National Library of Energy BETA

Sample records for activity water-gas samples

  1. Water-Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation, search REDIRECT Downhole Fluid Sampling Retrieved from "http:en.openei.orgw...

  2. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

  3. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  4. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration...

  5. Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...

    Open Energy Info (EERE)

    Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Redirect page Jump to: navigation, search REDIRECT Surface Gas Sampling At Fenton Hill Hdr Geothermal...

  6. Water-Gas Samples At Long Valley Caldera Area (Goff & Janik,...

    Open Energy Info (EERE)

    Area (Goff & Janik, 2002) Redirect page Jump to: navigation, search REDIRECT Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Retrieved from "http:...

  7. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Intensification with Integrated Water-Gas-Shift Membrane Reactor water-gas-shift.pdf (597.03 KB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry CX-014220: Categorical Exclusion Determination

  8. Process Intensification with Integrated Water-Gas-Shift Membrane...

    Broader source: Energy.gov (indexed) [DOE]

    water-gas-shift.pdf (597.03 KB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. ...

  9. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensification with Integrated Water-Gas-Shift Membrane Reactor Hydrogen-Selective Membranes for High- Pressure Hydrogen Separation This project will develop hydrogen-selective membranes for an innovative water-gas-shift reactor that improves gas separation effciency, enabling reduced energy use and greenhouse gas emissions. Introduction The goal of process intensifcation is to reduce the equipment footprint, energy consumption, and environmental impact of manufacturing processes. One candidate

  10. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect (OSTI)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  11. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  12. Surface Gas Sampling At Lightning Dock Area (Norman & Moore,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004)) Jump to: navigation, search...

  13. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) (Redirected from Water-Gas Samples At Colrado Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  14. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-01-01

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al[sub 2]0[sub 3] catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C[sub 5][sup +] selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a[sub 1] was near 0.80 which is higher than that of iron catalysts, while a[sub 2] was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  15. High-Temperature Water-Gas Shift Membrane Reactor Study

    SciTech Connect (OSTI)

    Ciocco, M.V.; Iyoha, O.; Enick, R.M.; Killmeyer, R.P.

    2007-06-01

    NETL’s Office of Research and Development is exploring the integration of membrane reactors into coal gasification plants as a way of increasing efficiency and reducing costs. Water-Gas Shift Reaction experiments were conducted in membrane reactors at conditions similar to those encountered at the outlet of a coal gasifier. The changes in reactant conversion and product selectivity due to the removal of hydrogen via the membrane reactor were quantified. Research was conducted to determine the influence of residence time and H2S on CO conversion in both Pd and Pd80wt%Cu membrane reactors. Effects of the hydrogen sulfide-to-hydrogen ratio on palladium and a palladium-copper alloy at high-temperature were also investigated. These results were compared to thermodynamic calculations for the stability of palladium sulfides.

  16. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Gabbs Valley Area (DOE GTP) (Redirected from Water-Gas Samples At Gabbs Valley Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  17. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) (Redirected from Water-Gas Samples At Glass Buttes Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  18. One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Han, W.; Wen, W; Hanson, J; Teng, X; Marinkovic, N; Rodriguez, J

    2009-01-01

    Synchrotron-based in situ time-resolved X-ray diffraction and X-ray absorption spectroscopy were used to study pure ceria and Pd-loaded ceria nanotubes and nanorods (1D-ceria) as catalysts for the water-gas shift (WGS) reaction. While bulk ceria is very poor as WGS catalysts, pure 1D-ceria displayed catalytic activity at a temperature as low as 300 C. The reduction of the pure 1D-ceria in pure hydrogen started at 150 C, which is a much lower temperature than those previously reported for the reduction of 3D ceria nanoparticles. This low reduction temperature reflects the novel morphology of the oxide systems and may be responsible for the low-temperature WGS catalytic activity seen for the 1D-ceria. Pd-loaded 1D ceria displayed significant WGS activity starting at 200 C. During pretreatment in H{sub 2}, the ceria lattice parameter increased significantly around 60 C, which indicates that Pd-oxygen interactions may facilitate the reduction of Pd-loaded 1D-ceria. Pd and ceria both participate in the formation of the active sites for the catalytic reactions. The low-temperature hydrogen pretreatment results in higher WGS activity for Pd-loaded 1D-ceria.

  19. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts

    SciTech Connect (OSTI)

    Upadhye, AA; Ro, I; Zeng, X; Kim, HJ; Tejedor, I; Anderson, MA; Dumesic, JA; Huber, GW

    2015-01-01

    We show that localized surface plasmon resonance (LSPR) can enhance the catalytic activities of different oxide-supported Au catalysts for the reverse water gas shift (RWGS) reaction. Oxide-supported Au catalysts showed 30 to 1300% higher activity for RWGS under visible light compared to dark conditions. Au/TiO2 catalyst prepared by the deposition-precipitation (DP) method with 3.5 nm average Au particle size showed the highest activity for the RWGS reaction. Visible light is converted into chemical energy for this reaction with up to a 5% overall efficiency. A shift in the apparent activation energy (from 47 kJ mol(-1) in dark to 35 kJ mol(-1) in light) and apparent reaction order with respect to CO2 (from 0.5 in dark to 1.0 in light) occurs due to the LSPR. Our kinetic results indicate that the LSPR increases the rate of either the hydroxyl hydrogenation or carboxyl decomposition more than any other steps in the reaction network.

  20. Sample Heat, Activity, Reactivity, and Dose Analysis for Safety Analysis of Irradiations in a Research Reactor.

    Energy Science and Technology Software Center (OSTI)

    1987-12-01

    SHARDA is a program for assessing sample heating rates, activities produced and reactivity load caused while irradiating a small sample in a well thermalized research reactor like CIRUS. It estimates the sample cooling or lead shielding requirements to limit the gamma-ray dose rates due to the irradiated sample within permissible levels.

  1. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    SciTech Connect (OSTI)

    Lin, Jerry Y.S.

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  2. In Situ Time-Resolved Characterization of Ni-MoO2 Catalysts for the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen,W.; Calderon, J.; Brito, J.; Marinkovic, N.; Hanson, J.; Rodriquez, J.

    2008-01-01

    Active catalysts for the water-gas shift (WGS, CO + H2O ? H2 + CO2) reaction were synthesized from nickel molybdates ({beta}-NiMoO4 and nH2O{center_dot}NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdates were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of {beta}-NiMoO4 with the WGS reactants at 500 C led to the formation of a mixture of Ni (24 nm particle size) and MoO2 (10 nm particle size). These Ni-MoO2 systems displayed good catalytic activity at 350, 400, and 500 C. At 350 and 400 C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H2 gas at 350 C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (4 nm) was much smaller than that of the MoO2 (13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts.

  3. Iron-ceria Aerogels Doped with Palladium as Water-gas Shift Catalysts for the Production of Hydrogen

    SciTech Connect (OSTI)

    Bali, S.; Huggins, F; Ernst, R; Pugmire, R; Huffman, G; Eyring, E

    2010-01-01

    Mixed 4.5% iron oxide-95.5% cerium oxide aerogels doped with 1% and 2% palladium (Pd) by weight have been synthesized, and their activities for the catalysis of water-gas shift (WGS) reaction have been determined. The aerogels were synthesized using propylene oxide as the proton scavenger for the initiation of hydrolysis and polycondensation of a homogeneous alcoholic solution of cerium(III) chloride heptahydrate and iron(III) chloride hexahydrate precursor. Palladium was doped onto some of these materials by gas-phase incorporation (GPI) using ({eta}{sup 3}-allyl)({eta}{sup 5}-cyclopentadienyl)palladium as the volatile Pd precursor. Water-gas shift catalytic activities were evaluated in a six-channel fixed-bed reactor at atmospheric pressure and reaction temperatures ranging from 150 to 350 C. Both 1% and 2% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels showed WGS activities that increased significantly from 150 to 350 C. The activities of 1% Pd-doped 4.5% iron oxide-95.5% cerium oxide aerogels were also compared with that of the 1% Pd-doped ceria aerogel without iron. The WGS activity of 1% Pd on 4.5% iron oxide-95.5% cerium oxide aerogels is substantially higher (5 times) than the activity of 1% Pd-doped ceria aerogel without iron. The gas-phase incorporation results in a better Pd dispersion. Ceria aerogel provides a nonrigid structure wherein iron is not significantly incorporated inside the matrix, thereby resulting in better contact between the Fe and Pd and thus enhancing the WGS activity. Further, neither Fe nor Pd is reduced during the ceria-aerogel-catalyzed WGS reaction. This behavior contrasts with that noted for other Fe-based WGS catalysts, in which the original ferric oxide is typically reduced to a nonstoichiometric magnetite form.

  4. Quality assurance guidance for field sampling and measurement assessment plates in support of EM environmental sampling and analysis activities

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This document is one of several guidance documents developed by the US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM). These documents support the EM Analytical Services Program (ASP) and are based on applicable regulatory requirements and DOE Orders. They address requirements in DOE Orders by providing guidance that pertains specifically to environmental restoration and waste management sampling and analysis activities. DOE 5700.6C Quality Assurance (QA) defines policy and requirements to establish QA programs ensuring that risks and environmental impacts are minimized and that safety, reliability, and performance are maximized. This is accomplished through the application of effective management systems commensurate with the risks imposed by the facility and the project. Every organization supporting EM`s environmental sampling and analysis activities must develop and document a QA program. Management of each organization is responsible for appropriate QA program implementation, assessment, and improvement. The collection of credible and cost-effective environmental data is critical to the long-term success of remedial and waste management actions performed at DOE facilities. Only well established and management supported assessment programs within each EM-support organization will enable DOE to demonstrate data quality. The purpose of this series of documents is to offer specific guidance for establishing an effective assessment program for EM`s environmental sampling and analysis (ESA) activities.

  5. In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen ,W.; Liu, J.; White, M.; Marinkovic, N.; Hanson, J.; Rodriguez, J.

    2007-01-01

    A novel and active Cu-MoO{sub 2} catalyst was synthesized by partial reduction of a precursor CuMoO{sub 4} mixed-metal oxide with CO or H{sub 2} at 200-250 C. The phase transformations of Cu-MoO{sub 2} during H{sub 2} reduction and the water-gas shift reaction could be followed by In situ time resolved XRD techniques. During the reduction process the diffraction pattern of the CuMoO{sub 4} collapsed and the copper metal lines were observed on an amorphous material background that was assigned to molybdenum oxides. During the first pass of water-gas shift (WGS) reaction, diffraction lines for Cu{sub 6}Mo{sub 5}O{sub 18} and MoO{sub 2} appeared around 350 C and Cu{sub 6}Mo{sub 5}O{sub 18} was further transformed to Cu/MoO{sub 2} at higher temperature. During subsequent passes, significant WGS catalytic activity was observed with relatively stable plateaus in product formation around 350, 400 and 500 C. The interfacial interactions between Cu clusters and MoO{sub 2} increased the water-gas shift catalytic activities at 350 and 400 C.

  6. Surface Gas Sampling At Lightning Dock Area (Norman, Et Al.,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002)) Jump to: navigation, search...

  7. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  8. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    DOE Patents [OSTI]

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  9. The adsorption behavior of octafluoropropane at the water/gas interface

    SciTech Connect (OSTI)

    Giebel, Friederike; Paulus, Michael; Nase, Julia Bieder, Steffen; Kiesel, Irena; Tolan, Metin

    2014-12-14

    We studied the adsorption behavior of the gas octafluoropropane at the water/gas interface as a function of different pressures. In a custom-made measurement cell, the gas pressure was varied in a range between 1 bar and close to the condensation pressure of octafluoropropane. The electron density profiles of the adsorption layers show that the layer thickness increases with pressure. The evolution of the layer electron density indicates that the bulk electron density is reached if a layer consisting of more than one monolayer of octafluoropropane is adsorbed on the water surface.

  10. Pulse studies to decipher the role of surface morphology in CuO/CeO₂ nanocatalysts for the water gas shift reaction

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Zhao, Fuzhen; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Si, Rui; Johnston-Peck, Aaron C.; Martinez-Arias, Arturo; Hanson, Jonathan C.; Senanayake, Sanjaya D.

    2015-01-23

    The water-gas shift reaction (WGS, CO + H₂O → CO₂) was studied over CuO/CeO₂ catalysts with two different ceria particle morphohologies, in the form of nanospheres (ns) and nanocubes (nc). To understand the strong dependence of the WGS reaction activity on the ceria nanoshapes, pulses of CO (without and with water vapor) were employed during in situ X-ray diffraction (XRD) and X-ray absoprtion near edge structure (XANES) measurements done to characterize the catalysts. The results showed that CuO/CeO₂ (ns) exhibited a substantially better activity than CuO/CeO₂ (nc). The higher activity was associated with the unique properties of CuO/CeO₂ (ns), such as the easier reduction of highly dispersed CuO to metallic Cu, the stability of metallic Cu and a larger concentration Ce³⁺ in CeO₂ (ns).

  11. Pulse studies to decipher the role of surface morphology in CuO/CeO₂ nanocatalysts for the water gas shift reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Zhao, Fuzhen; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Si, Rui; Johnston-Peck, Aaron C.; Martinez-Arias, Arturo; Hanson, Jonathan C.; Senanayake, Sanjaya D.

    2015-01-23

    The water-gas shift reaction (WGS, CO + H₂O → CO₂) was studied over CuO/CeO₂ catalysts with two different ceria particle morphohologies, in the form of nanospheres (ns) and nanocubes (nc). To understand the strong dependence of the WGS reaction activity on the ceria nanoshapes, pulses of CO (without and with water vapor) were employed during in situ X-ray diffraction (XRD) and X-ray absoprtion near edge structure (XANES) measurements done to characterize the catalysts. The results showed that CuO/CeO₂ (ns) exhibited a substantially better activity than CuO/CeO₂ (nc). The higher activity was associated with the unique properties of CuO/CeO₂ (ns), suchmore » as the easier reduction of highly dispersed CuO to metallic Cu, the stability of metallic Cu and a larger concentration Ce³⁺ in CeO₂ (ns).« less

  12. Wall-catalyzed Water-Gas Shift Reaction in Multi-tubular, Pd and 80wt%Pd-20wt%Cu Membrane Reactors at 1173K

    SciTech Connect (OSTI)

    Osemwengie, I.; Enick, R.M.; Killmeyer, R.P.

    2007-07-20

    The high-temperature, water-gas shift reaction was conducted in 100 wt%Pd and 80 wt%Pd–20 wt%Cu (Pd80 wt%Cu) shell-and-tube membrane reactors at 1173 K with a 241 kPa (35 psig) trans-membrane pressure differential in the absence of heterogeneous catalyst particles. The tube bundle consisted of four parallel 15.25 cm long, 3.175 mm OD Pd-based tubes with a wall thickness of 125 μm. The modest catalytic activity of the Pd-based membrane surface for the forward WGSR, the high rate of hydrogen extraction through the Pd-based membranes, and the long residence times (1–5 s) resulted in a dramatic shift in carbon monoxide conversions of 93% at 1173 K and a 1.5:1 steam-to-carbon monoxide feed ratio—a value well above the equilibrium value of 54% associated with a conventional (non-membrane) reactor. Carbon monoxide conversions decreased from 93% to 66% and hydrogen recovery from 90% to 85% at a residence time of 5 s when the Pd was replaced with Pd80 wt%Cu, due to the lower permeance of the Pd80 wt%Cu alloy. SEM-EDS analysis of the membrane tubes suggested that the water-gas shift environment caused pinhole formation in the retentate surfaces of the Pd and Pd80 wt%Cu after approximately 8 days of operation.

  13. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1988--December 31, 1988

    SciTech Connect (OSTI)

    Yates, I.C.; Satterfield, C.N.

    1988-12-31

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al{sub 2}0{sub 3} water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al{sub 2}0{sub 3} catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C{sub 5}{sup +} selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a{sub 1} was near 0.80 which is higher than that of iron catalysts, while a{sub 2} was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  14. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction

    SciTech Connect (OSTI)

    Laine, R.M.

    1986-01-20

    The purpose of this report is to update and reorganize our recent review on homogeneous catalysis of the water-gas shift reaction (WGSR) based on recent literature publications and patents. This updated version will serve as a means of selecting 10 candidate catalyst systems for use in developing effective, sulfur-tolerant, low temperature WGSR catalysts. This report discusses the variations possible in the basic chemistry associated with WGSR catalytic cycles, including basic, acidic, and neutral conditions. Then individual mechanism for specific WGSR catalyst systems are discussed. Finally, on the basis of the literature reports, a list is presented of candidate catalysts and basic systems we have chosen for study in Task 3.

  15. MEASURING X-RAY VARIABILITY IN FAINT/SPARSELY SAMPLED ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Allevato, V.; Paolillo, M.; Papadakis, I.; Pinto, C.

    2013-07-01

    We study the statistical properties of the normalized excess variance of variability process characterized by a ''red-noise'' power spectral density (PSD), as in the case of active galactic nuclei (AGNs). We perform Monte Carlo simulations of light curves, assuming both a continuous and a sparse sampling pattern and various signal-to-noise ratios (S/Ns). We show that the normalized excess variance is a biased estimate of the variance even in the case of continuously sampled light curves. The bias depends on the PSD slope and on the sampling pattern, but not on the S/N. We provide a simple formula to account for the bias, which yields unbiased estimates with an accuracy better than 15%. We show that the normalized excess variance estimates based on single light curves (especially for sparse sampling and S/N < 3) are highly uncertain (even if corrected for bias) and we propose instead the use of an ''ensemble estimate'', based on multiple light curves of the same object, or on the use of light curves of many objects. These estimates have symmetric distributions, known errors, and can also be corrected for biases. We use our results to estimate the ability to measure the intrinsic source variability in current data, and show that they could also be useful in the planning of the observing strategy of future surveys such as those provided by X-ray missions studying distant and/or faint AGN populations and, more in general, in the estimation of the variability amplitude of sources that will result from future surveys such as Pan-STARRS and LSST.

  16. INVISIBLE ACTIVE GALACTIC NUCLEI. I. SAMPLE SELECTION AND OPTICAL/NEAR-IR SPECTRAL ENERGY DISTRIBUTIONS

    SciTech Connect (OSTI)

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Hearty, Fred

    2012-10-01

    In order to find more examples of the elusive high-redshift molecular absorbers, we have embarked on a systematic discovery program for highly obscured, radio-loud 'invisible active galactic nuclei' using the Very Large Array Faint Images of the Radio Sky at Twenty centimeters radio survey in conjunction with the Sloan Digital Sky Survey (SDSS) to identify 82 strong ({>=}300 mJy) radio sources positionally coincident with late-type, presumably gas-rich galaxies. In this first paper, the basic properties of this sample are described including the selection process and the analysis of the spectral energy distributions (SEDs) derived from the optical (SDSS) + near-IR (NIR) photometry obtained by us at the Apache Point Observatory 3.5 m. The NIR images confirm the late-type galaxy morphologies found by SDSS for these sources in all but a few (6 of 70) cases (12 previously well studied or misclassified sources were culled). Among 70 sources in the final sample, 33 show galaxy type SEDs, 17 have galaxy components to their SEDs, and 20 have quasar power-law continua. At least nine sources with galaxy SEDs have K-band flux densities too faint to be giant ellipticals if placed at their photometric redshifts. Photometric redshifts for this sample are analyzed and found to be too inaccurate for an efficient radio-frequency absorption line search; spectroscopic redshifts are required. A few new spectroscopic redshifts for these sources are presented here but more will be needed to make significant progress in this field. Subsequent papers will describe the radio continuum properties of the sample and the search for redshifted H I 21 cm absorption.

  17. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    SciTech Connect (OSTI)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  18. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    SciTech Connect (OSTI)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Rau, A.; Brusa, M.; Bongiorno, A.; Civano, F.; Elvis, M.; Zamorani, G.; Vignali, C.; Comastri, A.; Bardelli, S.; Bolzonella, M.; Cappelluti, N.; Aussel, H.; Le Floc'h, E.; Mainieri, V.; Capak, P.; Caputi, K.; and others

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

  19. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

    SciTech Connect (OSTI)

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Berian James, J.; Brink, Henrik; Long, James P.; Rice, John

    2012-01-10

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL-where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up-is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  20. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect (OSTI)

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  1. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect (OSTI)

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Salmon, Mississippi, Site, Water Sampling Location Map .........5 Water Sampling Field Activities Verification ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........1 Water Sampling Locations at the Rulison, .........3 Water Sampling Field Activities Verification ...

  4. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    SciTech Connect (OSTI)

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh Shaari, Syirrazie Bin Che; Azman, Azraf B.; Salim, Nazaratul Ashifa Bt. Abdullah; Ismail, Nadiah Binti

    2015-04-29

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  5. Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis

    SciTech Connect (OSTI)

    Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

    2008-12-01

    With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

  6. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  7. 14 MeV neutron activation analysis of geological and lunar samples

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1981-04-01

    14 MeV neutron activation analysis (NAA) is ideal for accurately determining Oxygen and Silicon contents in geological and lunar materials. It is fast, nondestructive, economical, and can be used on a routine basis in a laboratory. Although 14 MeV NAA is particularly suited to light elements, its use has been extended to measure other elements as well such as Aluminum, Magnesium, Iron, Calcium, Titanium, Strontium, Nickel, Yttrium, Zirconium, Niobium and Cerium. Thus, the use of 14 MeV neutrons is of considerable importance in NAA. The disadvantages of the method are that interference reactions are common because of high neutron energy; the flux is nonuniform in longer irradiation due to depletion of the target in the neutron generator. Overall, 14 MeV NAA is ideal for short irradiations and when supplemented with thermal NAA provides the maximum elemental information in small aliquants of geological and lunar materials.

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites .........7 Water Sampling Field Activities Verification ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMSGRN.........7 Water Sampling Field Activities Verification ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal .........9 Water Sampling Field Activities Verification ...

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2014 LMSRBLS00514 .........5 Water Sampling Field Activities Verification ...

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Rulison, Colorado, Site November 2014 LMS.........3 Water Sampling Field Activities Verification ...

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Rulison, Colorado, Site October 2015 LMS.........5 Water Sampling Field Activities Verification ...

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMSMNT.........7 Water Sampling Field Activities Verification ...

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site .........9 Water Sampling Field Activities Verification ...

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2015 LMSRBLS00515 .........5 Water Sampling Field Activities Verification ...

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Produced Water Sampling at the Rulison, Colorado, Site May 2015 LMSRULS00115 Available .........3 Water Sampling Field Activities Verification ...

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site December 2013 .........5 Water Sampling Field Activities Verification ...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Produced Water Sampling at the Rulison, Colorado, Site January 2016 LMSRULS00915 .........3 Water Sampling Field Activities Verification ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site .........7 Water Sampling Field Activities Verification ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing .........5 Water Sampling Field Activities Verification ...

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMSMNT.........7 Water Sampling Field Activities Verification ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMSMNTS01013 This .........7 Water Sampling Field Activities Verification ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMSNAP.........5 Water Sampling Field Activities Verification ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site .........5 Water Sampling Field Activities Verification ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMSTUB.........9 Water Sampling Field Activities Verification ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January .........7 Water Sampling Field Activities Verification ...

  8. An Evaluation of Activated Bismuth Isotopes in Environmental Samples From the Former Western Pacific Proving Grounds

    SciTech Connect (OSTI)

    Robison, W.L.; Brunk, J.A.; Jokela, T.A.

    2000-03-21

    {sup 207}Bi (t{sub 1/2}=32.2 y) was generated by activation of weapons material during a few ''clean'' nuclear tests at the U.S. Western Pacific Proving Grounds of Enewetak and Bikini Atolls. The radionuclides first appeared in the Enewetak environment during 1958 and in the environment of Bikini during 1956. Crater sediments from Bikini with high levels of {sup 207}Bi were analyzed by gamma spectrometry in an attempt to determine the relative concentrations of {sup 208}Bi (t{sup 1/2} = 3.68 x 10{sup 5} y). The bismuth isotopes were probably generated during the ''clean'', 9.3 Mt Poplar test held on 7/12/58. The atom ratio of {sup 208}Bi to {sup 207}Bi (R value) ranges from {approx}12 to over 200 in sections of core sediments from the largest nuclear crater at Bikini atoll. The presence of bismuth in the device is suggested to account for R values in excess of 10.

  9. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction. Task 1, Topical report No. 1

    SciTech Connect (OSTI)

    Laine, R.M.

    1986-01-20

    The purpose of this report is to update and reorganize our recent review on homogeneous catalysis of the water-gas shift reaction (WGSR) based on recent literature publications and patents. This updated version will serve as a means of selecting 10 candidate catalyst systems for use in developing effective, sulfur-tolerant, low temperature WGSR catalysts. This report discusses the variations possible in the basic chemistry associated with WGSR catalytic cycles, including basic, acidic, and neutral conditions. Then individual mechanism for specific WGSR catalyst systems are discussed. Finally, on the basis of the literature reports, a list is presented of candidate catalysts and basic systems we have chosen for study in Task 3.

  10. Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample

    SciTech Connect (OSTI)

    Morley, Shannon M.; Seiner, Brienne N.; Finn, Erin C.; Greenwood, Lawrence R.; Smith, Steven C.; Gregory, Stephanie J.; Haney, Morgan M.; Lucas, Dawn D.; Arrigo, Leah M.; Beacham, Tere A.; Swearingen, Kevin J.; Friese, Judah I.; Douglas, Matthew; Metz, Lori A.

    2015-05-01

    Mixed fission and activation materials resulting from various nuclear processes and events contain a wide range of isotopes for analysis spanning almost the entire periodic table. In some applications such as environmental monitoring, nuclear waste management, and national security a very limited amount of material is available for analysis and characterization so an integrated analysis scheme is needed to measure multiple radionuclides from one sample. This work describes the production of a complex synthetic sample containing fission products, activation products, and irradiated soil and determines the percent recovery of select isotopes through the integrated chemical separation scheme. Results were determined using gamma energy analysis of separated fractions and demonstrate high yields of Ag (76 6%), Au (94 7%), Cd (59 2%), Co (93 5%), Cs (88 3%), Fe (62 1%), Mn (70 7%), Np (65 5%), Sr (73 2%) and Zn (72 3%). Lower yields (< 25%) were measured for Ga, Ir, Sc, and W. Based on the results of this experiment, a complex synthetic sample can be prepared with low atom/fission ratios and isotopes of interest accurately and precisely measured following an integrated chemical separation method.

  11. Bulgeless galaxies at intermediate redshift: Sample selection, color properties, and the existence of powerful active galactic nuclei

    SciTech Connect (OSTI)

    Bizzocchi, Luca; Leonardo, Elvira; Grossi, Marco; Afonso, Jos; Fernandes, Cristina; Retr, Joo; Filho, Mercedes E.; Lobo, Catarina; Griffith, Roger L.; Anton, Sonia; Bell, Eric F.; Brinchmann, Jarle; Henriques, Bruno; Messias, Hugo

    2014-02-10

    We present a catalog of bulgeless galaxies, which includes 19,225 objects selected in four of the deepest, largest multi-wavelength data sets availableCOSMOS, AEGIS, GEMS, and GOODSat intermediate redshift (0.4 ? z ? 1.0). The morphological classification was provided by the Advanced Camera for Surveys General Catalog (ACS-GC), which used publicly available data obtained with the ACS instrument on the Hubble Space Telescope. Rest-frame photometric quantities were derived using kcorrect. We analyze the properties of the sample and the evolution of pure-disk systems with redshift. Very massive [log (M {sub *}/M {sub ?}) > 10.5] bulgeless galaxies contribute to ?30% of the total galaxy population number density at z ? 0.7, but their number density drops substantially with decreasing redshift. We show that only a negligible fraction of pure disks appear to be quiescent systems, and red sequence bulgeless galaxies show indications of dust-obscured star formation. X-ray catalogs were used to search for X-ray emission within our sample. After visual inspection and detailed parametric morphological fitting we identify 30 active galactic nuclei (AGNs) that reside in galaxies without a classical bulge. The finding of such peculiar objects at intermediate redshift shows that while AGN growth in merger-free systems is a rare event (0.2% AGN hosts in this sample of bulgeless galaxies), it can indeed happen relatively early in the history of the universe.

  12. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    SciTech Connect (OSTI)

    Dahing, Lahasen Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  13. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentially stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data ...

  15. Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas

    SciTech Connect (OSTI)

    James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

    2008-05-31

    This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

  16. Search for gamma-ray-emitting active galactic nuclei in the Fermi-LAT unassociated sample using machine learning

    SciTech Connect (OSTI)

    Doert, M.; Errando, M. E-mail: errando@astro.columbia.edu

    2014-02-10

    The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey available in the gamma-ray band. It contains 1873 sources, of which 576 remain unassociated. Machine-learning algorithms can be trained on the gamma-ray properties of known active galactic nuclei (AGNs) to find objects with AGN-like properties in the unassociated sample. This analysis finds 231 high-confidence AGN candidates, with increased robustness provided by intersecting two complementary algorithms. A method to estimate the performance of the classification algorithm is also presented, that takes into account the differences between associated and unassociated gamma-ray sources. Follow-up observations targeting AGN candidates, or studies of multiwavelength archival data, will reduce the number of unassociated gamma-ray sources and contribute to a more complete characterization of the population of gamma-ray emitting AGNs.

  17. SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE

    SciTech Connect (OSTI)

    Elvis, M.; Hao, H.; Civano, F.; Brusa, M.; Salvato, M.; Bongiorno, A.; Cappelluti, N.; Capak, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Jahnke, K.; Lusso, E.; Cisternas, M.; Mainieri, V.; Trump, J. R.; Ho, L. C.; Aussel, H.; Frayer, D.; Hasinger, G. E-mail: hhao@cfa.harvard.edu; and others

    2012-11-01

    The 'Cosmic Evolution Survey' (COSMOS) enables the study of the spectral energy distributions (SEDs) of active galactic nuclei (AGNs) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present an SED catalog of 413 X-ray (XMM-Newton)-selected type 1 (emission line FWHM > 2000 km s{sup -1}) AGNs with Magellan, SDSS, or VLT spectrum. The SEDs are corrected for Galactic extinction, broad emission line contributions, constrained variability, and host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest-frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame {approx}8 {mu}m-4000 A), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available online.

  18. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  19. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    SciTech Connect (OSTI)

    Klaehn, John; Peterson, Eric; Orme, Christopher; Bhandari, Dhaval; Miller, Scott; Ku, Anthony; Polishchuk, Kimberly; Narang, Kristi; Singh, Surinder; Wei, Wei; Shisler, Roger; Wickersham, Paul; McEvoy, Kevin; Alberts, William; Howson, Paul; Barton, Thomas; Sethi, Vijay

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H2 gas separations at operating temperatures (~200C). VTEC PI 80-051 was thoroughly analyzed for its H2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H2/CO2 separation (? = 7-9) and H2/CO separation (? = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H2 gas separations membrane for high-temperature syngas streams.

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site June 2015 .........7 Water Sampling Field Activities Verification ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Data Durango Processing Site Surface Water Quality Data Equipment Blank Data Static ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Natural Gas Analysis Data ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrographs Time-Concentration ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrograph Time-Concentration ...

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graph ...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Quality Data Equipment Blank Data Static Water Level Data Time-Concentration Graphs ...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........9 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Static Water Level Data ...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graphs ...

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  13. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  14. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect (OSTI)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  15. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  16. Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Details Activities (63) Areas (51) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling...

  17. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections: Sampling Protections: Sampling Protection #3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece of the Strategy, ensures that LANL collects relevant and appropriate data to answer questions about the protection of human and environmental health, and to satisfy regulatory requirements. LANL must demonstrate the data are technically justified

  18. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas. A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa M.C.; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-07-08

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600°C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600°C. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent

  19. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  20. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection 3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental ...

  1. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece...

  2. INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF SEYFERT GALAXIES: SPITZER SPACE TELESCOPE OBSERVATIONS OF THE 12 {mu}m SAMPLE OF ACTIVE GALAXIES

    SciTech Connect (OSTI)

    Gallimore, J. F.; Yzaguirre, A.; Jakoboski, J.; Stevenosky, M. J.; Axon, D. J.; O'Dea, C. P.; Robinson, A.; Baum, S. A.; Buchanan, C. L.; Elitzur, M.; Elvis, M.

    2010-03-01

    The mid-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 {mu}m sample are presented. The data were collected using all three instruments, Infrared Array Camera (IRAC), Infrared Spectrograph (IRS), and Multiband Imaging Photometer for Spitzer (MIPS), aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20'' diameter circular apertures. The MIPS data were obtained in SED mode, providing very low-resolution spectroscopy (R {approx} 20) between {approx}55 and 90 {mu}m in a larger, 20'' x 30'' synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 {mu}m and 18 {mu}m emission and absorption strengths; IRAC magnitudes; and mid-far-infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLRs, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes within the 12 {mu}m sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER, and H II galaxies, appear to be dominated by star formation, as evidenced by blue IRAC colors, strong polycyclic aromatic hydrocarbon emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.

  3. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  4. SAMPLING AND ANALYSIS PROTOCOLS

    SciTech Connect (OSTI)

    Jannik, T; P Fledderman, P

    2007-02-09

    Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities

  6. SAMPLING SYSTEM

    DOE Patents [OSTI]

    Hannaford, B.A.; Rosenberg, R.; Segaser, C.L.; Terry, C.L.

    1961-01-17

    An apparatus is given for the batch sampling of radioactive liquids such as slurries from a system by remote control, while providing shielding for protection of operating personnel from the harmful effects of radiation.

  7. Sampling box

    DOE Patents [OSTI]

    Phillips, Terrance D.; Johnson, Craig

    2000-01-01

    An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

  8. Water Sampling (Healy, 1970) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Healy, 1970) Exploration Activity Details Location Unspecified Exploration...

  9. SAMPLING OSCILLOSCOPE

    DOE Patents [OSTI]

    Sugarman, R.M.

    1960-08-30

    An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.

  10. Sampling apparatus

    DOE Patents [OSTI]

    Gordon, Norman R.; King, Lloyd L.; Jackson, Peter O.; Zulich, Alan W.

    1989-01-01

    A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface.

  11. Sampling apparatus

    DOE Patents [OSTI]

    Gordon, N.R.; King, L.L.; Jackson, P.O.; Zulich, A.W.

    1989-07-18

    A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface. 15 figs.

  12. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    SciTech Connect (OSTI)

    Plionis, Alexander A; Peterson, Dominic S; Tandon, Lav; Lamont, Stephen P

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  13. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  14. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water

    DOE Patents [OSTI]

    King, Jr., Allen D.; King, Robert B.; Sailers, III, Earl L.

    1983-02-08

    A process for producing hydrogen from formate and water by photogenerating an active formate decomposition catalyst from transition metal carbonyl precursor catalysts at relatively low temperatures and otherwise mild conditions is disclosed. Additionally, this process may be expanded to include the generation of formate from carbon monoxide and hydroxide such that the result is the water gas shift reaction.

  15. Water Sampling At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, Philippines (Wood, 2002) Exploration...

  16. Water Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling (Lewicki & Oldenburg, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Lewicki & Oldenburg, 2004) Exploration...

  17. August 2015 Groundwater and Surface Water Sampling at the Tuba...

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015 LMSTUB.........7 Water Sampling Field Activities Verification ...

  18. February 2016 Groundwater and Surface Water Sampling at the Tuba...

    Office of Legacy Management (LM)

    6 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April .........5 Water Sampling Field Activities Verification ...

  19. CFCNCA Sample Pledge Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFCNCA Sample Pledge Form CFCNCA Sample Pledge Form This file contains a sample pledge form and instructions for completing a paper donation through the CFC. CFCNCA Fall 2012 Sample Pledge Form.pdf (151.39 KB) More Documents & Publications CFCNCA Sample Pledge Form 2012 CFCNCA Catalog of Caring DOE F 3630.1 Rights and Benefits of Reservists Called to Active Duty

  20. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Wister Area (DOE GTP) Exploration Activity...

  1. Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976) Exploration Activity...

  2. Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lightning Dock Geothermal Area (Witcher, 2006) Exploration Activity...

  3. Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  4. Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

  5. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect (OSTI)

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  6. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  7. Surface Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Surface Water Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field...

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis ICP interference check samples ICSA and ICSAB were analyzed at the required frequency to verify the ...

  9. Visual Sample Plan Flyer

    Office of Energy Efficiency and Renewable Energy (EERE)

    This flyer better explains that VSP is a free, easy-to-use software tool that supports development of optimal sampling plans based on statistical sampling theory.

  10. Tank characterization technical sampling basis

    SciTech Connect (OSTI)

    Brown, T.M.

    1998-04-28

    Tank Characterization Technical Sampling Basis (this document) is the first step of an in place working process to plan characterization activities in an optimal manner. This document will be used to develop the revision of the Waste Information Requirements Document (WIRD) (Winkelman et al. 1997) and ultimately, to create sampling schedules. The revised WIRD will define all Characterization Project activities over the course of subsequent fiscal years 1999 through 2002. This document establishes priorities for sampling and characterization activities conducted under the Tank Waste Remediation System (TWRS) Tank Waste Characterization Project. The Tank Waste Characterization Project is designed to provide all TWRS programs with information describing the physical, chemical, and radiological properties of the contents of waste storage tanks at the Hanford Site. These tanks contain radioactive waste generated from the production of nuclear weapons materials at the Hanford Site. The waste composition varies from tank to tank because of the large number of chemical processes that were used when producing nuclear weapons materials over the years and because the wastes were mixed during efforts to better use tank storage space. The Tank Waste Characterization Project mission is to provide information and waste sample material necessary for TWRS to define and maintain safe interim storage and to process waste fractions into stable forms for ultimate disposal. This document integrates the information needed to address safety issues, regulatory requirements, and retrieval, treatment, and immobilization requirements. Characterization sampling to support tank farm operational needs is also discussed.

  11. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  12. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  13. Surface Gas Sampling At Lightning Dock Area (Norman, Et Al.,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At...

  14. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Colrado Area (DOE GTP) Exploration...

  15. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Jemez Mountain...

  16. Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Yellowstone Region...

  17. Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Yellowstone Region...

  18. Rain sampling device

    DOE Patents [OSTI]

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  19. Rain sampling device

    DOE Patents [OSTI]

    Nelson, Danny A.; Tomich, Stanley D.; Glover, Donald W.; Allen, Errol V.; Hales, Jeremy M.; Dana, Marshall T.

    1991-01-01

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  20. Hanford Sampling Quality Management Plan (HSQMP)

    SciTech Connect (OSTI)

    Hyatt, J.E.

    1995-06-01

    HSQMP establishes quality requirements in response to DOE Order 5700. 6C and to 10 Code of Federal Regulations 830.120. HSQMP is designed to meet the needs of Richland Operations Office for controlling the quality of services provided by sampling operations. It is issued through the Analytical Services Program of the Waste Programs Division. This document describes the Environmental Sampling and Analysis Program activities considered to represent the best management activities necessary to achieve a sampling program with adequate control.

  1. Water and Sediment Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDC Blank 7222014 Below MDC Below MDC Water Sampling Results Location Sample Date WIPP ... Tut Tank 3132014 Below MDC Below MDC Fresh Water Tank 3122014 Below MDC Below MDC Hill ...

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 100, 17B, 1A, 72, and 81 were classified as Category II. The sample results were qualified with a "Q" flag, indicating the data are qualitative because of the sampling technique. ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... the applicable MDL. Inductively Coupled Plasma Interference Check Sample Analysis ... and background correction factors for all inductively coupled plasma instruments. ...

  4. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Ambrosia Lake, New Mexico, Disposal Site February 2015 LMS/AMB/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Ambrosia Lake, New Mexico February 2015 RIN 14116607 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, NM, Disposal Site Planned Sampling Map...........................................................3 Data

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016 LMS/AMB/S01215 This page intentionally left blank U.S. Department of Energy DVP-December 2015, Ambrosia Lake, New Mexico March 2016 RIN 15117494 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, NM, Disposal Site Planned Sampling Map...........................................................3 Data Assessment

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monument Valley, Arizona, Processing Site February 2015 LMS/MON/S01214 This page intentionally left blank U.S. Department of Energy DVP-December 2014, Monument Valley, Arizona February 2015 RIN 14126645 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Disposal Site Sample Location Map ..................................................5

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site May 2014 LMS/RVT/S00314 This page intentionally left blank U.S. Department of Energy DVP-March 2014, Riverton, Wyoming May 2014 RIN 14035986 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, WY, Processing Site, Sample Location Map ...................................................................3 Data

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    February 2015 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Site April 2015 LMS/GJO/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Grand Junction, Colorado, Site April 2015 RIN 15026795 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Grand Junction, Colorado, Disposal Site November 2013 LMS/GRJ/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Grand Junction, Colorado November 2013 RIN 13075515 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites August 2013 LMS/RFN/RFO/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Rifle, Colorado August 2013 RIN 13065380 Page i Contents Sampling Event Summary ...............................................................................................................1 Sample Location Map, New Rifle, Colorado, Processing Site ........................................................5 Sample Location Map, Old Rifle,

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map

  14. Aerosol sampling system

    DOE Patents [OSTI]

    Masquelier, Donald A.

    2004-02-10

    A system for sampling air and collecting particulate of a predetermined particle size range. A low pass section has an opening of a preselected size for gathering the air but excluding particles larger than the sample particles. An impactor section is connected to the low pass section and separates the air flow into a bypass air flow that does not contain the sample particles and a product air flow that does contain the sample particles. A wetted-wall cyclone collector, connected to the impactor section, receives the product air flow and traps the sample particles in a liquid.

  15. Sample Proficiency Test exercise

    SciTech Connect (OSTI)

    Alcaraz, A; Gregg, H; Koester, C

    2006-02-05

    The current format of the OPCW proficiency tests has multiple sets of 2 samples sent to an analysis laboratory. In each sample set, one is identified as a sample, the other as a blank. This method of conducting proficiency tests differs from how an OPCW designated laboratory would receive authentic samples (a set of three containers, each not identified, consisting of the authentic sample, a control sample, and a blank sample). This exercise was designed to test the reporting if the proficiency tests were to be conducted. As such, this is not an official OPCW proficiency test, and the attached report is one method by which LLNL might report their analyses under a more realistic testing scheme. Therefore, the title on the report ''Report of the Umpteenth Official OPCW Proficiency Test'' is meaningless, and provides a bit of whimsy for the analyses and readers of the report.

  16. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  17. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  18. Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details...

  19. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  20. Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  1. Gas Sampling At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

  2. Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005...

    Open Energy Info (EERE)

    2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity...

  3. Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  4. Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) Exploration Activity Details Location...

  5. Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity...

  6. Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location...

  7. Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) Exploration Activity Details...

  8. Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

  9. Water Sampling At Kilauea East Rift Geothermal Area (Thomas,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  10. Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  11. Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details...

  12. Water Sampling At Hawthorne Area (Lazaro, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details...

  13. Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details...

  14. Water Sampling At Central Nevada Seismic Zone Region (Laney,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity...

  15. Surface Water Sampling At Raft River Geothermal Area (1973) ...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location...

  16. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  17. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details...

  18. Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton...

  19. Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  20. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) Exploration Activity...

  1. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details...

  2. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  3. Water Sampling At Salt Wells Area (Shevenell & Garside, 2003...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details...

  4. Surface Water Sampling At Chena Geothermal Area (Holdmann, Et...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Chena Geothermal Area (Holdmann, Et Al., 2006) Exploration Activity...

  5. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details...

  6. Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al....

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity...

  7. Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity...

  8. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  9. Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt...

  10. Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974) Exploration Activity Details...

  11. Water Sampling At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details...

  12. Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area...

  13. Water Sampling At Walker-Lane Transitional Zone Region (Laney...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity...

  14. Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity...

  15. Water Sampling At Heber Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area...

  16. Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  17. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details...

  18. Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  19. Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  20. Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  1. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details...

  2. Water Sampling At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) Exploration Activity...

  3. Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  4. Groundwater Sampling At Raft River Geothermal Area (1974-1982...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River...

  5. Water Sampling At International Geothermal Area, New Zealand...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) Exploration...

  6. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and September 2013 Groundwater and Surface Water Sampling at the Durango, Colorado, Disposal and Processing Sites March 2014 LMS/DUD/DUP/S00613 This page intentionally left blank U.S. Department of Energy DVP-June and September 2013, Durango, Colorado March 2014 RIN 13055370 and 13085577 Page i Contents Sampling Event Summary ...............................................................................................................1 Durango, Colorado, Disposal Site Sample Location Map-June

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... The gross alpha, gross beta, radium-226, and radium-228 method blank results were below the DLC. Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis ICP ...

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater, Surface Water, and Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site December 2013 LMSRVTS00913 This page intentionally left blank ...

  10. Creating Sample Plans

    Energy Science and Technology Software Center (OSTI)

    1999-03-24

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to bemore » analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.« less

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Bluewater, New Mexico, Disposal Site February 2014 LMS/BLU/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Bluewater, New Mexico February 2014 RIN 13115746 Page i Contents Sampling Event Summary ...............................................................................................................1 Bluewater, New Mexico, Disposal Site Sample Location Map.......................................................5 Data Assessment Summary

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Burrell, Pennsylvania, Disposal Site January 2014 LMS/BUR/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Burrell, Pennsylvania January 2014 RIN 13095638 Page i Contents Sampling Event Summary ...............................................................................................................1 Burrell, Pennsylvania, Disposal Site, Sample Location Map ..........................................................3 Data Assessment Summary

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Canonsburg, Pennsylvania, Disposal Site February 2014 LMS/CAN/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Canonsburg, Pennsylvania February 2014 RIN 13095639 Page i Contents Sampling Event Summary ...............................................................................................................1 Canonsburg, Pennsylvania, Disposal Site, Sample Location Map ..................................................3 Data Assessment Summary

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Disposal Site August 2014 LMS/LKD/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Disposal August 2014 RIN 14056157 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Disposal Site, Sample Location Map ...............................................................3 Data Assessment Summary

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Processing Site August 2014 LMS/LKP/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Processing August 2014 RIN 14056157 and 14056158 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site, Sample Location Map ............................................................3 Data Assessment Summary

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Riverton, Wyoming, Processing Site September 2013 LMS/RVT/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Riverton, Wyoming September 2013 RIN 13065379 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site, Sample Location Map .........................................................5 Data Assessment Summary

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Riverton, Wyoming, Processing Site February 2016 LMS/RVT/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Riverton, Wyoming February 2016 RINs 15097345, 15097346, and 15097347 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site Planned Sampling Location Map .........................................7 Data Assessment Summary

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Rifle, Colorado, New and Old Processing Sites January 2014 LMS/RFN/RFO/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Rifle, Colorado January 2014 RIN 13115731 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Sample Location Map ........................................................5 Old Rifle, Colorado, Processing

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites January 2015 LMS/RFN/RFO/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Rifle, Colorado January 2015 RINs 14106568 and 14106569 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Planned Sampling Map ......................................................3 Old Rifle,

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Slick Rock, Colorado, Processing Sites January 2016 LMS/SRE/SRW/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Slick Rock, Colorado January 2016 RINs 15087319 and 15107424 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map .....................................................5 Data Assessment

  1. Sampling system and method

    DOE Patents [OSTI]

    Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

    2013-04-16

    The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

  2. Adaptive Sampling Proxy Application

    Energy Science and Technology Software Center (OSTI)

    2012-10-22

    ASPA is an implementation of an adaptive sampling algorithm [1-3], which is used to reduce the computational expense of computer simulations that couple disparate physical scales. The purpose of ASPA is to encapsulate the algorithms required for adaptive sampling independently from any specific application, so that alternative algorithms and programming models for exascale computers can be investigated more easily.

  3. Biological sample collector

    DOE Patents [OSTI]

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  4. Reconstruction of Intensity From Covered Samples

    SciTech Connect (OSTI)

    Barabash, Rozaliya; Watkins, Thomas R; Meisner, Roberta Ann; Burchell, Timothy D; Rosseel, Thomas M

    2015-01-01

    The safe handling of activated samples requires containment and covering the sample to eliminate any potential for contamination. Subsequent characterization of the surface with x-rays ideally necessitates a thin film. While many films appear visually transparent, they are not necessarily x-ray transparent. Each film material has a unique beam attenuation and sometimes have amorphous peaks that can superimpose with those of the sample. To reconstruct the intensity of the underlying activated sample, the x-ray attenuation and signal due to the film needs to be removed from that of the sample. This requires the calculation of unique deconvolution parameters for the film. The development of a reconstruction procedure for a contained/covered sample is described.

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 10 pCiL Liquid Scintillation LMR-15 Uranium Vanadium Zinc Total No. of Analytes 4 0 ... 26, 2013 TO: Rick Findlay FROM: Jeff Price SUBJECT: Trip Report (LTHMP Sampling) ...

  6. Water Sample Concentrator

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater, Surface Water, Produced Water, and Natural Gas Sampling at the Gasbuggy, New Mexico, Site October 2014 LMSGSBS00614 Available for sale to the public from: U.S. ...

  8. Dissolution actuated sample container

    DOE Patents [OSTI]

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  9. Liquid sampling system

    DOE Patents [OSTI]

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  10. Liquid sampling system

    DOE Patents [OSTI]

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  11. Optimal sampling efficiency in Monte Carlo sampling with an approximat...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Optimal sampling efficiency in Monte Carlo sampling with an approximate potential Citation Details In-Document Search Title: Optimal sampling efficiency in Monte ...

  12. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D.

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  13. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  14. Visual Sample Plan

    Energy Science and Technology Software Center (OSTI)

    2007-10-25

    VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 5.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sitesmore » suspected of contamination. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (98, NT, 2000, Millennium Edition, CE, and XP) Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem./rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for UXO identification.« less

  15. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 2. External neutron- and gamma flux measurements by sample activation. Section 1

    SciTech Connect (OSTI)

    Biggers, W.A.; Brown, L.J.

    1985-09-01

    The Greenhouse operation consisted of a series of four shots conducted at Eniwetok during the Srping of 1951. The external neutron threshold measurements consisted of the use of good samples to measure integrated thermal neutron fluxes and sulfur, iodine, and zirconium samples to measure fluxes of higher-energy neutrons. The iodine also measured high-energy gamma-ray intensity. Measurements were also made on slow- and fast-neutron intensities as a function of time.

  16. Viscous sludge sample collector

    DOE Patents [OSTI]

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  17. Sampling Report for August 15, 2014 WIPP Samples

    Office of Environmental Management (EM)

    X X X X X Sampling Report for August 15, 2014 WIPP Samples UNCLASSIFIED Forensic Science Center December 19, 2014 Sampling Report for August 15 2014 WIPP Samples Lawrence ...

  18. ANNULAR IMPACTOR SAMPLING DEVICE

    DOE Patents [OSTI]

    Tait, G.W.C.

    1959-03-31

    A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

  19. Field Sampling | Open Energy Information

    Open Energy Info (EERE)

    Field Mapping Hand-held X-Ray Fluorescence (XRF) Macrophotography Portable X-Ray Diffraction (XRD) Field Sampling Gas Sampling Gas Flux Sampling Soil Gas Sampling Surface Gas...

  20. Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska

    SciTech Connect (OSTI)

    Jeff Heikoop; Heather Throckmorton

    2015-05-15

    Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt, permafrost; ammonium isotopes for active layer samples; and nitrogen isotopes for soils and dissolved organic nitrogen extracted from soil pore waters.

  1. NID Copper Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  2. Stack sampling apparatus

    DOE Patents [OSTI]

    Lind, Randall F; Lloyd, Peter D; Love, Lonnie J; Noakes, Mark W; Pin, Francois G; Richardson, Bradley S; Rowe, John C

    2014-09-16

    An apparatus for obtaining samples from a structure includes a support member, at least one stabilizing member, and at least one moveable member. The stabilizing member has a first portion coupled to the support member and a second portion configured to engage with the structure to restrict relative movement between the support member and the structure. The stabilizing member is radially expandable from a first configuration where the second portion does not engage with a surface of the structure to a second configuration where the second portion engages with the surface of the structure.

  3. Germanium-76 Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

    2011-04-01

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater Sampling at the Central Nevada Test Area February 2015 LMS/CNT/S01214 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in

  5. Pulsed field sample neutralization

    DOE Patents [OSTI]

    Appelhans, Anthony D.; Dahl, David A.; Delmore, James E.

    1990-01-01

    An apparatus and method for alternating voltage and for varying the rate of extraction during the extraction of secondary particles, resulting in periods when either positive ions, or negative ions and electrons are extracted at varying rates. Using voltage with alternating charge during successive periods to extract particles from materials which accumulate charge opposite that being extracted causes accumulation of surface charge of opposite sign. Charge accumulation can then be adjusted to a ratio which maintains a balance of positive and negative charge emission, thus maintaining the charge neutrality of the sample.

  6. Post-Award Deliverables Sample (Part 2 of Sample Deliverables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Document offers a post-award deliverables sample for an energy savings ...

  7. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  8. NID Copper Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  9. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  10. Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Steamboat Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Steamboat Springs Area...

  11. Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Desert Peak Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And...

  12. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Exploration...

  13. Soil Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Mccoy Geothermal Area (DOE GTP) Exploration...

  14. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  15. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Exploration...

  16. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  17. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration...

  18. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982)...

  19. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Exploration...

  20. Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

  1. Water Sampling At Long Valley Caldera Geothermal Area (Goff,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Exploration...

  2. Soil Sampling At Dixie Valley Geothermal Area (Nash & D., 1997...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Dixie Valley Geothermal Area...

  3. Surface Gas Sampling At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen...

  4. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic...

  5. Surface Gas Sampling At International Geothermal Area Mexico...

    Open Energy Info (EERE)

    International Geothermal Area Mexico (Norman, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At International...

  6. Soil Sampling At North Brawley Geothermal Area (Alan & G., 1977...

    Open Energy Info (EERE)

    North Brawley Geothermal Area (Alan & G., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At North Brawley Geothermal Area...

  7. Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur...

  8. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002)...

  9. Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002...

    Open Energy Info (EERE)

    Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik,...

  10. Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002...

    Open Energy Info (EERE)

    Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik,...

  11. Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...

    Open Energy Info (EERE)

    Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff &...

  12. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Long Valley Caldera...

  13. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  14. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1993-12-21

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

  15. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  16. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  17. Fluid sampling apparatus and method

    DOE Patents [OSTI]

    Yeamans, David R.

    1998-01-01

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

  18. Fluid sampling apparatus and method

    DOE Patents [OSTI]

    Yeamans, D.R.

    1998-02-03

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

  19. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  20. Rock Sampling | Open Energy Information

    Open Energy Info (EERE)

    resource at depth. These hand samples can be collected using a rock hammer or sledge. Data Access and Acquisition Under a detailed investigation, a systematic sampling procedure...

  1. Sample holder with optical features

    DOE Patents [OSTI]

    Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

    2013-07-30

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  2. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and

  3. Hanford site transuranic waste sampling plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-13

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed.

  4. Sampling and Analysis Plan for PUREX canyon vessel flushing

    SciTech Connect (OSTI)

    Villalobos, C.N.

    1995-03-01

    A sampling and analysis plan is necessary to provide direction for the sampling and analytical activities determined by the data quality objectives. This document defines the sampling and analysis necessary to support the deactivation of the Plutonium-Uranium Extraction (PUREX) facility vessels that are regulated pursuant to Washington Administrative Code 173-303.

  5. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Gabbs Valley Area (DOE GTP)...

  6. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Glass Buttes Area (DOE GTP)...

  7. Sampling Report for May-June, 2014 WIPP Samples

    Office of Environmental Management (EM)

    UNCLASSIFIED iii Table of Contents WIPP Panel 7 Sampling May-June, 2014 ... 15 LLNL-TR-667001 Section 1 WIPP Panel 7 Sampling May-June, 2014 1. Summary of ...

  8. Well purge and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

    1995-10-24

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

  9. Well purge and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.; Gustafson, Gregg S.

    1995-01-01

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

  10. Sampling Report for August 15, 2014 WIPP Samples

    Office of Environmental Management (EM)

    0 L L N L - X X X X - X X X X X Sampling Report for August 15, 2014 WIPP Samples UNCLASSIFIED Forensic Science Center December 19, 2014 Sampling Report for August 15 2014 WIPP Samples Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or

  11. Specified assurance level sampling procedure

    SciTech Connect (OSTI)

    Willner, O.

    1980-11-01

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

  12. Validation of Statistical Sampling Algorithms in Visual Sample Plan (VSP): Summary Report

    SciTech Connect (OSTI)

    Nuffer, Lisa L; Sego, Landon H.; Wilson, John E.; Hassig, Nancy L.; Pulsipher, Brent A.; Matzke, Brett D.

    2009-02-18

    The U.S. Department of Homeland Security, Office of Technology Development (OTD) contracted with a set of U.S. Department of Energy national laboratories, including the Pacific Northwest National Laboratory (PNNL), to write a Remediation Guidance for Major Airports After a Chemical Attack. The report identifies key activities and issues that should be considered by a typical major airport following an incident involving release of a toxic chemical agent. Four experimental tasks were identified that would require further research in order to supplement the Remediation Guidance. One of the tasks, Task 4, OTD Chemical Remediation Statistical Sampling Design Validation, dealt with statistical sampling algorithm validation. This report documents the results of the sampling design validation conducted for Task 4. In 2005, the Government Accountability Office (GAO) performed a review of the past U.S. responses to Anthrax terrorist cases. Part of the motivation for this PNNL report was a major GAO finding that there was a lack of validated sampling strategies in the U.S. response to Anthrax cases. The report (GAO 2005) recommended that probability-based methods be used for sampling design in order to address confidence in the results, particularly when all sample results showed no remaining contamination. The GAO also expressed a desire that the methods be validated, which is the main purpose of this PNNL report. The objective of this study was to validate probability-based statistical sampling designs and the algorithms pertinent to within-building sampling that allow the user to prescribe or evaluate confidence levels of conclusions based on data collected as guided by the statistical sampling designs. Specifically, the designs found in the Visual Sample Plan (VSP) software were evaluated. VSP was used to calculate the number of samples and the sample location for a variety of sampling plans applied to an actual release site. Most of the sampling designs validated are

  13. Groundwater Sampling | Open Energy Information

    Open Energy Info (EERE)

    500 mL), whereas analysis for stable isotopes that are present in greater abundance in natural samples requires less water to be sampled by a full order of magnitude (approximately...

  14. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  15. Analytical laboratory and mobile sampling platform

    SciTech Connect (OSTI)

    Stetzenbach, K.; Smiecinski, A.

    1996-04-30

    This is the final report for the Analytical Laboratory and Mobile Sampling Platform project. This report contains only major findings and conclusions resulting from this project. Detailed reports of all activities performed for this project were provided to the Project Office every quarter since the beginning of the project. This report contains water chemistry data for samples collected in the Nevada section of Death Valley National Park (Triangle Area Springs), Nevada Test Site springs, Pahranagat Valley springs, Nevada Test Site wells, Spring Mountain springs and Crater Flat and Amargosa Valley wells.

  16. Activity report

    SciTech Connect (OSTI)

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  17. A Comparative Study of the Water Gas Shift Reaction Over Platinum Catalysts Supported on CeO2, TiO2 and Ce-Modified TiO2

    SciTech Connect (OSTI)

    Gonzalez, I.; Navarro, R; Wen, W; Marinkovic, N; Rodriguez, J; Rosa, F; Fierro, J

    2010-01-01

    WGS reaction has been investigated on catalysts based on platinum supported over CeO{sub 2}, TiO{sub 2} and Ce-modified TiO{sub 2}. XPS and XANES analyses performed on calcined catalysts revealed a close contact between Pt precursors and cerium species on CeO{sub 2} and Ce-modified TiO{sub 2} supports. TPR results corroborate the intimate contact between Pt and cerium entities in the Pt/Ce-TiO{sub 2} catalyst that facilitates the reducibility of the support at low temperatures while the Ce-O-Ti surface interactions established in the Ce-modified TiO{sub 2} support decreases the reduction of TiO{sub 2} at high temperature. The changes in the support reducibility leads to significant differences in the WGS activity of the studied catalysts. Pt supported on Ce-modified TiO{sub 2} support exhibits better activity than those corresponding to individual CeO{sub 2} and TiO{sub 2}-supported catalysts. Additionally, the Ce-TiO{sub 2}-supported catalyst displays better stability at reaction temperatures higher than 573 K that observed on pure TiO{sub 2}-supported counterpart. Activity measurements, when coupled with the physicochemical characterization of catalysts suggest that the modifications in the surface reducibility of the support play an essential role in the enhancement of activity and stability observed when Pt is supported on the Ce-modified TiO{sub 2} substrate.

  18. Sampling Report for May-June, 2014 WIPP Samples

    Office of Environmental Management (EM)

    1 L L N L - X X X X - X X X X X Sampling Report for May- June, 2014 WIPP Samples UNCLASSIFIED Forensic Science Center January 8, 2015 Sampling Report for May-June, 2014 WIPP Samples Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or

  19. Gas Sampling At Rye Patch Area (DOE GTP, 2011) | Open Energy...

    Open Energy Info (EERE)

    2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye...

  20. Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity...

  1. Gas Flux Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location...

  2. Gas Sampling At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black...

  3. Gas Flux Sampling At Black Warrior Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Black Warrior Area (DOE GTP) Exploration Activity Details Location...

  4. Gas Flux Sampling At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

  5. Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity...

  6. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Informatio...

    Open Energy Info (EERE)

    Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies...

  7. Water Sampling At Fenton Hill HDR Geothermal Area (Rao, Et Al...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Fenton Hill HDR Geothermal Area (Rao, Et Al., 1996) Exploration Activity...

  8. Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) Exploration Activity Details...

  9. Water Sampling At Coso Geothermal Area (1977-1978) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Coso Geothermal Area (1977-1978) Exploration Activity Details Location...

  10. Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details...

  11. Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details...

  12. Water Sampling At Reese River Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Reese River Area (Henkle, Et Al., 2005) Exploration Activity Details...

  13. Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) Exploration Activity Details...

  14. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake...

  15. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity...

  16. Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) Exploration Activity Details...

  17. Sample collection system for gel electrophoresis

    DOE Patents [OSTI]

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  18. Acceptance sampling using judgmental and randomly selected samples

    SciTech Connect (OSTI)

    Sego, Landon H.; Shulman, Stanley A.; Anderson, Kevin K.; Wilson, John E.; Pulsipher, Brent A.; Sieber, W. Karl

    2010-09-01

    We present a Bayesian model for acceptance sampling where the population consists of two groups, each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to be identifed (and sampled) using expert judgment, while the remaining low-risk items are sampled randomly. We focus on the situation where all observed samples must be acceptable. Consequently, the objective of the statistical inference is to quantify the probability that a large percentage of the unsampled items in the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling and simpler Bayesian formulations of the problem are essentially special cases of the proposed model. We explore the properties of the model in detail, and discuss the conditions necessary to ensure that required samples sizes are non-decreasing function of the population size. The method is applicable to a variety of acceptance sampling problems, and, in particular, to environmental sampling where the objective is to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal agent.

  19. Sample page | Open Energy Information

    Open Energy Info (EERE)

    Sample pages; Help pages; References Francis C. Monastero. 2002. An overview of industry-military cooperation in the development of power operations at the Coso...

  20. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical ...

  1. Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    of geothermometric calculations and geochemical modeling of the data. In the case of gas flux sampling, different measurement techniques and devices may disrupt or alter the...

  2. Environmental surveillance master sampling schedule

    SciTech Connect (OSTI)

    Bisping, L.E.

    1995-02-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring onsite drinking water falls outside the scope of the SESP. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control, and reporting. The ground-water sampling schedule identifies ground-water sampling .events used by PNL for environmental surveillance of the Hanford Site. Sampling is indicated as annual, semi-annual, quarterly, or monthly in the sampling schedule. Some samples are collected and analyzed as part of ground-water monitoring and characterization programs at Hanford (e.g. Resources Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), or Operational). The number of samples planned by other programs are identified in the sampling schedule by a number in the analysis column and a project designation in the Cosample column. Well sampling events may be merged to avoid redundancy in cases where sampling is planned by both-environmental surveillance and another program.

  3. 200 area TEDF sample schedule

    SciTech Connect (OSTI)

    Brown, M.J.

    1995-03-22

    This document summarizes the sampling criteria associated with the 200 Area Treatment Effluent Facility (TEDF) that are needed to comply with the requirements of the Washington State Discharge Permit No. WA ST 4502 and good engineering practices at the generator streams that feed into TEDF. In addition, this document Identifies the responsible parties for both sampling and data transference.

  4. Sample push-out fixture

    DOE Patents [OSTI]

    Biernat, John L.

    2002-11-05

    This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

  5. RAPID DETERMINATION OF RADIOSTRONTIUM IN SEAWATER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-01-16

    A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid preconcentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 liters to be analyzed. The total {sup 89}Sr + {sup 90}Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of {sup 90}Y to differentiate {sup 89}Sr from {sup 90}Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 liters may be analyzed using Sr Resin for {sup 89}Sr and {sup 90}Sr with a Minimum Detectable Activity (MDA) of 1-10 mBq/L, depending on count times. Seawater samples up to 10 liters may be analyzed for {sup 90}Sr using a DGA Resin method via collection and purification of {sup 90}Y only. If {sup 89}Sr and other fission products are present, then {sup 91}Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. {sup 91}Y interferes with attempts to collect {sup 90}Y directly from the seawater sample without initial purification of Sr isotopes first and {sup 90}Y ingrowth. The DGA Resin option can be used to determine {sup 90}Sr, and if {sup 91}Y is also present, an ingrowth option with using DGA Resin again to collect {sup 90}Y can be performed. An MDA for {sup 90}Sr of <1 m

  6. Sample Preparation Laboratory Training - Course 204 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Sample Preparation Laboratory Training - Course 204 Who Should Attend This course is mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS Sample Preparation Laboratories Note: This course may be taken in lieu of Course 199, Laboratory CHP training for SLAC employees. Prerequisites 115 - General Employee Radiological Training (GERT) Take Training Please see the notes section below for information on how to take this training. Course Details

  7. Environmental surveillance master sampling schedule

    SciTech Connect (OSTI)

    Bisping, L.E.

    1991-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This document contains the planned schedule for routine sample collection for the Surface Environmental Surveillance Project (SESP) and Ground-Water Monitoring Project. The routine sampling plan for the SESP has been revised this year to reflect changing site operations and priorities. Some sampling previously performed at least annually has been reduced in frequency, and some new sampling to be performed at a less than annual frequency has been added. Therefore, the SESP schedule reflects sampling to be conducted in calendar year 1991 as well as future years. The ground-water sampling schedule is for 1991. This schedule is subject to modification during the year in response to changes in Site operation, program requirements, and the nature of the observed results. Operational limitations such as weather, mechanical failures, sample availability, etc., may also require schedule modifications. Changes will be documented in the respective project files, but this plan will not be reissued. The purpose of these monitoring projects is to evaluate levels of radioactive and nonradioactive pollutants in the Hanford evirons.

  8. Duplex sampling apparatus and method

    DOE Patents [OSTI]

    Brown, Paul E.; Lloyd, Robert

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  9. Soil Sampling | Open Energy Information

    Open Energy Info (EERE)

    by Technique Lithology: StratigraphicStructural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems...

  10. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    SciTech Connect (OSTI)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  11. Sample Business Plan Framework 5

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 5: A program that establishes itself as a government entity, then operates using a fee-based structure.

  12. Sample Business Plan Framework 2

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

  13. Sample Business Plan Framework 4

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 4: A program seeking to continue in the post-grant period as a marketing contractor to a utility.

  14. Sample Business Plan Framework 3

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 3: A government entity running a Commercial PACE program in the post-grant period.

  15. UNDERSTANDING THE AIR SAMPLING DATA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For more comparisons, see the millirem comparisons poster. Dose estimates have been calculated based on the low-volume air sampler results. Low-volume air samplers collect samples ...

  16. Air Sampling System Evaluation Template

    Energy Science and Technology Software Center (OSTI)

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  17. Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21KBr Centrifuge Centrifuge SSRL BioChemMat Prep Lab 2 131 209 Saint Gobain K-104 Sanyo MIR-154 Cooled Incubator Temperature Control LCLS Sample Prep Lab 999 109 Sanyo MPR-215F...

  18. Sample Business Plan Framework 1

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

  19. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph; Riha, Brian D.; Nichols, Ralph L.

    1999-01-01

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  20. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph; Riha, Brian D.; Nichols, Ralph L.

    1998-07-07

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  1. Negligible sample heating from synchrotron infrared beam

    SciTech Connect (OSTI)

    Martin, Michael C.; Tsvetkova, Nelly M.; Crowe, John H.; McKinney, Wayne R.

    2000-08-30

    The use of synchrotron sources for infrared (IR) spectromicroscopy provides greatly increased brightness enabling high-quality IR measurements at diffraction-limited spatial resolutions. This permits synchrotron-based IR spectromicroscopy to be applied to biological applications at spatial resolutions of the order of the size of a single mammalian cell. The question then arises, ''Does the intense synchrotron beam harm biological samples?'' Mid-IR photons are too low in energy to break bonds directly, however they could cause damage to biological molecules due to heating. In this work, we present measurements showing negligible sample heating effects from a diffraction-limited synchrotron IR source. The sample used is fully hydrated lipid bilayers composed of dipalmitoylphosphatidylcholine(DPPC), which undergoes a phase transition from a gel into a liquid-crystalline state at about 315 K during heating. Several IR-active vibrational modes clearly shift in frequency when the sample passes through the phase transition. We calibrate and then use these shifting vibrational modes as an in situ temperature sensor.

  2. Transuranic waste characterization sampling and analysis plan

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    Los Alamos National Laboratory (the Laboratory) is located approximately 25 miles northwest of Santa Fe, New Mexico, situated on the Pajarito Plateau. Technical Area 54 (TA-54), one of the Laboratory`s many technical areas, is a radioactive and hazardous waste management and disposal area located within the Laboratory`s boundaries. The purpose of this transuranic waste characterization, sampling, and analysis plan (CSAP) is to provide a methodology for identifying, characterizing, and sampling approximately 25,000 containers of transuranic waste stored at Pads 1, 2, and 4, Dome 48, and the Fiberglass Reinforced Plywood Box Dome at TA-54, Area G, of the Laboratory. Transuranic waste currently stored at Area G was generated primarily from research and development activities, processing and recovery operations, and decontamination and decommissioning projects. This document was created to facilitate compliance with several regulatory requirements and program drivers that are relevant to waste management at the Laboratory, including concerns of the New Mexico Environment Department.

  3. Ball assisted device for analytical surface sampling

    SciTech Connect (OSTI)

    ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R

    2015-11-03

    A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.

  4. Sample Results from Routine Salt Batch 7 Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-05-13

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the microbatches of Integrated Salt Disposition Project (ISDP) Salt Batch (Macrobatch) 7B have been analyzed for 238Pu, 90Sr, 137Cs, Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Ion Chromatography Anions (IC-A). The results from the current microbatch samples are similar to those from earlier samples from this and previous macrobatches. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal, due to the use of the Next Generation Solvent (NGS). The Savannah River National Laboratory (SRNL) notes that historically, most measured Concentration Factor (CF) values during salt processing have been in the 12-14 range. However, recent processing gives CF values closer to 11. This observation does not indicate that the solvent performance is suffering, as the Decontamination Factor (DF) has still maintained consistently high values. Nevertheless, SRNL will continue to monitor for indications of process upsets. The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  5. Model-Based Sampling and Inference

    U.S. Energy Information Administration (EIA) Indexed Site

    Model-Based Sampling, Inference and Imputation James R. Knaub, Jr., Energy Information Administration, EI-53.1 James.Knaub@eia.doe.gov Key Words: Survey statistics, Randomization, Conditionality, Random sampling, Cutoff sampling Abstract: Picking a sample through some randomization mechanism, such as random sampling within groups (stratified random sampling), or, say, sampling every fifth item (systematic random sampling), may be familiar to a lot of people. These are design-based samples.

  6. Viscous-sludge sample collector

    DOE Patents [OSTI]

    Not Available

    1979-01-01

    A vertical core sample collection system for viscous sludge is disclosed. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  7. Category:Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Water Sampling page? For detailed information on Water Sampling as...

  8. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  9. Method and apparatus for sampling low-yield wells

    DOE Patents [OSTI]

    Last, George V.; Lanigan, David C.

    2003-04-15

    An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

  10. Hanford analytical sample projections FY 1998--FY 2002

    SciTech Connect (OSTI)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  11. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  12. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  13. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  14. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  15. Albany Water Gas & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    albanywgl Outage Hotline: 229-883-8330 ext. 506 Green Button Access: None References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  16. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  17. Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asara, Gian Giacomo; Ricart, Josep M.; Rodriguez, Jose A.; Illas, Francesc

    2015-02-02

    Small metallic nanoparticles supported on transition metal carbides exhibit an unexpected high activity towards a series of chemical reactions. In particular, the Au/TiC system has proven to be an excellent catalyst for SO2 decomposition, thiophene hydrodesulfurization, O2 and H2 dissociation and the water gas shift reaction. Recent studies have shown that Au/TiC is a very good catalyst for the reverse water–gas shift (CO2 + H2 → CO + H2O) and CO2 hydrogenation to methanol. The present work further expands the range of applicability of this novel type of systems by exploring the catalytic activity of Au/TiC towards the hydrogenation ofmore » CO or CO2 with periodic density functional theory (DFT) calculations on model systems. Hydrogen dissociates easily on Au/TiC but direct hydrogenation of CO to methanol is hindered by very high activation barriers implying that, on this model catalyst, methanol production from CO2 involves the hydrogenation of a HOCO-like intermediate. Thus, when dealing with mixtures of syngas (CO/CO2/H2/H2O), CO could be transformed into CO2 through the water gas shift reaction with subsequent hydrogenation of CO2 to methanol.« less

  18. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  19. Apparatus and method for handheld sampling

    DOE Patents [OSTI]

    Staab, Torsten A.

    2005-09-20

    The present invention includes an apparatus, and corresponding method, for taking a sample. The apparatus is built around a frame designed to be held in at least one hand. A sample media is used to secure the sample. A sample media adapter for securing the sample media is operated by a trigger mechanism connectively attached within the frame to the sample media adapter.

  20. [DOE method for evaluating environmental and waste management samples: Revision 1, Addendum 1

    SciTech Connect (OSTI)

    Goheen, S.C.

    1995-04-01

    The US Dapartment of Energy`s (DOE`s) environmental and waste management (EM) sampling and analysis activities require that large numbers of samples be analyzed for materials characterization, environmental surveillance, and site-remediation programs. The present document, DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods), is a supplemental resource for analyzing many of these samples.

  1. The development of radioactive sample surrogates for training and exercises

    SciTech Connect (OSTI)

    Martha Finck; Bevin Brush; Dick Jansen; David Chamberlain; Don Dry; George Brooks; Margaret Goldberg

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Members from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.

  2. Environmental surveillance master sampling schedule

    SciTech Connect (OSTI)

    Bisping, L E

    1992-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). This document contains the planned schedule for routine sample collection for the Surface Environmental Surveillance Project (SESP) and Ground-Water Monitoring Project. Samples for radiological analyses include Air-Particulate Filter, gases and vapor; Water/Columbia River, Onsite Pond, Spring, Irrigation, and Drinking; Foodstuffs/Animal Products including Whole Milk, Poultry and Eggs, and Beef; Foodstuffs/Produce including Leafy Vegetables, Vegetables, and Fruit; Foodstuffs/Farm Products including Wine, Wheat and Alfalfa; Wildlife; Soil; Vegetation; and Sediment. Direct Radiation Measurements include Terrestrial Locations, Columbia River Shoreline Locations, and Onsite Roadway, Railway and Aerial, Radiation Surveys.

  3. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  4. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  5. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  6. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  7. Rock Sampling At U.S. West Region (Krohn, Et Al., 1993) | Open...

    Open Energy Info (EERE)

    Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Over 30 disseminated gold or hot-spring deposits in the western U.S. were sampled for ammonium-bearing minerals...

  8. 105-N basin sediment disposition phase-two sampling and analysis plan

    SciTech Connect (OSTI)

    Smith, R. C.

    1997-03-14

    The sampling and analysis plan for Phase 2 of the 105-N Basin sediment disposition task defines the sampling and analytical activities that will be performed to support characterization of the sediment and selection of an appropriate sediment disposal option.

  9. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ventilation System Sampling Results Air sampling results before and after the High Efficiency Particulate Air (HEPA) filters at WIPP are available here. Station A samples air before the filters and Station B samples air after passing through the filters. These samples were analyzed following the detection of airborne radioactivity on February 14, 2014. They are not environmental samples, and are not representative of the public or worker breathing zone air samples. They do provide assurance that

  10. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  11. Licensing Guide and Sample License

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TEI:HNOL06Y TRANSFER WORKIN6 6ROUP Lic:en!iing Guide and Sample Lic:en!ie *~ ICan.u City Plan I OFermilab ~OAK ~RIDGE Nuioul~.<o-.,. Arg9..QDe t.AIOUTOlY SRNL .............. ~ A o LOs Alamos MATIO NA L l .U ORUORY / BROOKHAVEN NATIONAL LABORATORY :.:..,/ PRIN. C£loN PlASMA PHYSICS t ABOAATORV .:~ Ul!J Lawrence Uvermore National Laboratory Jef[;?on Lab t1NREL ~ ..................... sandia National Laboratories Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory

  12. Offline solid phase microextraction sampling system

    DOE Patents [OSTI]

    Harvey, Chris A.

    2008-12-16

    An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

  13. DOE methods for evaluating environmental and waste management samples.

    SciTech Connect (OSTI)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  14. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  15. Gas Flux Sampling At Brady Hot Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Brady Hot Springs Area...

  16. Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005)...

  17. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977)...

  18. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et...

  19. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986...

    Open Energy Info (EERE)

    Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area...

  20. Solid waste sampling and distribution project: Sampling report {number_sign}5

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The US DOE has established a key goal of the Waste Management Program (WMP) to be to ensure that waste management issues do not become obstacles to the commercialization of advanced coal utilization technologies. To achieve this goal, the WMP identifies various emerging coal utilization technologies and performs comprehensive characterizations of the waste streams and products. DOE is now extending their characterization program to include a number of new facilities, particularly larger pilot- and commercial-scale units. Several advanced coal utilization technologies have been tentatively selected for comprehensive waste characterization. One of these technologies is the LOW NO{sub x} process being demonstrated by Southern Company Services, Inc. at Site F. On July 29, 1993 samples were collected to characterize solid waste streams. This document provides background information on the site and describes the sampling activities performed at this facility.

  1. Hanford analytical sample projections 1996 - 2000

    SciTech Connect (OSTI)

    Joyce, S.M.

    1996-02-02

    Sample projections are compiled for the Hanford site based on inputs from the major programs for the years 1996 through 2000. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  2. Heuristic-biased stochastic sampling

    SciTech Connect (OSTI)

    Bresina, J.L.

    1996-12-31

    This paper presents a search technique for scheduling problems, called Heuristic-Biased Stochastic Sampling (HBSS). The underlying assumption behind the HBSS approach is that strictly adhering to a search heuristic often does not yield the best solution and, therefore, exploration off the heuristic path can prove fruitful. Within the HBSS approach, the balance between heuristic adherence and exploration can be controlled according to the confidence one has in the heuristic. By varying this balance, encoded as a bias function, the HBSS approach encompasses a family of search algorithms of which greedy search and completely random search are extreme members. We present empirical results from an application of HBSS to the realworld problem of observation scheduling. These results show that with the proper bias function, it can be easy to outperform greedy search.

  3. UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6

    SciTech Connect (OSTI)

    1995-09-01

    This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

  4. Draft Sample Collection Instrument | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Sample Collection Instrument Draft Sample Collection Instrument Davis-Bacon Semi-annual Labor Compliance Report OMB Control Number 1910-New PDF icon dbacollectioninstrument...

  5. Category:Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Technique Subcategories This category has the following 3 subcategories, out of 3 total. G Gas Flux Sampling 1 pages S Soil Gas Sampling 1 pages Surface Gas...

  6. Category:Field Sampling | Open Energy Information

    Open Energy Info (EERE)

    Technique Subcategories This category has the following 2 subcategories, out of 2 total. G + Gas Sampling (3 categories) 4 pages W + Water Sampling (2 categories) 3...

  7. Laboratory begins environmental sampling in townsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory begins environmental sampling Laboratory begins environmental sampling in townsite Environmental assessment of areas that have been or could have been affected by...

  8. Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation

    SciTech Connect (OSTI)

    Asara, Gian Giacomo; Ricart, Josep M.; Illas, Francesc

    2015-02-02

    Small metallic nanoparticles supported on transition metal carbides exhibit an unexpected high activity towards a series of chemical reactions. In particular, the Au/TiC system has proven to be an excellent catalyst for SO2 decomposition, thiophene hydrodesulfurization, O2 and H2 dissociation and the water gas shift reaction. Recent studies have shown that Au/TiC is a very good catalyst for the reverse water–gas shift (CO2 + H2 → CO + H2O) and CO2 hydrogenation to methanol. The present work further expands the range of applicability of this novel type of systems by exploring the catalytic activity of Au/TiC towards the hydrogenation of CO or CO2 with periodic density functional theory (DFT) calculations on model systems. Hydrogen dissociates easily on Au/TiC but direct hydrogenation of CO to methanol is hindered by very high activation barriers implying that, on this model catalyst, methanol production from CO2 involves the hydrogenation of a HOCO-like intermediate. Thus, when dealing with mixtures of syngas (CO/CO2/H2/H2O), CO could be transformed into CO2 through the water gas shift reaction with subsequent hydrogenation of CO2 to methanol.

  9. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, Bhushan L.; Wolf, Abraham

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample prior to introduction of a molding medium in the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  10. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect (OSTI)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  11. Electrphoretic Sample Excitation Light Assembly.

    DOE Patents [OSTI]

    Li, Qingbo; Liu, Changsheng

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  12. Core sampling system spare parts assessment

    SciTech Connect (OSTI)

    Walter, E.J.

    1995-04-04

    Soon, there will be 4 independent core sampling systems obtaining samples from the underground tanks. It is desirable that these systems be available for sampling during the next 2 years. This assessment was prepared to evaluate the adequacy of the spare parts identified for the core sampling system and to provide recommendations that may remediate overages or inadequacies of spare parts.

  13. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  14. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, B.L.; Wolf, A.

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  15. Sample introduction system for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger

    1997-01-01

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

  16. Sample introduction apparatus for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger

    1998-01-01

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

  17. Sample introduction apparatus for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1998-03-10

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

  18. Sample introduction system for a flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den

    1997-02-11

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

  19. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect (OSTI)

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  20. Fast sampling calorimetry with solid argon ionization chambers

    SciTech Connect (OSTI)

    Clark, E.; Linn, S.; Piekarz, H.; Wahl, H.; Womersley, J.; Hansen, S.; Hurh, P.; Rivetta, C.; Sanders, R.; Schmitt, R.; Stanek, R.; Stefanik, A.

    1992-12-31

    A proposal for the fast sampling calorimetry with solid argon as active medium and the preliminary results from the solid argon test cell are presented. The proposed test calorimeter module structure, the signal routing and the mechanical and cryogenic arrangements are also discussed.

  1. Stratified random sampling plan for an irrigation customer telephone survey

    SciTech Connect (OSTI)

    Johnston, J.W.; Davis, L.J.

    1986-05-01

    This report describes the procedures used to design and select a sample for a telephone survey of individuals who use electricity in irrigating agricultural cropland in the Pacific Northwest. The survey is intended to gather information on the irrigated agricultural sector that will be useful for conservation assessment, load forecasting, rate design, and other regional power planning activities.

  2. The how-to of stormwater sampling--Not just a drop in the bucket

    SciTech Connect (OSTI)

    Sinclair, C.T. ); Ray, J.A. )

    1993-10-01

    This article examines the stormwater sampling program of Winston-Salem, South Carolina as an example of a winning strategy. The topics of the article include sampling techniques, personnel availability, laboratory flexibility, outline of the program, being prepared, equipment selection and storage on site, sampling activities, demobilization, cleanup, and personnel training and morale.

  3. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    SciTech Connect (OSTI)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  4. Method and apparatus for data sampling

    DOE Patents [OSTI]

    Odell, D.M.C.

    1994-04-19

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

  5. Method and apparatus for data sampling

    DOE Patents [OSTI]

    Odell, Daniel M. C.

    1994-01-01

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.

  6. Well fluid isolation and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.

    1995-01-01

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. A seal may be positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Purged well fluid is stored in a riser above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

  7. Active-R filter

    DOE Patents [OSTI]

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  8. Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders, IDIQ Attachment. J-4) | Department of Energy Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Document offers a post-award deliverables sample for an energy savings performance contract. Download part 2 of the post-award deliverables sample document. (33.67 KB) More Documents & Publications Pre-Award Deliverables Sample (Part 1 of

  9. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of ...

  10. Sampling Report for Parent Drum S855793

    Office of Environmental Management (EM)

    L L N L - X X X X - X X X X X Sampling Report for Parent Drum S855793 UNCLASSIFIED Forensic Science Center January 6, 2015 Sampling Report for Parent Drum S855793 Lawrence ...

  11. Template:SampleTemplate | Open Energy Information

    Open Energy Info (EERE)

    is the SampleTemplate template. It is designed for use by Sample Pages. To define a test page, please use this form. Parameters Awesomeness - The numeric level of awesomeness...

  12. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  13. Organically bound tritium analysis in environmental samples

    SciTech Connect (OSTI)

    Baglan, N.; Cossonnet, C.; Fournier, M.; Momoshima, N.; Ansoborlo, E.

    2015-03-15

    Organically bound tritium (OBT) has become of increased interest within the last decade, with a focus on its behaviour and also its analysis, which are important to assess tritium distribution in the environment. In contrast, there are no certified reference materials and no standard analytical method through the international organization related to OBT. In order to resolve this issue, an OBT international working group was created in May 2012. Over 20 labs from around the world participated and submitted their results for the first intercomparison exercise results on potato (Sep 2013). The samples, specially-prepared potatoes, were provided in March 2013 to each participant. Technical information and results from this first exercise are discussed here for all the labs which have realised the five replicates necessary to allow a reliable statistical treatment. The results are encouraging as the increased number of participating labs did not degrade the observed dispersion of the results for a similar activity level. Therefore, the results do not seem to depend on the analytical procedure used. From this work an optimised procedure can start to be developed to deal with OBT analysis and will guide subsequent planned OBT trials by the international group.

  14. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of air quality monitors within an exhaust stack. Nuclear facilities have three additional air sampling systems. LANL samples and analyzes air to assess effects on workers, the public, animals, and plants. As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. How we do it

  15. Sample holder for X-ray diffractometry

    DOE Patents [OSTI]

    Hesch, Victor L.

    1992-01-01

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  16. Rotary Mode Core Sample System availability improvement

    SciTech Connect (OSTI)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  17. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  18. Rapid determination of 226Ra in environmental samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.

    2012-02-04

    A new rapid method for the determination of {sup 228}Ra in natural water samples has been developed at the SRNL/EBL (Savannah River National Lab/ Environmental Bioassay Laboratory) that can be used for emergency response or routine samples. While gamma spectrometry can be employed with sufficient detection limits to determine {sup 228}Ra in solid samples (via {sup 228}Ac) , radiochemical methods that employ gas flow proportional counting techniques typically provide lower MDA (Minimal Detectable Activity) levels for the determination of {sup 228}Ra in water samples. Most radiochemical methods for {sup 228}Ra collect and purify {sup 228}Ra and allow for {sup 228}Ac daughter ingrowth for ~36 hours. In this new SRNL/EBL approach, {sup 228}Ac is collected and purified from the water sample without waiting to eliminate this delay. The sample preparation requires only about 4 hours so that {sup 228}Ra assay results on water samples can be achieved in < 6 hours. The method uses a rapid calcium carbonate precipitation enhanced with a small amount of phosphate added to enhance chemical yields (typically >90%), followed by rapid cation exchange removal of calcium. Lead, bismuth, uranium, thorium and protactinium isotopes are also removed by the cation exchange separation. {sup 228}Ac is eluted from the cation resin directly onto a DGA Resin cartridge attached to the bottom of the cation column to purify {sup 228}Ac. DGA Resin also removes lead and bismuth isotopes, along with Sr isotopes and {sup 90}Y. La is used to determine {sup 228}Ac chemical yield via ICP-MS, but {sup 133}Ba can also be used instead if ICP-MS assay is not available. Unlike some older methods, no lead or strontium holdback carriers or continual readjustment of sample pH is required.

  19. Air sampling in the workplace. Final report

    SciTech Connect (OSTI)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

  20. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere

    SciTech Connect (OSTI)

    Wilkins, Michael J.; Daly, Rebecca; Mouser, Paula J.; Trexler, Ryan; Sharma, Shihka; Cole, David R.; Wrighton, Kelly C.; Biddle , Jennifer F.; Denis, Elizabeth; Fredrickson, Jim K.; Kieft, Thomas L.; Onstott, T. C.; Peterson, Lee; Pfiffner, Susan M.; Phelps, Tommy J.; Schrenk, Matthew O.

    2014-09-12

    Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on “Trends and Future Challenges in Sampling The Deep Subsurface” was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation’s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  1. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  2. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  3. Direct impact aerosol sampling by electrostatic precipitation

    DOE Patents [OSTI]

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  4. Requirements for Samples | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements for Samples Requirements for Samples This presentation by James Fenton was given at the High Temperature Membrane Working Group Meeting in October 10, 2007 in Washington, D.C. htmwg_oct07_fenton_samples.pdf (134.79 KB) More Documents & Publications In-Plane Conductivity Testing Procedures and Results In Plane Conductivity Testing, BekkTech LLC Procedure for Performing In-Plane Membrane Conductivity Testing

  5. PCB Analysis Plan for Tank Archive Samples

    SciTech Connect (OSTI)

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  6. LANSCE | Lujan Center | Chemical & Sample Prep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Charles Kelsey | ckelsey@lanl.gov | 505.665.5579 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact theLujan Center Experiment Coordinator: TBA Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Laboratory Glove box - He atmosphere High-purity water Diamond

  7. Disc valve for sampling erosive process streams

    DOE Patents [OSTI]

    Mrochek, John E.; Dinsmore, Stanley R.; Chandler, Edward W.

    1986-01-01

    A four-port disc valve for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of .alpha. silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions.

  8. Remote possibly hazardous content container sampling device

    DOE Patents [OSTI]

    Volz, David L.

    1998-01-01

    The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.

  9. Innovative, Safer Alternatives Improve Environmental Sampling...

    Office of Environmental Management (EM)

    Innovative, Safer Alternatives Improve Environmental Sampling at Savannah River Site ... Ruth Patrick was working as a consultant at the Savannah River Plant when the Atomic ...

  10. Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff &...

  11. Bayesian Approaches to Adaptive Spatial Sampling

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    The purpose of this software is to support the design of spatial sampling data collection programs to delineate contamination footprints in response to an environmental contamination release.

  12. Method and apparatus for sampling atmospheric mercury

    DOE Patents [OSTI]

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  13. Hanford analytical sample projections 1996--2001

    SciTech Connect (OSTI)

    Joyce, S.M.

    1996-06-26

    This document summarizes the biannual Hanford sample projections for fiscal years 1996 to 2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Analytical Services, Site Monitoring, and Industrial Hygiene. This information will be used by Hanford Analytical Services to assure that laboratories and resources are available and effectively utilized to meet these documented needs. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  14. Sample Employee Survey for Workplace Charging Planning

    Broader source: Energy.gov (indexed) [DOE]

    WORKPLACE CHARGING CHALLENGE Sample Employee Survey for Workplace Charging Planning ... Your responses to this survey will be used to determine employee interest in this benefit. ...

  15. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their ...

  16. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV ...

  17. Sample Forms | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Sample Forms U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Sample Forms The below completed example forms contain "dummy" data for information purposes. For current up to date blank forms please go to the DOE/NRC forms link located on the NMMSS information page. Sample 740s DOE/NRC Form 740M Sample 742s and 742Cs 742 Example 1 Example 1A Example 2 Example 3 Example 3A Example 4 DOE/NRC Form 742 742C Example 1 Example

  18. Colloid characterization and quantification in groundwater samples

    SciTech Connect (OSTI)

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  19. Determination of the effective sample thickness via radiative capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; Firestone, R. B.; Basunia, M. S.; Escher, J. E.; Sleaford, B. W.

    2015-09-14

    Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial γ-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the γ rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of γ-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thicknessmore » until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.« less

  20. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    SciTech Connect (OSTI)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  1. Determination of the effective sample thickness via radiative capture

    SciTech Connect (OSTI)

    Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; Firestone, R. B.; Basunia, M. S.; Escher, J. E.; Sleaford, B. W.

    2015-09-14

    Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial ?-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the ? rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of ?-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thickness until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.

  2. User-Driven Sampling Strategies in Image Exploitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harvey, Neal R.; Porter, Reid B.

    2013-12-23

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less

  3. Modular microfluidic system for biological sample preparation

    DOE Patents [OSTI]

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  4. Disc valve for sampling erosive process streams

    DOE Patents [OSTI]

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1984-08-16

    This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

  5. Systems and methods for sample analysis

    DOE Patents [OSTI]

    Cooks, Robert Graham; Li, Guangtao; Li, Xin; Ouyang, Zheng

    2015-01-13

    The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.

  6. Systems and methods for sample analysis

    SciTech Connect (OSTI)

    Cooks, Robert Graham; Li, Guangtao; Li, Xin; Ouyang, Zheng

    2015-10-20

    The invention generally relates to systems and methods for sample analysis. In certain embodiments, the invention provides a system for analyzing a sample that includes a probe including a material connected to a high voltage source, a device for generating a heated gas, and a mass analyzer.

  7. Sample injector for high pressure liquid chromatography

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  8. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  9. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  10. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  11. CHARACTERIZATION OF THE TANK 18F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Click, D.; Diprete, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 18F closure samples. Tank 18F slurry samples analyzed included the liquid and solid fractions derived from the 'as-received' slurry materials along with the floor scrape bottom Tank 18F wet solids. These samples were taken from Tank 18F in March 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 18F samples, the samples from the north quadrants of the tank were combined into one North Tank 18F Hemisphere sample and similarly the south quadrant samples were combined into one South Tank 18F Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 18F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the minimum detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 18F, some were not met due to spectral interferences. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  12. Technologies for pre-screening IAEA swipe samples

    SciTech Connect (OSTI)

    Smith, Nicholas A.; Steeb, Jennifer L.; Lee, Denise L.; Huckabay, Heath A.; Ticknor, Brian W.

    2015-11-09

    During the course of International Atomic Energy Agency (IAEA) inspections, many samples are taken for the purpose of verifying the declared facility activities and identifying any possible undeclared activities. One of these sampling techniques is the environmental swipe sample. Due to the large number of samples collected, and the amount of time that is required to analyze them, prioritizing these swipes in the field or upon receipt at the Network of Analytical Laboratories (NWAL) will allow sensitive or mission-critical analyses to be performed sooner. As a result of this study, technologies were placed into one of three categories: recommended, promising, or not recommended. Both neutron activation analysis (NAA) and X-ray fluorescence (XRF) are recommended for further study and possible field deployment. These techniques performed the best in initial trials for pre-screening and prioritizing IAEA swipes. We learned that for NAA more characterization of cold elements (such as calcium and magnesium) would need to be emphasized, and for XRF it may be appropriate to move towards a benchtop XRF versus a handheld XRF due to the increased range of elements available on benchtop equipment. Promising techniques that will require additional research and development include confocal Raman microscopy, fluorescence microscopy, and infrared (IR) microscopy. These techniques showed substantive responses to uranium compounds, but expensive instrumentation upgrades (confocal Raman) or university engagement (fluorescence microscopy) may be necessary to investigate the utility of the techniques completely. Point-and-shoot (handheld) Raman and attenuated total reflectance–infrared (ATR-IR) measurements are not recommended, as they have not shown enough promise to continue investigations.

  13. DOE methods for evaluating environmental and waste management samples

    SciTech Connect (OSTI)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1994-10-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, {open_quotes}Draft{close_quotes} or {open_quotes}Verified{close_quotes}. {open_quotes}Draft{close_quotes} methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. {open_quotes}Verified{close_quotes} methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy.

  14. Automated collection and processing of environmental samples

    DOE Patents [OSTI]

    Troyer, Gary L.; McNeece, Susan G.; Brayton, Darryl D.; Panesar, Amardip K.

    1997-01-01

    For monitoring an environmental parameter such as the level of nuclear radiation, at distributed sites, bar coded sample collectors are deployed and their codes are read using a portable data entry unit that also records the time of deployment. The time and collector identity are cross referenced in memory in the portable unit. Similarly, when later recovering the collector for testing, the code is again read and the time of collection is stored as indexed to the sample collector, or to a further bar code, for example as provided on a container for the sample. The identity of the operator can also be encoded and stored. After deploying and/or recovering the sample collectors, the data is transmitted to a base processor. The samples are tested, preferably using a test unit coupled to the base processor, and again the time is recorded. The base processor computes the level of radiation at the site during exposure of the sample collector, using the detected radiation level of the sample, the delay between recovery and testing, the duration of exposure and the half life of the isotopes collected. In one embodiment, an identity code and a site code are optically read by an image grabber coupled to the portable data entry unit.

  15. Network Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics Network Activity Network Activity PDSF Network Uplinks to NERSC (dual 10 Gbps) NERSC Uplink to ESnet Last edited: 2011-03-31 22:20:59...

  16. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  17. Gas sampling system for a mass spectrometer

    DOE Patents [OSTI]

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  18. Disc valve for sampling erosive process streams

    DOE Patents [OSTI]

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1986-01-07

    A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.

  19. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  20. Spectroscopic diagnostics for bacteria in biologic sample

    DOE Patents [OSTI]

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  1. Creating ensembles of decision trees through sampling

    DOE Patents [OSTI]

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  2. Visual Sample Plan (VSP) - FIELDS Integration

    SciTech Connect (OSTI)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download

  3. Automated sample collection and processing for radionuclide effluent monitoring

    SciTech Connect (OSTI)

    Beals, D.M.; Crandall, B.S.; Fledderman, P.D.

    1998-12-31

    In the United States, all nuclear facilities must provide for environmental monitoring of effluent points for radionuclides that have the potential for release to the environment. For the US Department of Energy (DOE) this means thousands of surface water analyses are performed each year at a cost of millions of dollars per year. Analytical costs for radiochemical analyses are often high due to the lengthy chemical separations required prior to counting for the selected analyte. At the Savannah River Site, a DOE facility located in South Carolina, a new technique has been demonstrated whereby samples are collected and processed in the field, at the time of collection, for selected radionuclides. The technique makes use of ion selective solid-phase extraction (SPE) disks being placed in a portable automatic aqueous sampler. Water from a surface stream or effluent sampling point is collected via an ISCO, Inc., 3710 SPX portable sampler. Weekly or biweekly (depending on the sampling requirements), the SPE disks are collected and returned to the laboratory for activity determination. The analytes that are currently being monitored by the new method are {sup 99}Tc, {sup 80}Sr, {sup 137}Cs, {sup 58}Co, and {sup 60}Co. The RAD SPE disks have been shown to be effective for the extraction of technetium, strontium, and cesium and cobalt from aqueous systems. The {sup 99}Tc and {sup 90}Sr activities are determined by direct counting of the SPE disk by gas flow beta proportional techniques; the {sup 137}Cs and radiocobalt activities are determined by direct counting of the SPE disk by gamma spectrometry. Because of the specificity of the SPE disks, there is no additional chemical separation required prior to counting the SPE disks for the selected activity determination.

  4. Sample Indirect Rate Proposal (Pre-Award) and For-Profit Compliance Audit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information | Department of Energy Sample Indirect Rate Proposal (Pre-Award) and For-Profit Compliance Audit Information Sample Indirect Rate Proposal (Pre-Award) and For-Profit Compliance Audit Information Indirect rate and audit forms for the financial opportunities process: Sample Indirect Rate Proposal (Pre-Award): There are several methods for allocating indirect cost/expenses to projects, activities and programs, DCAA "ICE" model, Single Rate Method, and Two Rate Method.

  5. Phase 2 sampling for radionuclides and metal distribution in L-lake sediments. Final report

    SciTech Connect (OSTI)

    Koch, J.W. II

    1996-10-01

    Science Applications International Corporation (SAIC) was tasked by Westinghouse Savannah River Company under subcontract C001015P to provide environmental sampling services on L-Lake at the Savannah River site. Athena Technologies, Inc. was subcontracted by SAIC to provide vibracoring services. The project consisted of vibracore sampling of lake bottom sediments at 23 locations within L-Lake. Field activities were performed from August 8 through August 22, 1996. This report describes the activities associated with the task.

  6. Sampling and analysis plan for sludge located in fuel storage canisters of the 105-K east basin

    SciTech Connect (OSTI)

    Baker, R.B., Westinghouse Hanford

    1996-05-20

    This Sampling and Analysis Plan (SAP) provides direction for the first sampling of sludge from the K East Basin spent fuel canisters. The specially developed sampling equipment used removes representative samples of sludge while maintaining the radioactive sample underwater in the basin pool (equipment is described in WHC-SD-SNF-SDD-004). Included are the basic background logic for sample selection, the overall laboratory analyses required and the laboratory reporting required. These are based on requirements put forth in the data quality objectives (WHC-SD-SNF-DQO-008) established for this sampling and characterization activity.

  7. Sampling and analysis plan for sludge located in fuel storage canisters of the 105-K West basin

    SciTech Connect (OSTI)

    Baker, R.B.

    1997-04-30

    This Sampling and Analysis Plan (SAP) provides direction for the first sampling of sludge from the K West Basin spent fuel canisters. The specially developed sampling equipment removes representative samples of sludge while maintaining the radioactive sample underwater in the basin pool (equipment is described in WHC-SD-SNF-SDD-004). Included are the basic background logic for sample selection, the overall laboratory analyses required and the laboratory reporting required. These are based on requirements put forth in the data quality objectives (WHC-SD-SNF-DQO-012) established for this sampling and characterization activity.

  8. A comparison of attribute sampling plans

    SciTech Connect (OSTI)

    Lanning, B.M.

    1997-05-01

    This report describes, compares, and provides sample size selection criteria for the most common sampling plans for attribute data (i.e., data that is qualitative in nature such as Pass-Fail, Yes-No, Defect-Nondefect data). This report is being issued as a guide in prudently choosing the correct sampling plan to meet statistical plan objectives. The report discusses three types of sampling plans: AQL (Acceptable Quality Level expressed as a percent), RQL (Rejectable Quality Level as a percent), and the AQL/RQL plan which emphasizes both risks simultaneously. These plans are illustrated with six examples, one of which is an inventory of UF{sub 6} cans whose weight must agree within 100 grams of its listed weight to be acceptable.

  9. Sample Plan of Development | Open Energy Information

    Open Energy Info (EERE)

    Sample Plan of DevelopmentLegal Published NA Year Signed or Took Effect 2001 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  10. WRAP Module 1 sampling and analysis plan

    SciTech Connect (OSTI)

    Mayancsik, B.A.

    1995-03-24

    This document provides the methodology to sample, screen, and analyze waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing Module 1 facility. This includes Low-Level Waste, Transuranic Waste, Mixed Waste, and Dangerous Waste.

  11. Model-Based Sampling and Inference

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Sarndal, C.-E., Swensson, B. and Wretman, J. (1992), Model Assisted Survey Sampling, Springer- Verlag. Steel, P.M. and Shao, J. (1997), "Estimation of Variance Due to Imputation in ...

  12. Two-stage sampling for acceptance testing

    SciTech Connect (OSTI)

    Atwood, C.L.; Bryan, M.F.

    1992-09-01

    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal [alpha] should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  13. Two-stage sampling for acceptance testing

    SciTech Connect (OSTI)

    Atwood, C.L.; Bryan, M.F.

    1992-09-01

    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal {alpha} should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  14. Surface sampling concentration and reaction probe

    DOE Patents [OSTI]

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  15. Form:SampleForm | Open Energy Information

    Open Energy Info (EERE)

    SampleForm Jump to: navigation, search Input the name of a Test Page below. If the resource already exists, you will be able to edit its information. AddEdit a Test Page The text...

  16. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  17. Generation of High Density Sample Array

    Energy Science and Technology Software Center (OSTI)

    1995-08-15

    An analytical procedure was developed for manipulation of a large number of samples using the Beckman BIOMEK 1000 workstation. The RUR software was written to create a number of different script files for control of robotic movement commands, which are read and executed via the Beckman Biorun3 program. This setup has the capability of creating arrays of as many as one million samples per day.

  18. Sample Projects - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample Projects Sample Projects These are only a few of the many possible research directions for Combustion Energy Research Fellows. For a more complete view on possible CEFRC postdoctoral research projects and collaborations please contact the Center Principal Investigators individually. Advanced Combustion Simulations with Dr. Jacqueline H. Chen and Prof. D. Haworth DNS/LES simulations with Prof. Stephen B. Pope and Dr. Jacqueline H. Chen. Simulations of experimental flames with Prof. Fokion

  19. Sampling Report for Parent Drum S855793

    Office of Environmental Management (EM)

    6999 L L N L - X X X X - X X X X X Sampling Report for Parent Drum S855793 UNCLASSIFIED Forensic Science Center January 6, 2015 Sampling Report for Parent Drum S855793 Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or

  20. Rapid determination of actinides in asphalt samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  1. Rapid determination of actinides in asphalt samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  2. Rapid determination of actinides in seawater samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore » separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  3. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  4. Neutron-Irradiated Samples as Test Materials for MPEX

    SciTech Connect (OSTI)

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.

  5. Activation detector

    DOE Patents [OSTI]

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-12-08

    A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.

  6. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect (OSTI)

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  7. Cementitious Barriers Partnership: OPC Paste Samples Exposed To Aggressive Solutions

    SciTech Connect (OSTI)

    Langton, C.

    2014-11-01

    The study presented in this report focused on a low-activity wasteform containing a high pH pore solution with a significant level of sulfate. The purpose of the study was to improve understanding of the complex concrete/wasteform reactive transport problem, in particular the role of pH in sulfate attack. Paste samples prepared at three different water-to-cement ratios were tested. The mixtures were prepared with ASTM Type I cement, without additional admixtures. The samples were exposed to two different sodium sulfate contact solutions. The first solution was prepared at 0.15M Na2SO4. The second solution also incorporated 0.5M NaOH, to mimic the high pH conditions found in Saltstone.

  8. Experimental and Sampling Design for the INL-2 Sample Collection Operational Test

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Amidan, Brett G.; Matzke, Brett D.

    2009-02-16

    This report describes the experimental and sampling design developed to assess sampling approaches and methods for detecting contamination in a building and clearing the building for use after decontamination. An Idaho National Laboratory (INL) building will be contaminated with BG (Bacillus globigii, renamed Bacillus atrophaeus), a simulant for Bacillus anthracis (BA). The contamination, sampling, decontamination, and re-sampling will occur per the experimental and sampling design. This INL-2 Sample Collection Operational Test is being planned by the Validated Sampling Plan Working Group (VSPWG). The primary objectives are: 1) Evaluate judgmental and probabilistic sampling for characterization as well as probabilistic and combined (judgment and probabilistic) sampling approaches for clearance, 2) Conduct these evaluations for gradient contamination (from low or moderate down to absent or undetectable) for different initial concentrations of the contaminant, 3) Explore judgment composite sampling approaches to reduce sample numbers, 4) Collect baseline data to serve as an indication of the actual levels of contamination in the tests. A combined judgmental and random (CJR) approach uses Bayesian methodology to combine judgmental and probabilistic samples to make clearance statements of the form "X% confidence that at least Y% of an area does not contain detectable contamination” (X%/Y% clearance statements). The INL-2 experimental design has five test events, which 1) vary the floor of the INL building on which the contaminant will be released, 2) provide for varying the amount of contaminant released to obtain desired concentration gradients, and 3) investigate overt as well as covert release of contaminants. Desirable contaminant gradients would have moderate to low concentrations of contaminant in rooms near the release point, with concentrations down to zero in other rooms. Such gradients would provide a range of contamination levels to challenge the sampling

  9. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOE Patents [OSTI]

    Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  10. DOE responses to Ecology review comments for ``Sampling and analysis plans for the 100-D Ponds voluntary remediation project``

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    The Sampling and Analysis Plan describes the sampling and analytical activities which will be performed to support closure of the 100-D Ponds at the Hanford Reservation. This report contains responses by the US Department of Energy to Ecology review for ``Sampling and Analysis Plan for the 100-D Ponds Voluntary Remediation Project.``

  11. Title: DOE-RL Groundwater Sampling SIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Contractor shall provide subject matter experts to provide facilitation and project management support for an Operating Excellence (OE) Structured Improvement Activity (SIA) ...

  12. Germanium-76 Sample Analysis: Revision 3

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

    2011-09-19

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

  13. Analytical instrument with apparatus for sample concentrating

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL)

    1989-01-01

    A system for analysis of trace concentrations of contaminants in air includes a portable liquid chromatograph and a preconcentrator for the contaminants to be analyzed. The preconcentrator includes a sample bag having an inlet valve and an outlet valve for collecting an air sample. When the sample is collected the sample bag is connected in series with a sorbing apparatus in a recirculation loop. The sorbing apparatus has an inner gas-permeable container containing a sorbent material and an outer gas-impermeable container. The sample is circulated through the outer container and around the inner container for trapping and preconcentrating the contaminants in the sorbent material. The sorbent material may be a liquid having the same composition as the mobile phase of the chromatograph for direct injection thereinto. Alternatively, the sorbent material may be a porous, solid body, to which mobile phase liquid is added after preconcentration of the contaminants for dissolving the contaminants, the liquid solution then being withdrawn for injection into the chromatograph.

  14. Direct analysis of air filter samples for alpha emitting isotopes

    SciTech Connect (OSTI)

    Mohagheghi, A.H.; Ghanbari, F.; Ebara, S.B.; Enghauser, M.E. [Sandia National Labs., Albuquerque, NM (United States); Bakhtiar, S.N. [Westinghouse WIPP, Carlsbad, NM (United States)

    1997-04-01

    The traditional method for determination of alpha emitting isotopes on air filters has been to process the samples by radiochemical methods. However, this method is too slow for cases of incidents involving radioactive materials where the determination of personnel received dose is urgent. A method is developed to directly analyze the air filters taken from personal and area air monitors. The site knowledge is used in combination with alpha spectral information to identify isotopes. A mathematical function is developed to estimate the activity for each isotope. The strengths and weaknesses of the method are discussed.

  15. ENHANCEMENT OF ENVIRONMENTAL SAMPLING THROUGH AN IMPROVED AIR MONITORING TECHNIQUE

    SciTech Connect (OSTI)

    Hanks, D.

    2010-06-07

    Environmental sampling (ES) is a key component of International Atomic Energy Agency (IAEA) safeguarding approaches throughout the world. Performance of ES (e.g. air, water, vegetation, sediments, soil and biota) supports the IAEAs mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a State and has been available since the introduction of safeguards strengthening measures approved by the IAEA Board of Governors (1992-1997). A recent step-change improvement in the gathering and analysis of air samples at uranium/plutonium bulk handling facilities is an important addition to the international nuclear safeguards inspector's toolkit. Utilizing commonly used equipment throughout the IAEA network of analytical laboratories for particle analysis, researchers are developing the next generation of ES equipment for air grab and constant samples. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) silicon substrate has been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. The new collection equipment will allow IAEA nuclear safeguards inspectors to develop enhanced safeguarding approaches for complicated facilities. This paper will explore the use of air monitoring to establish a baseline environmental signature of a particular facility that could be used for comparison of consistencies in declared operations. The implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Technical aspects of the air monitoring device and the analysis of its environmental samples will demonstrate the essential parameters required for successful application of the system.

  16. AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

    SciTech Connect (OSTI)

    CONNELL CW; CONLEY SF; HILDEBRAND RD; CUNNINGHAM DE; R_D_Doug_Hildebrand@rl.gov; DeVon_E_Cunningham@rl.gov

    2010-01-21

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  17. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facilitys Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPFs proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  18. Rapid surface sampling and archival record system

    SciTech Connect (OSTI)

    Barren, E.; Penney, C.M.; Sheldon, R.B.

    1995-10-01

    A number of contamination sites exist in this country where the area and volume of material to be remediated is very large, approaching or exceeding 10{sup 6} m{sup 2} and 10{sup 6} m{sup 3}. Typically, only a small fraction of this material is actually contaminated. In such cases there is a strong economic motivation to test the material with a sufficient density of measurements to identify which portions are uncontaminated, so extensively they be left in place or be disposed of as uncontaminated waste. Unfortunately, since contamination often varies rapidly from position to position, this procedure can involve upwards of one million measurements per site. The situation is complicated further in many cases by the difficulties of sampling porous surfaces, such as concrete. This report describes a method for sampling concretes in which an immediate distinction can be made between contaminated and uncontaminated surfaces. Sample acquisition and analysis will be automated.

  19. Temperature Control Diagnostics for Sample Environments

    SciTech Connect (OSTI)

    Santodonato, Louis J; Walker, Lakeisha MH; Church, Andrew J; Redmon, Christopher Mckenzie

    2010-01-01

    In a scientific laboratory setting, standard equipment such as cryocoolers are often used as part of a custom sample environment system designed to regulate temperature over a wide range. The end user may be more concerned with precise sample temperature control than with base temperature. But cryogenic systems tend to be specified mainly in terms of cooling capacity and base temperature. Technical staff at scientific user facilities (and perhaps elsewhere) often wonder how to best specify and evaluate temperature control capabilities. Here we describe test methods and give results obtained at a user facility that operates a large sample environment inventory. Although this inventory includes a wide variety of temperature, pressure, and magnetic field devices, the present work focuses on cryocooler-based systems.

  20. Sample Desorption/Onization From Mesoporous Silica

    DOE Patents [OSTI]

    Iyer, Srinivas (Los Alamos, NM); Dattelbaum, Andrew M. (Los Alamos, NM)

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.