National Library of Energy BETA

Sample records for activity thermal gradient

  1. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  2. Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature...

  3. Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details...

  4. Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity...

  5. Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity...

  6. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity...

  7. Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details...

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  9. Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) |...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At San Emidio Desert Area (DOE GTP)...

  10. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

  11. Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Newberry Caldera Area (DOE GTP)...

  12. Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Flint Geothermal Area (DOE GTP)...

  13. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    Edmunds & W., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds & W., 1977)...

  14. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration...

  15. Thermal Gradient Holes At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration...

  16. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held & Henderson, 2012)...

  17. Category:Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    in category "Thermal Gradient Holes" This category contains only the following page. T Thermal Gradient Holes Retrieved from "http:en.openei.orgwindex.php?titleCategory:T...

  18. Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Pot Area (DOE GTP) Exploration Activity Details...

  19. Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bliss Area (DOE GTP) Exploration Activity...

  20. Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Alum Area (DOE GTP) Exploration Activity Details...

  1. Thermal Gradient Holes At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Silver Peak Area (DOE GTP) Exploration Activity Details Location...

  2. Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al., 2000) Exploration Activity...

  3. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP)...

  4. Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al...

    Open Energy Info (EERE)

    Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010)...

  5. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  6. Numerical Simulation of Ni Grain Growth in a Thermal Gradient

    Office of Scientific and Technical Information (OSTI)

    665C Numerical Simulation of Ni Grain Growth in a Thermal Gradient Sandia National Laboratories John A. Mitchell and Veena Tikare Sandia National Laboratories, Albuquerque New ...

  7. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  8. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Thermal gradient wells were drilled for initial exploration and assessment of the North Brawley Geothermal Area. Notes Union Oil Company...

  9. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    consisting of several holes including: The CH8-10 thermal-gradient holes drilled by the U.S. Geological Survey prior to 1978 to relatively shallow depths ranging from about 55 to...

  10. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  11. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  12. Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes twenty-three gold exploration holes were drilled by Newcrest Resources, Inc. during 2005 and 2006 along...

  13. Pumpernickel Valley Geothermal Project Thermal Gradient Wells...

    Open Energy Info (EERE)

    the geothermal activity in the valley are two areas with hot springs, seepages, and wet groundvegetation anomalies near the Pumpernickel Valley fault, which indicate that the...

  14. Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements

    SciTech Connect (OSTI)

    Sola, A. Kuepferling, M.; Basso, V.; Pasquale, M.; Kikkawa, T.; Uchida, K.; Saitoh, E.

    2015-05-07

    In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heat flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck S{sub SSE} coefficient of 2.8×10{sup −7} V K{sup −1}.

  15. Growth of large aluminum nitride single crystals with thermal-gradient control

    DOE Patents [OSTI]

    Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J

    2015-05-12

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  16. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    SciTech Connect (OSTI)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  17. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    crust. The boreholes which exhibited the lowest average gradient were several kilometers from the hot springs and up-dip. None of them penetrated the Dakota Sandstone ....

  18. Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010...

    Open Energy Info (EERE)

    Unknown Notes The Navy recently completed a temperature gradient hole (TGH) drilling campaign. Results suggest multiple resources may exist on HAD lands. To further define the...

  19. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    small diameter temperature gradient wells have been drilled ranging in depth from 152-607 m. These wells were drilled across the Neal Hot Springs area in order to gather more...

  20. Thermal Gradient Holes At Coso Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240Ckm to 450 0Ckm. References...

  1. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 ... 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  2. Thermal Gradient Holes At Chena Geothermal Area (Erkan, Et Al...

    Open Energy Info (EERE)

    while 5 wells reached depths of 600 - 1020 feet. References Kamil Erkan, Gwen Holdman, David Blackwell, Walter Benoit (2007) Thermal Characteristics of the Chena Hot Springs...

  3. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    (1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...

  4. Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    SciTech Connect (OSTI)

    Jain, S. Bose, A. Palkar, V. R. Tulapurkar, A. A.; Lam, D. D. Suzuki, Y.; Sharma, H. Tomy, C. V.

    2014-12-15

    We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be same as magneto-resistance effect.

  5. Millisecond ordering of block-copolymer films via photo-thermal gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore » than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less

  6. Millisecond ordering of block-copolymer films via photo-thermal gradients

    SciTech Connect (OSTI)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in less than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.

  7. Thermal Gradient Holes At Central Nevada Seismic Zone Region...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  8. Thermal Gradient Holes At Tungsten Mountain Area (Shevenell,...

    Open Energy Info (EERE)

    Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the...

  9. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

    Open Energy Info (EERE)

    Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the...

  10. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  11. Thermal Gradient Holes At Coso Geothermal Area (1974) | Open...

    Open Energy Info (EERE)

    Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis Use heat flow studies for the first time at Coso to indicate the presence or absence of abnormal heat...

  12. Thermal Gradient Holes At Chena Area (Erkan, Et. Al., 2008) ...

    Open Energy Info (EERE)

    Holes Activity Date Usefulness useful DOE-funding Unknown Notes MULTI-STAGE DRILLING Once a hole is drilled the natural-state pressure distribution with depth is essentially...

  13. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  14. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOE Patents [OSTI]

    Page, Ralph H. (San Ramon, CA); Beach, Raymond J. (Livermore, CA)

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  15. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a ...

  16. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect (OSTI)

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  17. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect (OSTI)

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  18. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  19. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  20. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  1. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  2. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  3. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  4. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  5. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  6. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  7. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Import shipments of solar thermal collectors by country, 2008 and 2009 (square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  8. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Import shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  9. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Employment in the solar thermal collector industry, 2000 - 2009 2000 284 2001 256 2002 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  10. Solar Thermal Collector Manufacturing Activities - Energy Information...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Solar Thermal Manufacturing Activities Release Date: December 2010 | Next Release Date: ... Year: (PDF) 2009 2008 2007 2006 2005 2004 2003 1993 Go Overview Total shipments26 of solar ...

  11. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 Number of companies expecting to introduce new solar new solar thermal collector products in 2010 Low-Temperature Collectors 4 Medium-Temperature Collectors 16 High-Temperature ...

  12. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers ...

  13. Thermally-assisted-occupation density functional theory with generalized-gradient approximations

    SciTech Connect (OSTI)

    Chai, Jeng-Da

    2014-05-14

    We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.

  14. Thermal Gradient Holes At Twenty-Nine Palms Area (Page, Et Al...

    Open Energy Info (EERE)

    gradient holes for the GPO. Samples taken from each hole were similar in nature; mixtures of sand and conglomerates with the occasional granite sections were...

  15. Biomedical Applications of Thermally Activated Shape Memory Polymers...

    Office of Scientific and Technical Information (OSTI)

    Biomedical Applications of Thermally Activated Shape Memory Polymers Citation Details In-Document Search Title: Biomedical Applications of Thermally Activated Shape Memory Polymers ...

  16. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  17. Review of Thermally Activated Technologies, July 2004 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermally Activated Technologies, July 2004 Review of Thermally Activated Technologies, July 2004 At the request of the U.S. Department of Energy and Oak Ridge National Laboratory, TIAX reviewed the status of various Thermally Activated Technologies (TATs). This 2004 review includes both fuel-fired and waste-heat-fired applications of thermally-driven cooling systems, thermally-driven heat pumps, and thermally-driven bottoming cycles, primarily for use in commercial buildings.

  18. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect (OSTI)

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  19. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    DOE Patents [OSTI]

    Klett, James W. [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  20. Temperature, thermal efficiency, and gradient performance from two seawater-SZ solar ponds

    SciTech Connect (OSTI)

    Collado, F.; Lowrey, P. )

    1991-01-01

    This paper presents 10 months of experience with two seawater-SZ (Storage Zone) solar ponds operated as a source of warm seawater which could have been used in an adjacent mariculture facility. Observations and extensive temperature, gradient and efficiency data are presented. This work demonstrated operation of and heat extraction from seawater-SZ solar ponds over a much longer interval than in previous work. It confirmed that seawater-SZ solar ponds can consistently give useful temperature elevations. A few phenomena not characteristic of conventional solar ponds were identified and are discussed.

  1. Rapid processing of carbon-carbon composites by forced flow-thermal gradient chemical vapor infiltration (FCVI)

    SciTech Connect (OSTI)

    Vaidyaraman, S.; Lackey, W.J.; Agrawal, P.K.; Freeman, G.B.; Langman, M.D.

    1995-10-01

    Carbon fiber-carbon matrix composites were fabricated using the forced flow-thermal gradient chemical vapor infiltration (FCVI) process. Preforms were prepared by stacking 40 layers of plain weave carbon cloth in a graphite holder. The preforms were infiltrated using propylene, propane, and methane. The present work showed that the FCVI process is well suited for fabricating carbon-carbon composites; without optimization of the process, the authors have achieved uniform and thorough densification. Composites with porosities as low as 7% were fabricated in 8--12 h. The highest deposition rate obtained in the present study was {approximately}3 {micro}m/h which is more than an order of magnitude faster than the typical value of 0.1--0.25 {micro}m/h for the isothermal process. It was also found that the use of propylene and propane as reagents resulted in faster infiltration compared to methane.

  2. Compton effect thermally activated depolarization dosimeter

    DOE Patents [OSTI]

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  3. A miniature shock-activated thermal battery for munitions applications

    SciTech Connect (OSTI)

    Guidotti, R.A.; Kirby, D.L.; Reinhardt, F.W.

    1998-04-01

    The feasibility of a small, fast-rise thermal battery for non-spinning munitions applications was examined by studying the response of conventional thermal cells to impact (mechanical) energy to simulate a setback environment. This is an extension of earlier work that demonstrated that shock activation could be used to produce power from a conventional thermal-battery cell. The results of tests with both single and multiple cells are presented, along with data for a 5-cell miniature (5-mm diameter) thermal battery. The issues needing to be resolved before such a device can become a commercial reality are also discussed.

  4. Market Potential for Advanced Thermally Activated BCHP in Five National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Account Sectors, May 2003 | Department of Energy Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Potential distributed generation (DG) and combined heat and power (CHP) applications in the United States cover a broad spectrum of market segments, from nursing homes requiring a few hundred kilowatts (kW) of power and an economical hot water source

  5. Analytical gradients of the state-average complete active space self-consistent field method with density fitting

    SciTech Connect (OSTI)

    Delcey, Mickaël G.; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland

    2015-07-28

    An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible.

  6. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  7. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    SciTech Connect (OSTI)

    Glover, W. J.

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weighted schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.

  8. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect (OSTI)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple

  9. Fuel injector utilizing non-thermal plasma activation

    DOE Patents [OSTI]

    Coates, Don M. (Santa Fe, NM); Rosocha, Louis A. (Los Alamos, NM)

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  10. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect (OSTI)

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  11. Electron-beam activated thermal sputtering of thermoelectric materials

    SciTech Connect (OSTI)

    Wu Jinsong; Dravid, Vinayak P.; He Jiaqing; Han, Mi-Kyung; Sootsman, Joseph R.; Girard, Steven; Arachchige, Indika U.; Kanatzidis, Mercouri G.

    2011-08-15

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 deg. C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  12. Electron-beam activated thermal sputtering of thermoelectric materials.

    SciTech Connect (OSTI)

    Wu, J.; He, J.; Han, M-K.; Sootsman, J. R.; Girard, S.; Arachchige, I. U.; Kanatzidis, M. G.; Dravid, V. P.

    2011-08-01

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  13. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  14. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  15. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect (OSTI)

    Ueno, Ai; Suzuki, Yuji

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  16. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect (OSTI)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  17. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    SciTech Connect (OSTI)

    Massacret, N.; Jeannot, J. P.

    2013-01-25

    In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  18. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    SciTech Connect (OSTI)

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  19. Thermally activated switching of perpendicular magnet by spin-orbit spin torque

    SciTech Connect (OSTI)

    Lee, Ki-Seung; Lee, Seo-Won; Min, Byoung-Chul; Lee, Kyung-Jin

    2014-02-17

    We theoretically investigate the threshold current for thermally activated switching of a perpendicular magnet by spin-orbit spin torque. Based on the Fokker-Planck equation, we obtain an analytic expression of the switching current, in agreement with numerical result. We find that thermal energy barrier exhibits a quasi-linear dependence on the current, resulting in an almost linear dependence of switching current on the log-scaled current pulse-width even below 10 ns. This is in stark contrast to standard spin torque switching, where thermal energy barrier has a quadratic dependence on the current and the switching current rapidly increases at short pulses. Our results will serve as a guideline to design and interpret switching experiments based on spin-orbit spin torque.

  20. Effects of Active Layer Thickness and Thermal Annealing on Polythiophene: Fullerene Bulk Heterojunction Photovoltaic Devices

    SciTech Connect (OSTI)

    Zeng, L.; Tang, C.W.; Chen, S.H.

    2010-08-10

    The effect of thermal annealing on photovoltaic devices comprising poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) with thicknesses up to 1200 nm was investigated. Without thermal annealing, the efficiency of the as-prepared devices decreased with increasing active layer thickness, reflecting largely a reduction in the short-circuit current density and an inverse photocurrent spectral response. Thermal annealing of the full devices was found to substantially recover thick-film device efficiencies while reducing the thin-film device efficiencies. The profound variations in photovoltaic characteristics were interpreted in terms of vertical phase separation in the P3HT:PCBM blend film and Li+ diffusion from the LiF/Al contact.

  1. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex

    SciTech Connect (OSTI)

    Delcey, Mickaël G.; Freitag, Leon; González, Leticia; Pedersen, Thomas Bondo; Aquilante, Francesco; Dipartimento di Chimica “G. Ciamician,” Università di Bologna, V. F. Selmi 2, 40126 Bologna ; Lindh, Roland; Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, 751 20 Uppsala

    2014-05-07

    We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S{sub 0} and 0.11 Å for T{sub 1}, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry.

  2. Gradient Resources | Open Energy Information

    Open Energy Info (EERE)

    Gradient Resources Jump to: navigation, search Logo: Gradient Resources Name: Gradient Resources Address: 9670 Gateway Drive, Suite 200 Place: Reno, Nevada Zip: 89521 Region:...

  3. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    SciTech Connect (OSTI)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo; Kwon, Soyoung; Kim, Bongsu; Jhe, Wonho

    2015-01-05

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution of activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.

  4. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  5. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  6. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2012-02-07

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  7. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2010-02-16

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  8. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect (OSTI)

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  9. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  10. Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter

    SciTech Connect (OSTI)

    Niwa, Akitsugu; Kobayashi, Takashi Nagase, Takashi; Naito, Hiroyoshi; Goushi, Kenichi; Adachi, Chihaya

    2014-05-26

    Using steady-state and time-resolved photoluminescence (PL) spectroscopy, we have investigated the temperature dependence of PL properties of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN), which have a small energy gap between its singlet and triplet excited states and thus exhibits efficient thermally activated delayed fluorescence [H. Uoyama et al., Nature 492, 235 (2012)]. Below around 100?K, PL quantum efficiency of 4CzIPN thin films is largely suppressed and strong photoexcitation intensity dependence appears. These features can be explained by using rate equations for the densities of singlet and triplet excited states considering a triplet-triplet annihilation process.

  11. Resonant activation in a colored multiplicative thermal noise driven closed system

    SciTech Connect (OSTI)

    Ray, Somrita; Bag, Bidhan Chandra; Mondal, Debasish

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  12. Highly efficient electroluminescence from a solution-processable thermally activated delayed fluorescence emitter

    SciTech Connect (OSTI)

    Wada, Yoshimasa; Kubo, Shosei; Suzuki, Katsuaki; Kaji, Hironori; Shizu, Katsuyuki; Tanaka, Hiroyuki; Adachi, Chihaya

    2015-11-02

    We developed a thermally activated delayed fluorescence (TADF) emitter, 2,4,6-tris(4-(9,9-dimethylacridan-10-yl)phenyl)-1,3,5-triazine (3ACR-TRZ), suitable for use in solution-processed organic light-emitting diodes (OLEDs). When doped into 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host at 16 wt. %, 3ACR-TRZ showed a high photoluminescence quantum yield of 98%. Transient photoluminescence decay measurements of the 16 wt. % 3ACR-TRZ:CBP film confirmed that 3ACR-TRZ exhibits efficient TADF with a triplet-to-light conversion efficiency of 96%. This high conversion efficiency makes 3ACR-TRZ attractive as an emitting dopant in OLEDs. Using 3ACR-TRZ as an emitter, we fabricated a solution-processed OLED exhibiting a maximum external quantum efficiency of 18.6%.

  13. A study of the stack relaxation in thermal batteries on activation

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; THOMAS,EDWARD V.

    2000-04-17

    The stack-relaxation processes occurring in a thermal-battery upon activation and discharge were studied dynamically with a special test fixture that incorporated an internal load cell. The factors which were screened initially included stack diameter and height (number of cells), thickness and binder content of the separator, temperature, and closing pressure. A second series of more-detailed experiments included only those factors that were identified by the screening study as being important (as closing force, number of cells, and separator thickness). The resulting experimental data from this second series of experiments were used to generate a surface-response model based on these three factors. This model accounted for 94% of the variation in the response (final stack-relaxation pressure) over the range of conditions studied.

  14. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect (OSTI)

    Hall, M.M. Jr.

    1993-10-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates.

  15. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  16. Ion-heated thermal Comptonization models and x-ray spectral correlations in active galactic nuclei

    SciTech Connect (OSTI)

    Dermer, C.D.

    1989-11-01

    Recent Ginga observations of the Seyfert 1 galaxies NGC 4051 and MCG 6-30-15 show a positive correlation between the 2-10 keV luminosity and photon spectral index {alpha}. Similar behavior has also been reported in Exosat and Einstein observations of other active galactic nuclei, and is suggested in hard x-ray low-state data of the galactic black-hole candidate Cygnus X-1. A two-temperature thermal Comptonization model with internal soft-photon production provides a simple explanation for this correlation. The electron temperature, determined by a balance between ion heating and radiative cooling, decreases in response to an enhancement of the soft photon flux, resulting in a softening of the spectrum and an increase in the soft x-ray luminosity. The bulk of the soft photons are produced through pion production in collisions between the hot ions. Pivoting of the spectrum at photon energies {var epsilon} > 50 keV is a consequence of variations in the ion temperature. An important test of the model would be time correlations between soft and hard x-ray bands. 17 refs., 9 figs., 1 tab.

  17. Thermally Activated Cooling: A Regional Approach for EstimatingBuilding Adoption

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Marnay, Chris

    2005-06-01

    This paper examines the economic potential for thermally-activated cooling (TAC) technologies as a component of distributed energy resource (DER) systems in California. A geographic information system (GIS) is used to assess the regional variation of TAC potential and to visualize the geographic pattern of potential adoption. The economic potential and feasibility of DER systems in general, and especially TAC, is highly dependent on regional factors such as retail electricity rates, building cooling loads, and building heating loads. Each of these factors varies with location, and their geographic overlap at different sites is an important determinant in a market assessment of DER and TAC. This analysis uses system payback period as the metric to show the regional variation of TAC potential in California office buildings. The DER system payback with and without TAC is calculated for different regions in California using localized values of retail electricity rates and the weather-dependent variation in building cooling and heating loads. This GIS-based method has numerous applications in building efficiency studies where geographically dependent variables, such as space cooling and heating energy use, play an important role.

  18. An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units

    SciTech Connect (OSTI)

    Snyder, James W.; Hohenstein, Edward G.; Luehr, Nathan; Martínez, Todd J.

    2015-10-21

    We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10{sup 2}) atoms.

  19. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  20. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  1. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  2. Energy in density gradient

    SciTech Connect (OSTI)

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  3. Non Linear Conjugate Gradient

    Energy Science and Technology Software Center (OSTI)

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  4. EA-2010: Alternating Gradient Synchrotron Complex Improvements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gradient Synchrotron Complex Improvements at Brookhaven National Laboratory; Upton, New York EA-2010: Alternating Gradient Synchrotron Complex Improvements at Brookhaven ...

  5. Thermally activated dislocation creep model for primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect (OSTI)

    Hall, M.M., Jr

    1995-12-31

    There is a growing awareness that awareness that environmentally assisted creep plays an important role in integranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by a low temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model.

  6. U.S. Department of Energy thermal energy storage research activities review: 1989 Proceedings

    SciTech Connect (OSTI)

    Hoffman, H.W.; Tomlinson, J.J.

    1989-03-01

    Thermal Energy Storage (TES) offers the opportunity for the recovery and re-use of heat currently rejected to the ambient environment. Further, through the ability of TES to match an energy supply with a thermal energy demand, TES increases efficiencies of energy systems and improves capacity factors of power plants. The US Department of Energy has been the leader in TES research, development, and demonstration since recognition in 1976 of the need for fostering energy conservation as a component of the national energy budget. The federal program on TES R and D is the responsibility of the Office of Energy Storage and Distribution within the US Department of Energy (DOE). The overall program is organized into three program areas: diurnal--relating primarily to lower temperature heat for use in residential and commercial buildings on a daily cycle; industrial--relating primarily to higher temperature heat for use in industrial and utility processes on an hourly to daily cycle; seasonal--relating primarily to lower temperature heat or chill for use in residential complexes (central supply as for apartments or housing developments), commercial (light manufacturing, processing, or retail), and industrial (space conditioning) on a seasonal to annual cycle. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  8. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  9. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  10. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  11. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  12. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  13. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  14. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  15. Thermal Gradient Holes At Walker-Lane Transitional Zone Region...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  16. Thermal Gradient Holes At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  17. Thermal Gradient Holes At Chena Geothermal Area (Holdmann, Et...

    Open Energy Info (EERE)

    eight wells ranging in depth from 200 to 300 ft. References Gwen Holdmann, Dick Benoit, David Blackwell (2006) Integrated Geoscience Investigation and Geothermal Exploration at...

  18. Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al...

    Open Energy Info (EERE)

    waters with a minimum of 82 degrees C at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A...

  19. Numerical Simulation of Ni Grain Growth in a Thermal Gradient...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the SIAM Conference on Computational Science and ...

  20. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow...

  1. Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al....

    Open Energy Info (EERE)

    continue exploration when funding allows." References Joe LaFleur, Anna Carter, Karen Moore, Ben Barker, Paul Atkinson, Clay Jones, Joseph Moore, Bernold Pollard (2010) Update On...

  2. Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010...

    Open Energy Info (EERE)

    will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these...

  3. Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et...

    Open Energy Info (EERE)

    will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these...

  4. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Basis Report on a phase 2 project for DOE Notes A summary of the geophysical and geotechnical data used to pick drill sites, the actual drilling, and then the results from the...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Exploration Basis The study integrates detailed results from pump tests, fluid level monitoring, temperature logging, and fluid samplinganalysis of the...

  6. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  7. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  8. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  9. Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al....

    Open Energy Info (EERE)

    DOE-funding Unknown References Jeff Hulen, Denis Norton, Dennis Kaspereit, Larry Murray, Todd van de Putte, Melinda Wright (2003) Geology And A Working Conceptual Model Of...

  10. Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas...

    Open Energy Info (EERE)

    water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986)...

  11. Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers...

    Open Energy Info (EERE)

    Roy A. Cunniff, Roger L. Bowers (2005) Final technical report geothermal resource evaluation and definition (GRED) Program - Phase I, II and III for the Animas Valley, NM...

  12. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Roy A. Cunniff, Roger L. Bowers (2005) Final technical report geothermal resource evaluation and definition (GRED) Program - Phase I, II and III for the Animas Valley, NM...

  13. Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010)...

    Open Energy Info (EERE)

    Exploration program undertaken during Phase II of the DOE-funded Geothermal Resource Evaluation and Definitions Program Phase I (GRED III Phase II) Notes A deeper well, TG-12,...

  14. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    of at least 150C for the inferred geothermal reservoir. References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain,...

  15. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun...

    Open Energy Info (EERE)

    Valles caldera in order to locate an of high heat flow that would serve as a favorable test site for the HDR concept. Notes Data from these wells are report in Reiter et al....

  16. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. References Dick...

  17. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...

    Open Energy Info (EERE)

    Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum...

  18. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum...

  19. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

    Open Energy Info (EERE)

    be drilled by AMEX, but no results were presented in this paper. References Arnold, Anderson, Donaldson, Foster, Gutjahr, Hatton, Hill, Martinez (1978) New Mexico's Energy...

  20. Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al...

    Open Energy Info (EERE)

    L. Trowbridge Grose, John C. Murray, Catherine K. Skokan (1979) Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Additional References Retrieved...

  1. Variable metric conjugate gradient methods

    SciTech Connect (OSTI)

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  2. Heat flow and geothermal gradients of Irian Jaya-Papua New Guinea: Implications for regional hydrocarbon exploration

    SciTech Connect (OSTI)

    Bettis, P.K. ); Pigott, J.D. )

    1990-06-01

    Compilation of published and unpublished bottom hole temperatures (corrected for circulation times) obtained from open files and reports of the Indonesian Petroleum Association, Papua Geologic Survey, and the Southeast Asia Petroleum Society, together with published oceanographic heat flow analyses from the surrounding seas, allow an analysis of the regional heat flow and geothermal gradients of New Guinea. In two dimensions the thermal trends may be described as a pervasive west-northwest striking Cordilleran core of cool (<1 HFU-<2{degree}C/ 100 m) strata surrounded by warm to hotter regions (>2 HFU->4{degree}C/100 m) on the northwest, northeast, east, and southwest. As a first approximation, the heat flow may be viewed as directly proportional to the crustal thickness (as demonstrated from north-south transects across the Central Cordillera), inversely proportional to the age of the ocean crust (offshore), and perturbed by crustal heterogeneities proximal to plate boundaries (e.g., the Northern New Guinea Fault System). As a result, the heat flow distribution affords a record of post-Cretaceous tectonic activities of New Guinea. Using the spatial distribution of geothermal gradients and specific source rock ages, kinetic calculations of hydrocarbon maturities confirmed by recent drilling results suggest thermal variations through space and time that cannot be modeled simply as a function of present day static temperatures. Therefore, in terms of utilizing the present thermal information, hydrocarbon basin exploration strategies must also take into account the tectonically perturbed heat flow history of the region.

  3. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  4. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  5. Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Richter, Armin Benick, Jan; Hermle, Martin; Glunz, Stefan W.

    2014-02-10

    The excellent surface passivation of crystalline silicon provided by Al{sub 2}O{sub 3} requires always an activation by a thermal post-deposition treatment. In this work, we present an indirect study of the reaction kinetics during such thermal activation treatments for Al{sub 2}O{sub 3} synthesized by atomic layer deposition. The study was performed for Al{sub 2}O{sub 3} deposited at varying temperatures, which results in different micro-structures of the films and, in particular, different hydrogen concentrations. The effective carrier lifetime was measured sequentially as a function of the annealing time and temperature. From these data, the reaction rate R{sub act} and the activation energy E{sub A} were extracted. The results revealed a rather constant E{sub A} in the range of 1.4 to 1.5?eV, independent of the deposition temperature. The reaction rate, however, was found to increase with decreasing deposition temperature, which correlates with an increasing amount of hydrogen being incorporated in the Al{sub 2}O{sub 3} films. This is a strong indication for an interface hydrogenation that takes place during the thermal activation, which is limited by the amount of hydrogen provided by the Al{sub 2}O{sub 3} layer.

  6. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    SciTech Connect (OSTI)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  7. Latest Results of ILC High-Gradient R&D 9-cell Cavities at JLAB

    SciTech Connect (OSTI)

    Rongli Geng

    2008-02-11

    It has been over a year since JLAB started processing and testing ILC 9-cell cavities in the frame work of ILC high-gradient cavity R&D, aiming at the goal of a 35 MV/m gradient at a Q #4; of 1E10 with a yield of 90%. The necessary cavity processing steps include field flatness tuning, electropolishing (EP), hydrogen out-gassing under vacuum, high-pressure water rinsing, clean room assembly, and low temperature bake. These are followed by RF test at 2 Kelvin. Ultrasonic cleaning with Micro-90, an effective post-EP rinsing recipe discovered at JLAB, is routinely used. Seven industry manufactured 9-cell TESLAshape cavities are processed and tested repeatedly. So far, 33 EP cycles are accumulated, corresponding to more than 65 hours of active EP time. An emphasis put on RF testing is to discern cavity quench characteristics, including its nature and its location. Often times, the cavity performance is limited by thermal-magnetic quench instead of field emission. The quench field in some cavities is lower than 20 MV/m and remains unchanged despite repeated EP, implying material and/or fabrication defects. The quench field in some other cavities is high but changes unpredictably after repeated EP, suggesting processing induced defects. Based on our experience and results, several areas are identified where improvement is needed to improve cavity performance as well as yield.

  8. Approximate error conjugation gradient minimization methods

    DOE Patents [OSTI]

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  9. The Influence of High Pressure Thermal Behavior on Friction-induced material transfer During Dry Machining of Titanium

    SciTech Connect (OSTI)

    Abdel-Aal, H. A.; El Mansori, M.

    2011-05-04

    In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.

  10. Sodium-sulfur thermal battery

    SciTech Connect (OSTI)

    Ludwig, F.A.

    1990-12-11

    This paper discusses a sodium-sulfur thermal battery for generating electrical energy at temperatures above the melting point of sodium metal and sulfur. It comprises a sodium electrode comprising sodium metal; a sulfur electrode comprising sulfur; and a separator located between the sodium and sulfur electrodes. The separator having sufficient porosity to allow preliminary migration of fluid sodium metal and fluid sulfur and fluid sodium polysulfides therethrough during operation of the thermal battery to form a mixed polysulfides electrolyte gradient within the separator.

  11. Sound beam manipulation based on temperature gradients

    SciTech Connect (OSTI)

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  12. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  13. Erosion-corrosion of cooled thermal sprayed coatings impacted by mixtures of quartz and chemically active compounds

    SciTech Connect (OSTI)

    Wang, B.; Luer, K.

    1996-08-01

    A series of erosion-corrosion tests was carried out on AISI 1018 steel and four thermal sprayed coatings using a nozzle type elevated temperature erosion tester. The erodent particles were mechanical mixtures of SiO{sub 2} (quartz) with 1--4% NaCl or 1--4% KCl. The specimens were water-cooled on the backside. Test conditions attempted to simulate erosion-corrosion (E-C) conditions at the tubes in the convection pass of FBC boilers. The effect of Cl-bearing salt/quartz mixtures on the E-C wastage mechanisms of these materials were investigated. It was found that the E-C wastage of 1018 steel and carbide coating specimens increased with increasing amounts of NaCl and KCl doped in the quartz. Among the four coatings tested, a WC-17CoCr coating demonstrated the lowest thickness loss of all of the quartz/salt mixtures while the Cr{sub 3}C{sub 2}-25NiCr coating exhibited the highest E-C wastage. Meanwhile, quartz doped with NaCl or KCl had no effect on the E-C wastage of an HVOF Ni20Cr15Mo metal coating. The accelerating effect of doping alkali chlorides increased with both specimen surface temperature and environmental temperature.

  14. SW New Mexico BHT geothermal gradient calculations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  15. Coreless Concept for High Gradient Induction Cell

    SciTech Connect (OSTI)

    Krasnykh, Anatoly; /SLAC

    2008-01-07

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.

  16. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    SciTech Connect (OSTI)

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  17. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 4680 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 8048503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  18. Applications of salinity gradient solar technologies in the Southwest -- An overview

    SciTech Connect (OSTI)

    Swift, A.H.P.; Lu, H.

    1996-12-31

    This paper is an overview of recent applications of salinity gradient solar technologies (SGST) in the Southwest and especially in the State of Texas. SGST is a generic title for using a salinity gradient in a body of water to suppress convection and collect solar energy for a desired application, for example, salinity gradient solar ponds. Following initial work in the early 1980s at the El Paso Solar Pond project and funding of the Texas Solar Pond Consortium by the State of Texas and the Bureau of Reclamation, several applications involving the use of salinity gradient solar technologies have emerged. These applications include a biomass waste to energy project using heat from a solar pond at Bruce Foods Corporation; an industrial process heat application for sodium sulfate mining near Seagraves, Texas; overwintering thermal refuges for mariculture in Palacios, Texas; a potential salt management project on the Brazos River near Abilene, Texas; and use of solar ponds for brine disposal at a water desalting project in a small colonia east of El Paso. This paper discusses salinity gradient solar technology requirements and the abundance of resources available in Texas and the Southwest which makes this an attractive location for the commercial development of salinity gradient projects. Barriers to development as well as catalysts are discussed before a brief overview of the projects listed above is provided.

  19. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    SciTech Connect (OSTI)

    Huang, Zhangyi; Qi, Jianqi Zhou, Li; Feng, Zhao; Yu, Xiaohe; Gong, Yichao; Yang, Mao; Wei, Nian; Shi, Qiwu; Lu, Tiecheng

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  20. Theory of factors limiting high gradient operation of warm acceleratin...

    Office of Scientific and Technical Information (OSTI)

    Theory of factors limiting high gradient operation of warm accelerating structures Citation Details In-Document Search Title: Theory of factors limiting high gradient operation of ...

  1. Gradient-Enhanced Universal Kriging for Uncertainty Propagation...

    Office of Scientific and Technical Information (OSTI)

    Gradient-Enhanced Universal Kriging for Uncertainty Propagation Citation Details In-Document Search Title: Gradient-Enhanced Universal Kriging for Uncertainty Propagation Authors: ...

  2. Salinity gradient solar pond technology applied to potash solution mining

    SciTech Connect (OSTI)

    Martell, J.A.; Aimone-Martin, C.T.

    2000-06-12

    A solution mining facility at the Eddy Potash Mine, Eddy County, New Mexico has been proposed that will utilize salinity gradient solar pond (SGSP) technology to supply industrial process thermal energy. The process will include underground dissolution of potassium chloride (KCl) from pillars and other reserves remaining after completion of primary room and pillar mining using recirculating solutions heated in the SGSP. Production of KCl will involve cold crystallization followed by a cooling pond stage, with the spent brine being recirculated in a closed loop back to the SGSP for reheating. This research uses SGSP as a renewable, clean energy source to optimize the entire mining process, minimize environmental wastes, provide a safe, more economical extraction process and reduce the need for conventional processing by crushing, grinding and flotation. The applications of SGSP technology will not only save energy in the extraction and beneficiation processes, but also will produce excess energy available for power generation, desalination, and auxiliary structure heating.

  3. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Areas (1) Raft River Geothermal Area Regions (0)...

  4. Shallow Drilling In The Salton Sea Region, The Thermal Anomaly

    SciTech Connect (OSTI)

    Newmark, R. L.; Kasameyer, P. W.; Younker, L. W.

    1987-01-01

    During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 C/m) to extreme (0.83 C/m) in only 2.4 km. The heat flow in the central part of the anomaly is >600 mW/m{sup 2} and in some areas exceeds 1200 mW/m{sup 2}. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes. These observations of the thermal anomaly provide important constraints for models of the circulation of the hydrothermal system. Thermal budgets based on a simple model for this hydrothermal system indicate that the heat influx rate for local ''hot spots'' in the region may be large enough to account for the rate of heat flux from the entire Salton Trough.

  5. Laser window with annular grooves for thermal isolation

    DOE Patents [OSTI]

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  6. High pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  7. High-pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  8. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  9. Turbulent electron transport in edge pedestal by electron temperature gradient turbulence

    SciTech Connect (OSTI)

    Singh, R.; Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 ; Jhang, Hogun; Diamond, P. H.; CMTFO and CASS, University of California, San Diego 92093-0424, California

    2013-11-15

    We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.

  10. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  11. Gradient zone-boundary control in salt-gradient solar ponds

    DOE Patents [OSTI]

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  12. Upper critical fields and thermally-activated transport of Nd(0.7Fe0.3) FeAs single crystal

    SciTech Connect (OSTI)

    Balakirev, Fedor F; Jaroszynski, J; Hunte, F; Balicas, L; Jo, Youn - Jung; Raicevic, I; Gurevich, A; Larbalestier, D C; Fang, L; Cheng, P; Jia, Y; Wen, H H

    2008-01-01

    We present measurements of the resistivity and the upper critical field H{sub c2} of Nd(O{sub 0.7}F{sub 0.3})FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H{sub c2} is comparable to {approx}100 T of high T{sub c} cuprates. H{sub c2}(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H{sub c2} shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T{sub c} but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4--5 decades. The activation energy has very different field dependencies for H{parallel}ab and H{perpendicular}ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H{sub c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H{sub c2}(T), which may significantly reduce H{sub c2}(0) as compared to H{sub c2}(0) {approx}200--300 T based on extrapolations of H{sub c2}(T) near T{sub c} down to low temperatures.

  13. Shallow drilling in the Salton Sea region: The thermal anomaly

    SciTech Connect (OSTI)

    Newmark, R.L.; Kasameyer, P.W.; Younker, L.W.

    1988-11-10

    During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The central thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 /sup 0/C/m) to extreme (0.83 /sup 0/C/m) in only 2.4 km. The heat flow in the central part of the anomaly is greater than 600 mW/m/sup 2/ and in the two local anomalies exceeds 1200 mW/m/sup 2/. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes.

  14. Solar wind thermal electron distributions

    SciTech Connect (OSTI)

    Phillips, J.L.; Gosling, J.T.

    1991-01-01

    Solar wind thermal electron distributions exhibit distinctive trends which suggest Coulomb collisions and geometric expansion in the interplanetary magnetic field play keys roles in electron transport. We introduce a simple numerical model incorporating these mechanisms, discuss the ramifications of model results, and assess the validity of the model in terms of ISEE-3 and Ulysses observations. Although the model duplicates the shape of the electron distributions, and explains certain other observational features, observed gradients in total electron temperature indicate the importance of additional heating mechanisms. 5 refs., 7 figs.

  15. Automated apparatus for producing gradient gels

    DOE Patents [OSTI]

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  16. Automated apparatus for producing gradient gels

    DOE Patents [OSTI]

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  17. High gradient accelerators for linear light sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  18. Dielectric-Lined High-Gradient Accelerator Structure

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  19. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac

  20. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  1. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    SciTech Connect (OSTI)

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. ); Aycinena, S.; Martinelli, L. ); Castaneda, O.; Revolorio, M.; Roldan, A. . Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  2. Thermal Ion Dispersion | Open Energy Information

    Open Energy Info (EERE)

    Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0)...

  3. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    SciTech Connect (OSTI)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    2015-04-01

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturing is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.

  4. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  5. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  6. Package-interface thermal switch

    SciTech Connect (OSTI)

    Hyman, N.L.

    1995-05-24

    The package-interface thermal switch (PITS) is an active temperature control device for modulating the flow of thermal energy from satellite equipment, such as electronic modules or batteries, to the satellite mounting deck which serves as a heat sink. PITS comprises a mounting bolt made of a shaped memory alloy (SMA) actuating bolt and a non-metallic rod with a helical spring surrounding it forming a mounting bolt for a satellite equipment package. At least four mounting bolts are used for installing the equipment package and are preloaded to a predetermined stress representing the desired thermal conductance between the heat sink and the package. The SMA actuating bolt is in thermal contact with the component or package and expands or contracts as the result of changing package temperature and the helical return spring forces against the SMA actuating bolt portion of the PITS, increasing (hot-on`1 condition) or decreasing (cold-off condition) the pressure of the package against the mounting deck. As the PITS changes its total length, the thermal conductance between the two objects is increased or decreased. Thus thermal conductance changes as a direct function of package temperature, resulting in active temperature control. The simple design of the PITS reduces the cost and weight of the thermal control subsystem in satellites and its high reliability eliminates the requirement for thermal design verification testing.

  7. The effect of density gradient on the growth rate of relativistic Weibel instability

    SciTech Connect (OSTI)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2014-02-15

    In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, η, is larger than the critical temperature anisotropy, η{sub c}, (η > η{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for η < η{sub c}, the thermal spread of the energetic electrons reduces the growth rate. Also, the growth rate can be reduced if the relativistic parameter (Lorentz factor) is sufficiently large, γ > 2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing η by a factor of 100 and increasing relativistic parameter by a factor of 3.

  8. A high-gradient high-duty-factor Rf photo-cathode electron gun

    SciTech Connect (OSTI)

    Rimmer, Robert A.; Hartman, Neal; Lidia, Steven M.; Wang, Shaoheng

    2002-05-22

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure.

  9. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  10. Thermal Transistor for Energy Smart Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Transistor for Energy Smart Buildings Thermal Transistor for Energy Smart Buildings Assumptions & Limitations: * Current LANL prototype: ~50 cm 2 active area. Assume it can be scaled to sq.ft size relevant for applications * Switching requires ~200 Volts but only draws a few µA. The associated drive electronics comprises only off-the- shelf components. Thermally adaptive devices and systems may be a game changer in energy efficiency, buildings and beyond: * Thermally agile walls can

  11. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  12. Design and calibration of a test facility for MLI thermal performance measurements below 80K

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  13. High gradient lens for charged particle beam

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  14. Constant field gradient planar coupled cavity structure

    DOE Patents [OSTI]

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  15. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  16. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  17. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  18. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  19. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Patents [OSTI]

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  20. Thermal history of Bakken shale in Williston basin

    SciTech Connect (OSTI)

    Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. )

    1989-12-01

    Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

  1. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  2. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect (OSTI)

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  3. Sources of stress gradients in electrodeposited Ni MEMS. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Sources of stress gradients in electrodeposited Ni MEMS. The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex ...

  4. Permafrost and organic layer interactions over a climate gradient...

    Office of Scientific and Technical Information (OSTI)

    in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships...

  5. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size Illinois: High-Energy,...

  6. Comparative systems biology across an evolutionary gradient within...

    Office of Scientific and Technical Information (OSTI)

    Comparative systems biology across an evolutionary gradient within the Shewanella genus Citation Details In-Document Search Title: Comparative systems biology across an ...

  7. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  8. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  9. Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...

    Open Energy Info (EERE)

    Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown...

  10. Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ

    DOE Patents [OSTI]

    Poppendiek, Heinz F.

    1982-01-01

    A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

  11. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  12. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    SciTech Connect (OSTI)

    Tan, Baolin

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  13. Bernstein instability driven by thermal ring distribution

    SciTech Connect (OSTI)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  14. Efficient and robust gradient enhanced Kriging emulators.

    SciTech Connect (OSTI)

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  15. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  16. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  18. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  19. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  20. Critical gradients and plasma flows in the edge plasma of Alcator C-Mod

    SciTech Connect (OSTI)

    LaBombard, B.; Hughes, J. W.; Smick, N.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Graf, A.; Zweben, S. J.

    2008-05-15

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields--a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when Bx{nabla}B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and 'critical gradient' values in the edge plasma.

  1. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect (OSTI)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  2. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  3. Design and calibration of a test facility for MLI thermal performance measurements below 80K. [Multilayer insulation (MLI)

    SciTech Connect (OSTI)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs.

  4. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  5. Electronic Bloch oscillation in bilayer graphene gradient superlattices

    SciTech Connect (OSTI)

    Cheng, Hemeng; Li, Changan; Song, Yun; Ma, Tianxing; Wang, Li-Gang; Lin, Hai-Qing

    2014-08-18

    We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Furthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.

  6. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  7. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

    SciTech Connect (OSTI)

    Maharrey, Sean; Wiese-Smith, Deneille; Highley, Aaron M.; Steill, Jeffrey D.; Behrens, Richard; Kay, Jeffrey J.

    2015-04-01

    This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.

  8. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp10amine.pdf More Documents & Publications New High Energy Gradient Concentration ...

  9. Observation of 690 MV m^-1 Electron Accelerating Gradient with...

    Office of Scientific and Technical Information (OSTI)

    Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure Citation Details In-Document Search Title: Observation of 690 MV m-1...

  10. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a high-energy, concentration-gradient cathode material for plug-in hybrid and all-electric vehicles. ... market growth, leading to reductions in carbon pollution and imported oil. ...

  11. Field Investigations And Temperature-Gradient Drilling At Marine...

    Open Energy Info (EERE)

    Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search OpenEI Reference LibraryAdd to...

  12. Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator...

    Office of Scientific and Technical Information (OSTI)

    Title: Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator C -Mod Tokamak Plasmas Authors: Rice, J. E. ; Hughes, J. W. ; Diamond, P. H. ; Kosuga, Y. ; Podpaly, Y. A. ; ...

  13. Reduction of particle deposition on substrates using temperature gradient control

    DOE Patents [OSTI]

    Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.

    2000-01-01

    A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.

  14. THERMAL OSCILLATIONS IN LIQUID HELIUM TARGETS.

    SciTech Connect (OSTI)

    WANG,L.; JIA,L.X.

    2001-07-16

    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  15. Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC...

    Office of Scientific and Technical Information (OSTI)

    Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC-Mod Tokamak Plasmas Citation Details In-Document Search Title: Edge Temperature Gradient as Intrinsic Rotation...

  16. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  17. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    SciTech Connect (OSTI)

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.

  18. New results of development on high efficiency high gradient superconducting rf cavities

    SciTech Connect (OSTI)

    Geng, Rongli; Li, Z.; Hao, K.; Liu, K.-X.; Zhao, H.-Y.; Adolphsen, C.

    2015-09-01

    We report on the latest results of development on high efficiency high gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  19. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect (OSTI)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  20. Thermal Ion Dispersion At Lightning Dock Area (Cunniff & Bowers...

    Open Energy Info (EERE)

    Dispersion At Lightning Dock Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Ion Dispersion At Lightning...

  1. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  2. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  3. The role of Rnf in ion gradient formation in Desulfovibrio alaskensis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Luyao; Bradstock, Peter; Li, Chuang; McInerney, Michael J.; Krumholz, Lee R.

    2016-04-14

    Rnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensisG20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth. Mutants inrnfAandrnfDwere more sensitive to the protonophore at 5 µM than the parental strain, suggesting the importance of Rnf in the generation ofmore » a proton gradient. The electrical potential (ΔΨ), ΔpH and proton motive force were lower in thernfAmutant than in the parental strain of D.alaskensisG20. In conclusion, these results provide evidence that the Rnf complex inD. alaskensisfunctions as a primary proton pump whose activity is important for growth.« less

  4. Enhanced magnetic reconnection in the presence of pressure gradients

    SciTech Connect (OSTI)

    Pueschel, M. J.; Terry, P. W.; Told, D.; Jenko, F.

    2015-06-15

    Magnetic reconnection in the presence of background pressure gradients is studied, with special attention to parallel (compressional) magnetic fluctuations. A process is reported that reconnects fields through coupling of drift-wave-type instabilities with current sheets. Its time scale is set not by the reconnecting field but by inhomogeneities of the background density or temperature. The observed features can be attributed to a pressure-gradient-driven linear instability which interacts with the reconnecting system but is fundamentally different from microtearing. In particular, this mode relies on parallel magnetic fluctuations and the associated drift. For turbulent reconnection, similar or even stronger enhancements are reported. In the solar corona, this yields a critical pressure gradient scale length of about 200 km below which this new process becomes dominant over the tearing instability.

  5. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  6. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  7. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; Pannetier, Romain; Harp, Dylan; Frampton, Andrew; Painter, Scott L.; Lyon, Steve W.

    2016-02-05

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less

  8. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  9. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  10. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured

  11. Digital Manufacturing of Gradient Meshed SOFC Sealing Composites with Self-Healing Capabilities

    SciTech Connect (OSTI)

    Kathy Lu; Christopher Story; W.T. Reynolds

    2007-12-21

    Solid oxide fuel cells (SOFC) hold great promise for clean power generation. However, high temperature stability and long term durability of the SOFC components have presented serious problems in SOFC technological advancement and commercialization. The seals of the fuel cells are the most challenging area to address. A high temperature gas seal is highly needed which is durable against cracking and gas leakage during thermal cycling and extended operation. This project investigates a novel composite seal by integrating 3D printed shape memory alloy (SMA) wires into a glass matrix. The SMA we use is TiNiHf and the glass matrix we use is SrO-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} (SLABS). Dilatometry shows to be an extremely useful tool in providing the CTEs. It pinpoints regions of different CTEs under simulated SOFC thermal cycles for the same glass. For the studied SLABS glass system, the region with the greatest CTE mismatch between the glass seal and the adjacent components is 40-500 C, the typical heating and cooling regions for SOFCs. Even for low temperature SOFC development, this region is still present and needs to be addressed. We have demonstrated that the proposed SLABS glass has great potential in mitigating the thermal expansion mismatch issues that are limiting the operation life of SOFCs. TiNiHf alloy has been successfully synthesized with the desired particle size for the 3DP process. The TiNiHf SMA shape memory effect very desirably overlaps with the problematic low CTE region of the glass. This supports the design intent that the gradient structure transition, phase transformation toughening, and self-healing of the SMA can be utilized to mitigate/eliminate the seal problem. For the 3DP process, a new binder has been identified to match with the specific chemistry of the SMA particles. This enables us to directly print SMA particles. Neutron diffraction shows to be an extremely useful tool in providing information

  12. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; Bullington, Amber; Di Nicola, Jean -Michel G.; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I.; Smith, Cal

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  13. New High Energy Gradient Concentration Cathode Material | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 6_amine_2011_p.pdf (1.42 MB) More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D Design of Safer High-Energy Density Materials for Lithium-Ion Cells Developing new high energy gradient concentration cathode material

  14. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the

  15. Electrolyte effects in Li(Si)/FeS{sub 2} thermal batteries

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1994-10-01

    The most common electrochemical couple for thermally activated (``thermal``) batteries is the Li-alloy/FeS{sub 2} system. The most common Li-alloys used for anodes are 20% Li-80% Al and 44% Li-56% Si (by weight); liquid Li immobilized with iron powder has also been used. The standard electrolyte that has been used in thermal batteries over the years is the LiCl-KCl eutectic that melts at 352{degrees}C. The LiCl-LiBr-LiF eutectic had the best rate and power characteristics. This electrolyte melts at 436{degrees}C and shows very low polarization because of the absence of Li+ gradients common with the LiCl-KCl eutectic. The low-melting electrolytes examined included a KBr-LiBr-LiCl eutectic (melting at 321{degrees}C), a LiBr-KBr-LiF eutectic (melting at 313{degrees}C), and a CsBr-LiBr-KBr eutectic (melting at 238{degrees}C). The CsBr-based salt had poor conductivity and was not studied further. The LiBr-KBr-LiF eutectic outperformed the KBr-LiBr-LiCl eutectic and was selected for more extensive testing. Because of their lower melting points and larger liquidi relative to the LiCl-KCl eutectic, the low-melting electrolytes are prime candidates for long-life applications (i.e., for activated lives of one hour or more). This paper will detail the relative performance of the Li(Si)/FeS{sub 2} couple using primarily the LiCl-KCl (standard) eutectic, the LiCl-LiBr-LiF (all-Li) eutectic, and the LiBr-KBr-LiF (low-melting) eutectic electrolytes. Most of the tests were conducted with 5-cell batteries; validation tests were also carried out with appropriate full-sized batteries.

  16. The DOE Solar Thermal Electric Program

    SciTech Connect (OSTI)

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  17. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    SciTech Connect (OSTI)

    Bakosi, Jozsef; Ristorcelli, Raymond J

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  18. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  19. Solid state thermal rectifier

    DOE Patents [OSTI]

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  20. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  1. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  2. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  3. Nonequilibrium thermal entanglement

    SciTech Connect (OSTI)

    Quiroga, Luis; Rodriguez, Ferney J.; Ramirez, Maria E.; Paris, Roberto

    2007-03-15

    Results on heat current, entropy production rate, and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified.

  4. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River...

  5. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River...

  6. Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) Exploration Activity Details...

  7. Thermal-mechanical stability of single crystal oxide refractive concentrators for high-temperature solar thermal propulsion

    SciTech Connect (OSTI)

    Zhu, D.; Jacobson, S.; Miller, R.A.

    1999-07-01

    Single crystal oxides such as yttria-stabilized zirconia (Y{sub 2}O{sub 3}-ZrO{sub 2}), yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG), magnesium oxide (MgO) and sapphire (Al{sub 2}O{sub 3}) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO{sub 2} laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  8. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  9. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  10. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  11. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  12. Density gradient effects on transverse shear driven lower hybrid waves

    SciTech Connect (OSTI)

    DuBois, Ami M.; Thomas, Edward; Amatucci, William E.; Ganguli, Gurudas

    2014-06-15

    Shear driven instabilities are commonly observed in the near-Earth space, particularly in boundary layer plasmas. When the shear scale length (L{sub E}) is much less than the ion gyro-radius (?{sub i}) but greater than the electron gyro-radius (?{sub e}), the electrons are magnetized in the shear layer, but the ions are effectively un-magnetized. The resulting shear driven instability, the electron-ion hybrid (EIH) instability, is investigated in a new interpenetrating plasma configuration in the Auburn Linear EXperiment for Instability Studies. In order to understand the dynamics of magnetospheric boundary layers, the EIH instability is studied in the presence of a density gradient located at the boundary layer between two plasmas. This paper reports on a recent experiment in which electrostatic lower hybrid waves are identified as the EIH instability, and the effect of a density gradient on the instability properties are investigated.

  13. Gradient Plasticity Model and its Implementation into MARMOT

    SciTech Connect (OSTI)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  14. Radiography to measure the longitudinal density gradients of Pd compacts

    SciTech Connect (OSTI)

    Back, D.D.

    1992-05-14

    This study used radiography to detect and quantify density gradients in green compacts of Palladium powder. Ultrasonic velocity measurements had been tried previously, but they were affected by material properties, in addition to the density, so that an alternative was sought. The alternative technique used radiographic exposures of a series of standard compacts whose density is known and correlated with the radiographic film density. These correlations are used to predict the density in subsequent compacts.

  15. Gradient instabilities of electromagnetic waves in Hall thruster plasma

    SciTech Connect (OSTI)

    Tomilin, Dmitry

    2013-04-15

    This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

  16. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  17. Thermally actuated wedge block

    DOE Patents [OSTI]

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  18. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  19. Atmospheric gradients and the stability of expanding jets. [Astrophysics

    SciTech Connect (OSTI)

    Hardee, P.E.; Koupelis, T.; Norman, M.L.; Clarke, D.A. Illinois, University, Urbana )

    1991-05-01

    Numerical simulations of adiabatically expanding slab jets in initial static pressure balance with an external atmosphere have been performed and compared to predictions made by a linear analysis of the stability of expanding jets. It is found that jets are stabilized by jet expansion as predicted by the linear analysis. It is also found that an expanding jet can be destabilized by a positive temperature gradient or temperature jump in the surrounding medium which lowers the Mach number defined by the external sound speed. A temperature gradient or jump is more destabilizing than would be predicted by a linear stability analysis. The enhanced instability compared to an isothermal atmosphere with identical pressure gradient is a result of the reduced external Mach number and a result of a higher jet density relative to the density in the external medium and higher ram speed. Other differences between predictions made by the linear theory and the simulations can be understood qualitatively as a result of a change in wave speed as the wave amplitude increases. 12 refs.

  20. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  1. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  2. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  3. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates

  4. Effective thermal conductivity in thermoelectric materials

    SciTech Connect (OSTI)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  5. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  6. Overview of high gradient SRF R&D for ILC cavities at Jefferson Lab

    SciTech Connect (OSTI)

    Geng, Rongli [JLAB

    2009-11-01

    We report the progress on high gradient R&D of ILC cavities at Jefferson Lab (JLab) since the Beijing workshop. Routine 9-cell cavity electropolishing (EP) processing and RF testing has been enhanced with added surface mapping and T-mapping instrumentations. 12 new 9-cell cavities (10 of them are baseline fine-grain TESLA-shape cavities: 5 built by ACCEL/Research Instruments, 4 by AES and 1 by JLab; 2 of them are alternative cavities: 1 fine-grain ICHIRO-shape cavity built by KEK/Japan industry and 1 large-grain TESLA-shape cavity built by JLab) are EP processed and tested. 76 EP cycles are accumulated, corresponding to more than 200 hours of active EP time. Field emission (FE) and quench behaviors of electropolished 9-cell cavities are studied. EP process continues to be optimized, resulting in advanced procedures and hence improved cavity performance. Several 9-cell cavities reached 35 MV/m after the first light EP processing. FE-free performance has been demonstrated in 9-cell cavities in 35-40 MV/m range. 1-cell cavity studies explore new techniques for defect removal as well as advanced integrated cavity processing. Surface studies of niobium samples electropolished together with real cavities provide new insight into the nature of field emitters. Close cooperation with the US cavity fabrication industry has been undertaking with the successful achievement of 41 MV/m for the first time in a 9-cell ILC cavity built by AES. As the size of the data set grows, it is now possible to construct gradient yield curves, from which one can see that significant progress has been made in raising the high gradient yield.

  7. Microfluidic device having an immobilized pH gradient and page...

    Office of Scientific and Technical Information (OSTI)

    pH gradient and page gels for protein separation and analysis Citation Details In-Document Search Title: Microfluidic device having an immobilized pH gradient and page gels ...

  8. R655-1-8 Temperature Gradient Wells | Open Energy Information

    Open Energy Info (EERE)

    R655-1-8 Temperature Gradient Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: R655-1-8 Temperature Gradient...

  9. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  10. Up-gradient particle flux in a drift wave-zonal flow system

    SciTech Connect (OSTI)

    Cui, L.; Tynan, G. R.; Thakur, S. C.; Diamond, P. H.; Brandt, C.

    2015-05-15

    We report a net inward, up-gradient turbulent particle flux in a cylindrical plasma when collisional drift waves generate a sufficiently strong sheared azimuthal flow that drives positive (negative) density fluctuations up (down) the background density gradient, resulting in a steepening of the mean density gradient. The results show the existence of a saturation mechanism for drift-turbulence driven sheared flows that can cause up-gradient particle transport and density profile steepening.

  11. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  12. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  13. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  14. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  15. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  16. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  17. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  18. On the hydrodynamics of salt-gradient solar ponds

    SciTech Connect (OSTI)

    Zangrando, F. )

    1991-01-01

    The objective of this paper is to discuss those hydrodynamical issues that affect the performance of the solar pond as an energy collector and storage system, e.g., mass and energy balance; formation, stability, and maintenance of the gradient layer; energy extraction from the bottom mixed layer; stability of stratified fluids to shearing flows; interface dynamics; and wall effects. Many of these topics are not fully understood and the discussion focuses on the present state of knowledge, some of the engineering correlations available at this time, and the research that is still required to resolve the relevant issues.

  19. Electron geodesic acoustic modes in electron temperature gradient mode turbulence

    SciTech Connect (OSTI)

    Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-08-15

    In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.

  20. Gradient index liquid crystal devices and method of fabrication thereof

    DOE Patents [OSTI]

    Lee, J.C.; Jacobs, S.

    1991-10-29

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  1. Gradient index liquid crystal devices and method of fabrication thereof

    DOE Patents [OSTI]

    Lee, Jae-Cheul; Jacobs, Stephen

    1991-01-01

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  2. High and ulta-high gradient quadrupole magnets

    SciTech Connect (OSTI)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  3. Growth of Sb-Bi gradient single crystals

    SciTech Connect (OSTI)

    Kozhemyakin, G. N. Lutskiy, D. V.; Rom, M. A.; Mateychenko, P. V.

    2008-12-15

    The growth conditions and structural quality of Sb-Bi gradient single crystals with Bi content from 2 to 18 at %, grown by the Czochralski method with solid phase feed, are investigated. Bi distribution in the crystals along their pulling direction are studied by electron probe microanalysis and the change in the interplanar spacing is analyzed by double-crystal X-ray diffraction. It is established that the pulling rate and feed mass affect the Bi distribution in Sb-Bi single crystals.

  4. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  5. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  6. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  7. Development of Advanced Combustion Technologies for Increased Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on low-temperature combustion, particularly HCCI / PCCI combustion deer09_gehrke.pdf (669.71 KB) More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Diesel HCCI

  8. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect (OSTI)

    Citrone, P.J.

    1991-01-01

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  9. Effect of the field gradient of an intense electromagnetic beam on electrons and atoms

    SciTech Connect (OSTI)

    Askaryan, G.A.

    1991-01-02

    It is demonstrated that the transverse inhomogeneity of a strong electromagnetic ray can exert a strong effect on electrons and atoms of a medium. Thus, if the wave frequency exceeds the proper frequency the electron oscillations (in a plasma or in atoms), the electrons or atoms will be forced-out of the ray field. At sub-resonance frequencies the particles will be pulled in, the force being especially large at resonance. As a result of this effect a rarefication or compression may occur in the ray or in the focus of the radiation; moreover the pressure gradient near the hole connecting the evacuated vessel with the atmosphere may be maintained and a channel conducting charged particles may be created in the medium. It is mentioned that a strong thermal, ionizing and separating effect of ray on the medium can be used for setting up wave guide conditions of propagation and for eliminating divergency of the ray (self-focusing). It is noted that hollow rays may ensure directed flow and ejection of the plasma along the ray axis for plasma transport and creation of plasma current conductors. The possibilities of acceleration and heating of plasma electrons by a modulated ray are indicated.

  10. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused bymore » a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.« less

  11. Experiment and analysis of practical-scale solar pond stabilized with salt gradient

    SciTech Connect (OSTI)

    Kanayama, Kimio; Inaba, Hideo; Baba, Hiromu; Fukuda, Takeyuki )

    1991-01-01

    A large-scale solar pond with salty water was constructed in the suburbs of Kitami in 1985. Its performance has been measured and analyzed by the authors after that. The solar pond body is circular of 44 m diameter, and the pond water is of 3 min total depth. After, 15 months, the depth of the salt gradient zone (S.G.Z.) was thinned by 10 cm in the top and by 20 cm in the bottom due to convection of the top and bottom zones. The temperature in the convective storage zone (C.S.Z.) reached 70C, its maximum, at the beginning of September in 1985, however, it was not as high in 1986 due to contamination of the pond water. The temperature of the storage zone was reduced from November to April due to ice covering on the pond surface. The collected heat yielded largely and the collection efficiency reached more than 30% in summer, but decreased to negative values in winter. The thermal performance of the solar pond was predicted by a simulation calculation, and the calculated result compared well with the measurements.

  12. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  13. Stiffness, thermal expansion, and thermal bending formulation of stiffened, fiber-reinforced composite panels

    SciTech Connect (OSTI)

    Collier, C.S.

    1993-01-01

    A method is presented for formulating stiffness terms and thermal coefficients of stiffened, fiber-reinforced composite panels. The method is robust enough to handle panels with general cross sectional shapes, including those which are unsymmetric and/or unbalanced. Nonlinear, temperature and load dependent constitutive material data of each laminate are used to 'build-up' the stiffened panel membrane, bending, and membrane-bending coupling stiffness terms and thermal coefficients. New thermal coefficients are introduced to quantify panel response from through-the-thickness temperature gradients. A technique of implementing this capability with a single plane of shell finite elements using the MSC/NASTRAN analysis program (FEA) is revealed that provides accurate solutions of entire airframes or engines with coarsely meshed models. An example of a composite, hat-stiffened panel is included to demonstrate errors that occur when an unsymmetric panel is symmetrically formulated as traditionally done. The erroneous results and the correct ones produced from this method are compared to analysis from discretely meshed three-dimensional FEA. 14 refs.

  14. A linear helicon plasma device with controllable magnetic field gradient

    SciTech Connect (OSTI)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-06-15

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  15. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    SciTech Connect (OSTI)

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; Degraff, Brian D.; Gold, Steven W.; Hannah, Brian S.; Howell, Matthew P.; Kim, Sang-Ho; Mammosser, John; McMahan, Christopher J.; Neustadt, Thomas S.; Saunders, Jeffrey W.; Tyagi, Puneet V.; Vandygriff, Daniel J.; Vandygriff, David M.; Ball, Jeffrey Allen; Blokland, Willem; Crofford, Mark T.; Lee, Sung-Woo; Stewart, Stephen; Strong, William Herb

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.

  16. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; Degraff, Brian D.; Gold, Steven W.; Hannah, Brian S.; Howell, Matthew P.; Kim, Sang-Ho; Mammosser, John; McMahan, Christopher J.; et al

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  17. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect (OSTI)

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  18. Geothermal regime and thermal history of the Llanos Basin, Columbia

    SciTech Connect (OSTI)

    Bachu, S.; Underschultz, J.R.; Ramon, J.C.; Villegas, M.E.

    1995-01-01

    The Llanos basin is a siliciclastic foreland sub-Andean sedimentary basin located in Columbia between the Cordillera Oriental and the Guyana Precambrian shield. Data on bottom-hole temperature, lithology, porosity, and vitrinite reflectance from all 318 wells drilled in the central and southern parts of the basin were used to analyze its geothermal regime and thermal history. Average geothermal gradients in the Llanos basin decrease generally with depth and westward toward the fold and thrust belt. The geothermal regime is controlled by a moderate, generally westward-decreasing basement heat flow, by depositional and compaction factors, and, in places, by advection by formation waters. Compaction leads to increased thermal conductivity with depth, whereas westward downdip flow in deep sandstone formations may exert a cooling effect in the central-western part of the basin. Vitrinite reflectance variation with depth shows a major discontinuity at the pre-Cretaceous unconformity. Areally, vitrinite reflectance increases southwestward in Paleozoic strata and northwestward in post-Paleozoic strata. These patterns indicate that the thermal history of the basin probably includes three thermal events that led to peaks in oil generation: a Paleozoic event in the southwest, a failed Cretaceous rifting event in the west, and an early Tertiary back-arc event in the west. Rapid cooling since the last thermal event is possibly caused by subhorizontal subduction of cold oceanic lithospheric plate.

  19. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  20. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  1. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  2. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  3. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  4. Voltage tunability of thermal conductivity in ferroelectric materials

    DOE Patents [OSTI]

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  5. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  6. Low gravity fluid-thermal experiments

    SciTech Connect (OSTI)

    Krotiuk, W.J.; Cuta, J.M.

    1987-06-01

    Pacific Northwest Laboratory (PNL) is the lead laboratory for the thermal-hydraulic research in the US Department of Energy Multimegawatt Space Nuclear Power Program. PNL must provide the tools necessary to analyze proposed space reactor concepts, which include single- and two-phase alkali metal and gas-cooled designs. PNL has divided its activities for this task into three basic areas: computer code development, thermal-hydraulic modeling, and experimentation. The subject of this paper is the low-gravity experimental program currently underway at PNL in support of the MMW Program.

  7. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  8. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    SciTech Connect (OSTI)

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermal conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.

  9. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  10. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  11. Charged particle beam scanning using deformed high gradient insulator

    DOE Patents [OSTI]

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  12. Operational experience with CW high gradient and high QL cryomodules

    SciTech Connect (OSTI)

    Hovater, J. Curt; Allison, Trent L.; Bachimanchi, Ramakrishna; Daly, Edward F.; Drury, Michael A.; Lahti, George E.; Mounts, Clyde I.; Nelson, Richard M.; Plawski, Tomasz E.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules (80 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. The RF system employs single cavity control using new digital LLRF controls and 13 kW klystrons. Recently, all of the new cryomodules and associated RF hardware and software have been commissioned and operated in the CEBAF accelerator. Electrons at linac currents up to 10 ?A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the cryomodules and RF system.

  13. Gradient corrections to the exchange-correlation free energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sjostrom, Travis; Daligault, Jerome

    2014-10-07

    We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures abovemore » 10 000 K.« less

  14. The density gradient effect on quantum Weibel instability

    SciTech Connect (OSTI)

    Mahdavi, M. Khodadadi Azadboni, F.

    2015-03-15

    The Weibel instability plays an important role in stopping the hot electrons and energy deposition mechanism in the fast ignition of inertial fusion process. In this paper, the effects of the density gradient and degeneracy on Weibel instability growth rate are investigated. Calculations show that decreasing the density degenerate in the plasma corona, near the relativistic electron beam emitting region by 8.5% leads to a 92% reduction in the degeneracy parameter and about 90% reduction in Weibel instability growth rate. Also, decreasing the degenerate density near the fuel core by 8.5% leads to 1% reduction in the degeneracy parameter and about 8.5% reduction in Weibel instability growth rate. The Weibel instability growth rate shrinks to zero and the deposition condition of relativistic electron beam energy can be shifted to the fuel core for a suitable ignition by increasing the degeneracy parameter in the first layer of plasma corona.

  15. Longitudinal Gradient Dipole Magnet Prototype for APS at ANL

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kashikhin, V. S.; Borland, M.; Chlachidze, G.; Decker, G.; Dejus, R.; DiMarco, J.; Doose, C. L.; Gardner, T. J.; Harding, D. J.; Jaski, M. S.; et al

    2016-01-26

    We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less

  16. Coherent structures in ion temperature gradient turbulence-zonal flow

    SciTech Connect (OSTI)

    Singh, Rameswar; Singh, R.; Kaw, P.; Grcan, . D.; Diamond, P. H.

    2014-10-15

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m?=?n?=?0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  17. Modeling high gradient magnetic separation from biological fluids.

    SciTech Connect (OSTI)

    Bockenfeld, D.; Chen, H.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Illinois Inst. of Tech.; Univ. of Chicago, Pritzker School of Medicine

    2006-01-01

    A proposed portable magnetic separator consists of an array of biocompatible capillary tubing and magnetizable wires immersed in an externally applied homogeneous magnetic field. While subject to the homogeneous magnetic field, the wires create high magnetic field gradients, which aid in the collection of blood-borne magnetic nanospheres from blood flow. In this study, a 3-D numerical model was created using COMSOL Multiphysics 3.2 software to determine the configuration of the wire-tubing array from two possible configurations, one being an array with rows alternating between wires and tubing, and the other being an array where wire and tubing alternate in two directions. The results demonstrated that the second configuration would actually capture more of the magnetic spheres. Experimental data obtained by our group support this numerical result.

  18. Gradient corrections to the exchange-correlation free energy

    SciTech Connect (OSTI)

    Sjostrom, Travis; Daligault, Jerome

    2014-10-07

    We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures above 10 000 K.

  19. Modified Magnicon for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-19

    Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

  20. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  1. Gradient maintenance: A new algorithm for fast online replanning

    SciTech Connect (OSTI)

    Ahunbay, Ergun E. Li, X. Allen

    2015-06-15

    Purpose: Clinical use of online adaptive replanning has been hampered by the unpractically long time required to delineate volumes based on the image of the day. The authors propose a new replanning algorithm, named gradient maintenance (GM), which does not require the delineation of organs at risk (OARs), and can enhance automation, drastically reducing planning time and improving consistency and throughput of online replanning. Methods: The proposed GM algorithm is based on the hypothesis that if the dose gradient toward each OAR in daily anatomy can be maintained the same as that in the original plan, the intended plan quality of the original plan would be preserved in the adaptive plan. The algorithm requires a series of partial concentric rings (PCRs) to be automatically generated around the target toward each OAR on the planning and the daily images. The PCRs are used in the daily optimization objective function. The PCR dose constraints are generated with dose–volume data extracted from the original plan. To demonstrate this idea, GM plans generated using daily images acquired using an in-room CT were compared to regular optimization and image guided radiation therapy repositioning plans for representative prostate and pancreatic cancer cases. Results: The adaptive replanning using the GM algorithm, requiring only the target contour from the CT of the day, can be completed within 5 min without using high-power hardware. The obtained adaptive plans were almost as good as the regular optimization plans and were better than the repositioning plans for the cases studied. Conclusions: The newly proposed GM replanning algorithm, requiring only target delineation, not full delineation of OARs, substantially increased planning speed for online adaptive replanning. The preliminary results indicate that the GM algorithm may be a solution to improve the ability for automation and may be especially suitable for sites with small-to-medium size targets surrounded by

  2. Mineral density volume gradients in normal and diseased human tissues

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  3. Mineral density volume gradients in normal and diseased human tissues

    SciTech Connect (OSTI)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  4. NEW REACTOR DESIGN AND ANALYSIS OF NON LINEAR VIBRATIONS OF DOUBLY CURVED SHALLOW SHELL UNDER A THERMAL GRADIENT

    SciTech Connect (OSTI)

    Chanda, S.

    2004-10-06

    The present study concerns with the effects of material orthotropy,curvature, shear ratio and circumferential modulus under the influence of a temperature distribution throughout the shell structure. Here analysis is restricted to the study of nonlinear vibration of a doubly curved shell structure considering the periodic response of a simple bending mode due to curtailment of pages. Solutions of the problems with suitable illustrations are also presented.

  5. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments [OSTI]

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  6. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating

  7. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps3_nrel_zhang.pdf (530.07 KB) More Documents & Publications US TG 4 Activities of QA Forum US & Japan TG 4 Activities of QA Forum High Temperature Reverse By-Pass Diodes Bias and Failures

  8. Method to create gradient index in a polymer

    DOE Patents [OSTI]

    Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James

    2014-10-14

    Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.

  9. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  10. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  11. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  12. Pyrolysis of epoxies used for thermal-battery headers

    SciTech Connect (OSTI)

    Guidotti, R.A.; Thornberg, S.M.; Campbell-Domme, B.

    1995-08-01

    Thermally activated batteries use an epoxy for encapsulation of the electrical feedthroughs in the header of the battery. When the thermal battery is thermally abused, the encapsulant can pyrolyze and generate large internal pressures. This causes the battery to vent in extreme cases. The nature of these gases has never been adequately documented. Therefore, a study was undertaken to address this deficiency. The pyrolysis of various encapsulants that have been used, or are being considered for use, in thermally activated batteries was studied over a temperature range of 155 to 455 C. The composition of the pyrolysis decomposition products was determined by gas chromatography/mass spectrometry (GS/MS). This determination is helpful in assessing the potential environmental and health effect for personnel exposed to such gases. In addition, the thermal stability of the various epoxies was measured by thermogravimetric analysis (TGA).

  13. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    the ability to produce 10000 TWh per year, which is greater than other types of ocean energy such as tides, marine currents and salinity gradient. OTEC functions best when...

  14. Microfluidic device having an immobilized pH gradient and page gels for

    Office of Scientific and Technical Information (OSTI)

    protein separation and analysis (Patent) | SciTech Connect device having an immobilized pH gradient and page gels for protein separation and analysis Citation Details In-Document Search Title: Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with

  15. Constraints on the Cosmic-Ray Density Gradient Beyond the Solar...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Constraints on the Cosmic-Ray Density Gradient Beyond the Solar Circle From Fermi Gamma-Ray Observations of the Third Galactic Quadrant Citation Details...

  16. Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun

    SciTech Connect (OSTI)

    Bosch, Robert; Legg, Robert A.

    2013-12-01

    The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.

  17. Approach to Fast Liquid Metal Flow Up a Magnetic Field Gradient | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Approach to Fast Liquid Metal Flow Up a Magnetic Field Gradient Electrical and magnetic field (J x B) forces can be used to support flowing liquid metal against gravity. In a tokamak, the radial magnetic field gradient implies that JxB decreases inversely as the major radius, for constant current density in the liquid metal. This field gradient produces a pressure gradient along the support wall, which pushes the liquid metal towards the low field side. The invention

  18. Energetics of melts from thermal diffusion studies. Final report

    SciTech Connect (OSTI)

    Lesher, C.E.

    1998-12-01

    Most processes in geology are a consequence at some level of the flow of energy or mass. Heat conduction and chemical diffusion are examples of two of these sorts of flows which are driven by temperature and chemical potential imbalances, respectively. In the general case these flows may be coupled so that, for instance, a temperature gradient may result in a flow of mass as well as heat. This effect in liquids was demonstrated by Soret (1879) and bears his name. In gases or solids the phenomenon is given the general name thermal diffusion. It was the purpose of this research program to examine the Soret effect in molten silicates under laboratory conditions. Results of these experiments are used to evaluate the form and quantitative values of many thermodynamic and kinetic properties of silicate melts over a range of temperature, pressure, and bulk composition. The author published a comprehensive review and synthesis with a microscopic theoretical explanation for the effect at low pressure in silicate liquids of geological interest. He conducted experimental investigations of molecular diffusion in the absence of a thermal gradient through experiments involving dissolution of solid silicates in molten silicate and interdiffusion of species between miscible silicate liquids. Collectively these results enable the author to construct a more comprehensive model of molecular diffusion in magmatic liquids. He has applied this model to problems of magma mixing and crustal assimilation.

  19. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley...

  20. Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz, Et Al., 2009) Exploration...

  1. Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M. P.

    2009-05-01

    This presentation gives an overview of NREL's Thermal Stress and Reliability Project work from October 2007 to March 2009 with an emphasis on activity during 2008/2009.

  2. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Molten Nitrate Salt Initial Flow Testing is a ...

  3. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2001-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  4. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  5. Low thermal distortion Extreme-UV lithography reticle and method

    DOE Patents [OSTI]

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  6. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  7. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  8. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  9. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility Home/Tag:National Solar Thermal Test Facility Illuminated receiver on top of tower Permalink Gallery High-Temperature Falling Particle Receiver Reaches New Limits Concentrating Solar Power, Energy, National Solar Thermal Test Facility, News, Renewable Energy, Solar, SunShot High-Temperature Falling Particle Receiver Reaches New Limits At its National Solar Thermal Test Facility, Sandia National Laboratories

  10. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  11. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect (OSTI)

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  12. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  13. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  14. THERMAL NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  15. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  16. Shape measurement biases from underfitting and ellipticity gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF)more » and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 103 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less

  17. Shape measurement biases from underfitting and ellipticity gradients

    SciTech Connect (OSTI)

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF) and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 103 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.

  18. Gradient Flow and Scale Setting on MILC HISQ Ensembles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bazavov, A.; Bernard, C.; Brown, N.; Komijani, J.; DeTar, C.; Foley, J.; Levkova, L.; Gottlieb, Steven; Heller, U. M.; Laiho, J.; et al

    2016-05-25

    We report on a scale determination with gradient-flow techniques on the Nf = 2 + 1 + 1 HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales p √t0/a and w0/a and their tree-level improvements,√t0;imp and w0;imp, are computed on each ensemble using Symanzik ow and the cloverleaf definition of the energy density E. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence, the results are simultaneously extrapolatedmore » to the continuum and interpolated to physical quark masses. We also determine the scales p t0 = 0:1416(+8-5) fm and w0 = 0:1717(+12-11) fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of w0 and √t0 is comparable to or more precise than the best previous estimates, respectively. We also find the continuum mass-dependence of w0 that will be useful for estimating the scales of other ensembles. Furthermore, we estimate the integrated autocorrelation length of . For long flow times, the autocorrelation length of appears to be comparable to or smaller than that of the topological charge.« less

  19. A constrained conjugate gradient algorithm for computed tomography

    SciTech Connect (OSTI)

    Azevedo, S.G.; Goodman, D.M.

    1994-11-15

    Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.

  20. GRADIENT INDEX SPHERES BY THE SEQUENTIAL ACCRETION OF GLASS POWDERS

    SciTech Connect (OSTI)

    MARIANO VELEZ

    2008-06-15

    The Department of Energy is seeking a method for fabricating mm-scale spheres having a refractive index that varies smoothly and continuously from the center to its surface [1]. The fabrication procedure must allow the creation of a range of index profiles. The spheres are to be optically transparent and have a refractive index differential greater than 0.2. The sphere materials can be either organic or inorganic and the fabrication technique must be capable of scaling to low cost production. Mo-Sci Corporation proposed to develop optical quality gradient refractive index (GRIN) glass spheres of millimeter scale (1 to 2 mm diameter) by the sequential accretion and consolidation of glass powders. Other techniques were also tested to make GRIN spheres as the powder-accretion method produced non-concentric layers and poor optical quality glass spheres. Potential ways to make the GRIN spheres were (1) by "coating" glass spheres (1 to 2 mm diameter) with molten glass in a two step process; and (2) by coating glass spheres with polymer layers.

  1. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  2. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  3. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  4. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  5. Electric Motor Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  6. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermalmore » conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.« less

  7. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.

  8. Thermal Regenerator Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_crane.pdf (64.03 KB) More Documents & Publications Phase 1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding Engine Tests of an Active PM Filter

  9. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  10. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  11. Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar-Thermal Energy Storage

    SciTech Connect (OSTI)

    Kanai, Y; Srinivasan, V; Meier, S K; Vollhardt, K P; Grossman, J C

    2010-02-18

    In the currently intensifying quest to harness solar energy for the powering of our planet, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small molecule activation, and biologically inspired photosynthetic systems. In contrast, direct collection of heat from sunlight has received much less diversified attention, its bulk devoted to the development of concentrating solar thermal power plants, in which mirrors are used to focus the sun beam on an appropriate heat transfer material. An attractive alternative strategy would be to trap solar energy in the form of chemical bonds, ideally through the photoconversion of a suitable molecule to a higher energy isomer, which, in turn, would release the stored energy by thermal reversal. Such a system would encompass the essential elements of a rechargeable heat battery, with its inherent advantages of storage, transportability, and use on demand. The underlying concept has been explored extensively with organic molecules (such as the norbornadiene-quadricyclane cycle), often in the context of developing photoswitches. On the other hand, organometallic complexes have remained relatively obscure in this capacity, despite a number of advantages, including expanded structural tunability and generally favorable electronic absorption regimes. A highly promising organometallic system is the previously reported, robust photo-thermal fulvalene (Fv) diruthenium couple 1 {l_reversible} 2 (Scheme 1). However, although reversible and moderately efficient, lack of a full, detailed atom-scale understanding of its key conversion and storage mechanisms have limited our ability to improve on its performance or identify optimal variants, such as substituents on the Fv, ligands other than CO, and alternative metals. Here we present a theoretical investigation, in conjunction with corroborating experiments, of the mechanism for the heat releasing step of 2 {yields} 1 and

  12. Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography

    SciTech Connect (OSTI)

    Ohlinger, Kris; Lutkenhaus, Jeff [Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Arigong, Bayaner; Zhang, Hualiang [Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States); Lin, Yuankun, E-mail: yuankun.lin@unt.edu [Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2013-12-07

    In this paper, we present an achievable gradient refractive index in bi-continuous holographic structures that are formed through five-beam interference. We further present a theoretic approach for the realization of gradient index devices by engineering the phases of the interfering beams with a pixelated spatial light modulator. As an example, the design concept of a gradient index Luneburg lens is verified through full-wave electromagnetic simulations. These five beams with desired phases can be generated through programming gray level super-cells in a diffractive spatial light modulator. As a proof-of-concept, gradient index structures are demonstrated using synthesized and gradient phase patterns displayed in the spatial light modulator.

  13. Novel concepts in weld science: Role of gradients and composite structure

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1992-08-31

    The effects of compositional and microstructural gradients on weld metal properties were investigated. The effects of compositional gradients were analyzed using thermodynamic and composite models. Brittle and ductile cracking behavior were investigated using both binary alloy single crystals and large grain castings. In both cases, the crack propagated along regions where the compositional gradients were the steepest. High temperature deformation of large wavelength compositonally modulated structures vas investigated to understand creep behavior in veld metal. At moderate temperatures, the creep behavior of cored materials was found to follow predictions based on the rule of mixtures composite analysis. At higher temperatures with the advent of dynamic mass transport the creep process is influenced by diffusion-promoted vacancy flow and time-dependent compositional gradient. The investigation found the critical gradient which will promote Kirkendall voids and has reported a creep rate behavior that suggests strong structural dependence, localized stress and vacancy transport influence. Weld metal, based on metal matrix composite, was also demonstrated.

  14. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  15. Gradient Flow and Scale Setting on MILC HISQ Ensembles

    SciTech Connect (OSTI)

    Bazavov, A.; Bernard, C.; Brown, N.; Komijani, J.; DeTar, C.; Foley, J.; Levkova, L.; Gottlieb, Steven; Heller, U. M.; Laiho, J.; Sugar, R. L.; Toussaint, D.; Van de Water, R. S.

    2015-03-25

    We report on a scale determination with gradient-ow techniques on the Nf = 2 + 1 + 1 HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales p √t0/a and w0/a and their tree-level improvements,√t0;imp and w0;imp, are computed on each ensemble using Symanzik ow and the cloverleaf de_nition of the energy density E. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We also determine the scales p t0 = 0:1416(+8-5) fm and w0 = 0:1717(+12-11) fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of w0 and √t0 is comparable to or more precise than the best previous estimates, respectively. We also find the continuum mass-dependence of w0 that will be useful for estimating the scales of other ensembles. Furthermore, we estimate the integrated autocorrelation length of . For long ow times, the autocorrelation length of appears to be comparable to or smaller than that of the topological charge.

  16. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  17. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  18. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  19. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  20. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  1. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  2. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  3. Thermomechanical measurements on thermal microactuators. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal ... SANDIA NATIONAL LABORATORIES; SILICON; VALIDATION Microactuators.; Ceramic ...

  4. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  5. Solar thermal power system

    SciTech Connect (OSTI)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  6. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  7. Thermal battery comprising iron pyrite depolarizer and ferric sulfate additive

    SciTech Connect (OSTI)

    Winchester, C.S.; Williams, M.T.

    1987-06-23

    This patent describes a thermal battery having a salt electrolyte, means to activate the battery by melting the electrolyte, and a FeS/sub 2/ depolarizer. The improvement comprises an amount of ferric sulfate effective to cause the occurrence of a voltage transient of predetermined magnitude and duration on activation of the battery.

  8. Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks

    SciTech Connect (OSTI)

    Tan, Ing Hwie

    1992-05-01

    Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes.

  9. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  10. Calibrating thermal behavior of electronics

    DOE Patents [OSTI]

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  11. Novel concepts in weld science: Role of gradients and composite structure. Final report

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1994-03-01

    The effects of compositional and microstructural gradients on weld metal and simulated weld metal properties were evaluated in this multi-part study. The results obtained on single phase solid solution systems were used as a basis for a fundamental study of the effects of compositional gradients on crack growth, both at low temperatures, in fatigue and at high temperatures during creep. Methods to physically simulate gradients in weld metals with roll bonded laminate composites were applied to analyses of ferrite-austenite and ferrite-sigma-austenite multiphase systems. Finally, results of the physical simulation analyses were utilized to predict the effects of weld process parameters on weld metal properties.

  12. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  14. SUPERFAST THERMALIZATION OF PLASMA

    DOE Patents [OSTI]

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  15. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  16. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  17. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Moore, Troy K.

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  18. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  19. Spectral calculation of thermal performance of solar pond and comparison of the results with the experiments

    SciTech Connect (OSTI)

    Li, X.Y.; Kanayama, Kimio; Baba, Hiromu

    1999-07-01

    This paper deals with the method and the result of the spectroscopic calculation on the heat balance of a salt-gradient solar pond under the conditions of spectral solar radiation. Furthermore, the reflection of the rays incident upon the surface of the pond water, the refraction of the rays within the salt water layer and the diffusion of the salt in the pond water are considered. On the other hand, in order to make clear the mechanism of heat collection and heat storage of a solar pond, the authors conducted the indoor experiment and numerical analysis on a small scale model of salt-gradient solar pond with 2 m{sup 2} surface area and 1.6 m depth, under incident ray from a Xe-lamp solar simulator. According to above experimental analysis, the authors made a simulation model of thermal performance for a solar pond and calculated the heat balance in it. They found that the simulation calculations correspond well to the experimental result, so that their thermal simulation model might be correct. Furthermore, the authors also did the thermal calculation by changing the incident ray from Xe-lamp into natural ray, and found that the temperature distributions were notably different due to spectral characteristics of the incident ray. Therefore, the spectroscopic consideration for thermal performance of any solar pond is necessary to obtain a correct solution under the spectral incidence of special distributions.

  20. Plates for vacuum thermal fusion

    DOE Patents [OSTI]

    Davidson, James C.; Balch, Joseph W.

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  1. Beam plasma electromagnetic instabilities in a smooth density gradient: Application to the fast ignition scenario

    SciTech Connect (OSTI)

    Bret, A.; Deutsch, C.

    2005-10-01

    The integrated growth rate of various relativistic beam/plasma instabilities in a weakly varying plasma density gradient is calculated using a WKB-like approximation. It is proven that such an assumption can be made in fast ignition scenario conditions. The formalism is applied to the two-stream, the filamentation, and the two-stream/filamentation instabilities, the latter instability being a mixture of the former two, and is the fastest growing one. The results are restricted to collisionless plasmas and nonrelativistic beam and plasma temperatures. Filamentation instability is reduced by the density gradient and eventually does not develop in the core, whereas two-stream and two-stream/filamentation instabilities should saturate even before they feel the gradient. Various effects connected to the density gradient are discussed. It is found they should be negligible as long as these later instabilities remain in their respective linear regime.

  2. High-Gradient Tests of the Single-Cell SC Cavity with a Feedback Waveguide

    SciTech Connect (OSTI)

    Yakovlev, V.; Solyak, N.; Wu, G.; Ge, M.; Gonin, I.; Khabiboulline, T.; Ozelis, J.; Rowe, A. [Fermilab, Batavia, IL 60510 (United States); Avrakhov, P.; Kanareykin, A. [Euclid TechLabs, LLC, Solon, Ohio 44139 (United States); Rathke, J. [AES, Medford, NY 11763 (United States)

    2010-11-04

    Use of a superconducting (SC) traveling-wave accelerating (STWA) structure with a small phase advance per cell, rather than a standing-wave structure, may provide a significant increase in the accelerating gradient in the ILC linac [1]. For the same surface electric and magnetic fields, the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing-wave cavities. In addition, the STWA allows longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed and manufactured to demonstrate the possibility of proper processing to achieve a high accelerating gradient. The first results of high-gradient tests of a prototype 1.3 GHz single-cell cavity with feedback waveguide will be presented.

  3. Overview of high gradient SRF R&D for ILC cavities at Jefferson...

    Office of Scientific and Technical Information (OSTI)

    We report the progress on high gradient R&D of ILC cavities at Jefferson Lab (JLab) since the Beijing workshop. Routine 9-cell cavity electropolishing (EP) processing and RF ...

  4. Microfluidic device having an immobilized pH gradient and page...

    Office of Scientific and Technical Information (OSTI)

    and page gels for protein separation and analysis Title: Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis Disclosed is a ...

  5. MILLIMETER-SCALE GENETIC GRADIENTS AND COMMUNITY-LEVEL MOLECULAR CONVERGENCE IN A HYPERSALINE MICROBIAL MAT

    SciTech Connect (OSTI)

    Fenner, Marsha W; Kunin, Victor; Raes, Jeroen; Harris, J. Kirk; Spear, John R.; Walker, Jeffrey J.; Ivanova, Natalia; Mering, Christian von; Bebout, Brad M.; Pace, Norman R.; Bork, Peer; Hugenholtz, Philip

    2008-04-30

    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that are consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino acid usage indicating that hypersalinity enforces an overriding selective pressure on the mat community.

  6. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    SciTech Connect (OSTI)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-09-10

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  7. Thermally robust semiconductor optical amplifiers and laser diodes

    DOE Patents [OSTI]

    Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William

    2002-01-01

    A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

  8. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  9. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  10. Study of thermal effects in an Nd doped phosphate glass laser rod

    SciTech Connect (OSTI)

    Uppal, J.S.; Monga, J.C.; Bhawalkar, D.D.

    1986-12-01

    Measurement of thermal effects in LHG-8 Nd:glass laser rod during the transient and the cooling phases are presented. The induced thermal lensing is determined by passing a He-Ne probe beam through the rod and measuring the changes in the intensity of the probe beam transmitted through an out-of-focus iris placed near the focal plane of an external lens. Expression for the power of the Gaussian beam transmitted through a stressed laser rod placed between two crossed polarizers is derived. The values of the induced focal length corresponding to the temperature gradient deducted from the measurements of induced birefringence, an independent observable of thermal effects are obtained. These value are found to be in fairly good agreement with the directly measured values.

  11. Cavitation as a Mechanism to Enhance Wetting in a Mercury Thermal Convection Loop

    SciTech Connect (OSTI)

    Pawel, SJ

    2001-07-17

    Type 316L stainless steel was statically tested under cavitation conditions via an ultrasonic transducer externally mounted on a tube filled with ambient mercury. During the preliminary exposure (24 h, 20 kHz, 1.5 MPa), cavitation resulted in apparent wetting of the specimens by mercury as well as general surface roughening and wastage similar to erosion damage. Subsequently, a thermal convection loop identical to those used previously to study thermal gradient mass transfer was modified to include an externally-mounted donut-shaped transducer in order to similarly produce cavitation and wetting at temperatures prototypic of those expected in the SNS target. However, a series of attempts to develop cavitation and wetting on 316L specimens in the thermal convection loop was unsuccessful.

  12. Novel concepts in weld metal science: Role of gradients and composite structure

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1991-12-01

    The effects of compositional and microstructural gradients on weld metal properties are being investigated. Crack propagation is solidified alloy structures is being characterized as to solidification orientation and the profile of the compositional variations. The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a compositional gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Special techniques to produce laboratory samples with microstructures which simulate the composition and microstructure gradients in solidified weld metal are used, along with appropriate mathematical models, to evaluate the properties of the composite weld metals. The composite modeling techniques are being applied to describe the effects of compositional and microstructural gradients on weld metal properties in Ni-Cu alloys. The development of metal matrix composition weld deposits on austenitic stainless steels has been studied. The particulate metal matrix composites were produced with ceramic or refractory metal powder filled cored wire, which was gas tungsten arc and gas metal arc welded.

  13. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  14. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  15. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  16. Thermal Enhancer - Airless Exhaust Thermal Management Device | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Enhancer - Airless Exhaust Thermal Management Device Thermal Enhancer - Airless Exhaust Thermal Management Device Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_coker.pdf (1.85 MB) More Documents & Publications Heavy Duty Vehicle In-Use Emission Performance Why Light Duty Diesels Make Sense in the North American Market Scalable, Low-Cost, High

  17. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  18. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  19. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  20. Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity

    SciTech Connect (OSTI)

    Du, Shiyu; Andersson, Anders D.; Germann, Timothy C.; Stanek, Christopher R.

    2012-05-02

    Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

  1. Study of the shape of an optical window in a super-resolution state by electromagnetic-thermal coupled simulation: Effects of melting of an active layer in an optical disc

    SciTech Connect (OSTI)

    Sano, Haruyuki; Shima, Takayuki; Kuwahara, Masashi; Fujita, Yoshiya; Uchiyama, Munehisa; Aono, Yoshiyuki

    2014-04-21

    We performed a multi-physics simulation for the propagation of electromagnetic waves and heat conduction in a super-resolution optical disc that includes an active layer of InSb. Because the change in the optical constant of InSb due to the phase transition is taken into account, the melting of the active layer can be realistically simulated in our calculation. It was found that in the case of an incident light power (P) of 2 mW, a profile of the electric field intensity transmitted through the InSb layer has an asymmetric shape with a narrow peak. This beam-narrowing was suggested to be an essential mechanism of the super-resolution, because a narrower light beam allows the detection of a smaller pit structure than the optical diffraction limit. This beam-narrowing was found to be originating from a small molten region produced in the InSb layer, which works as a mask for light exposure.

  2. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  3. Ceramic thermal barrier coating for rapid thermal cycling applications

    DOE Patents [OSTI]

    Scharman, Alan J.; Yonushonis, Thomas M.

    1994-01-01

    A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

  4. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  5. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect (OSTI)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  6. Multiple station thermal diffusivity instrument

    SciTech Connect (OSTI)

    Wang, H.; Dinwiddie, R.B.; Gaal, P.S.

    1995-12-31

    A multiple furnace laser flash thermal diffusivity system has been developed. The system is equipped with a movable Nd:Glass laser unit, two IR detectors and furnaces for precise measurements of thermal diffusivity over the temperature range from {minus}150{degree}C to 2500{degree}C. All furnaces can operate in vacuum and inert gas; the environmental effects furnace also supports oxidizing and reducing environments. To increase testing speed the graphite and aluminum furnaces are both equipped with six-sample carousels. Thermal diffusivity measurements of three standard reference materials show excellent results over the entire temperature range.

  7. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Concentrating Solar Power (CSP)/National Solar Thermal Test Facility National Solar Thermal Test Facility admin 2016-04-14T21:34:04+00:00 Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and

  8. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  9. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  10. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  11. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  12. Radiography used to image thermal explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Radiography used to image thermal explosions Radiography used to image thermal explosions Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. October 9, 2012 Tabletop X-ray radiography of a thermal explosion. Tabletop X-ray radiography of a thermal explosion. Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the

  13. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment: ...

  14. Amulaire Thermal Technology | Open Energy Information

    Open Energy Info (EERE)

    Amulaire Thermal Technology Jump to: navigation, search Name: Amulaire Thermal Technology Address: 11555 Sorrento Valley Road Place: San Diego, California Zip: 92121 Region:...

  15. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel ...

  16. Alumni | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Visit Website Bo Qiu ThermalMechanical Engineer, Intel Corporation Visit Website Veronika Rinnerbauer Innovation Management, Bosch Visit Website Nitin Shukla Thermal Testing ...

  17. Stewart Thermal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thermal Ltd Jump to: navigation, search Name: Stewart Thermal Ltd Place: United Kingdom Sector: Biomass Product: Provides specialist advice in the field of biomass energy....

  18. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  19. Thermal-Mechanical Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of thermal-mechanical research includes: Single and two phase heat transfer Nanomaterial synthesis Heat transfer fluids Engine and power electronics cooling Thermal energy...

  20. Thermal Design and Characterization of Heterogeneously Integrated...

    Office of Scientific and Technical Information (OSTI)

    with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after ...

  1. NREL: Energy Storage - Energy Storage Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The lab's performance assessments factor in the design of the thermal management system, the thermal behavior of the cell, battery lifespan, and safety of the energy storage system...

  2. A nanostructure thermal property measurement platform. (Conference...

    Office of Scientific and Technical Information (OSTI)

    side of the central heater), and this feature permits identification of possible changes in thermal conductance along the wire and measurement of the thermal contact resistance. ...

  3. Nextreme Thermal Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Nextreme Thermal Solutions Inc Jump to: navigation, search Name: Nextreme Thermal Solutions Inc Place: North Carolina Zip: 27709-3981 Product: String representation "Manufactures...

  4. Thermal battery with composite anode

    SciTech Connect (OSTI)

    Higley, L.R.

    1990-11-06

    This patent describes a thermal battery for generating electrical energy. It comprises: a sodium composite electrode comprising sodium metal and a protective metal; a cathode; and a separator located between the sodium composite electrode and the cathode.

  5. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  6. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  7. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  8. Three-Dimensional Thermal Tomography Advances Cancer Treatment (ANL-IN-07-170)

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-02-07

    Because they grow more quickly than healthy cells, cancer cells are typically a few degrees higher in temperature. This attribute makes it possible to detect cancer cells through thermal imaging. In active thermal imaging, heat or cold is applied to an object and an infrared camera is used to observe the resulting temperature change. For this reason, thermal imaging is helpful in detecting breast cancer and determining skin damage as a result of radiation cancer treatment. A recent...

  9. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  10. Summary report of working group 3: High gradient and laser-structure based acceleration

    SciTech Connect (OSTI)

    Solyak, N.; Cowan, B.M.; /Tech-X, Boulder

    2010-01-01

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  11. Design Studies of Nb3Sn High-Gradient Quadrupole Models for LARP

    SciTech Connect (OSTI)

    Andreev, Nikolai; Caspi, Shlomo; Dietderich, Daniel; Ferracin, Paolo; Ghosh, Arup; Kashikhin, Vadim; Lietzke, Al; Novitski, Igor; Zlobin, Alexander; McInturff, Alfred; Sabbi, GianLuca

    2007-06-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 10{sup 35} cm{sup -2} s{sup -1} at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. Nb{sub 3}Sn conductor is required in order to operate at high field and with sufficient temperature margin. We report here on the conceptual design studies of a series of 1 m long 'High-gradient Quadrupoles' (HQ) that will explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ design is expected to provide coil peak fields of more than 15 T, corresponding to gradients above 300 T/m in a 90 mm bore. Conductor requirements, magnetic, mechanical and quench protection issues for candidate HQ designs will be presented and discussed.

  12. Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence

    SciTech Connect (OSTI)

    Goerler, Tobias; Jenko, Frank; Marcus, Patrick; Merz, Florian; Told, Daniel; Lapillonne, Xavier; Brunner, Stephan; Aghdam, Sohrab Khosh; McMillan, Ben F.; Sauter, Olivier; Villard, Laurent; Dannert, Tilman

    2011-05-15

    The Eulerian gyrokinetic turbulence code gene has recently been extended to a full torus code. Moreover, it now provides Krook-type sources for gradient-driven simulations where the profiles are maintained on average as well as localized heat sources for a flux-driven type of operation. Careful verification studies and benchmarks are performed successfully. This setup is applied to address three related transport issues concerning nonlocal effects. First, it is confirmed that in gradient-driven simulations, the local limit can be reproduced--provided that finite aspect ratio effects in the geometry are treated carefully. In this context, it also becomes clear that the profile widths (not the device width) may constitute a more appropriate measure for finite-size effects. Second, the nature and role of heat flux avalanches are discussed in the framework of both local and global, flux- and gradient-driven simulations. Third, simulations dedicated to discharges with electron internal barriers are addressed.

  13. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect (OSTI)

    Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  14. Core density gradient fluctuation measurement by differential interferometry in the helically symmetric experiment stellarator

    SciTech Connect (OSTI)

    Deng, C. B.; Brower, D. L.

    2012-10-15

    The interferometer system on the Helically Symmetric eXperiment (HSX) stellarator uses an expanded beam and linear detector array to realize a multichord measurement. Unlike conventional interferometry which determines the plasma phase shift with respect to a reference, directly evaluating the phase between two adjacent chords can be employed to measure the change in plasma phase with impact parameter. This approach provides a measure of the equilibrium density gradient or the density gradient fluctuations and is referred to as differential interferometry. For central chords, measurements are spatially localized due to a geometrical weighting factor and can provide information on core density gradient fluctuations. The measurement requires finite coherence between fluctuations in the two spatially offset chords. This technique is applied on the HSX stellarator to measure both broadband turbulence and coherent modes. Spatial localization is exploited to isolate core turbulence changes associated with change in magnetic configuration or heating location.

  15. A transient FGM interlayer based approach to joining ceramics. [Functionally gradient materials

    SciTech Connect (OSTI)

    Glaeser, A.M.; Shalz, M.L.; Dalgleish, B.J.; Tomsia, A.P.

    1993-01-01

    In most cases, functionally gradient materials have been designed to produce a desirable property gradient in a material or in a joint region. In this paper, the concept of a transient gradient structure is introduced. The function of the intentional property discontinuities in these multilayer interlayers is to facilitate processing of assemblies and materials combinations that would be difficult to process using conventional bonding approaches. Specifically, the methods make use of a thin or partial layer of a low melting point transient liquid phase to facilitate bonding via brazing, yet produce refractory joints. Several mechanisms for consuming the transient liquid former are outlined, and examples of interlayer designs that exploit these mechanisms are presented. Specific results from experiments joining alumina to alumina via Cu/Pt/Cu, Cu/Ni/Cu, Cu/Nb/Cu and Sn/Nb/Sn interlayers are presented.

  16. Applied research in the solar thermal-energy-systems program

    SciTech Connect (OSTI)

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  17. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  18. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    SciTech Connect (OSTI)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup errorinduced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.

  19. SU-E-J-161: Inverse Problems for Optical Parameters in Laser Induced Thermal Therapy

    SciTech Connect (OSTI)

    Fahrenholtz, SJ; Stafford, RJ; Fuentes, DT

    2014-06-01

    Purpose: Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is investigated as a neurosurgical intervention for oncological applications throughout the body by active post market studies. Real-time MR temperature imaging is used to monitor ablative thermal delivery in the clinic. Additionally, brain MRgLITT could improve through effective planning for laser fiber's placement. Mathematical bioheat models have been extensively investigated but require reliable patient specific physical parameter data, e.g. optical parameters. This abstract applies an inverse problem algorithm to characterize optical parameter data obtained from previous MRgLITT interventions. Methods: The implemented inverse problem has three primary components: a parameter-space search algorithm, a physics model, and training data. First, the parameter-space search algorithm uses a gradient-based quasi-Newton method to optimize the effective optical attenuation coefficient, ?-eff. A parameter reduction reduces the amount of optical parameter-space the algorithm must search. Second, the physics model is a simplified bioheat model for homogeneous tissue where closed-form Green's functions represent the exact solution. Third, the training data was temperature imaging data from 23 MRgLITT oncological brain ablations (980 nm wavelength) from seven different patients. Results: To three significant figures, the descriptive statistics for ?-eff were 1470 m{sup ?1} mean, 1360 m{sup ?1} median, 369 m{sup ?1} standard deviation, 933 m{sup ?1} minimum and 2260 m{sup ?1} maximum. The standard deviation normalized by the mean was 25.0%. The inverse problem took <30 minutes to optimize all 23 datasets. Conclusion: As expected, the inferred average is biased by underlying physics model. However, the standard deviation normalized by the mean is smaller than literature values and indicates an increased precision in the characterization of the optical parameters needed to plan MRgLITT procedures. This

  20. Thermal conductivity of III-V semiconductor superlattices

    SciTech Connect (OSTI)

    Mei, S. Knezevic, I.

    2015-11-07

    This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivities in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.