) cell's ...

  10. Photovoltaic Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles Quiz: Test Your Solar IQ Energy 101: Solar Photovoltaics Photovoltaic Cell Basics Energy Basics Home Renewable Energy Biomass Geothermal Hydrogen & Fuel ...

  11. Photovoltaic Crystalline Silicon Cell Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Cell Basics Photovoltaic Crystalline Silicon Cell Basics August 20, 2013 - 2:00pm Addthis To separate electrical charges, crystalline silicon cells must have a ...

  12. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. ...

  13. Assessment of the basic energy sciences program. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  14. Geothermal Electricity Production Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Production Basics Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Dry Steam Dry steam

  15. Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. Photo of the front and part of the side of a bus parked at the curb of a city street with

  16. Concentrating Solar Power Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a generator to produce electricity. However, a new generation of power plants with concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar power systems are: linear concentrator, dish/engine, and power tower systems. Linear concentrator systems collect the sun's energy

  17. Basic photovoltaic principles and methods

    SciTech Connect (OSTI)

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  18. Events in time: Basic analysis of Poisson data

    SciTech Connect (OSTI)

    Engelhardt, M.E.

    1994-09-01

    The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.

  19. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  20. PC Basic Linear Algebra Subroutines

    Energy Science and Technology Software Center (OSTI)

    1992-03-09

    PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less

  1. Solar Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel ...

  2. Basic Research Needs for the Hydrogen Economy

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

  3. Photovoltaic Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV ...

  4. Basic ReseaRch DiRections

    National Nuclear Security Administration (NNSA)

    Basic ReseaRch DiRections for User Science at the National Ignition Facility Report on the National Nuclear Security Administration - Office of Science Workshop on Basic Research Directions on User Science at the National Ignition Facility BASIC RESEARCH DIRECTIONS FOR USER SCIENCE AT THE NATIONAL IGNITION FACILITY Report on the National Nuclear Security Administration (NNSA) - Office of Science (SC) Workshop on Basic Research Directions on User Science at the National Ignition Facility Chairs:

  5. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  6. Lighting and Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting and Daylighting Basics Lighting and Daylighting Basics August 15, 2013 - 5:05pm Addthis Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting. Learn more about: Lighting Daylighting Addthis Related Articles Daylighting Basics Energy 101: Daylighting The Biggest, Brightest Star of Energy Efficiency Energy Basics Home Renewable Energy Homes &

  7. Energy Basics Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Basics Website Contact Energy Basics Website Contact Use this form to send us your comments, report problems, and/or ask questions about information on the Energy Basics website. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  8. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  9. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  10. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  11. Wind Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Energy Basics Wind Energy Basics Wind Energy Basics Once called windmills, the technology used to harness the power of wind has advanced significantly over the past ten years, with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces into electricity to help power the grid. Wind energy is actually a byproduct of the sun. The sun's uneven heating of

  12. Bio-Benefits Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Bio-Benefits Basics Bio-Benefits Basics Biomass is an important commodity for the future of the United States. Increased production and use of biofuels will result in a variety of benefits to the nation, including: Improved national energy security Increased economic growth Broad-based environmental benefits. Biomass and U.S. Energy Security The U.S. economy is heavily dependent on oil imports-containing 4% of the world's

  13. Photovoltaic Silicon Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... More Information Learn more about these solar cell materials: Polycrystalline Thin Films Single-Crystalline Thin Films Addthis Related Articles Photovoltaic Cell Material Basics ...

  14. National Laboratory] Basic Biological Sciences(59) Biological...

    Office of Scientific and Technical Information (OSTI)

    Achievements of structural genomics Terwilliger, Thomas C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science Biological Science Abstract Not...

  15. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  16. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. Review - basic research needs in fluid mechanics

    SciTech Connect (OSTI)

    Jones, O.C. Jr.; Kreith, F.; White, F.M.

    1981-12-01

    A small segment of the engineering community was surveyed to obtain their judgement regarding the long-range needs for basic research in fluid mechanics. It is the purpose of this paper to provide a summary of a more detailed report, which identifies basic research needed in fluid mechanics. 12 refs.

  18. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  19. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  20. Active Solar Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems

  1. Photovoltaics: Basic Design Principles and Components

    SciTech Connect (OSTI)

    1997-03-01

    This publication will introduce you to the basic design principles and components of PV systems. It will also help you discuss these systems knowledgeably with an equipment supplier or system installer.

  2. NREL: Learning - Fuel Cell Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Photo showing a silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. ...

  3. Wind Turbine Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all ...

  4. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the ...

  5. Basic Research Needs for Countering Terrorism

    SciTech Connect (OSTI)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  6. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  7. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  8. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  9. Evaporative Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work

  10. LED Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional light source. LEDs are compound semiconductor devices that produce light when an appropriate electrical current is applied. Applying electrical current causes electrons to flow from one material in the structure to another and this in turn causes a series of complex interactions at an atomic level that

  11. Lesson 1 - Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 - Energy Basics Lesson 1 - Energy Basics This lesson covers the states and forms of energy, where energy comes from, as well as how the way we live is tied to our energy supply and what that means for the future. Specific topics include: States of energy Potential Kinetic Forms of energy Energy sources Primary and secondary sources Renewable and nonrenewable Conversion Conservation Environmental impacts Greenhouse effect Future sources Lesson 1 - Energy.pptx (8.84 MB) More Documents &

  12. Fluorescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power

  13. Fluorescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power

  14. Basic Energy Sciences (BES) at LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences at LLNL Eric Schwegler is the Point-of-Contact for DOE Office of Science Programs - Basic Energy Sciences (BES) at LLNL. Highlights Mesoscale Simulations of Coarsening in GB Networks Coherency Does Not Equate to Stability Laser Crystallization of Phase Change Material Extraction of Equilibrium Energy and Kinetic Parameters from Single Molecule Force Spectroscopy Data LLNL BES Programs Theme area 1: Time, Space and Energy Resolved Investigations of Materials in Extreme

  15. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  16. Cooling System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating & Cooling » Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp

  17. Electricity Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Electricity Fuel Basics Electricity Fuel Basics August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated during electricity production at the power plant. Charging plug-in electric vehicles at home is as simple as plugging them into an

  18. Enhanced Geothermal System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal » Enhanced Geothermal System Basics Enhanced Geothermal System Basics A naturally occurring geothermal system, known as Enhanced Geothermal Systems (EGS), is another form of renewable energy. It is defined by three key elements: heat, fluid, and permeability at depth. Essentially, these are engineered reservoirs that produce energy from geothermal resources in areas that are not usually considered economically viable due to a lack of water and/or the ability of that water to pass

  19. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  20. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  1. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses,

  2. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  3. Biodiesel Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What Is Biodiesel? Biodiesel is a liquid fuel produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum-derived diesel, biodiesel is

  4. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources that are used directly as a fuel, or converted to another form or energy product that are available on a renewable basis are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, algae, biomass processing residues, municipal waste, and animal waste. Dedicated Energy Crops Dedicated energy crops are non-food

  5. Concentrating Solar Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar » Concentrating Solar Power Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto a single

  6. Hydropower Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2014, and about 48% of all renewable electricity generated in the United

  7. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  8. Renewable Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and water. According to the Energy Information Administration, in 2007, renewable sources of energy accounted for about 7% of total energy consumption and 9.4% of total electricity generation in the United States. Renewable energy technologies have the potential to strengthen our nation's energy security, improve

  9. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  10. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  11. Peer review, basic research, and engineering: Defining a role for QA professionals in basic research environments

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1989-02-01

    Within the context of doing basic research, this paper seeks to answer four major questions: (1) What is the authority structure of science. (2) What is peer review. (3) Where is the interface between basic physics research and standard engineering. and (4) Given the conclusions to the first three questions, what is the role of the QA professional in a basic research environment like Fermilab. 23 refs.

  12. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities

  13. Absorption Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and

  14. Incandescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps consist of a wire filament inside a glass bulb that is usually filled with inert gas, and they produce light when an electric current heats the filament to a high temperature. Incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options-because most of the energy released is in the form of heat rather than light-and a short average operating life

  15. Criticality safety basics, a study guide

    SciTech Connect (OSTI)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  16. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize

  17. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. HOW FUEL CELLS WORK Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode

  18. Geothermal Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F

  19. Heat Pump System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating & Cooling » Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless

  20. Heating System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or

  1. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  2. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. Humans have used biomass for thousands of years. Biomass is any organic material that has stored sunlight in the form of chemical energy. Wood is a well-known example of biomass: it can be burned for heat or shaped into building materials. There are many additional types of biomass that can be used to derive fuels, chemicals, and

  3. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  4. Solar Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Did you know that the amount of sunlight that strikes the earth's surface in an hour and a half is enough to handle the entire world's energy consumption for a full year? Solar energy has amazing potential to power our daily lives thanks to constantly-improving technologies. Solar energy systems come in all shapes and sizes. Residential systems are found on rooftops across the

  5. VIDEO: TM-30 BASICS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VIDEO: TM-30 BASICS VIDEO: TM-30 BASICS TM-30 is a new method for evaluating light source color rendition, developed by the Color Metrics Task Group, which was part of the IES Color Committee. And then it was later balloted by the Technical Review Council and the Board of Directors. The Color Metrics Task Force was a group of eight individuals, seven voting members. And we worked collaboratively over about a year and a half to really synthesize and bring in existing research on color rendering.

  6. Basic Energy Sciences FY 2014 Research Summaries

    SciTech Connect (OSTI)

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  7. Basic Energy Sciences FY 2011 Research Summaries

    SciTech Connect (OSTI)

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  8. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments [OSTI]

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  9. Basic Energy Sciences FY 2012 Research Summaries

    SciTech Connect (OSTI)

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  10. OSTIblog Articles in the basic research Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    basic research Topic Basic Research and Innovation by Dr. Jeffrey Salmon 24 Mar, 2014 in 17010 IdeaSharing.jpg Basic Research and Innovation Read more about 17010 Recently, I ...

  11. Alternative Fuels Data Center: Codes and Standards Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Codes and Standards Basics to someone by E-mail Share Alternative Fuels Data Center: Codes and Standards Basics on Facebook Tweet about Alternative Fuels Data Center: Codes and Standards Basics on Twitter Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Google Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Delicious Rank Alternative Fuels Data Center: Codes and Standards Basics on Digg Find More places to share Alternative Fuels Data Center: Codes and

  12. Brochure, A Basic Overview of the Integrated Safety Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Basic Overview of the Integrated Safety Management (ISM) Brochure, A Basic Overview of ... the overview, objective, guiding principles, core functions, safety culture ...

  13. Tribal Renewable Energy Webinar: Transmission and Grid Basics...

    Energy Savers [EERE]

    Transmission and Grid Basics for Tribal Economic and Energy Development Tribal Renewable Energy Webinar: Transmission and Grid Basics for Tribal Economic and Energy Development ...

  14. Controlling Subsurface Fractures and Fluid Flow: A Basic Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling ...

  15. Chapter 5. Basic Concepts for Clean Energy Unsecured Lending...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds ...

  16. Guidance on Basic Best Practices in Management of Energy Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Basic Best Practices in Management of Energy Performance Buildings Guidance on Basic Best Practices in Management of Energy Performance Buildings Building energy management best ...

  17. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have ...

  18. Concentrating Solar Power Tower System Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, ...

  19. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses....

  20. Pamphlet, A Basic Overview of Occupational Radiation Exposure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & ...

  1. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  2. Tankless Coil and Indirect Water Heater Basics | Department of...

    Energy Savers [EERE]

    Homes & Buildings Water Heating Tankless Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of ...

  3. Basic Research Needs for Solar Energy Utulization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Needs for Solar Energy Utulization Basic Research Needs for Solar Energy Utulization Report of the basic energy sciences workshop on solar utulization. April 18-21, 2005. ...

  4. Photovoltaic Electrical Contact and Cell Coating Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV) cell, ...

  5. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  6. Basic Plasma Science | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Plasma Science Key Laboratory projects include the study of Hall thrusters that satellites and space probes use for propulsion. PPPL's Hall Thruster Experiment (HTX) strives to understand the physics of Hall thrusters and related systems that expel plasma as a propellant. Hall thrusters originated in the Soviet Union in the 1960s and research and development are carried out today in the United States, the European Union, Russia, Japan, Korea and China. PPPL research has expanded knowledge

  7. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  8. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  9. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses. biomass_basics.pdf (899.36 KB) More Documents & Publications Biomass Basics: The Facts About Bioenergy Bioenergy Impact Posters http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf

  10. Fusion Basics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are

  11. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect (OSTI)

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  12. Petrochemical feedstock from basic oxygen steel furnace

    SciTech Connect (OSTI)

    Greenwood, C.W.; Hardwick, W.E.

    1983-10-01

    Iron bath gasification in which coal, lime, steam and oxygen are injected into a bath of molten iron for the production of a medium-Btu gas is described. The process has its origin in basic oxygen steelmaking. It operates at high temperatures and is thus not restrictive on the type of coal used. The ash is retained in the slag. The process is also very efficient. The authors suggest that in the present economic climate in the iron and steel industry, such a plant could be sited where existing coal-handling, oxygen and steelmaking equipment are available.

  13. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  14. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  15. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  16. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  17. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  18. The Basics of Underground Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be...

  19. ACAA fly ash basics: quick reference card

    SciTech Connect (OSTI)

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  20. Basic concepts of contaminant sorption. Summary paper

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of issue papers and briefing documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attempt to make the content of these documents available to a wider audience, RSKERL is developing a series of summary papers which are condensed versions of the original documents. Understanding the processes which dictate transport and fate characteristics of contaminants in soil and ground water is of paramount importance in designing and implementing remediation systems at hazardous waste sites. Sorption is often the most significant of these processes. The summary paper addresses the basic concepts of sorption in soil and ground water with an emphasis on organic contaminants having the characteristics of those often found at existing hazardous waste sites.

  1. Summary of recommendations on basic research

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    There has been considerable progress during the past four decades in organic geochemistry research applied to understanding the origin of coal, oil, and gas, and in understanding contemporary and ancient carbon cycles on Earth. Significant contributions have been made by academic research, government laboratories, and industrial research communities either working independently or with informal cooperation. But, important questions still remain. Among the questions answered in this paper are those dealing with the mechanisms of migration of hydrocarbons and the structure of kerogen and coal. During the final plenary session of the workshop, one way of dealing with the problem of coordinating basic research effects between industry, academic institutions, and government laboratories, strongly favored by some of the participants, was discussed--creation of a National Fossil Fuel Research Institute.

  2. Criticality Safety Basics for INL Emergency Responders

    SciTech Connect (OSTI)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  3. Montana Understanding the Basics of Water Law In Montana Webpage...

    Open Energy Info (EERE)

    Understanding the Basics of Water Law In Montana Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Understanding the Basics of Water Law...

  4. SEP Success Story: Back to the Basics of Sustainability -- Houses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine SEP Success Story: Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine ...

  5. Flat-Plate Photovoltaic Module Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Basics Flat-Plate Photovoltaic Module Basics August 20, 2013 - 4:25pm Addthis ... a high transmission in the wavelengths that can be used by the solar cells in the module. ...

  6. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a woman scientist using a machine...

  7. Tankless Demand Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the ...

  8. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  9. Dish/Engine System Concentrating Solar Power Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DishEngine System Concentrating Solar Power Basics DishEngine System Concentrating Solar Power Basics August 20, 2013 - 5:02pm Addthis Illustration of a dishengine power plant. ...

  10. Plug-In Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  11. A Basic Overview of the Occupational Radiation Exposure Monitoring...

    Energy Savers [EERE]

    Occupational Radiation Exposure: Monitoring, Analysis & Reporting A Basic Overview of OCCUPATIONAL RADIATION EXPOSURE Monitoring, Analysis & Reporting Outreach & Awareness Series ...

  12. Revolving Loan Funds: Basics and Best Practices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funds: Basics and Best Practices Revolving Loan Funds: Basics and Best Practices This webinar, held on Aug. 26, 2009, provides basic information and best practices for revolving loan funds. It explains existing programs, how to setup a revolving loan fund, and risk management. Presentation More Documents & Publications Financing Energy Upgrades for K-12 School Districts Revolving Loan Funds (RLF) Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and

  13. Webtrends Archives by Fiscal Year — Energy Basics

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Energy Basics site by fiscal year.

  14. Liquefied Natural Gas: Understanding the Basic Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts (3.38 MB) More Documents & Publications ORDER NO. 3357: Freeport LNG Order 3669: Sabine Pass Liquefaction, LLC ORDER NO. 3391: CAMERON LNG

  15. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  16. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  17. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  18. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  19. Basic TRUEX process for Rocky Flats Plant

    SciTech Connect (OSTI)

    Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

    1994-08-01

    The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle.

  20. Tribal Renewable Energy Foundational Course: Electricity Grid Basics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides and a text version of the audio. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER)

  1. OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Health Programs and Related Matters; 29 CFR 1960 | Department of Energy OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 November 26, 2004 Federal Register copy of OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health

  2. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  3. A Basic Overview of the Energy Employees Occupational Illness Compensation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Policy, Guidance & Reports » Worker Health & Safety » A Basic Overview of the Energy Employees Occupational Illness Compensation Program A Basic Overview of the Energy Employees Occupational Illness Compensation Program January 2015 A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to assist former and current DOE Federal,

  4. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  5. ORISE: Collaboration with the CDC yields Radiation Basics Made...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online training designed to help public health and emergency medical professionals learn fundamentals of radiation How ORISE is Making a Difference Radiation Basics Made Simple, ...

  6. Manhattan Project: Basic Research at Los Alamos, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS (Los Alamos: Laboratory, 1943-1944) Events > Bringing ...

  7. Detter, John C. [Los Alamos National Laboratory] Basic Biological

    Office of Scientific and Technical Information (OSTI)

    State of the Art for Autonomous Detection Systems using Genomic Sequencing Detter, John C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science...

  8. EPA Brownfields and Land Revitalization Website: Basic Information...

    Open Energy Info (EERE)

    Abstract This site provides basic information regarding EPA's Brownfields program. Author Environmental Protection Agency Published EPA, Date Not Provided DOI Not Provided Check...

  9. Revolving Loan Funds: Basics and Best Practices Webinar

    Broader source: Energy.gov [DOE]

    Provides a webinar presentation, and supporting background materials, on basic information and characteristics for revolving loan funds , including best practices. Author: National Renewable Energy Laboratory

  10. Electricity Grid Basics Webinar Presentation Slides and Text Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on electricity grid basics.

  11. Electricity Grid Basics Webinar Presentation Slides and Text...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on ...

  12. Electron Proton Hydrogen Deuterium Tritium Neutron Fusion Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Deuterium Tritium Neutron Fusion Basics Throughout history, the way in which the sun and stars produce their energy remained a mystery. During the 20th century, scientists ...

  13. A Basic Overview of the Energy Employees Occupational Illness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to ...

  14. OSHA Rulemaking on Basic Program Elements for Federal Employee...

    Energy Savers [EERE]

    for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational ...

  15. Basic Research Needs for High Energy Density Laboratory Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...

  16. Technical Assistance Project (TAP) Revolving Loan Funds: Basics...

    Broader source: Energy.gov (indexed) [DOE]

    pwebinar20090826sifuentes.pdf More Documents & Publications Revolving Loan Funds: Basics and Best Practices LoanSTAR Revolving Loan Program Revolving Loan Funds: An Introduction...

  17. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  18. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  19. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  20. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  1. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  2. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  3. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOE Patents [OSTI]

    Givens, Edwin N.; Hoover, David S.

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  4. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    methods to determine the ;rates and mechanisms of fluid-rock processes, and to test predictive models of such phenomena. Many of the key energy challenges of the future demand a greater understanding of the subsurface world in all of its complexity. This greater under- standing will improve the ability to control and manipulate the subsurface world in ways that will benefit both the economy and the environment. This report provides specific basic research pathways to address some of the most fundamental issues of energy-related subsurface engineering.

  5. The Acid Hydrolysis Mechanism of Acetals Catalyzed by a Supramolecular Assembly in Basic Solution

    SciTech Connect (OSTI)

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-09-24

    A self-assembled supramolecular host catalyzes the hydrolysis of acetals in basic aqueous solution. The mechanism of hydrolysis is consistent with the Michaelis-Menten kinetic model. Further investigation of the rate limiting step of the reaction revealed a negative entropy of activation ({Delta}S{double_dagger} = -9 cal mol{sup -1}K{sup -1}) and an inverse solvent isotope effect (k(H{sub 2}O)/k(D{sub 2}O) = 0.62). These data suggest that the mechanism of hydrolysis that takes place inside the assembly proceeds through an A-2 mechanism, in contrast to the A-1 mechanism operating in the uncatalyzed reaction. Comparison of the rates of acetal hydrolysis in the assembly with the rate of the reaction of unencapsulated substrates reveals rate accelerations of up to 980 over the background reaction for the substrate diethoxymethane.

  6. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect (OSTI)

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to

  7. Tutorial: The Basics of SAXS Data Analysis | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial: The Basics of SAXS Data Analysis Thursday, November 17, 2011 - 1:00pm SLAC, Redtail Hawk Conference Room 108A Dr. Alexander V. Shkumatov, Biological Small Angle...

  8. Exploring Power Purchase Agreements- The Basics Part 1

    Broader source: Energy.gov [DOE]

    This webinar, held on July 27, 2011, provides information on the basics of Power Purchase Agreements, including risks and unique issues and benefits. Case studies include Salt Lake County, Utah, and Talbot County, Maryland.

  9. Tutorial: The Basics of SAXS Data Analysis | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Tutorial: The Basics of SAXS Data Analysis Thursday, November 17, 2011 - 1:00pm SLAC, Redtail Hawk Conference Room 108A Dr. Alexander V. Shkumatov, Biological Small Angle Scattering Group, EMBL Hamburg

  10. Vehicle Technologies Office Merit Review 2015: Basic Energy Sciences Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Basic Energy...

  11. Inflation Basics (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Inflation Basics Authors: Green, Dan 1 + Show ... Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of ...

  12. Energy 101 Videos: Learn More About the Basics! | Department...

    Broader source: Energy.gov (indexed) [DOE]

    out the Energy Basics Web site last week. Because I'm going to talk about something on the site, I wanted to remind you all of what it is: a brand new Web site on EERE that talks ...

  13. Wood and Pellet Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices.

  14. Institutional Change Basics for Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics for Sustainability Institutional Change Basics for Sustainability Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates. For example: Technology provides means to decrease energy and resource use. Policy provides directives to decrease energy and resource use. Institutional and individual behaviors provide avenues to ensure technologies and policies are used effectively in

  15. Microhydropower Conveyance and Filter Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conveyance and Filter Basics Microhydropower Conveyance and Filter Basics August 16, 2013 - 3:53pm Addthis Before water enters the turbine or waterwheel of a microhydropower system, it is funneled through a series of components that control its flow and filter out debris. These components include the headrace, forebay, and water conveyance (or channel, pipeline, or penstock). The headrace is a waterway that runs parallel to the water source. A headrace is sometimes necessary for hydropower

  16. Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their

  17. Guidance on Basic Best Practices in Management of Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings | Department of Energy on Basic Best Practices in Management of Energy Performance Buildings Guidance on Basic Best Practices in Management of Energy Performance Buildings Building energy management best practices 11_001_eecbg_sep_building_best_practice.pdf (206.26 KB) More Documents & Publications Energy Efficiency and Conservation Block Grant Financing Program Guidance Grantee Letter SEP Guidance National Energy Policy Act Guide for State Energy Program and Energy Efficiency

  18. Basic Research for the Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative (143.96 KB) More Documents & Publications FTA - SunLine Transit Agency - Final Report 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office

  19. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy Biomass is any organic material that has stored sunlight in the form of chemical energy, such as plants, agricultural crops or residues, municipal wastes, and algae. DOE is focusing on new and better ways to make liquid transportation fuels, or "biofuels," like ethanol, biodiesel, and renewable gasoline. DOE is also investigating the potential of producing power and a range of products from biomass. Biomass

  20. Safety, Codes and Standards - Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » Safety, Codes and Standards - Basics Safety, Codes and Standards - Basics Hydrogen has a long history of safe use in the chemical and aerospace industries. An understanding of hydrogen properties, proper safety precautions and engineering controls, and established rules, regulations, and standards are the keys to this successful track record. As the use of hydrogen and fuel cell systems expands, codes and standards will be needed to provide the information to

  1. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda BES Report Controlling Subsurface Fractures and Fluid Flow.pdf (815.56 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Jason Report

  2. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  3. Geothermal Direct-Use Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct-Use Basics Geothermal Direct-Use Basics August 14, 2013 - 1:46pm Addthis Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use applications include heating buildings, growing plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes such as pasteurizing milk. Learn more about direct-use of geothermal applications from the EERE Geothermal Technologies Office. Addthis Related Articles

  4. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated

  5. Large Scale Production Computing and Storage Requirements for Basic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Basic Energy Sciences: Target 2017 BES-Montage.png This is an invitation-only review organized by the Department of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The goal is to determine production high-performance computing, storage, and services that will be needed for BES to

  6. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  7. A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting | Department of Energy A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting September 2012 This pamphlet is intended to provide a short summary of the Department of Energy Laboratory Accreditation Program and DOE Radiation Exposure Monitoring System programs that aid in the oversight of radiation protection activities at DOE. Title 10, Code of Federal

  8. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a scientist testing a photoelectrochemical water splitting system. Hydrogen is the simplest and most abundant element in the universe. It is a major component of water, oil, natural gas, and all living matter. Despite its simplicity and abundance, hydrogen rarely occurs naturally as a gas on Earth. It is almost always combined with other elements. It can be generated from

  9. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating Systems Heat Pump Systems Supporting Equipment for

  10. Vehicle Technology and Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn about exciting technologies and ongoing research in advanced technology vehicles and alternative fuel vehicles that run on fuels other than traditional petroleum.. ADVANCED TECHNOLOGY AND ALTERNATIVE FUEL VEHICLES There are a variety of alternative fuel vehicles and advanced technology vehicles available. Learn about: Flexible Fuel Vehicles Fuel

  11. Concentrating Solar Power Thermal Storage System Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to

  12. Final Report - National Database of Utility Rates and Rate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Database of Utility Rates and Rate Structure Final Report - National Database of Utility Rates and Rate Structure Awardee: Illinois State University Location: Normal, IL ...

  13. Improving Entrainment Rate Parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entrainment Rate Parameterization For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Parameterization of entrainment rate is critical for improving representation of cloud- and convection-related processes in climate models; however, much remains unclear. This work seeks to improve understanding and parameterization of entrainment rate by use of aircraft observations and large-eddy simulations of shallow cumulus clouds over

  14. LCC Guidance Rates

    Broader source: Energy.gov [DOE]

    Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

  15. Draft Tiered Rate Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Regional Dialogue Discussion Purposes Only Pre-Decisional Draft Tiered Rates Methodology March 7, 2008 Pre-decisional, Deliberative, For Discussion Purposes Only March 7,...

  16. Basic research needs for management and disposal of DOE wastes

    SciTech Connect (OSTI)

    Grazis, B.M.; Horwitz, E.P. ); Schulz, W.W. )

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs.

  17. Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics S. F. Iacobellis and R. C. J. Somerville Scripps Institution of Oceanography University of California, San Diego La Jolla, California G. M. McFarquhar University of Illinois at Urbana-Champaign Urbana, Illinois D. L. Mitchell Desert Research Institute Reno, Nevada Introduction A single-column model (SCM) is used to examine the sensitivity of basic quantities such as atmospheric radiative heating rates and surface and top of

  18. High-Intensity Discharge Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. High-intensity discharge (HID) lighting can provide high efficacy and long

  19. Solar Photovoltaic System Design Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Design Basics Solar Photovoltaic System Design Basics August 20, 2013 - 4:00pm Addthis Solar photovoltaic modules are where the electricity gets generated, but are only one of the many parts in a complete photovoltaic (PV) system. In order for the generated electricity to be useful in a home or business, a number of other technologies must be in place. Mounting Structures PV arrays must be mounted on a stable, durable structure that can support the array and withstand wind, rain, hail,

  20. Conventional Storage Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another

  1. Heat Pump Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Heat Pump Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water

  2. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another

  3. Passive Solar Building Design Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Passive Solar Building Design Basics Passive Solar Building Design Basics July 30, 2013 - 3:20pm Addthis The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate. Passive solar design-also known as climatic design-involves using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject

  4. Building the Basic PVC Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building the Basic PVC Wind Turbine Building the Basic PVC Wind Turbine Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary This plan shows how to make a rugged and inexpensive classroom wind turbine that can be used for lab bench-based blade design experiments. While a few specialized parts are needed (a hub and DC motor), the rest of the components are easily found at most hardware stores. Curriculum Technology, Science

  5. Large-Scale Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the

  6. Best Practices: Escalation Rates

    Office of Environmental Management (EM)

    Best Practices Escalation Rates Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Best Practices: Escalation Rate Value of future energy savings * Provides purchasing power for implementing a robust, comprehensive and customized ECM set * Provides an option for paying back financing in the shortest possible

  7. DOE Selects Seven Contractors for Waste Treatment Basic Ordering Agreements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cincinnati – The U.S. Department of Energy (DOE) issued seven Basic Ordering Agreements (BOAs) for the treatment of Low-Level Waste (LLW) and Mixed Low-Level Waste (MLLW). The LLW MLLW treatment services also include the treatment of liquid and solid Toxic Substances Control Act (TSCA) regulated waste, such as polychlorinated biphenyls (PCBs) and asbestos.

  8. Basic principles of the surface harmonics method: Flat geometry

    SciTech Connect (OSTI)

    Kovalishin, A. A.

    2011-12-15

    The basic principles of the surface harmonics method are described. A one-dimensional problem is used to exemplify the specific features of the method and the algorithms for construction of finite-difference equations. The objective of this study is to popularize the surface harmonics method among specialists.

  9. Role of basic ecological knowledge in environmental assessment

    SciTech Connect (OSTI)

    Hildebrand, S.G.; Barnthouse, L.W.; Suter, G.W.

    1984-01-01

    The role of basic ecological knowledge in environmental impact assessment was examined. The focus was primarily on the NEPA process. Experience in population biology and ecosystem studies is discussed, the successes and limits of applicability are highlighted, and implications for long-term research needs are identified. Current attempts to develop a national assessment of acid deposition impacts are reviewed. 48 refs. (ACR)

  10. 2007-2009 Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

  11. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  12. Gas exchange characteristics as indicators of the basic limiting factors in photosynthesis

    SciTech Connect (OSTI)

    Sharkey, T.D.

    1989-01-01

    Photosynthesis provides essentially all of the primary productivity on Earth. The rate of photosynthesis varies widely between and even within species. The basic processes are similar in most C{sub 3} plant species and so the differences in the rate of photosynthesis must be governed by feedback mechanisms regulating the rate of photosynthesis to meet the needs of the plant. Understanding these feedback mechanisms may allow us to modify them to adapt photosynthesis to the needs of humans. In this research I have concentrated on one feedback mechanism. This feedback mechanism comes into play when the capacity for starch and sucrose synthesis cannot keep pace with the chloroplast's ability to produce triose phosphate. My colleagues and I have demonstrated that this type of feedback can occur under natural conditions and that both electron transport and Rubisco (RuBP) carboxylase are reduced in activity during this feedback. We demonstrated that the reduced activity of RuBP carboxylase is caused by reduced carbamylation. These studies have led us to speculate that the role of RuBP carboxylase decarbamylation (deactivation) is to regulate the pool of free phosphate inside the chloroplast stroma. In these and other ways this research has contributed to our understanding of how the rate of photosynthesis is established in plants and how that rate might be modified in the future.

  13. Vacuum pyrolysis of waste tires with basic additives

    SciTech Connect (OSTI)

    Zhang Xinghua; Wang Tiejun Ma Longlong; Chang Jie

    2008-11-15

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  14. Future steelmaking technologies and the role of basic research

    SciTech Connect (OSTI)

    Fruehan, R.J.

    1996-12-31

    The steel industry is going through a technological revolution which will not only change how steel is produced but, also, the entire structure of the industry. The drivers for the new or improved technologies, including reduction in capital requirements, possible shortages in raw materials such as coke and low residual scrap, environmental concerns and customer demands are briefly examined. The current status of research and development in the US and selected international producers was examined. As expected, it was found that the industry`s research capabilities have been greatly reduced. Furthermore, less than half of the companies which identified a given technology as critical have significant R and D programs addressing the technology. Examples of how basic research aided in process improvements in the past are given. The examples include demonstrating how fundamentals of reaction kinetics, improved nitrogen control, thermodynamics of systems helped reduce nozzle clogging and fluid flow studies reduced defects in casting. However, in general, basic research did not play a major role in processes previously developed, but helped understanding and aided optimization. To have a major impact, basic research must be focused and be an integral part of any new process development. An example where this has been done successfully is the AISI Direct Ironmaking and Waste Oxide Recycle Projects in which fundamental studies on reduction, slag foaming, and post combustion reactions have led to process understanding, control and optimization. Industry leaders recognize the value and need for basic research but insist it be truly relevant and done with industry input. From these examples the lessons learned on how to make basic research more effective are discussed.

  15. Energy Auditor - Single Family 2.0: Blower Door Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blower Door Basics Energy Auditor - Single Family 2.0: Blower Door Basics Blower Door Basics - Complete (12.5 MB) Lesson Plan: Blower Door Basics (225.08 KB) PowerPoint: Blower Door Basics (12.84 MB) More Documents & Publications Energy Auditor - Single Family 2.0: Mechanical Ventilation Energy Auditor - Single Family 2.0: Zone Pressure Diagnostics Energy Auditor - Single Family 2.0: Building Science Basics

  16. DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research...

    Office of Environmental Management (EM)

    for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces 52.5 Million Solicitation for Basic Hydrogen Research Supporting ...

  17. NREL: State and Local Governments - Clean Energy Policy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Policy Basics States and local communities can create policy strategies to help them achieve their clean energy goals. To create effective strategies, it's helpful to understand how to build a clean energy policy portfolio and the different types of policies. Clean Energy Policy Portfolios Single policies don't transform markets for a clean energy economy in states and localities. The most effective approach is to apply a suite of policies in succession-from policies that prepare

  18. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: Air Distribution Basics and Duct Design Arlan Burdick IBACOS, Inc. December 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  19. Basic research needed for the development of geothermal energy

    SciTech Connect (OSTI)

    Aamodt, R.L.; Riecker, R.E.

    1980-10-01

    Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

  20. Nuclear data for basic and applied science. Volume 1

    SciTech Connect (OSTI)

    Young, P.G.; Brown, R.E.; Auchampaugh, G.F.; Lisowski, P.W.; Stewart, L.

    1985-01-01

    This book presents the papers given at a conference on nuclear data for basic and applied science. Topics considered included: nuclear data needs for fusion reactors; fast-neutron interaction with niobium; neutronic analysis of fusion-fusion (hybrid) blankets; measurements of 14 MeV neutron activation cross sections; recent experimental data on sub-barrier fission of light actinides; and intermediate structure in the fission cross sections of the even curium isotopes.

  1. Basic Data Report for Monitor Well AEC-7 Reconfiguration

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-01-20

    The New Mexico Office of the State Engineer (OSE) permitted well AEC-7 as C-2742. This well has been part of the far-field monitoring network since 1974. The well was used to obtain water level elevations and hydraulic parameters from both the Bell Canyon Formation and the Culebra Member of the Rustler Formation. This basic data report provides a historical account of the well from the original installation to the current configuration.

  2. Recombinant transfer in the basic genome of E. coli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dixit, Purushottam; Studier, F. William; Pang, Tin Yau; Maslov, Sergei

    2015-07-07

    An approximation to the ~4-Mbp basic genome shared by 32 strains of E. coli representing six evolutionary groups has been derived and analyzed computationally. A multiple-alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ~90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single bp mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly betweenmoregenomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome-pairs have one or two recombinant transfers of length ~40115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.41% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kbp. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. As a result, most recombinant transfers seem likely to be due to generalized transduction by co-evolving populations of phages, which could efficiently distribute variability throughout bacterial genomes.less

  3. Basic Energy Sciences Materials Sciences programs: FWP executive summaries

    SciTech Connect (OSTI)

    Vook, F.L.; Samara, G.A.

    1989-02-01

    The goals of our Basic Energy Sciences (BES) Materials Science Program at Sandia are: (1) Perform basic, forefront interdisciplinary research using the capabilities of several organizations. (2) Choose programs broadly complementary to Sandia's weapons laboratory mission, but separably identifiable. (3) Perform research in a setting which enhances technological impact because of Sandia's spectrum of basic research, applied research and development engineering. (4) Use large, capital-intensive research facilities not usually found at universities. The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics, and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes ion-implantation-modified materials, physics and chemistry of ceramics, tailored surfaces for materials applications, strained-layer semiconductors, chemical vapor deposition, surface photo kinetics, organic and high-temperature superconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors.

  4. Sequoia Messaging Rate Benchmark

    Energy Science and Technology Software Center (OSTI)

    2008-01-22

    The purpose of this benchmark is to measure the maximal message rate of a single compute node. The first num_cores ranks are expected to reside on the 'core' compute node for which message rate is being tested. After that, the next num_nbors ranks are neighbors for the first core rank, the next set of num_nbors ranks are neighbors for the second core rank, and so on. For example, testing an 8-core node (num_cores = 8)more » with 4 neighbors (num_nbors = 4) requires 8 + 8 * 4 - 40 ranks. The first 8 of those 40 ranks are expected to be on the 'core' node being benchmarked, while the rest of the ranks are on separate nodes.« less

  5. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/) ‣ Local

  6. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  7. Writing Effective Initial Summary Ratings Initial Summary Rating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has ...

  8. Basic Data Report for Drillhole SNL-2 (C-2948)

    SciTech Connect (OSTI)

    Dennis W. Powers; Washington Regultory and Environmental Services

    2005-01-19

    SNL-2 was drilled in the northwest quarter of Section 12, T22S, R30E, in eastern Eddy County, New Mexico (Figure 2-1). It is located 574 ft from the north line (fnl) and 859 ft from the west line (fwl) of the section (Figure 2-2). This location places the drillhole east of the Livingston Ridge escarpment among oil wells of the Cabin Lake field. SNL-2 will be used to test hydraulic properties and to monitor ground water levels of the Culebra Dolomite Member of the Permian Rustler Formation. SNL-2 was permitted by the New Mexico State Engineer as C-2948. [Official correspondence regarding permitting and regulatory information must reference this permit number.] In the plan describing the integrated groundwater hydrology program (Sandia National Laboratories, 2003), SNL-2 is also codesignated WTS-1 because the location also satisfies needs for long-term monitoring of water quality and movement in the Culebra Dolomite for RCRA permitting; this program is under the management of Washington TRU Solutions LLC (WTS). In the event that additional wells are established on the SNL-2 drillpad to monitor other hydrological units (e.g., the Magenta Dolomite Member of the Permian Rustler Formation), the current drillhole will likely be referred to as SNL-2C because it is completed in the Culebra. Most drillholes at WIPP have been described after completion to provide an account of the geology, hydrology, or other basic data acquired during drilling and immediate completion of the drillhole. In addition, the basic data report provides an account of the drilling procedures and activities that may be helpful to later interpretations of data or for further work in the drillhole, including test activities and eventual plugging and abandoning activities. The basic data report also provides a convenient means of reporting information about administrative activities necessary to drill the hole.

  9. Writing Effective Initial Summary Ratings Initial Summary Rating (ISR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has completed at least 90 days on an established performance plan. Rating officials must take into account the SES member's accomplishments achieved during the performance cycle and the impact to the organization's performance. Rating officials must appraise executives realistically and fairly and avoid ratings inflation.

  10. Basic visual observation skills training course: Appendix B. Final report

    SciTech Connect (OSTI)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the in-class exercises in the five skill areas; pre- and post-course exercises in closure, hidden figures, map memory, and mental rotations; the final examination; a training evaluation form; and the integrating exercise.

  11. Basic devices and techniques for supervisory control and telemetery systems

    SciTech Connect (OSTI)

    Knox, R.M.

    1984-04-01

    The microprocessor is creating extraordinary changes in the basic devices used for supervisory control and telemetry systems. Devices which incorporate microprocessors are providing new capabilities to monitor, to control, and to transmit data. These new capabilities provide the opportunity to utilize new techniques in achieving more efficient operation and control of gas transmission and distribution systems. This paper describes several devices being installed at Transcocontinental Gas Pipe Line Corporation and their impact on the planned techniques to be used to collect gas flow data and to implement supervisory control.

  12. October 1996 - September 2001 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

  13. PULSE RATE DIVIDER

    DOE Patents [OSTI]

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  14. Component Failure Rate Data Sources for Probabilistic Safety and Reliability

    SciTech Connect (OSTI)

    L. C. Cadwallader; S. A. Eide

    2010-09-01

    Probabilistic safety methods are being used in several industries, including chemical, manufacturing, and energy. When performing reliability studies or using probabilistic safety approaches, a basic need arises for input data on failure rates of the mechanical, electrical, instrumentation and control, and other components that comprise the engineering systems in the facility. Some companies have many types of data stored and can retrieve these in-house data for such uses. Other companies hire consultants to perform safety assessments; the consulting firms often use their own data bases. For those analysts who do not have either of those options available, this paper presents some data sources that are retrievable from the literature. These data sources have been evaluated with a basic rating of usefulness for analysis work, and each has a description of what data can be found in the citation that can be used to support assessments in industry. The accessibility of data documents via the internet is also described.

  15. Magnetic fields and galactic star formation rates

    SciTech Connect (OSTI)

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ?0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup ?3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 ?G. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  16. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    SciTech Connect (OSTI)

    Domen, Kazunari

    2011-05-26

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  17. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Domen, Kazunari (University of Tokyo)

    2012-03-14

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  18. Enforcement Policy Statement Regarding Ratings by CAC Independent Coil Manufacturers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Policy Statement Regarding Ratings by CAC Independent Coil Manufacturers Issued: July 13, 2016 In an exercise of its enforcement discretion, DOE will not seek civil penalties for violations of 10 C.F.R. § 429.16(a)(3)(i) where an independent coil manufacturer (ICM) certifies a basic model of split-system central air conditioner with a representative value that is more efficient than a combination certified by an outdoor unit manufacturer (OUM) containing the same outdoor unit where

  19. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  20. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Rate Jump to: navigation, search This is a property of type...

  1. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier1Rate Jump to: navigation, search This is a property of type...

  2. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  3. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  4. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Rate Jump to: navigation, search This is a property of type...

  5. Criticality Safety Basics for INL FMHs and CSOs

    SciTech Connect (OSTI)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information

  6. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a neutral and a basic mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  7. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2014-10-17

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a neutral and a basic mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  8. The fusion rate in the transmission resonance model

    SciTech Connect (OSTI)

    Jaendel, M. )

    1992-03-01

    Resonant transmission of deuterons through a chain of target deuterons in a metal matrix has been suggested as an explanation for the cold fusion phenomena. In this paper the fusion rate in such transmission resonance models is estimated, and the basic physical constraints are discussed. The dominating contribution to the fusion yield is found to come from metastable states. The fusion rate is well described by the Wentzel-Kramer-Brillouin approximation and appears to be much too small to explain the experimental anomalies.

  9. BioenergizeME Office Hours Webinar: Biomass Basics

    Broader source: Energy.gov [DOE]

    Many students haven’t thought much about biomass as an option for generating electricity, transportation fuels, and other products. The Biomass Basics Webinar provides general information about bioenergy, its creation, and its potential uses, and is designed to assist teams competing in the 2016 BioenergizeME Infographic Challenge. This challenge, hosted by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), is a competition for high school students to learn about bioenergy, create infographics to present what they have learned, and share their infographics on social media. This webinar is part of the BioenergizeME Office Hours webinar series developed by BETO in conjunction with the 2016 BioenergizeME Infographic Challenge.

  10. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  11. [Quality assurance in basic research and R D

    SciTech Connect (OSTI)

    Hoke, P.B.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) is one of the nation's largest and most widely diversified federal multipurpose research and development centers. The Laboratory is operated by Martin Marietta Energy Systems Inc. for the US DOE. Its mission embraces non-nuclear as well as nuclear energy development together with a wide range of supporting research in engineering, physical sciences, life sciences as well as social sciences and economics. The Laboratory's program is dominated by four major areas of development that are approximately equal in size: nuclear (fission) energy development, basic physical sciences research, biomedical and environmental, and magnetic fusion energy development. This document outlines ORNL's quality assurance (QA) program in response to the ten criteria of DOE order 5700.6C. Guidance for implementation comes both from Attachment I of 5700.6C and DOE-ER-STD-6001-92. The basis for the program, integration of DOE orders, program architecture, assessment activities, and financial restraints are discussed.

  12. Energy Dept. Awards $22.7 Million for Basic Solar Energy Research...

    Energy Savers [EERE]

    22.7 Million for Basic Solar Energy Research Energy Dept. Awards 22.7 Million for Basic Solar Energy Research May 22, 2007 - 1:24pm Addthis WASHINGTON, DC - The U.S. Department of ...

  13. W, F, and I : Three quantities basic to radiation physics. (Conference...

    Office of Scientific and Technical Information (OSTI)

    W, F, and I : Three quantities basic to radiation physics. Citation Details In-Document Search Title: W, F, and I : Three quantities basic to radiation physics. You are ...

  14. FY2011 Annual Report on DTRA Basic Research Project #BRCALL08...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: FY2011 Annual Report on DTRA Basic Research Project BRCALL08-Per3-C-2-0006 Citation Details In-Document Search Title: FY2011 Annual Report on DTRA Basic Research ...

  15. Videos on Clean Energy That Give You the Basics and More | Department...

    Energy Savers [EERE]

    Videos on Clean Energy That Give You the Basics and More Videos on Clean Energy That Give You the Basics and More October 11, 2011 - 6:37am Addthis Eric Barendsen Energy Technology ...

  16. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unsecured Lending and Loan Loss Reserve Funds) | Department of Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Provides basic concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds. Author: U. S. Department of Energy Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss

  17. Webinar: BioenergizeME Office Hours Webinar: Biomass Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics biomas_basics_webinar_20150827.pdf (3.05 MB) More Documents & Publications BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Toolkit

  18. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    SciTech Connect (OSTI)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  19. October 2005 - March 2006 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 30.56% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  20. April - September 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 40.77% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  1. October 2004 - March 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The PDF documents above provide tables of monthly Slice, PF, RL, and IP rates with the LB + FB + SN CRAC adjustments for each month of the rate period. The table below is simply...

  2. April - September 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 36.93% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  3. October 2003 - March 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.66% non-Slice LB + FB + SN CRAC adjustment for each month of the rate period. The table below is simply a...

  4. October 2002 - March 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.91% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  5. October 2001 - March 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 46% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  6. April - September 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 49.50% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  7. April - September 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 47.00% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  8. FPS-96R Rate Adjustment (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Firm Power Products and Services (FPS-96R) Rate Adjustment In August 1999, BPA proposed to correct errors in the Firm Power Products and Services rate schedule (FPS-96), and...

  9. WP-02 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-02 Power Rate Case (Updated on May 7, 2004) In May of 2000, the BPA Administrator signed a Record of Decision (ROD) on the 2002 Final Power Rate Proposal for the October 2001...

  10. 2007-2009 Power Rates Quarterly Updates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...

  11. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  12. Materials Issues in Advanced Nuclear Systems: Executive Summary of DOE Basic Research Needs Workshop, "Basic Research Needs for Advanced Nuclear Energy Systems"

    SciTech Connect (OSTI)

    Roberto, James B; Diaz de la Rubia, Tomas

    2007-01-01

    This article is reproduced from excerpts from the Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U.S. Department of Energy, October 2006, www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf.

  13. Acid Catalysis in Basic Solution: A Supramolecular Host PromotesOrthoformate Hydrolysis

    SciTech Connect (OSTI)

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-12-12

    Though many enzymes can promote chemical reactions by tuning substrate properties purely through the electrostatic environment of a docking cavity, this strategy has proven challenging to mimic in synthetic host-guest systems. Here we report a highly-charged, water soluble, metal-ligand assembly with a hydrophobic interior cavity that thermodynamically stabilizes protonated substrates and consequently catalyzes the normally acidic hydrolysis of orthoformates in basic solution, with rate accelerations of up to 890-fold. The catalysis reaction obeys Michaelis-Menten kinetics, exhibits competitive inhibition, and the substrate scope displays size selectivity consistent with the constrained binding environment of the molecular host. Synthetic chemists have long endeavored to design host molecules capable of selectively binding slow-reacting substrates and catalyzing their chemical reactions. While synthetic catalysts are often site-specific and require certain properties of the substrate to insure catalysis, enzymes are often able to modify basic properties of the bound substrate such as pK{sub a} in order to enhance reactivity. Two common motifs used by nature to activate otherwise unreactive compounds are the precise arrangement of hydrogen-bonding networks and electrostatic interactions between the substrate and adjacent residues of the protein. Precise arrangement of hydrogen bonding networks near the active sites of proteins can lead to well-tuned pK{sub a}-matching, and can result in pK{sub a} shifts of up to eight units, as shown in bacteriorhodopsin. Similarly, purely electrostatic interactions can greatly favor charged states and have been responsible for pK{sub a} shifts of up to five units for acetoacetate decarboxylase. Attempts have been made to isolate the contributions of electrostatic versus covalent interactions to such pK{sub a} shifts; however this remains a difficult challenge experimentally. This challenge emphasizes the importance of synthesizing

  14. Project Definition Rating Index Workbook

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Project Definition Rating Index (PDRI) Workbook is a tool that was developed to support DOE G-413.3-12A, U. S. Department of Energy Project Definition Rating Index Guide for Traditional Nuclear...

  15. Basic SCADA systems - from the sensors to the screen

    SciTech Connect (OSTI)

    Merlie, B.

    1995-12-01

    Supervisory Control and Data Acquisition (SCADA) Systems are specialized control systems used to monitor and control facilities which are geographically dispersed. They are commonly used in the gas, oil, electric, and water transmission and distribution industries. SCADA systems differ from other control systems in that they make extensive use of remote communications and are more tolerant to outages of the communications network than a typical control system installation in a plant environment. A basic SCADA system can be broken into five functional parts. These are: (1) Sensors and Actuators; (2) Remote Terminal Units (RTUs); (3) Communications Facilities; (4) Host Computer Systems; and (5) User Interfaces While the fundamental concepts of SCADA systems have changed little in the past 20 years, more sophisticated hardware and software has altered some of the traditional paradigms associated with these control systems. This is particularly true with respect to RTUs, host computer systems, and user interfaces. While this paper will focus on the fundamentals, it will attempt to provide the reader with current trends in the industry where applicable.

  16. Towards reversible basic linear algebra subprograms: A performance study

    SciTech Connect (OSTI)

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) a memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.

  17. Basic Studies of Non-Diffusive Transport in Plasmas

    SciTech Connect (OSTI)

    Morales, George J.; Maggs, James E.

    2014-10-25

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events, i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.

  18. Towards reversible basic linear algebra subprograms: A performance study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  19. Basic features of the pion valence-quark distribution function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, Lei; Mezrag, Cdric; Moutarde, Herv; Roberts, Craig D.; Rodrguez-Quintero, Jose; Tandy, Peter C.

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbowladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amorerealistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q?(x); namely, at a characteristic hadronic scale, q?(x)~(1-x)2 for x?0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.less

  20. Assessment of basic research needs for greenhouse gas control technologies

    SciTech Connect (OSTI)

    Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

    1998-09-01

    This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

  1. Basic studies of 3-5 high efficiency cell components

    SciTech Connect (OSTI)

    Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. )

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  2. [Quality assurance in basic research and R&D

    SciTech Connect (OSTI)

    Hoke, P.B.

    1993-05-01

    Oak Ridge National Laboratory (ORNL) is one of the nation`s largest and most widely diversified federal multipurpose research and development centers. The Laboratory is operated by Martin Marietta Energy Systems Inc. for the US DOE. Its mission embraces non-nuclear as well as nuclear energy development together with a wide range of supporting research in engineering, physical sciences, life sciences as well as social sciences and economics. The Laboratory`s program is dominated by four major areas of development that are approximately equal in size: nuclear (fission) energy development, basic physical sciences research, biomedical and environmental, and magnetic fusion energy development. This document outlines ORNL`s quality assurance (QA) program in response to the ten criteria of DOE order 5700.6C. Guidance for implementation comes both from Attachment I of 5700.6C and DOE-ER-STD-6001-92. The basis for the program, integration of DOE orders, program architecture, assessment activities, and financial restraints are discussed.

  3. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect (OSTI)

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  4. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    SciTech Connect (OSTI)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  5. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  6. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  7. SN-03 Rate Case Workshops (rates/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Related Link: SN-03 Power Rate Case May 1 & 13, 2003 - Debt and Liquidity Strategies workshops (on BPA Corporate web site) March 27, 2003 - SN CRAC Prescheduling...

  8. What Is the Right Rate? Loan Rates and Demand

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Financing Peer Exchange Call: “What is the Right Rate?” call slides and discussion summary, December 1, 2011.

  9. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  10. Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are ...

  11. Sustainable Building Rating Systems Summary

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-07-01

    The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

  12. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...

  13. Basic Energy Sciences Advisory Committee (BESAC) Homepage | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) BESAC Home Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings BESAC 2016-2017 Membership Charges/Reports Charter .pdf file (128KB) BES Committees of Visitors Federal Advisory Committees BES Home Print Text Size: A A A FeedbackShare Page The Basic Energy Sciences Advisory Committee (BESAC) - established on September 4, 1986 - provides valuable, independent advice to the Department of Energy on the Basic Energy Sciences program regarding the complex scientific

  14. Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds

    Broader source: Energy.gov [DOE]

    Clean Energy Finance Guide, Third Edition, December 9, 2010, Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds.

  15. The application of 10CFR830. 120 in a basic research environment

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1991-04-01

    In this paper, I describe the process of applying the 10 basic criteria of the proposed 10CFR830.120 to a basic research environment like Fermilab and discuss some of the issues associated with the implementation of such a program. I will also discuss some of the differences and similarities between the 18 basic elements of NQA-1 and the 10 criteria of 10CFR830.120 along with the more philosophical'' issues associated with performance versus process- based approach to quality in basic research.

  16. C.R.S. 37-92-102 - Basic Tenets of Colorado Water Law | Open...

    Open Energy Info (EERE)

    C.R.S. 37-92-102 - Basic Tenets of Colorado Water Law Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: C.R.S. 37-92-102 - Basic...

  17. BPA revises oversupply rate proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comments until May 22, 2013. The rate-setting process will end with the administrator making a decision based on the record developed in the case. BPA expects to issue a final...

  18. Tier 2 Vintage Rate Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a Tier 2 rate 3) Combination of the two On Nov 1, 2009, customers made their elections for how they will serve their Above-RHWM Load during the FY 2012-2014 purchase...

  19. DOE Guidance-Category Rating

    Broader source: Energy.gov (indexed) [DOE]

    August 27, 2010 MEMORANDUM FOR HUMAN RESOURCES DIRECTORS FROM: SARA"iJ. Boku1, DIRECToR OF HUMAN CTAL MANAGEMENT SUBJECT: GUIDANCE MEMORANDUM 10 CATEGORY RATING The purpose of ...

  20. Catalytic Deprotection of Acetals In Strongly Basic Solution Usinga Self-Assembled Supramolecular 'Nanozyme'

    SciTech Connect (OSTI)

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-07-26

    Acetals are among the most commonly used protecting groups for aldehydes and ketones in organic synthesis due to their ease of installation and resistance to cleavage in neutral or basic solution.[1] The common methods for hydrolyzing acetals almost always involve the use of either Broensted acid or Lewis acid catalysts.[2] Usually aqueous acids or organic solutions acidified with organic or inorganic acids have been used for reconversion of the acetal functionality to the corresponding carbonyl group; however, recently a number of reports have documented a variety of strategies for acetal cleavage under mild conditions. These include the use of Lewis acids such as bismuth(III)[3] or cerium(IV),[4, 5] functionalized silica gel, such as silica sulfuric acid[6] or silica-supported pyridinium p-toluene sulfonate,[7] or the use of silicon-based reagents such as TESOTf-2,6-Lutidine.[8] Despite these mild reagents, all of the above conditions require either added acid or overall acidic media. Marko and co-workers recently reported the first example of acetal deprotection under mildly basic conditions using catalytic cerium ammonium nitrate at pH 8 in a water-acetonitrile solution.[5] Also recently, Rao and co-workers described a purely aqueous system at neutral pH for the deprotection of acetals using {beta}-cyclodextrin as the catalyst.[9] Herein, we report the hydrolysis of acetals in strongly basic aqueous solution using a self-assembled supramolecular host as the catalyst. During the last decade, we have used metal-ligand interactions for the formation of well-defined supramolecular assemblies with the stoichiometry M{sub 4}L{sub 6}6 (M = Ga{sup III} (1 refers to K{sub 12}[Ga{sub 4}L{sub 6}]), Al{sup III}, In{sup III}, Fe{sup III}, Ti{sup IV}, or Ge{sup IV}, L = N,N{prime}-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene) (Figure 1).[10] The metal ions occupy the vertices of the tetrahedron and the bisbidentate catecholamide ligands span the edges. The strong

  1. Development of Basic Housing Systems for Maximum Affordability

    SciTech Connect (OSTI)

    Aglan, H.; Gibbons, A.; McQueen, T.M.; Morris, C.; Raines, J.; Wendt, R.L.

    1999-04-19

    The ability to provide safe, habitable, comfortable housing for very low income residents within the target budget of $10,000 presents unique design and construction challenges. However, a number of preliminary conclusions have been inferred as being important concepts relative to the study of affordable housing. The term affordable housing can have many meanings and research is needed to define this explicitly. As it is most often used, affordable housing refers to an economic relationship between the price of housing, household income and current interest rates available from a lending institution. There is no direct relationship between architectural style, construction technology or user needs and the concept of affordability. For any home to be affordable, the home owner must balance the combination of housing needs and desires within the limits of an actual budget. There are many misconceptions that affordable housing must be defined as housing for those who cannot afford the free-market price. The concept of affordable housing must also include a component that recognizes the quality of the housing as an important element of the design and construction. In addition, responses to local climate impacts are necessary and are always part of a regional expression of architectural design. By using careful planning and design it may be possible to construct a limited dwelling unit today for a sum of approximately $10,000. Since the organization of the construction process must involve the owner/occupants as well as other volunteers, the project must not only be well conceived, but well developed and coordinated.

  2. Final Report- National Database of Utility Rates and Rate Structure

    Broader source: Energy.gov [DOE]

    One of the key informational barriers for consumers, installers, regulators and policymakers, is the proper comparison cost of utility-supplied electricity that will be replaced with a Photovoltaic (PV) system. Oftentimes, these comparisons are made with national or statewide averages which results in inaccurate comparisons and conclusions. Illinois State University seeks to meet the need for accurate information about electricity costs and rate structure by building a national database of utility rates and rate structures. The database will build upon the excellent framework that was developed by the OpenEI.org initiative and extend it in several important ways. First, the data will be populated and monitored by a team of trained regulatory economists. Second, the database will be more comprehensive because it will be populated with data from newer competitive retail suppliers for states that have restructured their electricity markets to allow such suppliers. Third, the University and its Institute for Regulatory Policy Studies will maintain the database and ensure that it contains the most recent rate information.

  3. BPA Power Rates (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rates, please see the transmission rates web site. Inactive Rate Cases Integrated Business Review (IBR) Integrated Program Review (IPR) Quarterly Business Review (QBR) Content...

  4. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    SciTech Connect (OSTI)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for

  5. LINEAR COUNT-RATE METER

    DOE Patents [OSTI]

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  6. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  7. OSTIblog Articles in the basic research Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information basic research Topic Basic Research and Innovation by Dr. Jeffrey Salmon 24 Mar, 2014 in 17010 IdeaSharing.jpg Basic Research and Innovation Read more about 17010 Recently, I attended a roundtable discussion hosted by the Hudson Institute in Washington, D.C. on the topic of innovation - how it comes about, what factors can impede it, where the U.S. might be headed as a lead innovator in the 21st Century, and what cultural and ethical issues need

  8. Basic science and energy research sector profile: Background for the National Energy Strategy

    SciTech Connect (OSTI)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  9. SunShot Programs Bring Solar Energy Basics to Real Estate Pros | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy SunShot Programs Bring Solar Energy Basics to Real Estate Pros SunShot Programs Bring Solar Energy Basics to Real Estate Pros July 25, 2016 - 10:00am Addthis SunShot Programs Bring Solar Energy Basics to Real Estate Pros Dr. Becca Jones-Albertus Dr. Becca Jones-Albertus Acting Director, SunShot Initiative Fast Facts Recent research shows that adding solar to your home - much like renovating the kitchen or finishing the basement - can boost your home's value and resulting home sale

  10. Variable gas leak rate valve

    DOE Patents [OSTI]

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  11. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  12. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  13. Floating Rate Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Floating Rate Agreement Floating Rate Agreement Floating Rate Agreement (99.85 KB) More Documents & Publications Fixed Rate Agreement Energy Efficiency Loan Program Agreement Template Energy Efficiency Loan Program Agreement-Template

  14. Evaluation Ratings Definitions (Excluding Utilization of Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Excluding Utilization of Small Business) Rating Definition Note Exceptional ... Definitions (Utilization of Small Business) Rating Definition Note Exceptional ...

  15. Solution of basic operational problems of water-development works at the Votkinsk hydroproject

    SciTech Connect (OSTI)

    Deev, A. P.; Borisevich, L. A.; Fisenko, V. F.

    2012-11-15

    Basic operational problems of water-development works at the Votkinsk HPP are examined. Measures for restoration of normal safety conditions for the water-development works at the HPP, which had been taken during service, are presented.

  16. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  17. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    SciTech Connect (OSTI)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  18. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect (OSTI)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  19. 5 CCR 1002-41 Basic Standards for Ground Water | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 5 CCR 1002-41 Basic Standards for Ground WaterLegal Abstract Regulations implementing the...

  20. 5 CCR 1002-31 Basic Standards and Methodologies for Surface Water...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 5 CCR 1002-31 Basic Standards and Methodologies for Surface Water RegulationLegal Abstract...

  1. EERE Success Stories- Back to the Basics: Studying Solar Cell Components

    Broader source: Energy.gov [DOE]

    As any athlete will tell you, going back to the basics when practicing a sport can provide a refreshed perspective on skills that will improve overall performance. One SunShot Initiative awardee...

  2. March 30 Tribal Webinar to Focus on Transmission and Grid Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Tribes looking to increase their knowledge about energy transmission will have an opportunity to learn from tribal energy and power industry experts at the Transmission and Grid Basics for Tribal Economic and Energy Development webinar on Wednesday, March 30.

  3. Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reserve Funds | Department of Energy Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds When grantees involve third-party commercial lenders in clean energy (energy efficiency and renwable energy or EE/RE) finance programs, they have the opportunity to leverage public funds including American Recovery and Reinvestment Act of 2009 (ARRA) funds by as much as 10 to 20

  4. Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40 Department of Energy Carlsbad Field Office Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site Final January 2001 U.S. Department of Energy Final Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site i TABLE OF CONTENTS CHAPTER 1: INTRODUCTION AND STATEMENT OF PURPOSE AND NEED..........1-1 1.1 HISTORY AND BACKGROUND........................................................1-1 1.2 PURPOSE

  5. DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting President Bush's Advanced Energy Initiative | Department of Energy $52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative April 6, 2006 - 10:13am Addthis DETROIT, MI -SecretaryBodman announced a three-year, $52.5 million solicitation to support new innovations in hydrogen technology. The solicitation, to

  6. A Basic, and Slightly Acidic, Solution to Hydrogen Storage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A Basic, and Slightly Acidic, Solution to Hydrogen Storage A Basic, and Slightly Acidic, Solution to Hydrogen Storage March 23, 2012 - 2:17pm Addthis Brookhaven researchers Etsuko Fujita, Jonathan Hull, and James Muckerman developed a new catalyst that reversibly converts hydrogen gas and carbon dioxide to a liquid under very mild conditions. Their findings were published in the March 18th issue of Nature Chemistry. | Photo courtesy of Brookhaven National Lab. Brookhaven researchers

  7. New directions for QA in basic research: The Fermilab/DOE-CH experience

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1989-09-01

    This paper addresses the underlying problems involved in developing institution-wide QA programs at DOE funded basic research facilities, and suggests concrete ways in which QA professionals and basic researchers can find common ground in describing and analyzing those activities to the satisfaction of both communities. The paper is designed to be a springboard into workshop discussions which can define a path for developing institution-wide QA programs based on the experience gained with DOE-CH and Fermilab.

  8. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect (OSTI)

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  9. Basic CMYK

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction Stormwater runoff was analyzed at select locations in the upper Rio Grande ... levels of PCB concentrations in stormwater in northern New Mexico streams and ...

  10. Biodiesel Basics

    SciTech Connect (OSTI)

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  11. Basic CMYK

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1358 Approved for public release; distribution is unlimited. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this

  12. Basic CMYK

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0811 Approved for public release; distribution is unlimited. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this

  13. Propane Basics

    SciTech Connect (OSTI)

    NREL

    2010-03-01

    Propane powers about 190,000 vehicles in the U.S. and more than 14 million worldwide. Propane vehicles are a good choice for many fleet applications including school buses, shuttle buses, taxies and light-duty trucks.

  14. Basic CMYK

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    royalty-free license to publish or reproduce ... Select drainages support snowmelt runoff for several months ... Precipitation Emergency Network Stations (PENS) Located in ...

  15. Desalination Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Resources and Desalination Technologies James E. Miller Materials Chemistry Department Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-1349 Abstract Water ...

  16. Biopower Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today.

  17. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  18. What Is the Right Rate? Loan Rates and Demand | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is the Right Rate? Loan Rates and Demand What Is the Right Rate? Loan Rates and Demand Better Buildings Neighborhood Program Financing Peer Exchange Call: "What is the Right Rate?" ...

  19. Solvent Exchange in Liquid Methanol and Rate Theory

    SciTech Connect (OSTI)

    Dang, Liem X.; Schenter, Gregory K.

    2016-01-01

    To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find that the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  20. Rating fenestration for energy efficiency

    SciTech Connect (OSTI)

    Markway, R.

    1993-09-01

    The grading of windows and doors by the National Fenestration Rating Council (NFRC) opens a new era regarding the energy efficiency of fenestration products. For the first time, architects, designers, and other specifiers will find themselves on a level playing field when it comes to comparing the thermal performance of fenestration products. Although only one state, California, now requires the use of fenestration products that have gone through the NFRC's simulation and testing procedures, five other states will soon be doing so, including Washington, Alaska, Oregon, Idaho, and Wisconsin. Others will follow suit; Florida, Arizona, Texas, Louisiana, New York, Massachusetts, and Colorado have shown interest. Exactly what does this mean to architects The NFRC, which was established last year, has developed a procedure to determine accurately the U-value of fenestration products. Under the NFRC program a number of independent simulation and testing laboratories have been approved. These laboratories are charged with the responsibility of determining whether products conform to the U-values represented by the manufacturers. The rating procedure and benefits from it are described.

  1. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect (OSTI)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  2. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Rate Schedules October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CM-1-H Wholesale Power Rate...

  3. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: electric load data Type Term Title Author Replies Last Post sort icon...

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author Replies Last Post sort icon Blog entry DOE...

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API...

  6. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EZFeed Type Term Title Author Replies Last Post sort icon Blog entry...

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry...

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: bug Type Term Title Author Replies Last Post sort icon Discussion bug...

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: energy efficiency Type Term Title Author Replies Last Post sort icon...

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: clean energy Type Term Title Author Replies Last Post sort icon Blog...

  11. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: datasets Type Term Title Author Replies Last Post sort icon Blog entry...

  12. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: FOA Type Term Title Author Replies Last Post sort icon Blog entry FOA...

  13. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Illinois State University Type Term Title Author Replies Last Post sort...

  14. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load Type Term Title Author Replies Last Post sort icon Blog...

  15. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load data Type Term Title Author Replies Last Post sort icon...

  16. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: dataset Type Term Title Author Replies Last Post sort icon Blog entry...

  17. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Energy Visions Prize Type Term Title Author Replies Last Post sort icon...

  18. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: funding Type Term Title Author Replies Last Post sort icon Blog entry...

  19. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EIA Type Term Title Author Replies Last Post sort icon Blog entry EIA...

  20. Multiterawatt femtosecond laser system with kilohertz pulse repetition rate

    SciTech Connect (OSTI)

    Petrov, V V; Pestryakov, E V; Laptev, A V; Petrov, V A; Kuptsov, G V; Trunov, V I; Frolov, S A [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-05-30

    The basic principles, layout and components are presented for a multiterawatt femtosecond laser system with a kilohertz pulse repetition rate f, based on their parametric amplification and laser amplification of picosecond radiation that pumps the stages of the parametric amplifier. The results of calculations for a step-by-step increase in the output power from the LBO crystal parametric amplifier channel up to the multiterawatt level are presented. By using the developed components in the pump channel of the laser system, the parameters of the regenerative amplifier with the output energy ?1 mJ at the wavelength 1030 nm and with f = 1 kHz are experimentally studied. The optical scheme of the diode-pumped multipass cryogenic Yb:Y{sub 2}O{sub 3} laser ceramic amplifier is developed and its characteristics are determined that provide the output energy within the range 0.25 0.35 J. (lasers)

  1. Basic research in crystalline and noncrystalline ceramic systems. Annual report, August 1, 1979-October 31, 1980

    SciTech Connect (OSTI)

    Sempolinski, D. R.; Kingery, W. D.; Tuller, H. L.; Diear, J. M.; Dudney, N. J.; Coble, R. L.; French, R.; Cheng, K. W.; Giraldez, E.; Henriksen, A. F.; Kijima, K.; Gattuso, T. R.; Dolhert, L.; Gambino, J.; Yager, T. A.; Chiang, Y. M.; Tajima, Y.; Dynys, J. M.; Cannon, Jr., R. M.; Kuo-Wen, Tsui; Hong, W.; Handwerker, C. A.; Schneibel, J. H.; Zelinski, B.

    1980-01-01

    The Basic Research Programs in Ceramics supports a significant fraction of the research effort and graduate student training in ceramics at M.I.T. The importance of basic research programs in ceramics processing and properties is becoming widely recognized as the critical role of improved ceramic materials for energy systems is acknowledged. The needs identified in the 1977 series of workshops on DOE programs in energy-related materials research and by the ongoing efforts of the DOE Council on Materials Science are being translated into the basic and applied research necessary to fulfill the established objectives in the effort to solve the nation's energy problems. Present indications are that ceramics in numerous applications will be critical in meeting national energy requirements.

  2. LB CRAC Workshops (rates/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Load-Based (LB) CRAC Power Rate Adjustment Workshop Materials Related Links: Power Rate Adjustments > Load-Based (LB) CRAC December 13, 2006 LB CRAC Workshop Materials (updated...

  3. utility rate | OpenEI Community

    Open Energy Info (EERE)

    utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...

  4. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Residential Solar Valuation Rates This presentation summarizes the information discussed by Rabago Energy during the Best Practices in the Design ...

  5. USA RS Basic Contract - Contract No.: DE-RW0000005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA RS Basic Contract - Contract No.: DE-RW0000005 USA RS Basic Contract - Contract No.: DE-RW0000005 This document describes the Statement of Work (SOW) of the Management and Operating Contractor (M&O) Contract for the U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) Program's Yucca Mountain Project (YMP). An M&O contract is defined at Federal Acquisition Regulation (FAR) 17.6 and Department of Energy Acquisition Regulation (DEAR) 970. Inasmuch as

  6. Back to the Basics of Sustainability -- Houses of Bark and Energy of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sunshine | Department of Energy Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine August 2, 2012 - 2:23pm Addthis With new pipes and controls, the natural gas kilns Highland Craftsmen uses to produce poplar bark shingles will operate about 40 percent more efficiently, saving the company $5,000 a year in energy costs. | Photo courtesy of Highland Craftsmen. With new pipes and controls,

  7. October 29 ESTAP Webinar: Flow Battery Basics (Part 2) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy October 29 ESTAP Webinar: Flow Battery Basics (Part 2) October 29 ESTAP Webinar: Flow Battery Basics (Part 2) October 29, 2014 - 12:08pm Addthis On Wednesday, October 29, 2014 from 1 - 2:30 p.m. ET, Clean Energy State Alliance will host the second in a series of webinars on flow batteries. OE's Imre Gyuk, Energy Storage Program Manager, will present an introduction to flow battery technology, and Dan Borneo of Sandia National Laboratories will discuss flow battery testing and

  8. EERE Success Story - Back to the Basics: Studying Solar Cell Components |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Story - Back to the Basics: Studying Solar Cell Components EERE Success Story - Back to the Basics: Studying Solar Cell Components April 4, 2016 - 12:43pm Addthis The SLAC/NREL research team poses with the rapid thermal processing instrument at SLAC, which allowed them to uncover how contact paste performs in solar modules. The SLAC/NREL research team poses with the rapid thermal processing instrument at SLAC, which allowed them to uncover how contact paste performs in

  9. Getting Ready for LEDs: LED Lighting Video Series Explains the Basics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Getting Ready for LEDs: LED Lighting Video Series Explains the Basics Getting Ready for LEDs: LED Lighting Video Series Explains the Basics November 26, 2012 - 3:09pm Addthis Part 1 of the ElectricTV.net video series. Part 2 of the ElectricTV.net video series. Roland Risser Roland Risser Deputy Assistant Secretary for Renewable Power (Acting) How can I participate? Learn more about the advantages and accessiblity of LED lighting from this series of videos. If you haven't

  10. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOE Patents [OSTI]

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  11. Fixed Rate Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fixed Rate Agreement Fixed Rate Agreement Fixed Rate Agreement (110.33 KB) More Documents & Publications Floating Rate Agreement Notice of Proposed Rulemaking (August 6, 2009) Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

  12. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    2013-02-22

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  13. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  14. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2015 KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western

  15. Using computerized tomography to determine ionospheric structures. Part 1, Notivation and basic approaches

    SciTech Connect (OSTI)

    Vittitoe, C.N.

    1993-08-01

    Properties of the ionosphere are reviewed along with its correlations with other geophysical phenomena and with applications of ionospheric studies to communication, navigation, and surveillance systems. Computer tomography is identified as a method to determine the detailed, three-dimensional distribution of electron density within the ionosphere. Several tomography methods are described, with a basic approach illustrated by an example. Limitations are identified.

  16. Basics of a Solar Electric System: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    Today's solar technologies are more efficient and versatile than ever before, adding to the appeal of an already desirable energy source. This fact sheet provides information on the basics of a solar electric system, including components of a system, how to choose solar modules, and how to choose a solar system.

  17. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  18. Attachments Energy Ratings Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attachments Energy Ratings Council Attachments Energy Ratings Council Attachments Energy Ratings Council Lead Performer: Window Covering Manufacturing Association - New York, NY DOE Funding: $1,600,000 Project Term: October 1, 2014 - September 30, 2018 Funding Opportunity Announcement: Certification and Rating Attachments for Fenestration Technologies DE-FOA-001000-1504 Project Objective This project is to develop an independent rating, certification, labeling, and performance verification

  19. f-Element Ion Chelation in Highly Basic Media - Final Report

    SciTech Connect (OSTI)

    Paine, R.T.

    2000-12-12

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelator s for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  20. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  1. 2014-2015 Power Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Power Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue...

  2. Category:Utility Rates | Open Energy Information

    Open Energy Info (EERE)

    Rates Jump to: navigation, search Add a new Utility Rate This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:Utility...

  3. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: American Clean Skies Foundation Type Term Title Author Replies Last Post sort icon Blog entry...

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Utility Rate Home > Groups > Groups > Utility Rate Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in...

  5. Energy Efficiency Interest Rate Reduction Program

    Broader source: Energy.gov [DOE]

    For new and existing home purchases that are rated 6 Star or 5 Star Plus, applicants are eligible for an interest rate reduction for the first $200,000 of the loan amount, with a blended interest...

  6. Public Utilities Specialist (Rates) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration Locations Phoenix, Arizona Announcement Number ... Southwest Region, Power Marketing, Rates and Alternative Financing, Phoenix, AZ (G6100). ...

  7. POLICY GUIDANCE MEMORANDUM #10 Category Rating

    Broader source: Energy.gov [DOE]

    This memorandum is to establish the Department of Energy's (DOE's) policy for the use of Category Rating.

  8. Commercial Building Energy Asset Rating Workshop

    Broader source: Energy.gov [DOE]

    DOE commercial building energy asset rating program information presented to stakeholders at the workshop held in Washington, DC, December 2011

  9. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect (OSTI)

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  10. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  11. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  12. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    SciTech Connect (OSTI)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  13. Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference

    SciTech Connect (OSTI)

    Beggs, W.J.

    1981-02-01

    This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; the analysis of variance; quality control procedures; and linear regression analysis.

  14. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  15. A Basic Overview of the Occupational Radiation Exposure Monitoring, Analysis & Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Radiation Exposure: Monitoring, Analysis & Reporting A Basic Overview of OCCUPATIONAL RADIATION EXPOSURE Monitoring, Analysis & Reporting Outreach & Awareness Series to Advance the DOE Mission Office of Health, Safety and Security U.S. Department of Energy September 2012 Occupational Radiation Exposure: Monitoring, Analysis & Reporting i Overview One of the priorities of the Department of Energy (DOE) is to ensure a safe and secure workplace by integrating safety and

  16. The Basics of Underground Natural Gas Storage - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Natural Gas Glossary › FAQS › Overview Data Summary Prices Exploration & reserves Production Imports/exports Pipelines Storage Consumption All natural gas data reports Analysis & Projections Major Topics Most popular Consumption Exploration & reserves Imports/exports & pipelines Prices Production Projections Recurring Storage All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See All Natural Gas Reports The Basics of Underground Natural Gas

  17. Class Deviation FAR 52.222-8 Payrolls and Basic Records

    Broader source: Energy.gov [DOE]

    Attached for your information is a class deviation executed by the Senior Procurement Executives of NNSA and DOE (Attachment 1). It allows a deviation to FAR 52.222-8, Payrolls and Basic Records, so construction contractors can submit copies of payrolls without the home addresses of individual employees and showing only the last four digits of their social security numbers. Also attached is the revised clause for your convenience (Attachment 2).

  18. Quality assurance plan for the Basic Environmental Compliance and Monitoring Program (BECAMP). Revision 1

    SciTech Connect (OSTI)

    Essington, E.H.

    1993-11-01

    This quality assurance plan (QAP) is designed ensure that the methodologies and the data used for environmental cleanup and treatment studies at the Nevada Test Site are both usable and defensible. The QAP serves two purposes in this regard: (1) to guide the preparation of procedures for carrying out the tasks of the Basic Environmental compliance and Monitoring program (BECAMP); and (2) to help management track the progress of those tasks.

  19. Fourth annual workshop on management in basic and applied research environments

    SciTech Connect (OSTI)

    Bodnarczuk, M.W.

    1993-11-01

    The struggle to develop quality management concepts that ``map`` onto the cultural and work practices found in basic and applied research environments has been (for better or for worse) an attempt to differentiate basic and applied research from the nuclear industry. In the first (1990) edition of this ``Music Book`` proceedings, almost every laboratory that participated had a quality program that was traceable to, based on, influenced by, or in reaction to the nuclear quality standard ASME-NQA-1. This 1993 edition of the ``Music Book`` is very different in that almost every laboratory has developed a quality program that is based on, traceable to, or heavily influenced by DOE 5700.6C (Quality Assurance) and the DOE Standard; Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92). In order to construct a context for what follows and properly introduce the contents of this book, we want to briefly recount some of the highlights of the events that brought about this change, from the perspective of one who participated in the process.

  20. A Program for Calculating Radiation Dose Rates.

    Energy Science and Technology Software Center (OSTI)

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  1. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1)

  2. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  3. BPA proposes rate increase to bolster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed a 9.6 percent average wholesale power rate increase to compensate for reduced revenue expectations from surplus power sales and to continue funding needed investments in...

  4. CM-1-H Wholesale Power Rate Schedule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Availability:This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency (hereinafter...

  5. Photovoltaic Degradation Rates -- An Analytical Review: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Degradation Rates - An Analytical Review Dirk C. Jordan and Sarah R. Kurtz To ... Abstract As photovoltaic penetration of the power grid increases, accurate predictions of ...

  6. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

    1983-05-09

    This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

  7. OpenEI Community - utility rate

    Open Energy Info (EERE)

    title"" >After several months of development and testing, the next generation web service for the utility rate database is finally here I encourage you to check out...

  8. Introducing the Attachments Energy Ratings Council

    Broader source: Energy.gov [DOE]

    In collaboration with the U.S. Department of Energy (DOE), the Window Covering Manufacturers Association (WCMA) has launched the Attachments Energy Ratings Council (AERC).

  9. Combined Retrieval, Microphysical Retrievals and Heating Rates...

    Office of Scientific and Technical Information (OSTI)

    Shortwave broadband total upwelling irradiance; Liquid water content; Liquid water path; Radiative heating rate Dataset File size NAView Dataset View Dataset DOI: 10.5439116949

  10. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  11. Static SIMS Analysis of Carbonate on Basic Alkali-bearing Surfaces

    SciTech Connect (OSTI)

    Groenewold, Gary Steven; Gianotto, Anita Kay; Cortez, Marnie Michelle; Appelhans, Anthony David; Olsen, J.E.; Shaw, A. D.; Karahan, C.; Avci, R.

    2003-02-01

    Carbonate is a somewhat enigmatic anion in static secondary ion mass spectrometry (SIMS) because abundant ions containing intact CO32- are not detected when analyzing alkaline-earth carbonate minerals common to the geochemical environment. In contrast, carbonate can be observed as an adduct ion when it is bound with alkali cations. In this study, carbonate was detected as the adduct Na2CO3Na+ in the spectra of sodium carbonate, bicarbonate, hydroxide, oxalate, formate and nitrite and to a lesser extent nitrate. The appearance of the adduct Na2CO3Na+ on hydroxide, oxalate, formate and nitrite surfaces was interpreted in terms of these basic surfaces fixing CO2 from the ambient atmosphere. The low abundance of Na2CO3Na+ in the static SIMS spectrum of sodium nitrate, compared with a significantly higher abundance in salts having stronger conjugate bases, suggested that the basicity of the conjugate anions correlated with aggressive CO2 fixation; however, the appearance of Na2CO3Na+ could not be explained simply in terms of solution basicity constants. The oxide molecular ion Na2O+ and adducts NaOHNa+ and Na2ONa+ also constituted part of the carbonate spectral signature, and were observed in spectra from all the salts studied. In addition to the carbonate and oxide ions, a low-abundance oxalate ion series was observed that had the general formula Na2-xHxC2O4Na+, where 0 < x < 2. Oxalate adsorption from the laboratory atmosphere was demonstrated but the oxalate ion series also was likely to be formed from reductive coupling occurring during the static SIMS bombardment event. The remarkable spectral similarity observed when comparing the sodium salts indicated that their surfaces shared common chemical speciation and that the chemistry of the surfaces was very different from the bulk of the particle. Copyright 2003 John Wiley & Sons, Ltd.

  12. U.S. Department of Energy 2009 Annual FOIA Report I. Basic Information Regarding Report.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Annual FOIA Report I. Basic Information Regarding Report. A. Kevin T. Hagerty, Director Office of Information Resources, MA-90 U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 202-586-5955 Sheila Jeter, FOIA/Privacy Act Specialist Alexander Morris, FOIA Officer FOIA/Privacy Act Office, MA-90 Office of Information Resources U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 202-586-5955 B. An electronic copy of the Freedom of Information Act

  13. FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FLNR SHE Factory Sergey Dmitriev FLNR JINR FLNR's BASIC DIRECTIONS of RESEARCH according to the Seven-Year Plan 2010 - 2016 1. Heavy and superheavy nuclei: Ø synthesis and study of properties of superheavy elements; Ø chemistry of new elements; Ø fusion-fission and multi-nucleon transfer reactions; Ø nuclear- , mass-, & laser-spectrometry of SH nuclei. 3. Radiation effects and physical groundwork of nanotechnology. 2. Light exotic nuclei: Ø properties and structure of

  14. 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 6/1/2011 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life The energy cycle of all living organisms involves the molecule adenosine triphosphate (ATP), which captures the chemical energy released by the metabolism of nutrients and makes it available for cellular functions such as muscle contraction and transmission of nerve messages. A hard-working human adult can convert almost a ton of ATP daily. From the early 1960s through 1994, the Office of Science supported

  15. Measurement and Basic Physics Committee of the US cross-section evaluation working group. Annual report 1996

    SciTech Connect (OSTI)

    Smith, D.L.; McLane, V.

    1996-11-01

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with the responsibility for organizing and overseeing the U.S. cross-section evaluation effort. It`s main product is the official U.S. evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF are reviewed and approved by CSEWG and issued by the U.S. Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the U.S. nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the U.S. were declining at an alarming rate and needed all possible encouragement to avoid the loss of this resource. The mission of the Committee is to maintain a network of experimentalists in the U.S. that would provide needed encouragement to the national nuclear data measurement effort through improved communication and facilitation of collaborative activities. In 1994, an additional charge was added to the responsibilities of this Committee, namely, to serve as an interface between the more applied interests represented in CSEWG and the basic nuclear science community. This annual report is the second such document issued by the Committee. It contains voluntary contributions from eleven laboratories in the U.S. which have been prepared by members of the Committee and submitted to the Chairman for compilation and editing. It is hoped that the information provided here on the work that is going on at the reporting laboratories will prove interesting and stimulating to the readers.

  16. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; et al

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  17. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect (OSTI)

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-04-08

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  18. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  19. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  20. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    SciTech Connect (OSTI)

    Longshore, A.; Salgado, K.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Summary proceedings of a workshop on Bioremediation and its Societal Implications and Concerns (BASIC)

    SciTech Connect (OSTI)

    Drell, D.W.; Metting, F.B. Jr.; Wuy, L.D.

    1996-11-01

    This document summarizes the proceedings of a workshop on Bioremediation and Its Societal Implications and Concerns (BASIC) held July 18-19, 1996 at the Airlie Center near Warrenton, Virginia. The workshop was sponsored by the Office of Health and Environmental Research (OHER), U.S. Department of Energy (DOE), as part of its fundamental research program in Natural and Accelerated Bioremediation Research (NABIR). The information summarized in these proceedings represents the general conclusions of the workshop participants, and not the opinions of workshop organizers or sponsors. Neither are they consensus opinions, as opinions differed among participants on a number of points. The general conclusions presented below were reached through a review, synthesis, and condensation of notes taken by NABIR Program Office staff and OHER program managers throughout the workshop. Specific contributions by participants during breakout sessions are recorded in bullet form in the appropriate sections, without attribution to the contributors. These contributions were transcribed as faithfully as possible from notes about the original discussions. They were edited only to make them grammatically correct, parallel in structure, and understandable to someone not familiar with the NABIR Program or BASIC element.

  2. Adsorption of basic Red 46 using sea mango (Cerbera odollam) based activated carbon

    SciTech Connect (OSTI)

    Azmi, Nur Azira Iqlima; Zainudin, Nor Fauziah; Ali, Umi Fazara Md

    2015-05-15

    Sea mango or Cerbera Odollam is another source of carbonaceous material that can be found abundantly in Malaysia. In this research, it is used as a new agricultural source of activated carbon. Sea mango activated carbon was prepared by chemical activation using potassium hydroxide (KOH). The sea mango was soaked in KOH at impregnation ratio of 1:1 and followed by carbonization at temperature of 600°C for 1 hour. The sample was then characterized using Scanning Electron Microscope (SEM) for surface morphology, while Brunauer-Emmett-Teller (BET) was used to study the surface area. The result shown that sea mango activated carbon (SMAC) developed new pores on its surface and the BET surface area measured was 451.87 m{sup 2}/g. The SMAC performance was then tested for the removal of Basic Red 46 in batch process. The removal of Basic Red 46 (50 mg/L, natural pH, 0.1 g SMAC) was more than 99% in 15 minutes where it reached equilibrium in 30 minutes.

  3. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  4. Basic needs, rural financial markets, and appropriate technology: Toward a solution of analytical and policy issues

    SciTech Connect (OSTI)

    Farooq, M.O.

    1988-01-01

    The failure of the standard Growth Approach to economic development to solve the problems of underdevelopment in LDCs has caused an alternative approach, Basic Needs Approach (BNA), to attain prominence in development thought. BNA emphasizes poverty-minimizing growth. Its strategy of direct attack on poverty has better potential for LDCs' development and fulfillment of their populations' basic needs than the trickle-down mechanism of the Growth Approach. BNA requires, among other things, (a) suitable rural financial markets (RFMs) as parts of the overall financial system, and (b) indigenous technological capabilities. The financial system, if it functions as a central element in an institutionalized technology policy, can link technology-related institutions that generate, evaluate, and promote appropriate technologies (ATs) with RFMs that can support adoption and diffusion of ATs in the agro-rural sector. The above argument uses Bangladesh as a case for illustration. In the light of an institutional framework presented, examined, and extended in this dissertation, it is found that Bangladesh currently does not have an institutionalized technology policy. The current organizational framework and policies related to technological development are not conducive to BNA.

  5. Basic study of the aging process in solid-dielectric cables (second annual report)

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    This research program has the two basic objectives of developing an understanding of the basic mechanisms of dielectric aging and of developing an accelerated laboratory test for predicting the service life of underground power transmission cable insulated with solid polyolefin dielectrics. For purposes of this program the polyolefins of interest are limited to conventional low-density polyethylene (LDPE), peroxide-cross-linked, low-density polyethylene (XLPE), and ethylene-propylene rubber (EPR). The program was divided into four sequential tasks: state-of-the-art review of the physics and chemistry of dielectric aging, accelerated life testing, and selected closely related subjects; development of molecular-level models of the dielectric aging process; verification of the aging model through laboratory experimentation with model cables and studies of dielectric material behavior; and development of an accelerated test method and verification of test with full-sized power cable. The general goals and scope of Tasks 1 and 2, which have been completed are reviewed. The initial planning and implementation of Task 3 are described, with detailed discussion of the following activities: detailed planning and initiation of experiments with model cables and slab materials; selection of materials and designs for model cables; manufacture of model cables; evaluation of dielectric materials used for model cable manufacture; establishment of baseline characteristics of model cables; identification of critical equipment and instrument needs; and initial experimental results. (LCL)

  6. Revenue-stability-target rate making

    SciTech Connect (OSTI)

    Chernick, P.L.

    1983-02-17

    The commonly used rate-making approaches necessarily base themselves on assumptions, vital to their success, about future levels of utility aservice sales. But since sales are a function of random variables beyond the control of the utility as well as actions by the utility itself, the resulting rates fail to protect the utility's revenue stream and its realized rate of return. This article proposes an alternative approach which would decouple utility revenues from sales, thus stabilizing revenue streams with respect to sales fluctuations and rate design changes. Among the benefits would be a lower cost of capital for the utility, as well as decreased utility resistance to conservation by consumers and to efficient rate design.

  7. Low rate entrainment feeder for fine solids

    SciTech Connect (OSTI)

    Scott, D.S.; Piskorz, J.

    1982-08-01

    A mechanically stirred entrainment-type feeder for fine solids has been developed which will give rates constant to +/- 5% for 1 h or more. The feeder was constructed in connection with a mini-fluidized bed flash pyrolysis project for both biomass and Canadian coals. It has been used to feed coal, sawdust and ground bark in sizes below 600 micro m at rates as low as 6 g/h. Gas to solids weight ratios obtained were from about 3:1 to 1:3. The effect on feed rates of most of the operating and geometric parameters was investigated at low feed rates. A mechanism for control of the feed rate was tested and found to be satisfactory.

  8. Recombination elevates the effective evolutionary rate and facilitates...

    Office of Scientific and Technical Information (OSTI)

    replication competent virus is detected even when other forms may have been transmitted. ... Subject: 59 BASIC BIOLOGICAL SCIENCES HV-1; MTCT; transmittedfounder virus; ...

  9. Recombination elevates the effective evolutionary rate and facilitates...

    Office of Scientific and Technical Information (OSTI)

    The effect of recombination on viral evolution in HIV-1 infected children has not been ... Country of Publication: United States Language: English Subject: 59 BASIC BIOLOGICAL ...

  10. Energy Department to Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will invest up to $5.2 million in basic research projects with 12 universities from across the country.  In an effort to...

  11. Beyond Basic Target Enrichment: New Tools to Fuel Your NGS Research ( 7th Annual SFAF Meeting, 2012)

    SciTech Connect (OSTI)

    Carter, Jennifer

    2012-06-01

    Jennifer Carter on "Beyond Basic Target Enrichment: New Tools to fuel your NGS Research" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  12. Beyond Basic Target Enrichment: New Tools to Fuel Your NGS Research ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Carter, Jennifer [Agilent

    2013-03-22

    Jennifer Carter on "Beyond Basic Target Enrichment: New Tools to fuel your NGS Research" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  13. Considerations for How to Rate CPV

    SciTech Connect (OSTI)

    Kurtz, S.; Miller, M.; Marion, B.; Emery, K.; McConnell, R.; Surendran, S.; Kimber, A.

    2011-02-01

    The concentrator photovoltaic (CPV) industry is introducing multiple products into the marketplace, but, as yet, the; community has not embraced a unified method for assessing a nameplate rating. The choices of whether to use 850,; 900, or 1000 W/m2 for the direct-normal irradiance and whether to link the rating to ambient or cell temperature will; affect how CPV modules are rated and compared with other technologies. This paper explores the qualitative and; quantitative ramifications of these choices using data from two multi-junction CPV modules and two flat-plate; modules.

  14. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect (OSTI)

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  15. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier2Adjustment&oldid539746...

  16. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier5Max&oldid539754...

  17. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateEnergyRateStructureTier1Max&oldid539766...

  18. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Sell | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateEnergyRateStructureTier1Sell&oldid539770...

  19. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier6Adjustment&oldid539759...

  20. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier4Max&oldid539751...