Powered by Deep Web Technologies
Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual  

SciTech Connect (OSTI)

A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

DALE, R.N.

2000-05-01T23:59:59.000Z

2

Early Oak Ridge Trailer Homes | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Early Oak Ridge Trailer ... Early Oak Ridge Trailer Homes A row of trailer homes used in early Oak Ridge...

3

Diesel generator trailer acceptance test procedure  

SciTech Connect (OSTI)

This Acceptance Test Procedure (ATP) will document compliance with the requirements of WHC-S-0252 Rev. 1 and ECNs 609271, and 609272. The equipment being tested is a 150KW Diesel Generator mounted on a trailer with switchgear. The unit was purchased as a Design and Fabrication procurement activity. The ATP was written by the Seller and will be performed by the Seller with representatives of the Westinghouse Hanford Company witnessing the test at the Seller`s location.

Kostelnik, A.J.

1994-09-23T23:59:59.000Z

4

Evaluation of Recent Trailer Contamination and Supersack Integrity Issues  

SciTech Connect (OSTI)

During the period from fiscal year (FY) 2009 to FY 2011, there were a total of 21 incidents involving radioactively contaminated shipment trailers and 9 contaminated waste packages received at the Nevada National Security Site (NNSS) Area 5 Radioactive Waste Management Site (RWMS). During this time period, the EnergySolutions (ES) Clive, Utah, disposal facility had a total of 18 similar incidents involving trailer and package contamination issues. As a result of the increased occurrence of such incidents, DOE Environmental Management Headquarters (EM/HQ) Waste Management organization (EM-30) requested that the Energy Facility Contractors Group (EFCOG) Waste Management Working Group (WMWG) conduct a detailed review of these incidents and report back to EM-30 regarding the results of this review, including providing any recommendations formulated as a result of the evaluation of current site practices involving handling and management of radioactive material and waste shipments.

Gordon, S.

2012-09-17T23:59:59.000Z

5

Trailer homes in Oak Ridge | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trailer homes in Oak Ridge Trailer homes in Oak Ridge An aerial of Oak Ridge showing the extensive use of trailer homes...

6

Independent Activity Report, Hanford Waste Treatment Plant -...  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

7

Solar Trailer Group EGDSN 297 D  

E-Print Network [OSTI]

Solar Trailer Group EGDSN 297 D Project Recap The objective of the Solar Trailer team was to design and implement a solar PV system for the ToolMaster Trailer HAZ-16 that is used by the Center for Sustainability was constructed. Finally in an all night effort to complete the project the racking and solar panels were

Demirel, Melik C.

8

Waste Loading Enhancements for Hanford Low-Activity Waste Glasses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

9

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Tank Farm - January 2014 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm - January 2014 January 2014 Hanford Waste...

10

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization...

11

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Environmental Management (EM)

of River Protection review of the High Level Waste Facility heating, ventilation, and air conditioning systems. Independent Oversight Activity Report, Hanford Waste Treatment...

12

Independent Oversight Activity Report, Hanford Waste Treatment...  

Energy Savers [EERE]

October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization...

13

SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT  

SciTech Connect (OSTI)

This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

CRAWFORD TW

2008-07-17T23:59:59.000Z

14

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Environmental Management (EM)

Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities HIAR-WTP-2014-01-27 This...

15

High-Pressure Tube Trailers and Tanks  

Broader source: Energy.gov [DOE]

Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

16

The braking performance of tractor-trailer combinations  

Science Journals Connector (OSTI)

Equations are derived for the maximum decelerations which can be obtained with balanced and unbalanced trailers with and without trailer brakes. The equations are used to produce graphs showing the maximum decelerations of trailers having typical dimensions, of different weights relative to the towing tractor on surfaces of different adhesion coefficients and with different types and degrees of braking on the trailers. Results measured during braking tests on tractors and trailers are given. Unbalanced trailers are shown to have a better braking performance than balanced trailers and it is therefore, recommended that trailers should be designed to carry the maximum permissible proportion of their weight on the tractor. Both over-run and power brakes on trailers are shown to provide very useful improvements in braking performance. Power brakes are preferred because of the difficulty of fitting over-run brakes on unbalanced trailers. The tractor's external hydraulics are considered to be the most convenient source of power. On-off brakes providing a fixed braking force equal to approximately 510% of the trailer maximum gross laden weight are considered to be a useful and simple means of improving existing trailers, but the development of trailer braking systems providing a braking force proportional to the tractor brake pedal force up to a maximum of approximately 2030% of the trailer maximum gross laden weight is considered to be very desirable.

M.J. Dwyer

1970-01-01T23:59:59.000Z

17

Independent Oversight Activity Report, Hanford Waste Treatment...  

Broader source: Energy.gov (indexed) [DOE]

March 31 - April 10, 2014 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - March 31 - April 10, 2014 March 31 - April 10, 2014 Observation...

18

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to...

19

Operational and maintenance manual, 100 ton hydraulic trailer  

SciTech Connect (OSTI)

The 100 ton hydraulic trailer is used to remove the mitigation pump from Tank 241SY101. This manual explains how to inspect, operate, and maintain the trailer in a state of readiness.

Koons, B.M.

1995-03-03T23:59:59.000Z

20

Effectiveness of speed trailers on low-speed urban roadways  

E-Print Network [OSTI]

documents the effectiveness of speed trailers for reducing speeds on low-speed urban roadways. At each test site, vehicle speeds were collected at upstream, trailer, and downstream locations using piezoelectric sensors. Vehicles were "tracked" along...

Perrillo, Kerry Victoria

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Factory Acceptance Test Procedure Westinghouse 100 ton Hydraulic Trailer  

SciTech Connect (OSTI)

This Factory Acceptance Test Procedure (FAT) is for the Westinghouse 100 Ton Hydraulic Trailer. The trailer will be used for the removal of the 101-SY pump. This procedure includes: safety check and safety procedures; pre-operation check out; startup; leveling trailer; functional/proofload test; proofload testing; and rolling load test.

Aftanas, B.L. [Westinghouse Hanford Co., Richland, WA (United States)

1994-11-16T23:59:59.000Z

22

CDC will Test Trailers and Mobile Homes for Formaldehyde  

E-Print Network [OSTI]

CDC will Test Trailers and Mobile Homes for Formaldehyde At FEMA's request, the Centers for Disease Control and Prevention (CDC) will do tests for formaldehyde in a total of 500 trailers and mobile homes provided by FEMA. CDC will test trailers and mobile homes in Louisiana and in Mississippi to learn more

23

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Broader source: Energy.gov [DOE]

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

24

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

25

Nuclear waste isolation activities report  

SciTech Connect (OSTI)

Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE`s radwaste management programs. (DLC)

None

1980-12-01T23:59:59.000Z

26

Independent Activity Report, Hanford Waste Treatment Plant - February 2011  

Broader source: Energy.gov (indexed) [DOE]

Activity Report, Hanford Waste Treatment Plant - Activity Report, Hanford Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review [ARPT-WTP-2011-002] The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. Independent Activity Report, Hanford Waste Treatment Plant - February 2011 More Documents & Publications Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant -

27

Radioisotope thermoelectric generator transport trailer system  

SciTech Connect (OSTI)

The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

28

Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers  

SciTech Connect (OSTI)

Long Length Contaminated Equipment Removal System Receiver Trailers and Transport Trailers require identification and control for the design, requirements and operations baseline documents. This plan serves as those controls for the subject trailers.

DALE, R.N.

2000-12-18T23:59:59.000Z

29

Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers  

SciTech Connect (OSTI)

Long Length Contaminated Equipment Removal System Receiver Trailer and Transport Trailer require a configuration management plan for design, requirements and operations baseline documents. This report serves as the plan for the Trailers.

DALE, R.N.

2000-05-01T23:59:59.000Z

30

Increasing ventilation in commercial cattle trailers to decrease shrink, morbidity, and mortality  

E-Print Network [OSTI]

moving livestock trailers, an experimental treatment that increased cross-ventilation within commercial cattle trailers by installing aluminum scoops to punch-hole trailers was evaluated. Environmental factors including temperature, ammonia and carbon...

Giguere, Nicole Marie

2009-06-02T23:59:59.000Z

31

E-Print Network 3.0 - activity radioactive waste Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waste Search Powered by Explorit Topic List Advanced Search Sample search results for: activity radioactive waste...

32

RCRA Notification of Regulated Waste Activity (EPA Form 8700...  

Open Energy Info (EERE)

Notification of Regulated Waste Activity (EPA Form 8700-12) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Notification of Regulated Waste Activity...

33

Notification of Regulated Waste Activity | Open Energy Information  

Open Energy Info (EERE)

Regulated Waste Activity Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Notification of Regulated Waste ActivityLegal Published NA...

34

Iodine Solubility in Low-Activity Waste Borosilicate Glass at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. Abstract: The purpose of this...

35

Independent Oversight Activity Report, Hanford Waste Treatment and  

Broader source: Energy.gov (indexed) [DOE]

Hanford Waste Treatment and Hanford Waste Treatment and Immobilization Plant - June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from May 13 - June 28, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to observe and

36

Independent Oversight Activity Report, Hanford Waste Treatment and  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment and Waste Treatment and Immobilization Plant - July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from July 31 - August 5, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the hazards analysis (HA) for WTP Low Activity Waste (LAW) Melter Process system. The primary purpose of this HSS field activity was to observe and

37

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect (OSTI)

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

38

Nuclear Waste Fund Activities Management Team | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Fund Activities Management Team Waste Fund Activities Management Team Nuclear Waste Fund Activities Management Team The Nuclear Waste Fund Activities Management Team has responsibility to: Manage the investments and expenditures of the Nuclear Waste Fund; Support correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accounting Office and Freedom of Information Act inquiries; and, Manage the annual fee adequacy assessment process. Applicable Documents Nuclear Waste Policy Act of 1982 Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste Standard Contract Amendment for New Reactors FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Fee Adequacy, Pub 2008 2009 Letter to Congress OCRWM Financial Statements for Annual Report for Years Ended

39

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Facility Shoshone Motel & Trailer Park Sector Geothermal energy Type Space Heating Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

40

REQUEST BY HEIL. TRAILER INTERNATIONAL FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

HEIL. TRAILER INTERNATIONAL FOR AN ADVANCE WAIVER HEIL. TRAILER INTERNATIONAL FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000027094 UNDER PRIME CONTRACT NO. DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)2003-054 [ORO-786] Heil Trailer International (Heil) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under UT-Battelle, LLC Subcontract No. 4000027094 entitled, "Liburndas Project" under UT-Battelle Prime Contract No. DE-AC05- 00OR22725. The scope of work involves reducing the aluminum tank semi-trailer's net weight by 20% by redesigning the barrel to a more cylindrical shape. The work is sponsored by the Office of FreedomCar and Vehicle Technologies.

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Compressed air piping, 241-SY-101 hydraulic pump retrieval trailer  

SciTech Connect (OSTI)

The following Design Analysis was prepared by the Westinghouse Hanford Company to determine pressure losses in the compressed air piping installed on the hydraulic trailer for the 241-SY-101 pump retrieval mission.

Wilson, T.R.

1994-12-12T23:59:59.000Z

42

Independent Activity Report, Waste Treatment and Immobilization Plant -  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18] The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach implemented by Bechtel National, Inc. (BNI), the contractor responsible for the design and construction of WTP for the U.S. Department of Energy (DOE) Office of

43

Independent Activity Report, Waste Isolation Pilot Plant - September...  

Broader source: Energy.gov (indexed) [DOE]

Diffusion Plant - July 2011 Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 Independent Activity Report, West Valley Demonstration Project - November 2011...

44

Independent Oversight Activity Report, Hanford Waste Tank Farms...  

Office of Environmental Management (EM)

Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks HIAR-HANFORD-2013-10-28 This Independent Oversight Activity Report documents an...

45

Independent Oversight Activity Report, Hanford Waste Treatment and  

Broader source: Energy.gov (indexed) [DOE]

October 2013 October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from October 21-31, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff reviewing the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the WTP Low Activity Waste (LAW) Melter and Off-gas systems, observed a limited portion of the HA for the

46

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

SciTech Connect (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

47

Waste Inspection Tomography (WIT)  

SciTech Connect (OSTI)

Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

Bernardi, R.T.

1995-12-01T23:59:59.000Z

48

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

49

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

50

Hanford's Simulated Low Activity Waste Cast Stone Processing  

SciTech Connect (OSTI)

Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanfords (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

Kim, Young

2013-08-20T23:59:59.000Z

51

Trailer Safety Checklist CeCarter\\FactSheets\\TrlrSafe.indd.pdf  

E-Print Network [OSTI]

1 Trailer Safety Checklist CeCarter\\FactSheets\\TrlrSafe.indd.pdf Reviewed and Revised 2009-10 Trailer Safety Checklist Laurie Chapman-Bosco, Drew Conroy, Dwight Barney Any time you haul livestock or horses over the road you must put great faith in the trailer or truck that carries your animals

New Hampshire, University of

52

Independent Activity Report, Waste Isolation Pilot Plant - September 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant - Waste Isolation Pilot Plant - September 2011 Independent Activity Report, Waste Isolation Pilot Plant - September 2011 September 2011 Orientation Visit to the Waste Isolation Pilot Plant [HIAR-WIPP-2011-09-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Carlsbad Field Office (CBFO) and the nuclear facility at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, NM, on September 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its

53

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant March 31 April 10, 2014  

Broader source: Energy.gov [DOE]

Observation of the Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Hazards Analysis Activities [IAR-WTP-2014-03-31

54

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013  

Broader source: Energy.gov [DOE]

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

55

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant October 2013  

Broader source: Energy.gov [DOE]

Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21

56

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant February 2014  

Broader source: Energy.gov [DOE]

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

57

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant July 2013  

Broader source: Energy.gov [DOE]

Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

58

Independent Activity Report, Office of River Protection Waste Treatment  

Broader source: Energy.gov (indexed) [DOE]

Office of River Protection Waste Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 February 2013 Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25] The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made two trips to the site, which included tours of the WTP construction site

59

Independent Oversight Activity Report, Savannah River Site Waste  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Activity Report, Savannah River Site Waste Independent Oversight Activity Report, Savannah River Site Waste Solidification Building Independent Oversight Activity Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] Activity Description/Purpose: Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions

60

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect (OSTI)

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect (OSTI)

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

62

Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005  

SciTech Connect (OSTI)

The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

McDowell, Kip; Forrester, Tim [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States); Saunders, Mark [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)] [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)

2013-07-01T23:59:59.000Z

63

Independent Oversight Activity Report, Savannah River Site Waste  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Waste Savannah River Site Waste Solidification Building Independent Oversight Activity Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] Activity Description/Purpose: Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions discussed in Reference 2, and clarify additional reviews to be performed by

64

Phase 1 immobilized low-activity waste operational source term  

SciTech Connect (OSTI)

This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

Burbank, D.A.

1998-03-06T23:59:59.000Z

65

High-Pressure Tube Trailers and Tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berry Berry Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE Delivery Tech Team Presentation Chicago, Illinois February 8, 2005 Inexpensive delivery of compressed hydrogen with ambient temperature or cryogenic compatible vessels * Pressure vessel research at LLNL Conformable (continuous fiber and replicants) Cryo-compressed * Overview of delivery options * The thermodynamics of compressed and cryo-compressed hydrogen storage * Proposed analysis activities * Conclusions Outline We are investigating two techniques for reduced bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize bending stresses Spherical and cylindrical tanks

66

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification  

Broader source: Energy.gov (indexed) [DOE]

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW Objectives: Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW Conduct test with actual tank wastes Use the best science to fill key data gaps Linking previous and new results together 4 Outline FBSR NAS waste form processing scales FBSR NAS waste form data/key assumptions FBSR NAS key data gaps FBSR NAS testing program 5 FBSR NAS Waste Form Processing

67

Hanford immobilized low-activity tank waste performance assessment  

SciTech Connect (OSTI)

The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.

Mann, F.M.

1998-03-26T23:59:59.000Z

68

Independent Oversight Activity Report, Hanford Waste Treatment and  

Broader source: Energy.gov (indexed) [DOE]

November 2013 November 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 December 2013 Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations on November 18, 2013, at the Catholic University of America Vitreous State Laboratory (VSL). Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the

69

Analysis of alternatives for immobilized low activity waste disposal  

SciTech Connect (OSTI)

This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

Burbank, D.A.

1997-10-28T23:59:59.000Z

70

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

documented safety analysis and technical safety requirements for the U.S. Department of Energy Office of River Protection's review and approval. Independent Oversight Activity...

71

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect (OSTI)

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

72

Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment  

SciTech Connect (OSTI)

The plan for maintaining the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (PA) is described. The plan includes expected work on PA reviews and revisions, waste reports, monitoring, other operational activities, etc.

MANN, F.M.

2000-02-09T23:59:59.000Z

73

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm January 2014  

Broader source: Energy.gov [DOE]

Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

74

Pantex saves $100,000 by repurposing old trailer | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

saves $100,000 by repurposing old trailer | National Nuclear saves $100,000 by repurposing old trailer | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex saves $100,000 by repurposing old trailer Pantex saves $100,000 by repurposing old trailer Posted By Office of Public Affairs Pantex saves 00,000 by repurposing old trailer By repurposing an old

75

Pantex saves $100,000 by repurposing old trailer | National Nuclear  

National Nuclear Security Administration (NNSA)

saves $100,000 by repurposing old trailer | National Nuclear saves $100,000 by repurposing old trailer | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex saves $100,000 by repurposing old trailer Pantex saves $100,000 by repurposing old trailer Posted By Office of Public Affairs Pantex saves 00,000 by repurposing old trailer By repurposing an old

76

LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS  

SciTech Connect (OSTI)

The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

2014-04-03T23:59:59.000Z

77

Cost-benefits of a mobile, trailer-contained, vibratory finishing decontamination facility  

SciTech Connect (OSTI)

The objective of this study was to determine the cost-benefits of a vibratory finishing process, developed at Pacific Northwest Laboratory (PNL), which has been used successfully to remove a variety of transuranic (TRU) contaminants from surfaces of metallic and nonmetallic wastes. Once TRU contaminants are removed, the metallic and nonmetallic materials can be disposed of as low-level waste (LLW). Otherwise, these materials would be disposed of in geologic repositories. This study provides an economic evaluation of the vibratory finishing process as a possible method for use in decontaminating and decommissioning retired facilities at Hanford and oher sites. Specifically, the economic evaluation focuses on a scoping design for a mobile, trailer-contained facility, which could be used in the field in conjunction with decontamination and decommissioning operations. The capital cost of the mobile facility is estimated to be about $1.09 million including contingency and working capital. Annual operating costs, including disposal costs, are estimated to be $440,000 for processing about 6340 ft/sup 3//yr of pre-sectioned, TRU-contaminated material. Combining the operating cost and the capital cost, annualized at a discount rate of 10%, the total annual cost estimate is $602,000. The unit cost for vibratory finishing is estimated to be about $11/ft/sup 3/ of original reference glove box volume (Abrams et at. 1980). All costs are in first quarter 1981 dollars. Although not directly comparable, the unit cost for the vibratory finishing process is very favorable when considered beside typical, substantially higher, unit costs for processing and geologically disposing of TUR-contaminated materials. The probable accuracy of this study cost estimate is about +- 30%. It is therefore recommended that a detailed cost estimate be prepared if a mobile facility is designed.

Hazelton, R.F.; McCoy, M.W.

1982-07-01T23:59:59.000Z

78

The Study of Wheeled Semi-trailer Design and Development Based on Scale Model  

Science Journals Connector (OSTI)

One type of wheeled semi-trailer is a complex system which consists of ... design process. In the structural design of hydraulic torque converter, we use the hierarchical multi...4). ...

Xiong Xin; Xuexun Guo

2013-01-01T23:59:59.000Z

79

Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers  

SciTech Connect (OSTI)

The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 Conduct a fleet evaluation with selected device combination. Phase 3 Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 7.8% fuel economy with the devices (This does not include tire contribution).

Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

2013-09-30T23:59:59.000Z

80

E-Print Network 3.0 - active nuclear wastes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: active nuclear wastes Page: << < 1 2 3 4 5 > >> 1 THE UNIVERSITY OF WESTERN ONTARIO RADIATION SAFETY...

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Toward Understanding the Effect of LowActivity Waste Glass Composition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility John D. Vienna, , Dong-Sang Kim, Isabelle S. Muller, Greg F. Piepel, ...

82

System Planning for Low-Activity Waste at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Technical Review of System Planning Technical Review of System Planning for Low-Activity Waste Treatment at Hanford November 2008 Dr. David S. Kosson, Vanderbilt University Dr. David R. Gallay, Logistics Management Institute Dr. Ian L. Pegg, The Catholic University of America Dr. Ray G. Wymer, Oak Ridge National Laboratory (ret.) Dr. Steven Krahn, U. S. Department of Energy ii ACKNOWLEDGEMENT The Review Team thanks Mr. Ben Harp, Office of River Protection (ORP), and Mr. James Honeyman, CH2M HILL, for their exceptional support during this review. Mr. Harp was the lead Department of Energy (DOE) representative responsible for organizing reviews held on-site by the Review Team. Mr. Honeyman, and his staff, provided responsive support through technical presentations, telephone conferences, and numerous reference documents.

83

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Broader source: Energy.gov (indexed) [DOE]

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

84

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

85

Rock mechanics activities at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed.

Francke, C. [Westinghouse Electric Corp., Carlsbad, NM (United States); Saeb, S. [International Technology Corp., Albuquerque, NM (United States)

1996-12-31T23:59:59.000Z

86

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

87

BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect (OSTI)

This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

ARD KE

2011-04-11T23:59:59.000Z

88

Technical basis for classification of low-activity waste fraction from Hanford site tanks  

SciTech Connect (OSTI)

The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

Petersen, C.A.

1996-09-20T23:59:59.000Z

89

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

90

Report on Abatement Activities Related to Agriculture and Waste Management  

E-Print Network [OSTI]

Guidelines for Producers 9 2.3 Best Agricultural Waste Management Plans (BAWMPs) 9 3.0 AGRICULTURAL PRACTICES COMPLAINT RESPONSE SYSTEM 8 2.1 Agricultural Waste Control Regulation and Code 9 2.2 Environmental ASSESSMENT INITIATIVE 10 3.1 Watershed Farm Practices Study 10 3.2 Ongoing Farm Practices Evaluation 12 3

91

WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008  

SciTech Connect (OSTI)

The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.

Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

2009-03-20T23:59:59.000Z

92

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Broader source: Energy.gov (indexed) [DOE]

PURPOSE PURPOSE The U.S. Department of Energv SUMRY (DOE) has Dreuared this environmental impact -. . . statement (EIS) to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant (SRP) in Aiken, South Carolina. This EIS, which is both programmatic and project-specific, has been prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act (NEPA) of 1969, as amended. It is intended to support broad decisions on future actions on SRP waste management activities and to provide project- related environmental input and support for project-specific decisions on pro- ceeding with cleanup activities at existing waste sites in the R- and F-Areas, establishing new waste

93

EIS-0120: Waste Management Activities for Groundwater Protection, Savannah River Plant, Aiken, South Carolina  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy has prepared this environmental impact statement to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant in Aiken, South Carolina.

94

EIS-0120: Waste Management Activities for Groundwater Protection, Savannah River Plant, Aiken, SC  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy has prepared this environmental impact statement to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant in Aiken, South Carolina.

95

A Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems  

E-Print Network [OSTI]

cost) so that the day- to-day operational cost could be kept at the minimum. 1.2 Background on VehicleA Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems K. C. Tan, T. H. Lee, Y. H. Chew Department of Electrical and Computer Engineering National

Coello, Carlos A. Coello

96

Final Environmental Assessment for Waste Disposition Activities at the Paducah Site Paducah, Kentucky  

Broader source: Energy.gov (indexed) [DOE]

0-347(doc)/093002 0-347(doc)/093002 1 FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low- level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is

97

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

SciTech Connect (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

98

Independent Activity Report, Office of River Protection Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lead for the Office of River Protection Waste Treatment Plant and Tank Farms HIAR-HANFORD-2013-02-25 The Office of Health, Safety and Security's (HSS) Office of Safety and...

99

Independent Oversight Activity Report, Savannah River Site Waste Solidification Building  

Broader source: Energy.gov [DOE]

Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07

100

Summary - System Planning for Low-Activity Waste Treatment at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete high-level waste (HLW) vitrification. However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is not incorporated. The purpose of this independent review was to

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility  

Broader source: Energy.gov [DOE]

WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

102

Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion  

E-Print Network [OSTI]

Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion Thomas on digestibility, especially in regards to the composition of extracellular polymeric substances (EPS). Samples possibilities. Characterizations made from extraction data showed curiously high EPS disruption in Amherst

Mountziaris, T. J.

103

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility |  

Broader source: Energy.gov (indexed) [DOE]

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of AMWTP's nearly 3,900 shipments. Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of

104

WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS  

SciTech Connect (OSTI)

The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

DISSELKAMP RS

2011-01-06T23:59:59.000Z

105

Optimisation of the Management of Higher Activity Waste in the UK - 13537  

SciTech Connect (OSTI)

The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interim storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)

Walsh, Ciara; Buckley, Matthew [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

106

SWEPP PAN assay system uncertainty analysis: Active mode measurements of solidified aqueous sludge waste  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 {+-} 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems.

Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.

1997-12-01T23:59:59.000Z

107

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT  

SciTech Connect (OSTI)

The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2007-08-08T23:59:59.000Z

108

Permitting plan for the high-level waste interim storage  

SciTech Connect (OSTI)

This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

Deffenbaugh, M.L.

1997-04-23T23:59:59.000Z

109

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect (OSTI)

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

110

Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment  

SciTech Connect (OSTI)

This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O'Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

2001-02-01T23:59:59.000Z

111

Independent Oversight Activity Report, Savannah River Site Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design HIAR SRS-2013-5-07 Activity...

112

Waste management regulatory compliance issues related to D&D activities at Oak Ridge National Laboratory (ORNL)  

SciTech Connect (OSTI)

The waste management activities at ORNL related to the decontamination and decommissioning (D&D) of radioactively contaminated buildings are divided into four categories: Operational facilities, inactive or surplus facilities, future facilities planning, and D&D activities. This paper only discusses regulatory issues related to inactive or surplus facilities. Additionally, rather than attempting to address all resulting waste streams and related regulations, this paper highlights only a few of the ORNL waste streams that present key regulatory issues.

Hitch, J.P.; Arnold, S.E.; Burwinkle, T.; Daugherty, D.

1994-09-01T23:59:59.000Z

113

Management Activities for Retrieved and Newly Generated Transuranic Wastes Savannah River Plant  

Broader source: Energy.gov (indexed) [DOE]

8 WL 253648 (F.R.) 8 WL 253648 (F.R.) NOTICES DEPARTMENT OF ENERGY Finding of No Significant Impact; Transuranic Waste Management Activities at the Savannah River Plant, Aiken, SC Tuesday, August 30, 1988 *33172 AGENCY: Department of Energy. ACTION: Finding of No Significant Impact. SUMMARY: The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -0315, for transuranic (TRU) waste management activities at DOE's Savannah River Plant (SRP), including the construction and operation of a new TRU Waste Processing Facility. Based on analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact

114

CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect (OSTI)

Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

MINWALL HJ

2011-04-08T23:59:59.000Z

115

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

SciTech Connect (OSTI)

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31T23:59:59.000Z

116

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian  

E-Print Network [OSTI]

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul of WAS is the make-up of the Extracellular Polymeric Substances (EPS) surrounding the cells, which acts as a glue/inorganics in influent, temperature, reactor flow types, etc). Certain EPS complexes are vulnerable to specific

Mountziaris, T. J.

117

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

118

Training Activities on Radioactive Waste Management at Moscow SIA -Radon-: Experience, Practice, Theory  

SciTech Connect (OSTI)

Management of radioactive waste relates to the category of hazardous activities. Hence the requirements to the professional level of managers and personnel working in this industry are very high. Education, training and examination of managers, operators and workers are important elements of assuring safe and efficient operation of radioactive waste management sites. The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 10 years. The paper summarizes the current experience of the SIA 'Radon' in the organisation and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)

Batyukhnova, O.G.; Arustamov, A.E.; Dmitriev, S.A.; Agrinenko, V.V. [SUE SIA -Radon-, The 7-th Rostovsky Lane 2/14, Moscow (Russian Federation); Ojovan, M.I. [Immobilisation Science Laboratory, University of Sheffield, Sir Robert Hadfield Building (United Kingdom); Drace, Z. [International Atomic Energy Agency, Vienna (Austria)

2008-07-01T23:59:59.000Z

119

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect (OSTI)

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01T23:59:59.000Z

120

Analysis of the 241SY101 pump removal trailer and the 241SY101 strongback  

SciTech Connect (OSTI)

The purpose of the calculations contained in the attached appendix is to determine the vibrational stability of the following combination (The Combination); shipping container, strongback and trailer. The vibrational stability of The Combination will be determined with the shipping container and strongback in the upright position. If the natural frequency of The Combination coincides with the input frequency and no damping is present, resonance will occur. The result of this is that the natural frequency of the Combination must be calculated as well as the input frequency. The input frequency in this case is caused by wind. Due to their geometrical complexity the upper and lower hydraulic clevises were analyzed for structural adequacy by using finite-element analysis (FEA). The FEA software COSMOS/M version 1.70 was used to model the upper and lower hydraulic clevis. All designs are in accordance with Standard Architectural-Civil Design Criteria, Design Loads for Facilities (DOE-RL 1989) and are safety class 3. The design and fabrication of each component is in accordance with American Institute of Steel Construction, Manual of Steel Construction, (AISC, 1989). The analyses contained in this document reflects the as-built condition of the 241SY101 hydraulic trailer.

Coverdell, B.L.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Broader source: Energy.gov (indexed) [DOE]

Els-o120 Els-o120 Final Environmental Impact Statement I Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina of Energy 1 COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy ACTIVITY: Final Environmental Impact Statement, Waste Management I TC Activities for Groundwater Protection at the Savannah River Plant, Aiken, South Carolina. CONTACT: ABSTRACT: Additional information concerning this Statement can be obtained from: Mr. S. R. Wright Director, Environmental Division U.S. Department of Energy Savannah River Operations Office Post Office Box A Aiken, South Carolina 29802 (803) 725-3957 I TC For general information on the Department of Energy qs EIS process contact: Office of the Assistant Secretary for Environment, Safety, and Health U.S. Department of Energy Attn: Ms. Carol Bergstrom (EH-25) Acting Director, Office of

122

Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

Fields, D.E.; Emerson, C.J.

1984-08-01T23:59:59.000Z

123

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1995  

SciTech Connect (OSTI)

To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities that the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during fiscal year 1995.

Forman, S.

1995-12-01T23:59:59.000Z

124

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1996  

SciTech Connect (OSTI)

To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities tat the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during Fiscal Year 1996.

Garcia, R.S.

1996-12-01T23:59:59.000Z

125

Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)  

SciTech Connect (OSTI)

Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

Not Available

1980-10-01T23:59:59.000Z

126

Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review of the Independent Oversight Review of the Waste Isolation Pilot Plant Work Planning and Control Activities April 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1 4.0 Methodology......................................................................................................................................... 2

127

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

128

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

129

Aerodynamic drag reduction apparatus for gap-divided bluff bodies such as tractor-trailers  

DOE Patents [OSTI]

An apparatus for reducing the aerodynamic drag of a bluff-bodied vehicle such as a tractor-trailer in a flowstream, the bluff-bodied vehicle of a type having a leading portion, a trailing portion connected to the leading portion, and a gap between the leading and trailing portions defining a recirculation zone. The apparatus is preferably a baffle assembly, such as a vertical panel, adapted to span a width of the gap between the leading and trailing portions so as to impede cross-flow through the gap, with the span of the baffle assembly automatically adjusting for variations in the gap width when the leading and trailing portions pivot relative to each other.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA)

2006-07-11T23:59:59.000Z

130

Annual summary of Immobilized Low-Activity Waste (ILAW) Performance Assessment for 2003 Incorporating the Integrated Disposal Facility Concept  

SciTech Connect (OSTI)

To Erik Olds 09/30/03 - An annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

MANN, F M

2003-09-01T23:59:59.000Z

131

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21T23:59:59.000Z

132

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

133

Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1  

SciTech Connect (OSTI)

The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

Not Available

1994-09-01T23:59:59.000Z

134

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP`s activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states` and compacts` siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997.

Rittenberg, R.B.

1998-03-01T23:59:59.000Z

135

UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048  

SciTech Connect (OSTI)

The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for the definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to allow for construction which is scheduled to being during the first semester of 2013. The elaboration of the final waste package is still undergoing and expected to be completed by then end of 2013, following some final elements of R and D required to demonstrate the full compatibility of the package with deep geological repository. The HAO legacy waste retrieval project is so far the largest such project entering operational phase on the site of La Hague. It is on schedule, under budget, and in conformity with the delivery requirements set by the French Safety Authority, as well as other stakeholders. This project paves the way for the successful completion of AREVA La Hague other legacy waste retrieval projects, which are currently being drafted or already in active R and D phase. (authors)

Chabeuf, Jean-Michel; Varet, Thierry [AREVA Site Value Development Business Unit, La Hague Site (France)] [AREVA Site Value Development Business Unit, La Hague Site (France)

2013-07-01T23:59:59.000Z

136

TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect (OSTI)

This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

BURBANK, D.A.

1999-09-01T23:59:59.000Z

137

Round-robin testing of a reference glass for low-activity waste forms  

SciTech Connect (OSTI)

A round robin test program was conducted with a glass that was developed for use as a standard test material for acceptance testing of low-activity waste glasses made with Hanford tank wastes. The glass is referred to as the low-activity test reference material (LRM). The program was conducted to measure the interlaboratory reproducibility of composition analysis and durability test results. Participants were allowed to select the methods used to analyze the glass composition. The durability tests closely followed the Product Consistency Test (PCT) Method A, except that tests were conducted at both 40 and 90 C and that parallel tests with a reference glass were not required. Samples of LRM glass that had been crushed, sieved, and washed to remove fines were provided to participants for tests and analyses. The reproducibility of both the composition and PCT results compare favorably with the results of interlaboratory studies conducted with other glasses. From the perspective of reproducibility of analysis results, this glass is acceptable for use as a composition standard for nonradioactive components of low-activity waste forms present at >0.1 elemental mass % and as a test standard for PCTS at 40 and 90 C. For PCT with LRM glass, the expected test results at the 95% confidence level are as follows: (1) at 40 C: pH = 9.86 {+-} 0.96; [B] = 2.30 {+-} 1.25 mg/L; [Na] = 19.7 {+-} 7.3 mg/L; [Si] = 13.7 {+-} 4.2 mg/L; and (2) at 90 C: pH = 10.92 {+-} 0.43; [B] = 26.7 {+-} 7.2 mg/L; [Na] = 160 {+-} 13 mg/L; [Si] = 82.0 {+-} 12.7 mg/L. These ranges can be used to evaluate the accuracy of PCTS conducted at other laboratories.

Ebert, W. L.; Wolf, S. F.

1999-12-06T23:59:59.000Z

138

E-Print Network 3.0 - activity waste ilaw Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite Accumulation Areas (SAAs) All Hazardous waste generated... and California state regulations. All waste that is ... Source: Lawrence Berkeley National Laboratory, Ion Beam...

139

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation  

SciTech Connect (OSTI)

One of the immobilization technologies under consideration as a Supplemental Treatment for Hanfords Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

2014-01-10T23:59:59.000Z

140

Potential of the tractor-trailer and container segments as entry markets for a proposed refrigeration technology  

SciTech Connect (OSTI)

The refrigerated trailer and container segments of the transportation industry are evaluated as potential entry markets for a proposed absorption refrigeration technology. To perform this analysis the existing transportation refrigeration industry is characterized; this includes a description of the current refrigeration technology, rating systems, equipment manufacturers, maintenance requirements, and sales trends. This information indicates that the current transportation refrigeration industry is composed of two major competitors, Thermo King and Carrier. In addition, it has low profit potential, some barriers to entry and low growth potential. Data are also presented that characterize the transportation refrigeration consumers, specifically, major groups, market segmentation, consumer decision process, and buying criteria. This consumer information indicates that the majority of refrigerated trailer consumers are private carriers, and that the majority of refrigerated container consumers are shipping companies. Also, these consumers are primarily interested in buying reliable equipment at a low price, and are quite satisfied with existing refrigeration equipment.

Smith, S.A.; Davis, L.J.; Garrett, B.A.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Estimation of Hourly Solar Loads on the Surfaces of Moving Refrigerated Tractor Trailers Outfitted with Phase Change Materials (PCMs) for Several Routes across the Continental U.S.  

E-Print Network [OSTI]

The primary objective of this thesis was to calculate solar loads, wind chill temperatures on the surfaces of moving refrigerated tractor trailers outfitted with phase change materials (PCMs) for several routes across the Continental United States...

Varadarajan, Krupasagar

2011-08-31T23:59:59.000Z

142

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to land disposal restrictions. The long term precision (24-hr) also was good with percent relative standard deviations (%RSDs) < 10 % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

143

Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge  

Science Journals Connector (OSTI)

Abstract The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 495% compared with 271% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881109 CH4?molg?1 dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

Minh Tuan Nguyen; Nazlina Haiza Mohd Yasin; Toshiki Miyazaki; Toshinari Maeda

2014-01-01T23:59:59.000Z

144

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Broader source: Energy.gov (indexed) [DOE]

I I I Y DoE/Els-o120 Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina Volume 2 Q ~<$c'% ~ v ~ g ;:: # +4 -~ STATES O* December 1987 United States Department of Energy -- TABLE OF CONTENTS Appendix A GEOLOGY AND SUBSURFACE HYDROLOGY . . . . . . . . . . . . . . . A.1 Geology and Seismology . . . . . . . . . . . . . . . . . A.1.l Regional Geologic Setting . . . . . . . . . . . . A.1.1.1 Tectonic Provinces . . . . . . . . . . . A.I.1.2 Stratigraphy . . . . . . . . . . . . . . A.1.1.3 Geomorphology . . . . . . . . . . . . . . A.1.2 Seismology and Geologic Hazards . . . . . . . . . A.1.2.1 Geologic Structures and Seismicity . . . A.1.2.2 Seismic Events and Liquefaction Potentill . . . . . . . . . . . . . . . . A.2 Groundwater Resources . . . . . . . . . . . . . . . . . . A.2.1 Hydrostratigraphy . . . . . . . . . . . . . . . . A.2.2 Groundwater Hydrology . . . . . . . . . . . . . . A.2.2.1 Hydrologic Properties

145

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Broader source: Energy.gov (indexed) [DOE]

Impact Impact \ DoE/Els-o120 Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina Volume 3 Q ~+ ~ FNT O&@+@ &v a w ~ k ~ ;%." $ +6 & ~+e $TiTES Of December 1987 United States Department of Energy TABLE OF CONTENTS ~pendix G ASSESSMENT OF ALTERNATIVE STRATEGIES FOR STORAGE FACILITIES . . . . . . . . . . . G.1 No-Action Strategy . . . . . . . . G.1.l Sununarv and Objectives . . NEW DISPOSAL/ . . . . . . . . . . . . . . . G.1.2 Groundwater and Surface Water Effects G.1.3 Nonradioactive Atmospheric Releases . G.1.4 Ecological Effects . . . . . . . . . G.1.5 Radiological Releases . . . . . . . . G.1.6 Archaeological and Historic Resources G.1.7 SOciOecOnOmics . . . . . . . . . . . G.1.8 Dedication of Site . . . . . . . . . G.1.9 Institutional Impacts . . . . . . . . G.l.10 Noise . . . . . . . . . . . . . . . . G.2 Dedication Strategy . . . . . . . . . . . . . G.2.1 G.2.2 G.2.3 G.2.4 G.2.5 G.2.6

146

Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs.

Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

1986-02-01T23:59:59.000Z

147

Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)  

SciTech Connect (OSTI)

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.

DI Kaplan; RJ Serne

2000-02-24T23:59:59.000Z

148

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Broader source: Energy.gov (indexed) [DOE]

Trucking Services for Transuranic Waste Shipments Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite Delivery/ Indefinite Quantity (ID/IQ) contract using firm-fixed- price delivery task orders. The estimated contract cost is $80-$100 million over a five-year contract

149

Calculations of Induced Activity in the ATLAS Experiment for Nuclear Waste Zoning.  

E-Print Network [OSTI]

Extensive calculations were performed with the general activation formula using the fluxes of high-energy hadrons and low-energy neutrons previously obtained from simulations with the GCALOR code of the ATLAS detector. Three sets of proton cross-sections were used for hadrons energy above 20 MeV: (a) one set calculated with the YIELDX code (i.e., the Silberberg-Tsao formula of partial proton spallation cross-sections), (b) one set calculated with the Rudstam formula, and (c) the ??best-estimate' dataset which was a compilation of the available experimental and calculated data. In the energy region below 20 MeV, neutron activation cross-sections were taken from evaluated nuclear data files. The activity of each nuclide for a predefined operation scenario (i.e., number and duration of irradiation and shutdown cycles) was normalized to reference values taken from the European or Swiss legislations, to obtain an aggregate estimate of the radiological hazard comparable with a nuclear waste zoning definition cr...

Morev, M N

2007-01-01T23:59:59.000Z

150

Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy  

E-Print Network [OSTI]

activities, such as waste burning versus waste dumping.and the Geographies of Waste Governance: A Burning Issue forEurope: Burning oriented Incineration (waste-to-energy)

Mengozzi, Alessandro

2010-01-01T23:59:59.000Z

151

Independent Oversight Activity Report, Hanford Waste Tank Farms October 28 November 6, 2013  

Broader source: Energy.gov [DOE]

Follow-up on Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks [HIAR-HANFORD-2013-10-28

152

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No More Green Waste in the Landfill No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by Sandia. The mulch is available to the Air Force and Sandia for landscaping uses. However, grass clippings, leaves, and other green waste were being disposed in the landfill. In an initiative to save time and trips by small trucks with trailers to the landfill carrying organic debris, two 30 cubic yard rolloffs were

153

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

154

The design, fabrication and maintenance of semi-trailers employed in the highway transport of weight-concentrated radioactive loads  

SciTech Connect (OSTI)

Transportation of weight-concentrated radioactive loads by truck is an essential part of a safe and economical nuclear industry. This proposed standard presents guidance and performance criteria for the safe transport of these weight-concentrated radioactive loads. ANSI N14.30 will detail specific requirements for the design, fabrication, testing, in-service inspections, maintenance and certification of the semi-trailers to be employed in said service. Furthermore, guidelines for a quality assurance program are also enumerated. This standard would apply to any semi-trailer that may or may not be specifically designed to carry weight-concentrated loads. Equipment not suitable per the criteria established in the standard would be removed from service. The nature of the nuclear industry and the need for a positive public perception of the various processes and players, mandates that the highway transportation of weight-concentrated radioactive loads be standardized and made inherently safe. This proposed standard takes a giant step in that direction.

Huffman, D.S. [Allied-Signal Inc., Metropolis, IL (United States)

1991-12-31T23:59:59.000Z

155

Tank waste treatment R and D activities at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) served as the pilot plant for the Hanford production facility during the 1940s. As a result, the waste contained in the ORNL storage tanks has similarities to waste found at other sites, but is typically 10 to 100 times less radioactive. It is estimated that nearly 4.9 million liters of legacy of waste is stored on the site of ORNL. Of this volume about one-fifth is transuranic sludges. The remainder of the waste volume is classified as low-level waste. The waste contains approximately 130,000 Ci, composed primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. The wastes were originally acidic in nature but were neutralized using Na{sub 2}CO{sub 3}, NaOH, or CaO to allow their storage in tanks constructed of carbon steel or concrete (Gunite). In addition to the legacy waste, about 57,000 L of concentrated waste is generated annually, which contains about 13,000 Ci, consisting primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. As part of the US department of Energy`s (DOE`s) Environmental Management Tanks Focus Area and Efficient Separations and Processing programs, a number of tasks are under way at ORNL to address the wastes currently stored in tanks across the DOE complex. This paper summarizes the efforts in three of these tasks: (1) the treatment of the tank supernatant to remove Cs, Tc, and Sr; (2) the leaching or washing of the sludges to reduce the volume of waste to be vitrified; and (3) the immobilization of the sludges.

Jubin, R.T.; Lee, D.D.; Beahm, E.C.; Collins, J.L.; Davidson, D.J.; Egan, B.Z.; Mattus, A.J.; Walker, J.F. Jr. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1997-08-01T23:59:59.000Z

156

Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass  

Broader source: Energy.gov (indexed) [DOE]

Feed Composition Feed Composition and Recycle on Hanford Low- Activity Waste Glass Mass J.D. Vienna & D.S. Kim - Pacific Northwest National Laboratory I.L. Pegg - Catholic University of America 1 LAW Glass Loading Limits WTP baseline (LAW Glass Formulation Algorithm) low uncertainty  thoroughly tested accounts for Na, S, Cl, F, Cr, K, and P impacts conservative loading Advanced silicate formulation higher uncertainty than baseline currently accounts for Na and S impacts impacts of other components not specifically tested, but, one can evaluate maxima from testing as a lower bound 2 0 5 10 15 20 25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 SO 3 (target) wt% in Glass Na 2 O (target) wt% in Glass SO 3 ≤ 0.77 wt% Na 2 O ≤ 35.875 - 42.5*SO 3 (in wt%) Na 2 O ≤ 21 wt% Na 2 O + 0.66*K

157

Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass  

SciTech Connect (OSTI)

This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility of rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.

Riley, Brian J.; McCloy, John S.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Liu, Juan; Rodriguez, Carmen P.; Kim, Dong-Sang

2013-04-01T23:59:59.000Z

158

Coupling High-Energy Radiography And Photon Activation Analysis (PAA) To Optimize The Characterization Of Nuclear Waste Packages  

SciTech Connect (OSTI)

Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The alpha-activity, mainly due to the presence of actinides ({sup 235}U, {sup 238}U, {sup 239}Pu,...) inside the package, is one of the most important parameter to assess during the characterization. Photon Activation Analysis (PAA) is a non-destructive active method (NDA method) based on the photofission process and on the detection of delayed particles (neutrons and gammas). This technique is well-adapted to the characterization of large concrete waste packages. However, PAA methods often require a simulation step which is necessary to analyze experimental results and to quantify the global mass of actinides. The weak point of this approach is that characteristics of the package are often not well-known, these latter having a huge impact on the final simulation result. High-energy radiography, based on the use of a linear electron accelerator (LINAC), allows to visualize the content of the package and is also a performing way to tune simulation models and to optimize the characterization process by PAA. In this article, we present high-energy radiography results obtained for two different large concrete waste packages in the SAPHIR facility (Active Photon and Irradiation System). This facility is dedicated to PAA study and development and setup for a decade in CEA Saclay. We also discuss possibilities offered by the coupling between high-energy radiography and PAA techniques.

Carrel, F.; Agelou, M.; Gmar, M.; Laine, F.; Lamotte, T.; Lazaro, D.; Poumarede, B.; Rattoni, B. [CEA, LIST, F-91191, Gif-sur-Yvette (France)

2009-12-02T23:59:59.000Z

159

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

2012-11-15T23:59:59.000Z

160

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect (OSTI)

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

E-Print Network 3.0 - activity-long life waste Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ASME Proceedings of NAWTEC16 Summary: to as an "environmental life-cycle assessment," or LCA." In the field of solid waste management, it has long been... . The conduct of life...

162

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant November 2013  

Broader source: Energy.gov [DOE]

Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18

163

Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013  

Broader source: Energy.gov [DOE]

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

164

Extractive spectrophotometric determination of palladium from acidic high activity nuclear waste  

Science Journals Connector (OSTI)

A simple and rapid method for spectrophotometric determination of palladium from highly acidic and highly radioactive nuclear waste using ?-benzoin oxime (ABO) as...?5M to 410?4M in the organic phase. The molar ...

A. Dakshinamoorthy; R. K. Singh; R. H. Iyer

1994-01-01T23:59:59.000Z

165

E-Print Network 3.0 - activity waste vitrification Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference May 1-3, 2006, Tampa, Florida USA Summary: -98. Izumikawa C., 1996, "Metal recovery from fly ash generated from vitrification process for MSW ash," Waste... 14th...

166

Minimizing the completion time of the transfer operations in a central parcel consolidation terminal with unequal-batch-size inbound trailers  

Science Journals Connector (OSTI)

This paper addresses the scheduling of inbound trailers to unload docks at central parcel consolidation terminals in the parcel delivery industry, an industry that operates in a time-critical environment. The scheduling function can have a significant ... Keywords: Consolidation terminals, Distribution, Genetic algorithms, Parcel, Simulation-based scheduling

Douglas L. McWilliams; Paul M. Stanfield; Christopher D. Geiger

2008-05-01T23:59:59.000Z

167

Management activities for retrieved and newly generated transuranic waste, Savannah River Plant  

SciTech Connect (OSTI)

The purpose of this Environmental Assessment (EA) is to assess the potential environmental impacts of the retrieval and processing of retrieved and newly generated transuranic (TRU) radioactive waste at the Savannah River Plant (SRP), including the transportation of the processes TRU waste to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. A new TRU Waste Facility (TWF) will be constructed at SRP to retrieve and process the SRP TRU waste in interim storage to meet WIPP criteria. This EA has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council of Environmental Quality Regulations for implementing NEPA (40 CFR Parts 1500--1508). The National Environmental Policy Act (NEPA) requires the assessment of environmental consequences of all major federal actions that may affect the quality of the human environment. This document describes the environmental impact of constructing and operating the TWF facility for processing and shipment of the TRU waste to WIPP and considers alternatives to the proposed action. 40 refs., 12 figs., 12 tabs.

Not Available

1988-08-01T23:59:59.000Z

168

Radioisotope thermoelectric generator load and unload sequence from the licensed hardware package system and the trailer system  

SciTech Connect (OSTI)

The Radioisotope Thermoelectric Generator Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), including the Radioisotope Thermoelectric Generator Transportation System packaging is licensed (regularoty) hardware, certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. This paper focuses on the required interfaces and sequencing of events required by these systems and the shipping and receiving facilities in preparation of the Radioisotope Thermoelectric Generator for space flight. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

Reilly, M.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

169

A data base and a standard material for use in acceptance testing of low-activity waste products  

SciTech Connect (OSTI)

The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material.

Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

1998-04-01T23:59:59.000Z

170

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

171

US - Former Soviet Union environmental restoration and waste management activities, March 1994  

SciTech Connect (OSTI)

The Peaceful Uses of Atomic Energy Agreement was signed between DOE and the Ministry of Atomic Energy for the Russian Federation and provides a mechanism for cooperation in research, development, and safe utilization of nuclear energy. Under the umbrella of this agreement, DOE and the former Ministry of Atomic Power and Industry signed a Memorandum of Cooperation in the areas of environmental restoration and waste management in September 1990. This document discusses the environmental situation, science and technology process, technical projects (separations, contaminant transport, waste treatment, environmental restoration), scientist exchanges, enhanced data transfer, the US-Russia industry partnership (conference, centers), and future actions.

Not Available

1994-03-01T23:59:59.000Z

172

Prompt gamma ray neutron activation analysis of cadmium in municipal solid waste  

E-Print Network [OSTI]

EXPERIMENTAL. . 26 PGNAA Assembly. Detection System Background Determination of Detector Shielding. Self-Shielding. Optimal Bag Size and Orientation. . . . . . . . . . . . . . . Detection Limit and Sensitivity. . . . . . . . . . . . . . . . Neutron Flux... solid waste. This study modified a previous setup that was in a shadow- shield arrangement using Pu-Be neutron sources by: more elaborate detector shielding to reduce background levels; and, irradiating the target bilaterally. The system background...

Dendahl, Katherine Hoge

2012-06-07T23:59:59.000Z

173

Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.  

Science Journals Connector (OSTI)

...samples collected from disposal sites at Maxey Flats, Ky., and West...trenches at the disposal sites of Maxey Flats, Ky., West Valley...trench water at the Maxey Flats low-level radioactive waste disposal site, p. 747-761...

A J Francis; S Dobbs; B J Nine

1980-07-01T23:59:59.000Z

174

Chapter 19 - Nuclear Waste Fund  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

175

River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect (OSTI)

This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

BRIGGS, M.G.

2000-09-22T23:59:59.000Z

176

DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

Harpenau, Evan M

2013-10-10T23:59:59.000Z

177

EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA  

SciTech Connect (OSTI)

Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

LaClair, Tim J [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Fu, Joshua S. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Calcagno, Jimmy [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Yun, Jeongran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

178

RH-TRU Waste Content Codes  

SciTech Connect (OSTI)

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

Washington TRU Solutions

2007-07-01T23:59:59.000Z

179

Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain  

SciTech Connect (OSTI)

Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m{sup 2}, including the rock salt dump. The space required for the underground facilities amounts to 1.2 km{sup 2}, approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented.

Huertas, F.; Ulibarri, A. [ENRESA, Madrid (Spain)

1993-12-31T23:59:59.000Z

180

Activity of Microorganisms in Organic Waste Disposal: IV. Bio-Calculations  

Science Journals Connector (OSTI)

...characteristics of the sludge system as previously...example, an activated sludge from a food processing...its high activity and gas production. As a result, the maximum attainable sludge concentration was 0...solution in microscopic bubbles. These fine bubbles...

W. Wesley Eckenfelder Jr.; Nandor Porges

1957-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electronic Waste Transformation  

Science Journals Connector (OSTI)

Electronic Waste Transformation ... Instead, entrepreneurial individuals and small businesses recover valuable metals such as copper from obsolete equipment through activities such as burning. ...

CHERYL HOGUE

2012-04-01T23:59:59.000Z

182

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07T23:59:59.000Z

183

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Broader source: Energy.gov (indexed) [DOE]

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

184

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. [Oak Ridge National Lab., TN (United States); Craig, P.M. [Environmental Consulting Engineers, Inc., Knoxville, TN (United States)

1987-09-30T23:59:59.000Z

185

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

1987-09-30T23:59:59.000Z

186

Shielding requirements for K Basin waste transfer line  

SciTech Connect (OSTI)

K-East Basin sludge, mixed with water, is to be transported to the tank farms using a high integrity container mounted on a trailer. Load considerations preclude driving the truck directly to the tank opening. Thus, it is envisioned that a transfer line will run from a tanker unloading point to a point where the waste can be injected into a waste tank. It is presently envisioned that the waste will be pumped from the truck to the tank in a three inch pipe which is encased inside a six inch pipe. The transfer line will be shielded by either berming earth with a density of approximately 2.00 g/cm{sup 3} (125 lb/ft{sup 3}) around the line, or constructing a concrete raceway.

Goldberg, H.J.

1996-04-01T23:59:59.000Z

187

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

188

Proposed design requirements for high-integrity containers used to store, transport, and dispose of high-specific-activity, low-level radioactive wastes from Three Mile Island Unit II  

SciTech Connect (OSTI)

This report develops proposed design requirements for high integrity containers used to store, transport and/or dispose of high-activity, low-level radioactive wastes from Three Mile Island Unit II. The wastes considered are the dewatered resins produced by the EPICOR II waste treatment system used to clean-up the auxiliary building water. The radioactivity level of some of these EPICOR II liners is 1300 curies per container. These wastes may be disposed of in an intermediate depth burial (10 to 20 meter depth) facility. The proposed container design requirements are directed to ensure isolation of the waste and protection of the public health and safety.

Vigil, M.G.; Allen, G.C.; Pope, R.B.

1981-04-01T23:59:59.000Z

189

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

190

Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California  

SciTech Connect (OSTI)

DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only other option considered in this EA.

N /A

1999-12-17T23:59:59.000Z

191

Application of single ion activity coefficients to determine solvent extraction mechanism for components of high level nuclear waste  

SciTech Connect (OSTI)

The TRUEX solvent extraction process is being developed to remove and concentrate transuranic (TRU) elements from high-level and TRU radioactive wastes currently stored at US Department of Energy sites. Phosphoric acid is one of the chemical species of concern at the Hanford site where bismuth phosphate was used to recover plutonium. The mechanism of phosphoric acid extraction with TRUEX-NPH solvent at 25{degrees}C was determined by phosphoric acid distribution ratios, which were measured by using phosphoric acid radiotracer and a variety of aqueous phases containing different concentrations of nitric acid and nitrate ions. A model was developed for predicting phosphoric acid distribution ratios as a function of the thermodynamic activities of nitrate ion and hydrogen ion. The Generic TRUEX Model (GTM) was used to calculate these activities based on the Bromley method. The derived model supports CMPO and TBP extraction of a phosphoric acid-nitric acid complex and a CMPO-phosphoric acid complex in TRUEX-NPH solvent.

Nunez, L.; Vandegrift, G.F.

1995-12-31T23:59:59.000Z

192

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

193

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

194

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

195

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect (OSTI)

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the add a source basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

196

Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08  

SciTech Connect (OSTI)

Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initial retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.

DEFIGH PRICE, C.

2000-09-25T23:59:59.000Z

197

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

198

Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment  

Science Journals Connector (OSTI)

Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for rene...

Mabel Ting Wong; Dong Zhang; Jun Li; Raymond Kin Hi Hui

2013-03-01T23:59:59.000Z

199

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

200

RH-TRU Waste Content Codes (RH-TRUCON)  

SciTech Connect (OSTI)

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

Washington TRU Solutions

2007-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RH-TRU Waste Content Codes (RH-TRUCON)  

SciTech Connect (OSTI)

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

Washington TRU Solutions LLC

2007-08-01T23:59:59.000Z

202

A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford  

SciTech Connect (OSTI)

The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

2014-08-04T23:59:59.000Z

203

Mixed waste characterization reference document  

SciTech Connect (OSTI)

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

204

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Broader source: Energy.gov (indexed) [DOE]

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

205

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

206

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...06520, USA. Nuclear power is re-emerging...proclaiming a nuclear renaissance...example, plant safety...liabilities, terrorism at plants and in transport...high-level nuclear wastes (HLW...factor in risk perceptions...supporting nuclear power in the abstract...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

207

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long...

208

Waste Isolation Pilot Plant - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

209

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

210

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

211

Final Tank Closure and Waste Management Environmental Impact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and treat the waste remaining in 177 underground storage tanks; store the high-level radioactive waste (HLW); dispose of the low-activity waste (LAW) at the Hanford Site...

212

Nuclear waste management. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-04-01T23:59:59.000Z

213

Transuranic Waste Tabletop  

Broader source: Energy.gov (indexed) [DOE]

Transuranic (TRU) Waste Transuranic (TRU) Waste (Hazard Class 7 Radioactive) Moderator's Version of Tabletop Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-07D.p65 This page intentionally left blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools planning tools planning tools T T T T Tr r r r ransur ansur ansur ansur ansuranic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) Waste aste aste aste aste (Hazar (Hazar (Hazar (Hazar (Hazard Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radioactiv activ activ activ active) e) e) e) e) Moder Moder Moder Moder Moderat at at at ator' or' or' or' or's V s V s V s V s Version of T ersion of T ersion of T ersion of T ersion of Tablet ablet ablet ablet abletop

214

Technical requirements specification for tank waste retrieval  

SciTech Connect (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

215

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant December 2014  

Broader source: Energy.gov [DOE]

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Reagents Systems Hazards Analysis Activity Observation (EA-WTP-LAW-2014-06-02)

216

Increasing Antioxidant Activity of Procyanidin Extracts from the Pericarp of Litchi chinensis Processing Waste by Two Probiotic Bacteria Bioconversions  

Science Journals Connector (OSTI)

The total antioxidant capability (T-AOC) of LPOPCs before and after microbial incubation was estimated, and the results suggested that probiotic bacteria bioconversion is a feasible and efficient method to convert litchi pericarp procyanidins to a more effective antioxidant agent. ... However, the pericarp of litchi, which accounts for 15% of the fresh weight of the fruit, becomes desiccated and turns brown at ambient temperature within 2 or 3 days pastharvest and is often thrown away as waste. ... Elution conditions were as follows: a linear gradient from 5 to 35% B in 40 min, from 35 to 50% B in 5 min, from 50 to 80% B in 5 min, and from 80 to 5% B in 5 min, at a flow rate of 1.0 mL/min. ...

Shuyi Li; Lu Chen; Ting Yang; Qian Wu; Zhejuan Lv; Bijun Xie; Zhida Sun

2013-01-21T23:59:59.000Z

217

Waste Management Program. Technical progress report, Aporil-June 1983  

SciTech Connect (OSTI)

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1984-02-01T23:59:59.000Z

218

Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site  

SciTech Connect (OSTI)

This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

NONE

1995-02-01T23:59:59.000Z

219

Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of E. I. Du Pont de Nemours and Company, Chambers Works, Deepwater, New Jersey  

SciTech Connect (OSTI)

A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at du Pont de Nemours and Company (SIC-2800), Deepwater, New Jersey in November 1981. Hazardous wastes generated at the facility were disposed of by incineration, wastewater and thermal treatment, and landfilling. Engineering controls for the incineration process and at the landfill were noted. At the landfill, water from a tank trailer was sprayed periodically to suppress dust generation. Vapor control devices, such as spot scrubbers, were used during transfer of organic wastes from trailers and drums to storage prior to incineration. Wastes were also recirculated to prevent build up of grit in the strainers. The company conducted area monitoring for nitrobenzene (98953) and amines at the landfill and personal monitoring for chloramines at the incinerator. Half mask dust respirators were worn by landfill operators. Operators who unloaded and emptied drums at the incinerator were required to wear face masks, rubber gloves, and boots. The author concludes that disposal of hazardous wastes at the facility is state of the art. An in depth survey is recommended.

Anastas, M.

1984-01-01T23:59:59.000Z

220

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant December 2014  

Broader source: Energy.gov [DOE]

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b))

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hazardous waste management in the Pacific basin  

SciTech Connect (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

222

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

223

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R&D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R&D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R&D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

224

ICDF Complex Operations Waste Management Plan  

SciTech Connect (OSTI)

This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

W.M. Heileson

2006-12-01T23:59:59.000Z

225

Solid waste retrieval. Phase 1, Operational basis  

SciTech Connect (OSTI)

This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

Johnson, D.M.

1994-09-30T23:59:59.000Z

226

SRS - Programs - Liquid Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

227

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

228

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Activity Waste Trailer (HAWT) Disposition High Activity Waste Trailer (HAWT) Disposition Savannah River Site Aiken/Aiken/South Carolina SRNL has supported the processing of samples and materials for analysis support to the site's facilities. During those processes, sample materials were developed and collected. Some were deposited in the High Activity Drain system and later pumped to a High Activity Waste Trailer (HAWT), which was used to ship materials to the SRS tank farms for processing. This HAWT was removed from service in 1974. Since 1975 it has been in a standby mode. This tank/trailer is being considered for disposition. To support proper dispositioning, the tarps covering the HAWT must be removed to allow samples to be taken from the HAWT for analysis and characterization. These results will determine the path

229

Kaiser Engineers Hanford internal position paper -- Project W-236A, Multi-function Waste Tank Facility -- Peer reviews of selected activities  

SciTech Connect (OSTI)

The purpose of this paper is to develop and document a proposed position on the performance of independent peer reviews on selected design and analysis components of the Title 1 [Preliminary] and Title 2 [Final] design phases of the Multi-Function Waste Tank Facility [MWTF] project. An independent, third-party peer review is defined as a documented critical review of documents, data, designs, design inputs, tests, calculations, or related materials. The peer review should be conducted by persons independent of those who performed the work, but who are technically qualified to perform the original work. The peer review is used to assess the validity of assumptions and functional requirements, to assess the appropriateness and logic of selected methodologies and design inputs, and to verify calculations, analyses and computer software. The peer review can be conducted at the end of the design activity, at specific stages of the design process, or continuously and concurrently with the design activity. This latter method is often referred to as ``Continuous Peer Review.``

Stine, M.D. [Kaiser Engineers Hanford Co., Richland, WA (United States)

1995-01-04T23:59:59.000Z

230

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

231

Independent Oversight Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design, November 18, 2013  

Broader source: Energy.gov (indexed) [DOE]

Report Number: HIAR-VSL-2013-11-18 Site: Catholic University of America - Vitreous State Laboratory (VSL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design Date of Activity : 11/18/13 Report Preparer: James O. Low Activity Description/Purpose: Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is

232

CRAD, Radioactive Waste Management - June 22, 2009 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radioactive Waste Management - June 22, 2009 Radioactive Waste Management - June 22, 2009 CRAD, Radioactive Waste Management - June 22, 2009 June 22, 2009 Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0) The following provides an overview of the typical activities that will be performed to collect information to evaluate the management of radioactive wastes and implementation of integrated safety management. The following Inspection Activities apply to all Inspection Criteria listed below: Review radioactive waste management and control processes and implementing procedures. Interview personnel including waste management supervision, staff, and subject matter experts. Review project policies, procedures, and corresponding documentation related to ISM core function

233

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect (OSTI)

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

234

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

235

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

236

Legacy Risk Measure for Environmental Management Waste  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating the development of a comprehensive and quantitative risk model framework for environmental management activities at the site. Included are waste management programs (high-level waste, transuranic waste, low-level waste, mixed low-level waste, spent nuclear fuel, and special nuclear materials), major environmental restoration efforts, major decontamination and decommissioning projects, and planned long-term stewardship activities. Two basic types of risk estimates are included: risks from environmental management activities, and long-term legacy risks from wastes/materials. Both types of risks are estimated using the Environment, Safety, and Health Risk Assessment Program (ESHRAP) developed at the INEEL. Given these two types of risk calculations, the following evaluations can be performed: Risk evaluation of an entire program (covering waste/material as it now exists through disposal or other end states) Risk comparisons of alternative programs or activities Comparisons of risk benefit versus risk cost for activities or entire programs Ranking of programs or activities by risk Ranking of wastes/materials by risk Evaluation of site risk changes with time as activities progress Integrated performance measurement using indicators such as injury/death and exposure rates. This paper discusses the definition and calculation of legacy risk measures and associated issues. The legacy risk measure is needed to support three of the seven types of evaluations listed above: comparisons of risk benefit versus risk cost, ranking of wastes/materials by risk, and evaluation of site risk changes with time.

Eide, Steven Arvid; Nitschke, Robert Leon

2002-02-01T23:59:59.000Z

237

FY 1996 Tank waste analysis plan  

SciTech Connect (OSTI)

This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

Homi, C.S.

1996-09-18T23:59:59.000Z

238

WASTE TO WATTS Waste is a Resource!  

E-Print Network [OSTI]

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

239

Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt  

SciTech Connect (OSTI)

The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

2014-09-26T23:59:59.000Z

240

Oversight Reports - Waste Isolation Pilot Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oversight Reports - Waste Isolation Pilot Plant Oversight Reports - Waste Isolation Pilot Plant Oversight Reports - Waste Isolation Pilot Plant April 22, 2013 Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities November 28, 2012 Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant September 28, 2011 Independent Activity Report, Waste Isolation Pilot Plant - September 2011 Orientation Visit to the Waste Isolation Pilot Plant [HIAR-WIPP-2011-09-07] October 2, 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 Inspection of Environment, Safety, and Health and Emergency Management at

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091  

SciTech Connect (OSTI)

Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

Chan, Nicholas; Adams, Lynne; Wong, Pierre [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)] [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

2013-07-01T23:59:59.000Z

242

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant December 2014  

Broader source: Energy.gov [DOE]

Operational Awareness Record for the Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))

243

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

244

Portable sensor for hazardous waste  

SciTech Connect (OSTI)

Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps.

Piper, L.G.

1994-12-31T23:59:59.000Z

245

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

246

Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts  

SciTech Connect (OSTI)

The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities.

Not Available

1985-08-01T23:59:59.000Z

247

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

248

Radioactive Waste Management BasisSept 2001  

SciTech Connect (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

249

Experiences with treatment of mixed waste  

SciTech Connect (OSTI)

During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

1996-04-10T23:59:59.000Z

250

Tritium waste disposal technology in the US  

SciTech Connect (OSTI)

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

251

Categorical Exclusion 4565, Waste Management Construction Support  

Broader source: Energy.gov (indexed) [DOE]

FornI FornI Project Title: Waste Management Construction Support (4565) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is an attempt to cover the general activities that construction would perform in support of Waste Management activities. Work includes construction work performed in support of Waste Management Sustainability and Stewardship projects and programs to include: load waste into containers; open, manipulate containers; empty containers; decommission out-of-service equipment (includes removal of liquids, hazardous, and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls; operate wheeled and tracked equipment; general carpentry. Work will be performed on dirt, vegetated, graveled, or paved surfaces in

252

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams  

SciTech Connect (OSTI)

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

COZZI, ALEX

2004-02-18T23:59:59.000Z

253

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Full Document and Summary Versions...

254

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

255

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

256

Hanford Site waste management and environmental restoration integration plan  

SciTech Connect (OSTI)

The Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs.

Merrick, D.L.

1990-04-30T23:59:59.000Z

257

Solid waste management: a public policy study  

E-Print Network [OSTI]

not be discharged into surface water in violation of the National Pollutant Discharge Elimination System of the Clean Water Act; and no facility may contaminate an underground drinking waste source beyond the plant boundary. 2. Air: No open burning... of residential, commercial, institutional, or industrial solid waste may take place. Certain periodic burning activities are exempt. 3. Farmland: No solid waste facility border may lie within one meter (three feet) of land used for crop. If polychlorinated...

Jayawant, Mandar Prabhatkumar

2012-06-07T23:59:59.000Z

258

AIChE issues nuclear waste conclusions  

Science Journals Connector (OSTI)

AIChE issues nuclear waste conclusions ... Long and extensive research, development, and demonstration activities in the U.S. and abroad have made possible the safe, permanent disposal of high-level commercial nuclear waste. ... Titled "The U.S. High-Level Nuclear Waste Management Program," it was prepared by an AIChE nuclear engineering division task force for the institute's government programs steering committee. ...

1986-02-10T23:59:59.000Z

259

PUREX Plant waste analysis plan. Revision 2  

SciTech Connect (OSTI)

A Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous wastes are managed properly. This document covers the activities at the PUREX Plant to characterize the designate waste that is generated within the plant, stored in Tanks F18, U3/U4, and managed through elementary neutralization in Tank 31.

Villalobos, C.N.

1995-04-10T23:59:59.000Z

260

HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT  

SciTech Connect (OSTI)

A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

HAMILTON, D.W.

2006-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measurement of radioactive contaminated wastes  

SciTech Connect (OSTI)

At Los Alamos, a comprehensive program is underway for the development of sensitive, practical, nondestructive assay techniques for the quantification of low-level transuranics in bulk solid wastes. The program encompasses a broad range of techniques, including sophisticated active and passive gamma-ray spectroscopy, passive neutron detection systems, pulsed portable neutron generator interrogation systems, and electron accelerator-based techniques. The techniques can be used with either low-level or high-level beta-gamma wastes in either low-density or high-density matrices. The techniques are quite sensitive (< 10 nCi/g detection) and, in many cases, isotopic specific. Waste packages range in size from small cardboard boxes to large metal or wooden crates. Considerable effort is being expended on waste matrix identification to improve assay accuracy.

Caldwell, J.T.; Close, D.A.; Crane, T.W.

1983-01-01T23:59:59.000Z

262

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

263

Microsoft Word - Tank Waste Report 9-30-05.doc  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Tank Waste Retrieval Accelerated Tank Waste Retrieval Activities at the Hanford Site DOE/IG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF CONTENTS Tank Waste Retrieval Details of Finding 1 Recommendations and Comments 4 Appendices Objective, Scope, and Methodology 6 Prior Reports 7 Management Comments 8 Tank Waste Retrieval Page 1 Details of Finding Tank Waste The Department will not meet Tri-Party Agreement (Agreement) Retrieval Activities milestones for the retrieval of waste from the single-shell tanks located at the C-Tank Farm within schedule and cost. Based on the current C-Tank Farm retrieval schedule and the amount of waste retrieved to date, the Department will not accomplish its

264

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck is limited by a high-bay door at 4.14m high Nominal configuration is 2-cage (over/under), with bottom (equipment) cage interior height of 4.52m The photo, at left, shows the 4.14m high-bay doors at the top collar of the waste hoist shaft. The perpendicular cross section of the opening is 3.5m x 4.14m, but the bottom cage cross section is 2.87m x 4.5m (and 4.67m into the plane of the photo).

265

Liquid and gaseous waste operations section. Annual operating report CY 1997  

SciTech Connect (OSTI)

This document presents information on the liquid and gaseous wastes operations section for calendar year 1997. Operating activities, upgrade activities, and maintenance activities are described.

Maddox, J.J.; Scott, C.B.

1998-03-01T23:59:59.000Z

266

Mixed Waste Focus Area program management plan  

SciTech Connect (OSTI)

This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

Beitel, G.A.

1996-10-01T23:59:59.000Z

267

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

ELLEFSON, M.D.

1999-12-01T23:59:59.000Z

268

Radioactive Waste Management (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

269

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect (OSTI)

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

270

Legacy Risk Measure for Environmental Waste  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating the development of a comprehensive and quantitative risk model framework for environmental management activities at the site. Included are waste management programs (high-level waste, transuranic waste, low-level waste, mixed low-level waste, spent nuclear fuel, and special nuclear materials), major environmental restoration efforts, major decontamination and decommissioning projects, and planned long-term stewardship activities. Two basic types of risk estimates are included: risks from environmental management activities, and long-term legacy risks from wastes/materials. Both types of risks are estimated using the Environment, Safety, and Health Risk Assessment Program (ESHRAP) developed at the INEEL. Given these two types of risk calculations, the following evaluations can be performed: risk evaluation of an entire program (covering waste/material as it now exists through disposal or other e nd states); risk comparisons of alternative programs or activities; comparisons of risk benefit versus risk cost for activities or entire programs; ranking of programs or activities by risk; ranking of wastes/materials by risk; evaluation of site risk changes with time as activities progress; and integrated performance measurement using indicators such as injury/death and exposure rates. This paper discusses the definition and calculation of legacy risk measures and associated issues. The legacy risk measure is needed to support three of the seven types of evaluations listed above: comparisons of risk benefit versus risk cost, ranking of wastes/materials by risk, and evaluation of site risk changes with time.

Eide, S. A.; Nitschke, R. L.

2002-02-26T23:59:59.000Z

271

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21T23:59:59.000Z

272

WIPP (Waste Isolation Pilot Plant) test phase plan: Performance assessment  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs.

Not Available

1990-04-01T23:59:59.000Z

273

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

1984-02-06T23:59:59.000Z

274

Transuranic Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

1999-07-09T23:59:59.000Z

275

Waste?to?Energy  

Broader source: Energy.gov [DOE]

Waste?to?Energy Roadmapping Workshop Waste?to?Energy Presentation by Jonathan Male, Director of the Bioenery Technolgies Office, Department of Energy

276

Remote-handled transuranic waste study  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

NONE

1995-10-01T23:59:59.000Z

277

Nuclear Waste Disposal: Amounts of Waste  

Science Journals Connector (OSTI)

The term nuclear waste...embraces all residues from the use of radioactive materials, including uses in medicine and industry. The most highly radioactive of these are the spent fuel or reprocessed wastes from co...

2005-01-01T23:59:59.000Z

278

Lean Product Development: Making Waste Transparent  

E-Print Network [OSTI]

Lean manufacturing developed by Toyota is a production philosophy that focuses on streamlining of value added activities and eliminating waste within the process with the goal to better meet customer demand. It constitutes ...

Bauch, Christoph

2004-01-15T23:59:59.000Z

279

Waste-to-Energy Roadmapping Workshop Agenda  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste-to-Energy Workshop Agenda November 5-6, 2014 DoubleTree Hotel Crystal City Arlington, VA 22202 Day 1: Wednesday, November 5, 2014 Time Activity 7:30 am Registration and...

280

Idaho High-Level Waste & Facilities Disposition, Final Environmental...  

Office of Environmental Management (EM)

from INTEC closure activities stored in the Tank Farm, solids in the bottom of the tanks, and trace contamination from first cycle reprocessing extraction waste. SBW contains...

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Mixed Waste Management Facility. Monthly report, January 1996  

SciTech Connect (OSTI)

This document presents information about the activities and costs of the Mixed Waste Management Facility for the month of January 1996.

Streit, R.D.

1996-02-01T23:59:59.000Z

282

Waste Form Degradation Model Integration for Engineered Materials Performance  

Broader source: Energy.gov [DOE]

The collaborative approach to the glass and metallic waste form degradation modeling activities includes process model development (including first-principles approaches) and model integrationboth...

283

Annual report of waste generation and pollution prevention progress 1995  

SciTech Connect (OSTI)

This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

NONE

1997-02-01T23:59:59.000Z

284

Microsoft PowerPoint - 9_ANDY_IMBODEN_NMMSS_2014_Powerpoint_Waste...  

National Nuclear Security Administration (NNSA)

NRC's Waste Confidence Rulemaking Andy Imboden, NRC, Office of Nuclear Material Safety and Safeguards Outline Schedule Completed Activities Public Participation ...

285

Closure Report for Corrective Action Unit 523: Housekeeping Waste, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This closure report documents the closure activities conducted for Corrective Action Unit 523: Housekeeping Waste, Nevada Test Site, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2003-11-01T23:59:59.000Z

286

Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria  

SciTech Connect (OSTI)

High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

1993-08-01T23:59:59.000Z

287

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network [OSTI]

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

288

Radioactive and nonradioactive waste intended for disposal at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

Transuranic (TRU) waste generated by the handling of plutonium in research on or production of US nuclear weapons will be disposed of in the Waste Isolation Pilot Plant (WIPP). This paper describes the physical and radiological properties of the TRU waste that will be deposited in the WIPP. This geologic repository will accommodate up to 175,564 m{sup 3} of TRU waste, corresponding to 168,485 m{sup 3} of contact-handled (CH-) TRU waste and 7,079 m{sup 3} of remote-handled (RH-) TRU waste. Approximately 35% of the TRU waste is currently packaged and stored (i.e., legacy) waste, with the remainder of the waste to be packaged or generated and packaged in activities before the year 2033, the closure time for the repository. These wastes were produced at 27 US Department of Energy (DOE) sites in the course of generating defense nuclear materials. The radionuclide and nonradionuclide inventories for the TRU wastes described in this paper were used in the 1996 WIPP Compliance Certification Application (CCA) performance assessment calculations by Sandia National Laboratories/New Mexico (SNL/NM).

SANCHEZ,LAWRENCE C.; DREZ,P.E.; RATH,JONATHAN S.; TRELLUE,H.R.

2000-05-19T23:59:59.000Z

289

Simulation of thermal stress influence on the Boom Clay kerogen (Oligocene, Belgium) in relation to long-term storage of high activity nuclear waste: I. Study of generated soluble compounds  

Science Journals Connector (OSTI)

Closed pyrolyses were performed on the Boom Clay kerogen to simulate the weak thermal stress applied during the in situ CERBERUS heating experiment (80 C for 5 a). Two stronger thermal stresses, encompassing the range generally considered for the long-term disposal of high-activity nuclear waste (80 C for 1 ka and 120 C for 3 ka), were also simulated. Quantitative and qualitative studies were carried out on the products thus generated with a focus on the C12+ fraction, especially on its polar components. It thus appeared that the soluble C12+ fractions generated during these simulation experiments comprise a wide variety of polar O- and/or N-containing compounds, including carboxylic acids and phenols. The nature and/or the relative abundance of these polar compounds exhibit strong variations, with the extent of the thermal stress, reflecting the primary cracking of different types of structures with different thermal stability and the occurrence of secondary degradation reactions. These observations support the idea that the compounds, generated upon exposure of the Boom Clay kerogen to a low to moderate thermal stress, may affect the effectiveness of the geological barrier upon long-term storage of high-activity nuclear waste.

I. Deniau; S. Derenne; C. Beaucaire; H. Pitsch; C. Largeau

2005-01-01T23:59:59.000Z

290

Environmental assessment for transuranic waste work-off plan, Los Alamos National Laboratory. Rough draft: Final report  

SciTech Connect (OSTI)

The Los Alamos National Laboratory (LANL) generates transuranic (TRU) waste in a variety of programs related to national defense. TRU waste is a specific class of radioactive waste requiring permanent isolation. Most defense-related TRU waste will be permanently disposed of in the Waste Isolation Pilot Plant (WIPP). WIPP is a deep geologic repository located in southeastern New Mexico and is now in the testing phase of development. All waste received by Wipp must conform with established Waste Acceptance Criteria (WAC). The purpose of the proposed action is to retrieve stored TRU waste and prepare the waste for shipment to and disposal WIPP. Stored TRU waste LANL is represented by four waste forms. The facilities necessary for work-off activities are tailored to the treatment and preparation of these four waste forms. Preparation activities for newly generated TRU waste are also covered by this action.

Not Available

1990-10-26T23:59:59.000Z

291

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

292

Tank Waste Corporate Board Meeting 11/18/10 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Corporate Board Meeting 11/18/10 Tank Waste Corporate Board Meeting 11/18/10 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. High-Level Waste Corporate Board Meeting Agenda Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy Introduction to Tc/I in Hanford Flowsheet Fate of Tc99 at WTP and Current Work on Capture Technetium Retention During LAW Vitrification Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass Secondary Waste Forms and Technetium Management Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification Salt Waste Processing Initiatives Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations

293

Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan  

SciTech Connect (OSTI)

The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

GREAGER, T.M.

2000-12-06T23:59:59.000Z

294

Tank Waste Corporate Board Meeting 11/06/08 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11/06/08 11/06/08 Tank Waste Corporate Board Meeting 11/06/08 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 6th, 2008. Note: (Please contact Steven Ross at steven.ross@em.doe.gov for a HLW Glass Waste Loadings version with animations on slide 6). Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop The Way Ahead - West Valley Demonstration Project High-Level Liquid Waste Tank Integrity Workshop - 2008 Savannah River Tank Waste Residuals Hanford Tank Waste Residuals HLW Glass Waste Loadings High-Level Waste Corporate Board Performance Assessment Subcommittee More Documents & Publications Tank Waste Corporate Board Meeting 11/18/10 System Planning for Low-Activity Waste at Hanford Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

295

Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

296

Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2  

SciTech Connect (OSTI)

The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

Jacobsen, P.H.

1997-09-23T23:59:59.000Z

297

Recycling of sodium waste  

Science Journals Connector (OSTI)

Recycling of sodium waste ... Methods for handling and recycling a dangerous and costly chemical. ...

Bettina Hubler-Blank; Michael Witt; Herbert W. Roesky

1993-01-01T23:59:59.000Z

298

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

ELLEFSON, M.D.

2000-01-06T23:59:59.000Z

299

Waste Isolation Pilot Plant. Project progress report for month ending October 31, 1980  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is intended to serve as a nuclear waste repository for those defense transuranic wastes, both remote handled and contact handled, which requires deep geologic disposal, and to provide a separate underground facility for in-situ experiments with various waste forms. Activities in the design, technical support, and scientific program of WIPP are summarized in this report. (DLC)

Not Available

1980-01-01T23:59:59.000Z

300

Infectious waste feed system  

DOE Patents [OSTI]

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Activities  

Broader source: Energy.gov [DOE]

Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

302

Waste minimization in semiconductor processing  

SciTech Connect (OSTI)

The US semiconductor industry uses 5--7 thousand pounds of arsine annually. Fifty to eighty percent of the arsine used becomes a waste product, which requires abatement. Traditional methods of abatement are reviewed with an emphasis on dry chemical scrubbing. A variety of dry chemical scrubbing materials were evaluated for arsine capacity, using activated carbon as the baseline for comparison. Of the available technologies, dry chemical scrubbing is the most effective means of minimizing arsenic containing waste generated from semiconductor effluents. A copper oxide based media has been identified which has high capacity, high efficiency and treats the spectrum of gases used in MOCVD processes. Reclaim and recovery of spent scrubber media has the potential to drastically reduce arsenic waste from semiconductor manufacturing.

Hardwick, S.J.; Mailloux, J.C. [Novapure Corp., Danbury, CT (United States)

1994-12-31T23:59:59.000Z

303

Radioactive Waste Incineration: Status Report  

SciTech Connect (OSTI)

Incineration is generally accepted as a method of reducing the volume of radioactive waste. In some cases, the resulting ash may have high concentrations of materials such as Plutonium or Uranium that are valuable materials for recycling. Incineration can also be effective in treating waste that contains hazardous chemicals as well as radioactive contamination. Despite these advantages, the number of operating incinerators currently in the US currently appears to be small and potentially declining. This paper describes technical, regulatory, economic and political factors that affect the selection of incineration as a preferred method of treating radioactive waste. The history of incinerator use at commercial and DOE facilities is summarized, along with the factors that have affected each of the sectors, thus leading to the current set of active incinerator facilities. In summary: Incineration has had a long history of use in radioactive waste processing due to their ability to reduce the volume of the waste while destroying hazardous chemicals and biological material. However, combinations of technical, regulatory, economic and political factors have constrained the overall use of incineration. In both the Government and Private sectors, the trend is to have a limited number of larger incineration facilities that treat wastes from a multiple sites. Each of these sector is now served by only one or two incinerators. Increased use of incineration is not likely unless there is a change in the factors involved, such as a significant increase in the cost of disposal. Medical wastes with low levels of radioactive contamination are being treated effectively at small, local incineration facilities. No trend is expected in this group. (authors)

Diederich, A.R.; Akins, M.J. [WorleyParsons, Reading, PA (United States)

2008-07-01T23:59:59.000Z

304

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

305

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-01T23:59:59.000Z

306

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

307

Hazardous waste treatment and environmental remediation research  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

Not Available

1989-09-29T23:59:59.000Z

308

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan  

SciTech Connect (OSTI)

This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

G. L. Schwendiman

2006-07-01T23:59:59.000Z

309

DOE Completes TRU Waste Cleanup at Bettis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TRU Waste Cleanup at Bettis TRU Waste Cleanup at Bettis DOE Completes TRU Waste Cleanup at Bettis September 23, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) has successfully completed cleanup of all Cold War legacy transuranic (TRU) waste at the Bettis Atomic Power Laboratory (BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20th site to be completely cleaned of legacy TRU waste. This milestone was achieved using approximately $640,000 of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup activities across the DOE complex. This summer, TRU waste cleanup was also completed at the Nuclear Radiation Development, LLC,

310

Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables.

Not Available

1984-09-01T23:59:59.000Z

311

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

312

Regulatory requirements affecting disposal of asbestos-containing waste  

SciTech Connect (OSTI)

Many U.S. Department of Energy (DOE) facilities are undergoing decontamination and decommissioning (D&D) activities. The performance of these activities may generate asbestos-containing waste because asbestos was formerly used in many building materials, including floor tile, sealants, plastics, cement pipe, cement sheets, insulating boards, and insulating cements. The regulatory requirements governing the disposal of these wastes depend on: (1) the percentage of asbestos in the waste and whether the waste is friable (easily crumbled or pulverized); (2) other physical and chemical characteristics of the waste; and (3) the State in which the waste is generated. This Information Brief provides an overview of the environment regulatory requirements affecting disposal of asbestos-containing waste. It does not address regulatory requirements applicable to worker protection promulgated under the Occupational Safety and Health Act (OSHAct), the Mining Safety and Health Act (MSHA), or the Toxic Substances Control Act (TSCA).

NONE

1995-11-01T23:59:59.000Z

313

Waste Management Update by Frank Marcinowski  

Broader source: Energy.gov (indexed) [DOE]

U.S. DOE Environmental Management U.S. DOE Environmental Management Update on Waste Management (and other EM Mission Units) Frank Marcinowski Deputy Assistant Secretary for Waste Management ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD CHAIRS MEETING APRIL 18-19, 2012 PADUCAH, KENTUCKY www.em.doe.gov 2  Compliance update  Recent program accomplishments  FY 12 waste management priorities  FY 13 waste management priorities  Strategic goals related to waste and materials disposition  Update on Blue Ribbon Commission Related Activities  Update on DOE 435.1 revision  Update on Asset Revitalization Initiative Discussion Outline www.em.doe.gov 3  Office of Site Restoration (EM-10) o Soil and Ground Remediation o D&D & Facility Engineering

314

Waste minimization and pollution prevention awareness plan  

SciTech Connect (OSTI)

The purpose of this plan is to document the Lawrence Livermore National Laboratory (LLNL) Waste Minimization and Pollution Prevention Awareness Program. The plan specifies those activities and methods that are or will be employed to reduce the quantity and toxicity of wastes generated at the site. The intent of this plan is to respond to and comply with (DOE's) policy and guidelines concerning the need for pollution prevention. The Plan is composed of a LLNL Waste Minimization and Pollution Prevention Awareness Program Plan and, as attachments, Program- and Department-specific waste minimization plans. This format reflects the fact that waste minimization is considered a line management responsibility and is to be addressed by each of the Programs and Departments. 14 refs.

Not Available

1991-05-31T23:59:59.000Z

315

Plasma Mass Filters For Nuclear Waste Reprocessing  

SciTech Connect (OSTI)

Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-05-26T23:59:59.000Z

316

WASTE MANAGEMENT AT SRS - MAKING IT HAPPEN  

SciTech Connect (OSTI)

The past five years have witnessed a remarkable transition in the pace and scope of waste management activities at SRS. At the start of the new M&O contract in 1996, little was being done with the waste generated at the site apart from storing it in readiness for future treatment and disposal. Large volumes of legacy waste, particularly TRU and Low Level Waste, had accumulated over many years of operation of the site's nuclear facilities, and the backlog was increasing. WSRC proposed the use of the talents of the ''best in class'' partners for the new contract which, together with a more commercial approach, was expected to deliver more results without a concomitant increase in cost. This paper charts the successes in the Solid Waste arena and analyzes the basis for success.

Heenan, T. F.; Kelly, S.

2002-02-25T23:59:59.000Z

317

2401-W Waste storage building closure plan  

SciTech Connect (OSTI)

This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

LUKE, S.M.

1999-07-15T23:59:59.000Z

318

Characterisation of radioactive waste products associated with plant decommissioning  

Science Journals Connector (OSTI)

......the results integrated over selected...deposited on the system and equipment...operating plant data and...residual waste activities...coolant pH controls. Shut-down...Surface treatments (e.g...Component-system decontamination...varies from plant to plant...radioactive waste due to activation...internals and control rod drive......

J. Sejvar; A. H. Fero; C. Gil; R. J. Hagler; J. L. Santiago; A. Holgado; R. Swenson

2005-12-20T23:59:59.000Z

319

Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams  

SciTech Connect (OSTI)

The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L. [AECL, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2007-07-01T23:59:59.000Z

320

Waste-to-Energy: Waste Management and Energy Production Opportunities...  

Office of Environmental Management (EM)

Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hanford site transuranic waste sampling plan  

SciTech Connect (OSTI)

This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed.

GREAGER, T.M.

1999-05-13T23:59:59.000Z

322

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

323

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis...

324

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

325

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

326

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

327

Activity Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Activity Reports Activity Reports Activity Reports January 8, 2014 Independent Oversight Activity Report, Idaho Cleanup Project - November 2013 Pre-Restart Visit to the Integrated Waste Treatment Unit by the Defense Nuclear Facilities Safety Board [HIAR-ICP-2013-11-19] December 23, 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18] December 12, 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste

328

Radioactive waste management in the former USSR  

SciTech Connect (OSTI)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01T23:59:59.000Z

329

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00C for fiscal year 1992. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1991 report and is intended to provide traceability for the documentation of the areas listed above by statusing the studies, activities, and issues which occurred in these areas over the period of March 1, 1991, through February 29, 1992.

Barker, S.A. (Westinghouse Hanford Co., Richland, WA (United States)); Lane, A.G. (Los Alamos Technical Associates, Inc., NM (United States))

1992-09-01T23:59:59.000Z

330

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

331

Nuclear Waste Management using Electrometallurgical Technology - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Bookmark and Share The NE system engineering activities involve the conceptual design, through the manufacturing and qualification testing of the Mk-IV and Mk-V electrorefiner and the cathode processor. These first-of-a-kind large scale

332

States want say in nuclear waste storage  

Science Journals Connector (OSTI)

The states have put Congress and the executive branch on notice that they want a very active role in deciding where and how the nation's nuclear wastes will be stored. ... The 19-member State Planning Council on Radioactive Waste Management, appointed by President Carter in February 1980, in its interim report says that it is seeking a middle ground between giving states or Indian tribes a veto over the siting of long-term nuclear waste storage facilities and pre-emptive imposition of federal will. ...

1981-04-06T23:59:59.000Z

333

Dissimilar behavior of technetium and rhenium in borosilicate waste glass as determined by X-ray absorption spectroscopy  

E-Print Network [OSTI]

N. R. ; LaMont, P. E. "Hanford immobilized low-activity tankstudies with simulated Hanford low-activity waste," PNNL-Darab, J. G. ; Smith, H. D. "Hanford tank waste simulants

Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.; Muller, Isabelle S.; Shuh, David K.; Pegg, Ian L.

2006-01-01T23:59:59.000Z

334

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

DOE Carlsbad Field Office

2001-04-06T23:59:59.000Z

335

Enhanced Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

336

Oak Ridge National Laboratory Waste Management Plan. Revision 1  

SciTech Connect (OSTI)

The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

Not Available

1991-12-01T23:59:59.000Z

337

Westinghouse Waste Simulation and Optimization Software Tool - 13493  

SciTech Connect (OSTI)

Radioactive waste is produced during NPP operation and NPP D and D. Different kinds of waste with different volumes and properties have to be treated. Finding a technically and commercially optimized waste treatment concept is a difficult and time consuming process. The Westinghouse waste simulation and optimization software tool is an approach to study the total life cycle cost of any waste management facility. The tool enables the user of the simulation and optimization software to plan processes and storage buildings and to identify bottlenecks in the overall waste management design before starting detailed planning activities. Furthermore, application of the software enables the user to optimize the number of treatment systems, to determine the minimum design capacity for onsite storage facilities, to identify bottlenecks in the overall design and to identify the most cost-effective treatment paths by maintaining optimal waste treatment technologies. In combination with proven waste treatment equipment and integrated waste management solutions, the waste simulation and optimization software provides reliable qualitative results that lead to an effective planning and minimization of the total project planning risk of any waste management activity. (authors)

Mennicken, Kim [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

338

Federal nuclear waste cleanup plan proposed  

Science Journals Connector (OSTI)

Federal nuclear waste cleanup plan proposed ... The Department of Energy has asked Congress to find $19.5 billion over the next five years to finance initial cleanup of environmental contamination at its nuclear, primarily weapons, facilities. ... DOE estimates that to begin implementing the plan in 1990, it needs considerably more than the $1.3 billion originally requested for defense waste and environmental restoration activities. ...

JANICE LONG

1989-08-07T23:59:59.000Z

339

PUREX Plant waste analysis plan. Revision 1  

SciTech Connect (OSTI)

A Washington Administrative Code 173-303-300 requires that a facility shall develop and follow a written analysis plan which describes the procedures that will be followed to ensure that its dangerous wastes are managed properly. This document covers the activities at the PUREX Plant to characterize and designate waste that is generated within the plant and stored in Tanks F18 and U3/U4 prior to transfer to Tank Farms.

Ellis, M.W.

1994-08-15T23:59:59.000Z

340

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats up to 1...

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

trucks for scale. The DSTs have limited capacity and are aging. Maintaining these tanks is important to ensure that waste is ready to supply the Waste Treatment Plant. The...

342

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

343

Nuclear waste solids  

Science Journals Connector (OSTI)

Glass and polycrystalline materials for high-level radioactive waste immobilization are discussed. Borosilicate glass has been selected as the waste form for defence high-level radwaste in the US. Since releas...

L. L. Hench; D. E. Clark; A. B. Harker

1986-05-01T23:59:59.000Z

344

Hanford Waste Treatment Plant Construction Quality Review  

Broader source: Energy.gov (indexed) [DOE]

ARPT-WTP-2011-002 ARPT-WTP-2011-002 Site: DOE Hanford Waste Treatment Plant Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer Joseph Lenahan Activity Description/Purpose: The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. The Office of Health, Safety and Security (HSS) attended several Bechtel National Incorporated (BNI) project meetings, reviewed the WTP project quality assurance program, reviewed DOE-WTP inspection reports completed by the DOE-WTP

345

International waste management fact book  

SciTech Connect (OSTI)

Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

1997-10-01T23:59:59.000Z

346

Waste minimization/pollution prevention study of high-priority waste streams  

SciTech Connect (OSTI)

Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.

Ogle, R.B. [comp.

1994-03-01T23:59:59.000Z

347

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

348

DOE Achieves Second TRU Waste Cleanup | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Achieves Second TRU Waste Cleanup Achieves Second TRU Waste Cleanup DOE Achieves Second TRU Waste Cleanup October 6, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. -The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania. Maintained by the DOE, ANL is the country's first science and engineering research national laboratory. This milestone was supported by $83,000 provided to the National Transuranic Waste Program as part of a $172 million American Recovery and Reinvestment Act investment to expedite legacy TRU waste disposal activities across the DOE complex.

349

Nuclear Waste Assessment System for Technical Evaluation (NUWASTE)  

Broader source: Energy.gov (indexed) [DOE]

NWTRB NWTRB www.nwtrb.gov U.S. Nuclear Waste Technical Review Board U.S. Nuclear Waste Technical Review Board: Roles and Priorities Presented by: Nigel Mote, Executive Director, U.S. Nuclear Waste Technical Review Board May 14, 2013 Hyatt Regency Buffalo, Buffalo, NY. Presented to: National Transportation Stakeholders' Forum NWTRB www.nwtrb.gov U.S. Nuclear Waste Technical Review Board The Board's Statutory Mandate * The 1987 amendments to the Nuclear Waste Policy Act (NWPA) established the U.S. Nuclear Waste Technical Review Board. * The Board evaluates the technical and scientific validity of DOE activities related to implementing the NWPA, including: - transportation, packaging, and storage of spent nuclear fuel (SNF) and high-level radioactive waste (HLW)

350

DOE Achieves Second TRU Waste Cleanup | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Achieves Second TRU Waste Cleanup Achieves Second TRU Waste Cleanup DOE Achieves Second TRU Waste Cleanup October 6, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. -The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania. Maintained by the DOE, ANL is the country's first science and engineering research national laboratory. This milestone was supported by $83,000 provided to the National Transuranic Waste Program as part of a $172 million American Recovery and Reinvestment Act investment to expedite legacy TRU waste disposal activities across the DOE complex.

351

Waste Minimization and Pollution Prevention | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Minimization Waste Minimization and Pollution Prevention Waste Minimization and Pollution Prevention Mission The team supports efforts that promote a more sustainable environment and implements pollution prevention activities in accordance with Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, as approved by LM. The WM/P2 Team advocates environmentally sound waste minimization and pollution prevention practices. Scope Inventory the waste stream. Prevent or reduce pollution and waste at their source. Recycle. Use recycled-content products. Use less toxic or nontoxic products. Key Expectations Monitor and track progress on metrics. Maintain/implement a plan that integrates waste minimization and

352

EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)  

Broader source: Energy.gov [DOE]

This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

353

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

354

Three Mile Island waste management: a DOE Perspective  

SciTech Connect (OSTI)

The Department of Energy (DOE) is conducting waste management research and development activities which are applicable to the cleanup of the Three Mile Island-Unit 2 nuclear reactor. These activities have enabled DOE to provide timely assistance to General Public Utilities (GPU), the utility owner, the Nuclear Regulatory Commission (NRC), and the State of Pennsylvania in their efforts to quickly and safely clean up the damaged reactor. The DOE has been particularly active in evaluating proposed cleanup systems, providing information on waste characteristics, and advising GPU and NRC as to appropriate disposal methods for the waste generated during the cleanup. A description and discussion of some of these activities is presented.

D'Ambrosia, J.T.

1982-01-01T23:59:59.000Z

355

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

356

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

357

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

358

Summary - Flowsheet for the Hanford Waste Treatment Plant  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant Waste Treatment Plant ETR Report Date: March 2006 ETR-1 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Flowsheet for the Hanford Waste Treatment Plant (WTP) Why DOE-EM Did This Review The Hanford Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 53 million gallons of radioactive waste, separate it into high- and low-activity fractions, and produce canisters of high-level (HLW) glass (left) and containers of low-activity waste (LAW) glass (right). At the time of this review, the Plant was at approximately 70% design and 30% construction completion. The external review objective was to determine how well the WTP would meet its throughput capacities based on the current design,

359

Waste Management Quality Assurance Plan  

SciTech Connect (OSTI)

The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs.

Waste Management Group

2006-08-14T23:59:59.000Z

360

No Time Wasted. 25 years COVRA: Radioactive Waste Management in the Netherlands  

SciTech Connect (OSTI)

Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. December 2007 was a time to commemorate, as the national waste management organisation of the Netherlands, COVRA, celebrated its 12. anniversary. During this period of 25 years a stable policy has been formulated and implemented. For the situation in the Netherlands, it was obvious that a period of long term storage was needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. A historical overview of the activities of COVRA is presented and lessons learned over a period of 25 years are given. (authors)

Codee, H.D.K.; Verhoef, E.V. [COVRA N.V., Vlissingen (Netherlands)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tank Waste Corporate Board Meeting 11/18/10 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

18/10 18/10 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. High-Level Waste Corporate Board Meeting Agenda Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy Introduction to Tc/I in Hanford Flowsheet Fate of Tc99 at WTP and Current Work on Capture Technetium Retention During LAW Vitrification Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass Secondary Waste Forms and Technetium Management Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification Salt Waste Processing Initiatives Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations Tank Closure More Documents & Publications

362

Waste management project fiscal year 1998 multi-year work plan WBS 1.2  

SciTech Connect (OSTI)

The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

Slaybaugh, R.R.

1997-08-29T23:59:59.000Z

363

Energy aspects of solid waste management: Proceedings  

SciTech Connect (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-12-31T23:59:59.000Z

364

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect (OSTI)

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

365

Activity Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hanford K Basins Sludge Treatment Project Tour July 27, 2010 Independent Activity Report, Hanford - May 2010 Hanford Waste Encapsulation Storage Facility Meetings July 26, 2010...

366

10/2/2006 SLAC-I-760-2A08Z-001-R002 Mixed Waste Generation Checklist  

E-Print Network [OSTI]

a radioactive waste (i.e., activation or radioactive contamination of a material/substance)? Yes No Is the work if a work operation will generate a radioactive waste, contact RPFO Group). If the work operation does not have the potential for generating a radioactive waste, then STOP. A mixed waste will not be generated

Wechsler, Risa H.

367

activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

368

Transuranic Waste Transportation Working Group Agenda | Department...  

Office of Environmental Management (EM)

Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda More Documents &...

369

Waste Isolation Pilot Plant Transportation Security | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security More Documents &...

370

EIS-0337: West Valley Demonstration Project Waste Management  

Broader source: Energy.gov [DOE]

The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energys proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

371

Iron Phosphate Glasses for Vitrifying DOE High Priority Nuclear Wastes  

SciTech Connect (OSTI)

Iron phosphate glasses have been studied as an alternative glass for vitrifying Department of Energy (DOE) high priority wastes. The high priority wastes were the Low Activity Waste (LAW) and the High Level Waste (HLW) with high chrome content stored at Hanford, WA, and the Sodium Bearing Waste (SBW) stored at the Idaho National Engineering and Environmental Laboratory. These wastes were recommended by Tanks Focus Area since they were expected to require special attention when vitrified in borosilicate glasses. All three of these wastes have been successfully vitrified in iron phosphate glasses at waste loadings ranging from a low of 32 wt% for the high sulfate LAW to 40 wt% for the SBW to a high of 75 wt% for the high chrome HLW. In addition to these desirable high waste loadings, the iron phosphate glasses were easily melted, typically between 950 and 1200 C, in less than 4 hours in commercial refractory oxide containers. It is noteworthy that the chemical durability of both glassy and deliberately crystallized iron phosphate wasteforms not only met, but significantly exceeded, all current DOE chemical durability requirements as measured by the Product Consistency Test (PCT) and Vapor Hydration Test (VHT). The high waste loading, low melting temperature, rapid furnace throughput (short melting time) and their outstanding chemical durability could significantly accelerate the clean up effort and reduce the time and cost of vitrifying these high priority wastes.

Kim, C.W.; Day, D.E.

2004-03-29T23:59:59.000Z

372

Tank Waste and Waste Processing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

373

Fossil energy waste management. Technology status report  

SciTech Connect (OSTI)

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

374

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

375

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect (OSTI)

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

376

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

377

Waste Confidence Discussion | Department of Energy  

Office of Environmental Management (EM)

Waste Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. Waste Confidence Discussion More Documents & Publications Status Update: Extended Storage...

378

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

379

Transuranic (TRU) Waste | Department of Energy  

Office of Environmental Management (EM)

Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

380

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites  

SciTech Connect (OSTI)

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groupsplutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Characterization of the MVST waste tanks located at ORNL  

SciTech Connect (OSTI)

During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

1996-12-01T23:59:59.000Z

382

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

383

6 - Nuclear Waste Regulations  

Science Journals Connector (OSTI)

The most influential national and international bodies providing recommendations on radiation protection are described, including the International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA). Protection philosophies and the ICRP general principles of radiation protection are discussed. Radioactive material regulations and sources of radiation are explained. Criteria of exemption from regulatory control are discussed with examples of exemption levels for naturally occurring and radioactive waste radionuclides. Clearance of both moderate and bulk amounts of materials from regulatory control is also explained, including examples of EU and the UK regulations. Dose limits recommended by the ICRP are given, as well as the main principles of control of radiation hazards. Nuclear waste classification schemes are outlined, including the IAEA classification scheme. A brief explanation of nuclear waste classes including exempt waste, very short-lived waste, very low-level waste, low-level waste, intermediate-level waste and high-level waste is given. Examples of waste classification schemes are given, including that of the UK.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

384

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

385

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network [OSTI]

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

386

Stabilization of compactible waste  

SciTech Connect (OSTI)

This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

Franz, E.M.; Heiser, J.H. III; Colombo, P.

1990-09-01T23:59:59.000Z

387

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

388

Independent Oversight Activity Report for Catholic University...  

Office of Environmental Management (EM)

Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is focused on developing the Low Activity Waste (LAW)...

389

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

390

SRS - Programs - Waste Solidification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

391

High level nuclear waste  

SciTech Connect (OSTI)

The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

Crandall, J L

1980-01-01T23:59:59.000Z

392

Impact of DOE Orders on Waste Management Operation  

SciTech Connect (OSTI)

Department of Energy Orders are the internal documents which govern the management of all Department of Energy facilities and operations. DOE Orders are the vehicles by which Federal and state laws and regulations are applied to Department of Energy activities. A selected set of 22 Department of Energy Orders was reviewed to identify the applicability and impact of each Order on waste management operations at Los Alamos National Laboratory. Of the 22 Orders reviewed, five set forth requirements which have a high degree of impact on waste management activities. Eight Orders have a moderate degree of impact on waste management activities, and the remaining nine Orders have a low degree of impact.

Klein, R.B.; Jennrich, E.A.; Shuman, R.; Sandquist, G.M. (Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)); Rutz, A.C.; Littleton, M.W.; McCauce, C.H. (Wastren, Inc., Idaho Falls, ID (United States))

1989-09-01T23:59:59.000Z

393

The Mixed Waste Management Facility monthly report, March 1995  

SciTech Connect (OSTI)

This document presents details of the monthly activities of Lawrence Livermore National Laboratory in regards to the Mixed Waste Management Facility. Topics discussed include: quality assurance; regulations; program support; public participation; conceptual design; plant start-up; project management; feed preparation; molten salt, electrochemical, and wet oxidation; process transport and storage; and final waste forms.

Streit, R.D.

1995-04-01T23:59:59.000Z

394

Synthesizing Optimal Waste Blends  

Science Journals Connector (OSTI)

Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. ... Durability restrictions ensure that the resultant glass meets the quantitative criteria for disposal/long-term storage in a repository. ... If glasses are formulated to minimize the volume of glass that would be produced, then the cost of processing the waste and storing the resultant glass would be greatly reduced. ...

Venkatesh Narayan; Urmila M. Diwekar; Mark Hoza

1996-10-08T23:59:59.000Z

395

Hazardous Waste Compliance Program Plan  

SciTech Connect (OSTI)

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

396

Independent Oversight Activity Report for the Observation of...  

Office of Environmental Management (EM)

Report Number: IAR-WTP-2014-03-31 HIAR-WTP-2013-05-13, Activity Report for Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System...

397

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

High Activity Waste Tank (HAWT) Disposition High Activity Waste Tank (HAWT) Disposition Savannah River Site Aiken/Aiken/South Carolina SRNL has supported the processing of samples and materials for analysis support to the site's facilities. During those processes, waste materials were developed and collected. Some were deposited in the High Activity Drain system and later pumped to a High Activity Waste Trailer (HAWT), which was used to ship waste materials to the SRS tank farms for processing. This HAWT was removed from service in 1974. Since 1975 it has been in a standby mode. This tank/trailer is being considered for disposition. To support proper dispositioning, the tarps covering the HAWT must be removed to allow samples to be taken from the HAWT for analysis and characterization. These results will determine the path

398

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Activity Waste Tank (HAWT) Disposition High Activity Waste Tank (HAWT) Disposition Savannah River Site Aiken/Aiken/South Carolina SRNL has supported the processing of samples and materials for analysis support to the site's facilities. During those processes, waste materials were developed and collected. Some were deposited in the High Activity Drain system and later pumped to a High Activity Waste Trailer (HAWT), which was used to ship waste materials to the SRS tank farms for processing. This HAWT was removed from service in 1974. Since 1975 it has been in a standby mode. This tank/trailer is being considered for disposition. To support proper dispositioning, the tarps covering the HAWT must be removed to allow samples to be taken from the HAWT for analysis and characterization. These results will determine the path

399

The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when the changes were made. As regulations and permits change, and as the proliferation of personal computers flourish, procedures and data files begin to be stored in electronic databases. With many different organizations, contractors, and unique procedures, several dozen databases are used to track and maintain aspects of waste management. As one can see, the logistics of collecting and certifying data from all organizations to provide comprehensive information would not only take weeks to perform, but usually presents a variety of answers that require an immediate unified resolution. A lot of personnel time is spent scrubbing the data in order to determine the correct information. The issue of disparate data is a concern in itself, and is coupled with the costs associated with maintaining several separate databases. In order to gain waste management efficiencies across an entire facility or site, several waste management databases located among several organizations would need to be consolidated. The IWTS is a system to do just that, namely store and track containerized waste information for an entire site. The IWTS has proven itself at the INL since 1995 as an efficient, successful, time saving management tool to help meet the needs of both operations and management for hazardous and radiological containerized waste. Other sites have also benefited from IWTS as it has been deployed at West Valley Nuclear Services Company DOE site as well as Ontario Power Ge

Robert S. Anderson

2005-09-01T23:59:59.000Z

400

Waste Confidence Discussion  

Broader source: Energy.gov (indexed) [DOE]

Long-Term Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence Rule based on the EIS and Decision, if applicable 2 Overview of Draft Report Background and assumptions report is first step in process. Basic topics in the report are:

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Norcal Waste Systems, Inc.  

SciTech Connect (OSTI)

Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

Not Available

2002-12-01T23:59:59.000Z

402

Section 24: Waste Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy (DOE). 1995b. Transuranic Waste Baseline Inventory Report (Revision 2, December). DOECAO-95-1121. ERMS 531643. Carlsbad Area Office, Carlsbad, NM. PDF Author U.S....

403

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

training, security) * Closure plan Tank-Related Permit Units New * 149 single-shell tanks (SSTs) * 28 double-shell tanks (DSTs) Existing * 242-A Evaporator * Waste Treatment...

404

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

405

Waste minimization assessment procedure  

SciTech Connect (OSTI)

Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

Kellythorne, L.L. (Centerior Energy, Cleveland, OH (United States))

1993-01-01T23:59:59.000Z

406

Vitrification of waste  

DOE Patents [OSTI]

A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1999-04-06T23:59:59.000Z

407

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 19, 2014 - No second release at WIPP September 12, 2014 - Waste hoist transformer replacement September 09, 2014 - Additional areas cleared in WIPP underground...

408

Vitrification of waste  

DOE Patents [OSTI]

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, George G. (Aiken, SC)

1999-01-01T23:59:59.000Z

409

High-Pressure Tube Trailers and Tanks  

Broader source: Energy.gov (indexed) [DOE]

bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize...

410

Composite Tube Trailer Design/Manufacturing Needs  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

411

Mathematical Sciences -Trailer B Emergency Instructions  

E-Print Network [OSTI]

, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights the emergency call Campus Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt

de Leon, Alex R.

412

Scurfield Hall -Trailer J Emergency Instructions  

E-Print Network [OSTI]

location Hazardous Materials Spill Only attempt to clean up a spill you are comfortable dealing - if you cannot flee, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted by the shooter, as a last resort, fight for survival

de Leon, Alex R.

413

Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAOs). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWBs will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

Carlsbad Field Office

2001-01-31T23:59:59.000Z

414

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

415

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a PA is to examine the final waste disposition at Hanford, such as waste in the tanks at C-Farm. Vince said the quest is to model waste movement over 10,000 years,...

416

Characterization of past and present waste streams from the 325 Radiochemistry Building  

SciTech Connect (OSTI)

The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site.

Pottmeyer, J.A.; Weyns-Rollosson, M.I.; Dicenso, K.D.; DeLorenzo, D.S. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-01T23:59:59.000Z

417

Savannah River Site Interim Waste Management Program Plan FY 1991--1992  

SciTech Connect (OSTI)

The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

Chavis, D.M.

1992-05-01T23:59:59.000Z

418

Savannah River Site Interim Waste Management Program Plan FY 1991--1992  

SciTech Connect (OSTI)

The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

Chavis, D.M.

1992-05-01T23:59:59.000Z

419

UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) |  

Open Energy Info (EERE)

403 403 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288403 Varnish cache server UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) Dataset Summary Description Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels. These data were used to produce Tables 7.1 to 7.3 in the Digest of United Kingdom Energy Statistics 2010 (available: http://decc.gov.uk/assets/decc/Statistics/publications/dukes/348-dukes-2...).

420

Waste Management Programmatic Environmental Impact Statement (WM PEIS)  

Broader source: Energy.gov (indexed) [DOE]

Waste Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing more than 2 million cubic meters of radioactive wastes from past, present, and future DOE activities. The WM PEIS will assist the U.S. Department of Energy (DOE) in improving the efficiency and reliability of management of its current and anticipated volumes of radioactive and hazardous wastes and will help DOE continue to comply with applicable laws and regulations and protect workers, public health and safety, and the environment. The WM PEIS

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Independent Oversight Inspection, Waste Isolation Pilot Plant - December  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant - Waste Isolation Pilot Plant - December 2007 Independent Oversight Inspection, Waste Isolation Pilot Plant - December 2007 December 2007 Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant The U.S. Department of Energy (DOE) Office of Independent Oversight inspected the emergency management program at DOE's Waste Isolation Pilot Plant (WIPP) from July through September 2007. The inspection was performed by Independent Oversight's Office of Emergency Management Oversight. This 2007 inspection found that despite isolated areas of program improvement since 2002, WIPP's level of emergency preparedness has largely declined over a period marked by a dramatic increase in the pace of waste receipt and storage activities at the site.

422

DOE Issues Salt Waste Determination for the Savannah River Site |  

Broader source: Energy.gov (indexed) [DOE]

Issues Salt Waste Determination for the Savannah River Site Issues Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks, approximately 36 million gallons of radioactive waste is left over from plutonium production during the Cold War. In addition, the department issued an amended Record of Decision and Implementation Plan to the Defense Nuclear Facilities Safety Board. "Today's announcement clears the way for the removal and treatment of this

423

Waste package/repository impact study: Final report  

SciTech Connect (OSTI)

The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

Not Available

1985-09-01T23:59:59.000Z

424

Long-range master plan for defense transuranic waste management  

SciTech Connect (OSTI)

The Long Range Master Plan for the Defense Transuranic Waste Program (DTWP), or ''Master Plan,'' details current TRU waste management plans and serves as a framework for the DTWP. Not all final decisions concerning activities presented in the Master Plan have been made (e.g., land withdrawal legislation, the WIPP Compliance and Operational Plan and the TRUPACT Certificate of Compliance). It is the goal of the DTWP to end interim storage and achieve permanent disposal of TRU waste. To accomplish this goal, as much TRU waste as possible will be certified to meet the WIPP Acceptance Criteria (WAC). The certified waste will then be disposed of at WIPP. The small quantity of waste which is not practical to certify will be disposed of via alternative methods that require DOE Headquarters approval and shall comply with the National Environmental Policy Act requirements and EPA/State Regulations. The definition of TRU waste is ''without regard to source or form, waste that is contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years and concentrations greater than 100 nanocuries/gram (nCi/g) at the time of assay. Heads of Field Elements can determine that other alpha contaminated wastes, peculiar to a specific site, must be managed as transuranic waste.''

Not Available

1988-12-01T23:59:59.000Z

425

Waste Isolation Pilot Plant. Project progress report for month ending September 30, 1980  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is intended to serve as a nuclear waste repository for those defense transuranic wastes and to provide a separate underground facility for in-situ experiments. This document summarizes activities in the WIPP design, technical support, and scientific program for this month.

Not Available

1980-01-01T23:59:59.000Z

426

Secondary waste form testing : ceramicrete phosphate bonded ceramics.  

SciTech Connect (OSTI)

The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from the waste form surface. Waste forms for ANS 16.1 leach testing contained appropriate amounts of rhenium and iodine as radionuclide surrogates, along with the additives silver-loaded zeolite and tin chloride. The leachability index for Re was found to range from 7.9 to 9.0 for all the samples evaluated. Iodine was below detection limit (5 ppb) for all the leachate samples. Further, leaching of sodium was low, as indicated by the leachability index ranging from 7.6-10.4, indicative of chemical binding of the various chemical species. Target leachability indices for Re, I, and Na were 9, 11, and 6, respectively. Degradation was observed in some of the samples post 90-day ANS 16.1 tests. Toxicity characteristic leaching procedure (TCLP) results showed that all the hazardous contaminants were contained in the waste, and the hazardous metal concentrations were below the Universal Treatment Standard limits. Preliminary scale-up (2-gal waste forms) was conducted to demonstrate the scalability of the Ceramicrete process. Use of minimal amounts of boric acid as a set retarder was used to control the working time for the slurry. Flexibility in treating waste streams with wide ranging compositional make-ups and ease of process scale-up are attractive attributes of Ceramicrete technology.

Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

2011-06-21T23:59:59.000Z

427

Process for treating alkaline wastes for vitrification  

DOE Patents [OSTI]

According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

Hsu, Chia-lin W.

1994-01-01T23:59:59.000Z

428

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

429

Cementitious waste option scoping study report  

SciTech Connect (OSTI)

A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

Lee, A.E.; Taylor, D.D.

1998-02-01T23:59:59.000Z

430

Unit costs of waste management operations  

SciTech Connect (OSTI)

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

431

Aqueous Waste Treatment Plant at Aldermaston  

SciTech Connect (OSTI)

For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

Keene, D. [RWE NUKEM, Ltd, 424 Harwell, Didcot, Oxfordshire, OX 110GJ (United Kingdom); Fowler, J.; Frier, S. [AWE plc, Aldermaston, Berkshire RG7 4PR (United Kingdom)

2006-07-01T23:59:59.000Z

432

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 2, April 1994  

SciTech Connect (OSTI)

This is a publication of the Low-Level Radioactive Waste Forum Participants. The topics of the publication include DOE policy, state concerns and activities, court hearings and decisions, federal agency activities, US NRC waste management function reorganization, low-level radioactive waste storage and compaction, and US NRC rulemaking and hearings.

NONE

1994-04-01T23:59:59.000Z

433

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission lives. Radioactive Waste generated through wet chemistry Waste Minimization 30 Mixed waste / Liquid

434

44-BWR WASTE PACKAGE LOADING CURVE EVALUATION  

SciTech Connect (OSTI)

The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing BWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results of 100 percent of the current BWR projected waste stream being able to be disposed of in the 44-BWR waste package with Ni-Gd Alloy absorber plates is contingent upon the referenced waste stream being sufficiently similar to the waste stream received for disposal. (3) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials.

J.M. Scaglione

2004-08-25T23:59:59.000Z

435

The WIPP journey to waste receipt  

SciTech Connect (OSTI)

In the early 1970s the federal government selected an area in southeastern New Mexico containing large underground salt beds as potentially suitable for radioactive waste disposal. An extensive site characterization program was initiated by the federal government. This site became the Waste Isolation Pilot Plant, better known as WIPP. It is now 1997, over two decades after the initial selection of the New Mexico site as a potential radioactive waste repository. Numerous scientific studies, construction activities, and environmental compliance documents have been completed. The US Department of Energy (DOE) has addressed all relevant issues regarding the safety of WIPP and its ability to isolate radioactive waste from the accessible environment. Throughout the last two decades up to the present time, DOE has negotiated through a political, regulatory, and legal maze with regard to WIPP. New regulations have been issued, litigation initiated, and public involvement brought to the forefront of the DOE decision-making process. All of these factors combined to bring WIPP to its present status--at the final stages of working through the licensing requirements for receipt of transuranic (TRU) waste for disposal. Throughout its history, the DOE has stayed true to Congress` mandates regarding WIPP. Steps taken have been necessary to demonstrate to Congress, the State of New Mexico, and the public in general, that the nation`s first radioactive waste repository will be safe and environmentally sound. DOE`s compliance demonstrations are presently under consideration by the cognizant regulatory agencies and DOE is closer than ever to waste receipt. This paper explores the DOE`s journey towards implementing a permanent disposal solution for defense-related TRU waste, including major Congressional mandates and other factors that contributed to program changes regarding the WIPP project.

Barnes, G.J.; Whatley, M.E.

1997-04-01T23:59:59.000Z

436

Solid Waste Rules (New Hampshire)  

Broader source: Energy.gov [DOE]

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

437

Solid Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

438

Waste Management | Department of Energy  

Energy Savers [EERE]

Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs....

439

Municipal Waste Combustion (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste"means all materials and substances discarded from residential...

440

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

Note: This page contains sample records for the topic "activity waste trailer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

442

Nuclear waste solutions  

DOE Patents [OSTI]

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

443

Radioactive waste storage issues  

SciTech Connect (OSTI)

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

444

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

445

Salt Waste Processing Initiatives  

Broader source: Energy.gov (indexed) [DOE]

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

446

HLW Glass Waste Loadings  

Broader source: Energy.gov (indexed) [DOE]

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

447

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

) activities related to evaluating the suitability of the Yucca Mountain site and takes a long-term view the DOE's viability assessment (VA) of the Yucca Mountain site, design of the repository and waste package considerable progress in characterizing the Yucca Mountain site. We also appreciate recent efforts by OCRWM

448

The mixed waste management facility. Monthly report  

SciTech Connect (OSTI)

This report presents a project summary for the Mixed Waste Management facility from the Lawrence Livermore National Laboratory for June, 1995. Key developments were the installation of the MSO Engineering Development Unit (EDU) which is on schedule for operation in July, and the first preliminary design review. This report also describes budgets and includes a milestone log of activities.

Streit, R.D.

1995-07-01T23:59:59.000Z

449

Second Generation Waste Package Design Study  

SciTech Connect (OSTI)

The following describes the objectives of Project