Powered by Deep Web Technologies
Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) |...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At New...

2

Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring Teleseismic-Seismic Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Teleseismic-Seismic Monitoring Details Activities (33) Areas (18) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Map geothermal reservoir geometry. Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

3

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...

4

Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE...  

Open Energy Info (EERE)

Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE GTP)...

5

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

6

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

7

Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Valles Caldera - Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown Notes We have described the experimental details, data analysis and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four high-quality teleseismic events were recorded at numerous sites along a line spanning the ring fracture and at several sites outside of the caldera. References Peter M. Roberts, Keiiti Aki, Michael C. Fehler (1995) A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New

8

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Lassen_Volcanic_National_Park_Area_(Janik_%26_Mclaren,_2010)&oldid=425654"

9

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Area (Roberts,  

Open Energy Info (EERE)

Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown Notes We have described the experimental details, data analysis and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four high-quality teleseismic events were recorded at numerous sites along a line spanning the ring fracture and at several sites outside of the caldera. References Peter M. Roberts, Keiiti Aki, Michael C. Fehler (1995) A Shallow

10

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) | Open  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1975-1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1975 - 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate thermal regime and potential of the system Notes Three-dimensional Q -1 model of the Coso Hot Springs known geothermal resource area was conducted. To complete the model a regional telemetered network of sixteen stations was operated by the U.S. Geological Survey; deployed a portable Centipede array of 26 three-component stations near the

11

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) | Open  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1998-2002) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1998 - 2002 Usefulness not indicated DOE-funding Unknown Notes Two recent earthquake sequences near the Coso geothermal field show clear evidence of faulting along conjugate planes. Results from analyzing an earthquake sequence occurring in 1998 are presented and compared with a similar sequence that occurred in 1996. The two sequences followed mainshocks that occurred on 27 November, 1996 and 6 March, 1998. Both mainshocks ruptured approximately colocated regions of the same fault

12

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes In spite of the complications discovered in this b-value analysis of Kilauea's South Flank, there are many similarities with the case histories of the other volcanoes we have studied, and the correlation of high b-value anomalies withmagma reservoirs is confirmed.

13

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Teleseismic-Seismic Monitoring At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Determine extent of low velocity body Notes An area showing approximately 0.2-s excess travel time that migrates with changing source azimuth, suggesting that the area is the 'delay shadow' produced by a deep, low-velocity body. Inversion of the relative residual data for three-dimensional velocity structure determines the lateral variations in velocity to a depth of 22.5 km beneath the array. An intense low-velocity body, which coincides with the surface expressions of late Pleistocene rhyolitic volcanism, high heat flow, and hydrothermal activity,

14

Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

At Walker-Lane Transitional Zone Region At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Walker-Lane_Transitional_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425676"

15

Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al.,  

Open Energy Info (EERE)

Long Valley Caldera Area (Newman, Et Al., Long Valley Caldera Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Andrew V. Newman, Timothy H. Dixon, Noel Gourmelen (2006) A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Long_Valley_Caldera_Area_(Newman,_Et_Al.,_2006)&oldid=425656"

16

Teleseismic-Seismic Monitoring At Hawthorne Area (Lazaro, Et Al., 2010) |  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Hawthorne Area Teleseismic-Seismic Monitoring At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal

17

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) | Open  

Open Energy Info (EERE)

2012) 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2011 - 2012 Usefulness not indicated DOE-funding Unknown Exploration Basis Map hydraulic structure within the field from seismic data Notes 2011: 16 years of seismicity were analyzed to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously operated since the 1980's. 2012: 14 years of seismicity in the Coso Geothermal Field were relocated using differential travel times and simultaneously invert for

18

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze seismic data to develop reservoir models that characterize the geothermal system Notes Large-amplitude, secondary arrivals are modeled as scattering anomalies. Polarization and ray tracing methods determine the orientation and location of the scattering body. Two models are proposed for the scatterer: (1) a point scatterer located anywhere in a one-dimensional (1-D), layered velocity model; and (2) a dipping interface between two homogeneous half

19

Definition: Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Teleseismic-Seismic Monitoring Jump to: navigation, search Dictionary.png Teleseismic-Seismic Monitoring Teleseismic monitoring is a technique to seismically image an area utilizing earthquakes originating from distances greater than 1,000 km from the measurement site.[1] View on Wikipedia Wikipedia Definition A teleseism is the tremor caused by an earthquake that is very far away. According to the USGS, the term, teleseismic refers to earthquakes that occur more than 1000 km from the measurement site. Often teleseismic events can be picked up only by seismometers that are in low background noise locations; whereas, in general, a tremor of a magnitude 5.3 earthquake can be seen anywhere in the world with modern seismic

20

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (2005) Coso Geothermal Area (2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis More detailed analysis of microearthquakes over a longer period of time Notes The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study (Julian, et al. 2003; Julian

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet & Aki, 1981)  

Open Energy Info (EERE)

Summit Area (Chouet & Aki, 1981) Summit Area (Chouet & Aki, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet & Aki, 1981) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes Our passive seismic survey revealed a surprisingly high and sustained activity of local seismic events originating within the crust of Kilauea Iki. We recorded about 8000 events in a single day of operation at nail 17 with a seismograph having a peak magnification of 280,000 at 60 Hz (Fig. 10). References Bernard Chouet, Kehti Aki (1981) Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii

22

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) | Open  

Open Energy Info (EERE)

Coso Geothermal Area (1983-1985) Coso Geothermal Area (1983-1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1983-1985) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1983 - 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis To study anomalous shear wave attenuation in the shallow crust Notes V s and V p wave amplitudes were measured from vertical component seismograms of earthquakes that occurred in the Coso-southern Sierra Nevada region from July 1983 to 1985. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the

23

Teleseismic-Seismic Monitoring At Kilauea Summit Area (Keller, Et Al.,  

Open Energy Info (EERE)

At Kilauea Summit Area (Keller, Et Al., At Kilauea Summit Area (Keller, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Summit Area (Keller, Et Al., 1979) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown Notes Kilauea volcano has high seismicity, most of which is associated with specific fault zones on the volcano and with movement of magma at depth (Koyanagi and Endo, 1971; Koyanagi et al., 1976). Certain groups of earthquakes have been observed at very shallow depths, however, and some of these have been concentrated in a zone that lies near the resistivity anomaly and the center of inflation. The data show that this shallow

24

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1996-2004) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (1996-2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1996 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis To look at time dependent seismic tomography Notes Local-earthquake tomographic images were calculated for each of the years 1996 - 2004 using arrival times from the U.S. Navy's permanent seismometer network. The results show irregular strengthening with time of the wave-speed ratio V p/V s at shallow depths. The period from 1996 through 2006 was studied, and the results to date using the traditional method show, for a 2-km horizontal grid spacing, an irregular strengthening

25

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2006) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (2006) Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis To assess the benefits of surface seismic surveys Notes Different migration procedures were applied to image a synthetic reservoir model and seismic data. After carefully preprocessing seismic data, the 2-D and 2.5-D pre-stack depth migration of line 109 in the Coso Geothermal Field shows a well defined reflector at about 16,000 ft depth. Compared to the 2-D pre-stack migrated image, the 2.5-D pre-stack migrated image

26

Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993) | Open  

Open Energy Info (EERE)

Clear Lake Area Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes Figure 4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers geothermal field. Additional clustered activity was noted to the north and east of the Collayomi Fault in the Clear Lake region. Curiously, no unusual earthquake activity was noted along the major trend of the Collayomi Fault. Instead, the Collayomi Fault seems to separate two areas of active seismicity. References Catherine K. Skokan (1993) Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States

27

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1988) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Coso Geothermal Area (1988) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1988 Usefulness useful DOE-funding Unknown Exploration Basis To analyze three-dimensional Vp/Vs variation Notes A tomographic inversion for the 3D variations of the Vp/V s, the ratio of compressional to shear velocity, was performed. Iterative back projection of 2966 shear and compressional wave travel time residuals from local earthquakes recorded on vertical instruments reveals that Vp/Vs is generally high at the surface and decreases systematically to 10 km depth. Near Devil's Kitchen in the Coso Geothermal Area, Vp/Vs values are very low near the surface, consistent with measured values for steam-dominated

28

Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...  

Open Energy Info (EERE)

10). References Bernard Chouet, Kehti Aki (1981) Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Retrieved from "http:en.openei.orgw...

29

Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four...

30

MCO Monitoring activity description  

Science Conference Proceedings (OSTI)

Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

SEXTON, R.A.

1998-11-09T23:59:59.000Z

31

Carbon Sequestration Monitoring Activities  

SciTech Connect

In its 'Carbon Sequestration Technology Roadmap and Program Plan 2007' the U.S. Department of Energy (DOE)'s Office of Fossil Energy National Energy Technology Laboratory (NETL) identified as a major objective extended field tests to fully characterize potential carbon dioxide (CO{sub 2}) storage sites and to demonstrate the long-term storage of sequestered carbon (p. 5). Among the challenges in this area are 'improved understanding of CO{sub 2} flow and trapping within the reservoir and the development and deployment of technologies such as simulation models and monitoring systems' (p. 20). The University of Wyoming (UW), following consultations with the NETL, the Wyoming State Geological Survey, and the Governor's office, identified potential for geologic sequestration of impure carbon dioxide (CO{sub 2}) in deep reservoirs of the Moxa Arch. The Moxa Arch is a 120-mile long north-south trending anticline plunging beneath the Wyoming Thrust Belt on the north and bounded on the south by the Uinta Mountains. Several oil and gas fields along the Moxa Arch contain accumulations of natural CO{sub 2}. The largest of these is the La Barge Platform, which encompasses approximately 800 square miles. Several formations may be suitable for storage of impure CO{sub 2} gas, foremost among them the Madison Limestone, Bighorn Dolomite, and Nugget Sandstone. This project responded to the challenges described above by preparing a geological site characterization study on the Moxa Arch. The project included four priority research areas: (A) geological characterization of geologic structure of the Arch, the fault, and fracture patterns of the target formations and caprocks, (B) experimental characterization of carbon dioxide-brine-rock reactions that may occur, (C) optimization of geophysical and numerical models necessary for measurement, monitoring and verification (MMV), and (D) a preliminary performance assessment. Research work to accomplish these goals was coordinated by one administrative task under the direction of Dr. Carol Frost, Professor of Geology and Geophysics (Task 1.0), and one task devoted to designing and creating an interdisciplinary, project-specific carbon cyberinfrastructure to support collaborative carbon dioxide sequestration research among University of Wyoming scientists and their collaborators, performed by Jeff Hammerlinck, Director of the Wyoming Geographic Information Science Center at the University of Wyoming (Task 1.5). The results of these tasks are presented in the Introduction and in Chapter 1, respectively.

Carol Frost

2010-11-30T23:59:59.000Z

32

Active System For Monitoring Volcanic Activity- A Case Study...  

Open Energy Info (EERE)

System For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Active...

33

Monitoring Biological Activity at Geothermal Power Plants  

Science Conference Proceedings (OSTI)

The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

Peter Pryfogle

2005-09-01T23:59:59.000Z

34

Regenerable activated bauxite adsorbent alkali monitor probe  

DOE Patents (OSTI)

This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

Lee, S.H.D.

1991-01-22T23:59:59.000Z

35

Regenerable activated bauxite adsorbent alkali monitor probe  

DOE Patents (OSTI)

A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

Lee, S.H.D.

1992-12-22T23:59:59.000Z

36

Sensor networks for high-resolution monitoring of volcanic activity  

Science Conference Proceedings (OSTI)

We developed and deployed a wireless sensor network for monitoring seismoacoustic activity at Volcán Reventador, Ecuador. Wireless sensor networks are a new technology and our group is among the first to apply them to monitoring volcanoes. The ...

Matt Welsh; Geoff Werner-Allen; Konrad Lorincz; Omar Marcillo; Jeff Johnson; Mario Ruiz; Jonathan Lees

2005-10-01T23:59:59.000Z

37

A review of market monitoring activities at U.S. independent system operators  

E-Print Network (OSTI)

LBNL-53975 A Review of Market Monitoring Activities at U.S.Markets .9 Market Monitoring Units: Organization and

Goldman, Charles; Lesieutre, Bernie C.; Bartholomew, Emily

2004-01-01T23:59:59.000Z

38

Construction monitoring activities in the ESF starter tunnel  

SciTech Connect

In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

Pott, J. [Sandia National Labs., Albuquerque, NM (United States); Carlisle, S. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

1994-05-01T23:59:59.000Z

39

Seismic Monitoring Of Blasting Activity In Russia  

E-Print Network (OSTI)

Two significant mining regions in Russia lie near Novosibirsk and at the Kursk Magnetic Anomaly. A small percentage of events from these areas trigger the International Monitoring System (IMS). We have studied IMS recordings of events from these areas with the main goal of better understanding how these blasts are detonated and how these events will be most effectively monitored using IMS data. We have collected ground-truth information on the mining blasts and crustal structure in the area to facilitate modeling of the events. We have focused on sifting out from further consideration routine mining events and identifying detonation anomalies. We define master traces to represent tight clusters of mining events and to be used to identify anomalous events. We have examined recordings of events from eight significant event clusters in the 500-km-long Kuzbass/Abakan mining trend near Novosibirsk. The recordings were made by the IMS station ZAL. We see significant variations in the P onset and early coda between different events in clusters. We have found strong evidence of a detonation anomaly in just one of the events (out of 178 examined). Differences in the onset wave trains are attributed largely to differences in the firing patterns. Time independent spectral modulations have been observed in seismic signals produced by delay-fired mining events in mining regions throughout the world. The Novosibirsk trend is no exception to this rule. Delay-fired events in many mining regions, such as Kuzbass/Abakan, are also commonly associated with enhanced long-period (2- to 8-s) surface waves. The mine blasts in Russian mining regions appear, seismically, to resemble large blasts recorded in other regions (such as Wyoming). Techniques found to be effective in Wyoming, reviewed by...

Michael Hedlin University; Michael A. H. Hedlin

2002-01-01T23:59:59.000Z

40

Active System For Monitoring Volcanic Activity- A Case Study Of The  

Open Energy Info (EERE)

System For Monitoring Volcanic Activity- A Case Study Of The System For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Active System For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Details Activities (0) Areas (0) Regions (0) Abstract: A system is proposed for the monitoring of changes in the underground structure of an active volcano over time by applying a transient electromagnetic method. The monitoring system is named ACTIVE, which stands for Array of Controlled Transient-electromagnetics for Imaging Volcano Edifice. The system consists of a transmitter dipole used to generate a controlled transient electromagnetic (EM) field and an array of receivers used to measure the vertical component of the transient magnetic

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method for monitoring stack gases for uranium activity  

DOE Patents (OSTI)

A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

1988-01-01T23:59:59.000Z

42

Method for monitoring stack gases for uranium activity  

DOE Patents (OSTI)

A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

Beverly, C.R.; Ernstberger, E.G.

1985-07-03T23:59:59.000Z

43

In-vessel activation monitors in JET: Progress in modeling  

SciTech Connect

Activation studies were performed in JET with new in-vessel activation monitors. Though primarily dedicated to R and D in the challenging issue of lost {alpha} diagnostics for ITER, which is being addressed at JET with several techniques, these monitors provide for both neutron and charged particle fluences. A set of samples with different orientation with respect to the magnetic field is transported inside the torus by means of a manipulator arm (in contrast with the conventional JET activation system with pneumatic transport system). In this case, radionuclides with longer half-life were selected and ultralow background gamma-ray measurements were needed. The irradiation was closer to the plasma and this potentially reduces the neutron scattering problem. This approach could also be of interest for ITER, where the calibration methods have yet to be developed. The MCNP neutron transport model for JET was modified to include the activation probe and so provide calculations to help assess the new data. The neutron induced activity on the samples are well reproduced by the calculations.

Bonheure, Georges [Laboratory for Plasma Physics, Association 'Euratom-Belgian State', Avenue de la Renaissance 30, B-1000 Brussels (Belgium); Lengar, I. [Slovenian Fusion Association, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Syme, B.; Popovichev, S. [Euratom/UKAEA Association, Culham Science Centre, Abingdon, OX14 3DB Oxon (United Kingdom); Wieslander, Elisabeth; Hult, Mikael; Gasparro, Joeel; Marissens, Gerd [EC-JRC-IRMM, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Arnold, Dirk [Physikalisch-Technische Bundesanstalt, 6.1 Radioactivity, Bundesallee 100, D-38116 Braunschweig (Germany); Laubenstein, Matthias [Laboratori Nazionali del Gran Sasso, S.S, 17/bis, km 18-910, I-67010 Assergi (Italy)

2008-10-15T23:59:59.000Z

44

SAMOS: a model for monitoring students' and groups' activities in collaborative e-learning  

Science Conference Proceedings (OSTI)

We address the issue of monitoring students' and groups' activities in online collaborative learning environments. Such monitoring can provide valuable information to online instructors, who may guide and support the development of efficient ... Keywords: JIT, activity levels, collaborative learning, e-learning, educational data analysis, educational technology, group monitoring, just-in-, learning technology, online learning, student monitoring, time assistance

Angel A. Juan; Thanasis Daradoumis; Javier Faulin; Fatos Xhafa

2009-04-01T23:59:59.000Z

45

Monitoring radioactive xenon gas in room air using activated charcoal  

SciTech Connect

A method for monitoring room air for radioactive xenon gas is described. It uses activated charcoal vials, a vacuum source and a well-type scintillation counter. The method may be adapted for detection and identification of any radioactive gas excluding those with ultra-short half-lives. Sampling room air during xenon-133 ({sup 133}Xe) ventilation lung studies was performed using this technique. The results show that low concentrations of {sup 133}Xe in room air can be reliably detected and that staff exposure to {sup 133}Xe at this institution was within ICRP recommendations.

Langford, J.; Thompson, G. (Princess Margaret Hospital for Children, Perth (Australia) Sir Charles Gairdner Hospital, Perth (Australia))

1990-03-01T23:59:59.000Z

46

A Review of Market Monitoring Activities at U.S. Independent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and apply mitigating measures and sanctions when applicable and authorized. A Review of Market Monitoring Activities at U.S. Independent System Operators More Documents &...

47

Active sensing platform for wireless structural health monitoring  

Science Conference Proceedings (OSTI)

This paper presents SHiMmer, a wireless platform for sensing and actuation that combines localized processing with energy harvesting to provide long-lived structural health monitoring. The life-cycle of the node is significantly extended by the use of ... Keywords: actuation, energy harvesting, low power, sensing, wireless

D. Musiani; K. Lin; T. Simunic Rosing

2007-04-01T23:59:59.000Z

48

Segmenting sensor data for activity monitoring in smart environments  

Science Conference Proceedings (OSTI)

Within a smart environment, sensors have the ability to perceive changes of the environment itself and can therefore be used to infer high-level information such as activity behaviours. Sensor events collected over a period of time may contain several ... Keywords: Activity detection, Evidential modelling, Smart environments, Time series sensor segmentation

Xin Hong; Chris D. Nugent

2013-03-01T23:59:59.000Z

49

A review of market monitoring activities at U.S. independent system operators  

Science Conference Proceedings (OSTI)

Policymakers have increasingly recognized the structural impediments to effective competition in electricity markets, which has resulted in a renewed emphasis on the need for careful market design and market monitoring in wholesale and retail electricity markets. In this study, we review the market monitoring activities of four Independent System Operators in the United States, focusing on such topics as the organization of an independent market monitoring unit (MMU), the role and value of external market monitors, performance metrics and indices to aid in market analysis, issues associated with access to confidential market data, and market mitigation and investigation authority. There is consensus across the four ISOs that market monitoring must be organizationally independent from market participants and that ISOs should have authority to apply some degree of corrective actions on the market, though scope and implementation differ across the ISOs. Likewise, current practices regarding access to confidential market data by state energy regulators varies somewhat by ISO. Drawing on our interviews and research, we present five examples that illustrate the impact and potential contribution of ISO market monitoring activities to enhance functioning of wholesale electricity markets. We also discuss several key policy and implementation issues that Western state policymakers and regulators should consider as market monitoring activities evolve in the West.

Lesieutre, Bernard C.; Goldman, Charles; Bartholomew, Emily

2004-01-01T23:59:59.000Z

50

Brain activity and presence: a preliminary study in different immersive conditions using transcranial Doppler monitoring  

Science Conference Proceedings (OSTI)

Transcranial Doppler (TCD) sonography is a brain activity measurement technique that monitors the hemodynamic characteristics of the major cerebral arteries in normal and pathological conditions. As it is not invasive, it can be easily used in combination ... Keywords: Brain activity, Immersion, Navigation, Transcranial Doppler, Virtual reality

Beatriz Rey; Mariano Alcañiz; José Tembl; Vera Parkhutik

2010-03-01T23:59:59.000Z

51

Detection of uranium enrichment activities using environmental monitoring techniques  

SciTech Connect

Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF{sub 6} gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques.

Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

1993-03-30T23:59:59.000Z

52

The relevance of particle flux monitors in accelerator-based activation analysis  

SciTech Connect

One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

Segebade, Chr.; Maimaitimin, M.; Sun Zaijing [Idaho Accelerator Centre, Idaho State University, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States)

2013-04-19T23:59:59.000Z

53

Business activity monitoring system design framework integrated with process-based performance measurement model  

Science Conference Proceedings (OSTI)

Recently, strong interests in the real-time performance management are increasing to gain competitive advantages in the rapidly changing business environment. For better business performance or continuous process improvement of an enterprise, real-time ... Keywords: business activity monitoring (BAM), business performance, business process management (BPM), key performance indicator (KPI)

Kwan Hee Han; Sang Hyun Choi; Jin Gu Kang; Geon Lee

2010-03-01T23:59:59.000Z

54

A Review of Market Monitoring Activities at U.S. Independent System Operators  

E-Print Network (OSTI)

, Electric Markets Technical Assistance Program of the U.S. Department of Energy under Contract No. DE-AC03LBNL-53975 A Review of Market Monitoring Activities at U.S. Independent System Operators Charles Goldman, Bernie C. Lesieutre, and Emily Bartholomew Lawrence Berkeley National Laboratory Energy Analysis

55

Thin-Film Active Nano-PWAS for Structural Health Monitoring , Victor Giurgiutiu1  

E-Print Network (OSTI)

Thin-Film Active Nano-PWAS for Structural Health Monitoring Bin Lin1 , Victor Giurgiutiu1 , Amar S be fabricated directly to the structural substrate using thin-film nano technologies (e.g., pulsed-laser deposition, sputtering, chemical vapor deposition, etc.) Because these novel PWAS are made up of nano layers

Giurgiutiu, Victor

56

UNARM (Unattended and Remote Monitoring) an overview of Los Alamos activities  

Science Conference Proceedings (OSTI)

Nonproliferation and nuclear safeguards activities by agencies such as the International Atomic Energy Agency (IAEA) and Japan Nuclear Cycle Development Institute (JNC) require the means to ensure that only authorized activities occur during periods when an inspector is not present. Unattended monitoring systems are designed to minimize human resource requirements both during inspection visits and in the period between visits via installation of a primarily automated monitoring system. This system is capable of meeting or exceeding human inspection reliability and consistency. Implementation of an unattended monitoring system should also provide less expensive continuous coverage of the inspected facility over the lifetime of the inspections when compared to the cost of inspector time and travel. Furthermore, a transition to remote monitoring systems, while decreasing cost and time burdens to an inspection agency, simultaneously provides for a unified safeguards approach that is not facility dependent. A second generation of unattended and remote monitoring (UNARM) systems has been developed at Los Alamos National Laboratory for use in nuclear fuel cycle facilities. These systems allow for more efficient use of inspection resources and more rigorous coverage of nuclear facilities. These systems incorporate several types of sensors that are capable of low-level intercommunication to enable a comprehensive and multi-layered coverage of facility operations. These systems utilize data from radiation, motion, video, and balanced magnetic switch sensors, for example. When information from all sensors is combined together, an unambiguous reconstruction of facility operations can be assembled.

Alvar, K. R. (Kenneth R.); Belian, A. B. (Anthony B.); Bosler, G. E.; Browne, M. C. (Michael C.); Buck, S. E. (Steven E.); Butler, G. W. (Gilbert W.); Dreicer, Jared S.; Halbig, J. K. (James K.); Hsue, S.-T. (Sin-Tao); Klosterbuer, S. F. (Shirley F.); Parker, R. F. (Robert F.); Pelowitz, D. G. (David G.); Stewart, M. (Maco); Sprinkle, J. K. (James K.); Veal, K. D. (Kevin D.); West, J. D. (James D.)

2001-01-01T23:59:59.000Z

57

Activities of the U.S.-Japan Safety Monitor Joint Working Group  

SciTech Connect

This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchange has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries, and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working Group are also discussed.

Savercool, R.L. [General Atomics (United States); Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

2005-05-15T23:59:59.000Z

58

A review of market monitoring activities at U.S. independent system operators  

E-Print Network (OSTI)

PJM ..Commission), Joe Bowring (PJM), Greg Cook (CAISO), KevinJ. 2003. “Market Monitoring,” PJM Presentation, June 16.

Goldman, Charles; Lesieutre, Bernie C.; Bartholomew, Emily

2004-01-01T23:59:59.000Z

59

A monitor and control system for high voltage, gating, and triggering of a scintillating fiber active target  

SciTech Connect

A monitor and control system has been designed, constructed and tested at Notre Dame for the purpose of controlling all aspects of a Scintillating Fiber Active Target system used in High Energy Physics Experimentation. The SFT Active Target system requires control of high voltages, gating, trigger counters, and monitoring. In addition, it resides in a radioactive area with very limited access. The control system uses a Leading Edge microcomputer, two specialized Z80-based processors, associated DACs, ADCs, discrete semiconductors, linear ICs, and TTL and MECL logic. All of the hardware and software is custom-built; its design and performance is discussed. 5 refs., 4 figs.

Baumbaugh, B.; Bishop, J.; Gardner, R.W.; Mountain, R.J.; Ruchti, R.; Baumbaugh, A.; Knickerbocker, K.

1987-10-01T23:59:59.000Z

60

Design considerations for neutron activation and neutron source strength monitors for ITER  

SciTech Connect

The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

Barnes, C.W. [Los Alamos National Lab., NM (United States); Jassby, D.L.; LeMunyan, G.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Walker, C. [ITER Joint Central Team, Garching (Germany)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A review of market monitoring activities at U.S. independent system operators  

E-Print Network (OSTI)

potentially sensitive market information that could be usedCAISO 2000. “ISO Market Monitoring & Information Protocol,”ISO-managed markets, present information on the management

Goldman, Charles; Lesieutre, Bernie C.; Bartholomew, Emily

2004-01-01T23:59:59.000Z

62

A monitor and control system for high voltage, gating, and triggering of a scintillating fiber active target  

SciTech Connect

A monitor and control system has been designed, constructed and tested at Notre Dame for the purpose of controlling all aspects of a Scintillating Fiber Acxtive Target system used in High Energy Physics Experimentation. The SFT Active Target system requires control of high voltages, gating, trigger counters, and monitoring. In addition, it resides in a radioactive area with very limited access. The control system uses a Leading Edge microcomputer, two specialized Z80-based processors, associated DACs, ADCs, discrete semiconductors, linear ICs and TTL and MECL logic. All of the hardware and software is custom-built; its design and performance is discussed.

Baumbaugh, B.; Bishop, J.; Gardner, R.W.; Mountain, R.J.; Ruchti, R.; Baumbaugh, A.; Knickerbocker, K.

1988-02-01T23:59:59.000Z

63

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

2NT00041628 2NT00041628 Final Report Covering research during the period 1 June, 2002 through 30 September, 2008 Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project Submitted by: University of Mississippi Center for Marine Resources and Environmental Technology 310 Lester Hall, University, MS 38677 Principal Authors: J. Robert Woolsey, Thomas M. McGee, Carol B. Lutken Prepared for: United States Department of Energy National Energy Technology Laboratory January, 2009 Office of Fossil Energy ii SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT DOE Award Number DE-FC26-02NT41628 FINAL TECHNICAL REPORT

64

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42877 Semiannual Progress Report HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO Submitted by: CENTER FOR MARINE RESOURCES AND ENVIRONMENTAL TECHNOLOGY 111 BREVARD HALL, UNIVERSITY, MS 38677 Principal Author: Carol Lutken, PI Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2011 Office of Fossil Energy ii HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO SEMIANNUAL PROGRESS REPORT 1 JANUARY, 2011 THROUGH 30 JUNE, 2011

65

Continuous active-source seismic monitoring of CO2 injection in abrine aquifer  

SciTech Connect

Continuous crosswell seismic monitoring of a small-scale CO2injection was accomplished with the development of a noveltubing-deployed piezoelectric borehole source. This piezotube source wasdeployed on the CO2 injection tubing, near the top of the saline aquiferreservoir at 1657-m depth, and allowed acquisition of crosswellrecordings at 15-minute intervals during the multiday injection. Thechange in traveltime recorded at various depths in a nearby observationwell allowed hour-by-hour monitoring of the growing CO2 plume via theinduced seismic velocity change. Traveltime changes of 0.2 to 1.0 ms ( upto 8 percent ) were observed, with no change seen at control sensorsplaced above the reservoir. The traveltime measurements indicate that theCO2 plume reached the top of the reservoir sand before reaching theobservation well, where regular fluid sampling was occuring during theinjection, thus providing information about the in situ buoyancy ofCO2.

Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

2006-12-10T23:59:59.000Z

66

Selection and Testing of an Internet Protocol Video Camera for the Bird Activity Monitor  

Science Conference Proceedings (OSTI)

Avian interactions such as collisions and electrocutions with overhead power lines, communication towers, wind turbines, and other utility structures are subjects of increasing concern among utilities, regulatory agencies, and environmental organizations. However, our ability to quantify the temporal and spatial extent of the problem or the efficacy of mitigating measures is severely hampered by a lack of standard monitoring methods and tools. EPRI initiated a project in 2000 that led to the development ...

2010-11-24T23:59:59.000Z

67

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

68

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

69

In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems  

DOE Patents (OSTI)

Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

Muzio, Lawrence J. (Laguna Niguel, CA); Smith, Randall A. (Huntington Beach, CA)

2009-12-22T23:59:59.000Z

70

Multi-sensor activation for temporally correlated event monitoring with renewable energy sources  

Science Conference Proceedings (OSTI)

Future sensor networks would comprise sensing devices with energy-harvesting capabilities from renewable energy sources, such as solar power. This paper focuses on design of efficient algorithms for multi-sensor activation to optimise overall ...

Neeraj Jaggi; Koushik Kar

2011-06-01T23:59:59.000Z

71

Mitigating container security risk using real-time monitoring with active Radio Frequency Identification and sensors  

E-Print Network (OSTI)

The global village in which we live enables increased trade and commerce across regions but also brings a complicated new set of challenges such as terrorist activity, human and drug smuggling and theft in foreign or ...

Schlesinger, Adam Ian

2005-01-01T23:59:59.000Z

72

Lateralization of Prefrontal Activity during Episodic Memory Retrieval: Evidence for the Production-Monitoring Hypothesis  

Science Conference Proceedings (OSTI)

We propose a new hypothesis concerning the lateralization of prefrontal cortex (PFC) activity during verbal episodic memory retrieval. The hypothesis states that the left PFC is differentially more involved in semantically guided information production ...

Roberto Cabeza; Jill K. Locantore; Nicole D. Anderson

2003-02-01T23:59:59.000Z

73

Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors for Structural Health Monitoring  

E-Print Network (OSTI)

applications. The electrical and mechanical power analysis at the PWAS structure interface indicates all on the tuning effects. Second, we studied the PWAS receiver structural interface acoustic and electrical energy1 Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors

Giurgiutiu, Victor

74

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the construction, testing and deployment of the horizontal line arrays, not yet funded. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-03-01T23:59:59.000Z

75

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

2006-06-01T23:59:59.000Z

76

Design and operation specifications of an active monitoring system for detecting southern resident killer whales  

SciTech Connect

Before final approval is given to the Snohomish County Public Utility District No. 1 for deploying the first tidal power devices in the United States in an open water environment, a system to manage the potential risk of injury to killer whales due to collision with moving turbine blades must be demonstrated. The Pacific Northwest National Laboratory (PNNL) is tasked with establishing the performance requirements for, constructing, and testing a prototype marine animal alert system for triggering temporary turbine shutdown when there is risk of collision with a killer whale. To develop a system that relies on active sonar two critical areas must be investigated - the target strength of killer whales and the frequency content of commercially available active sonar units. PNNL studied three target strength models: a simple model, the Fourier matching model, and the Kirchoff-ray mode model. Using target strength measurements of bottlenose dolphins obtained by previous researchers and assuming killer whales share similar morphology and structure, PNNL extrapolated the target strength of an adult killer whale 7.5 m in length at a frequency of 67 kHz. To study the frequency content of a commercially available sonar unit, direct measurements of the signal transmitted by the sonar were obtained by using a hydrophone connected to a data acquisition system in both laboratory and field conditions. The measurements revealed that in addition to the primary frequency of 200 kHz, there is a secondary frequency component at 90 kHz, which is within the hearing range of killer whales. The amplitude of the 90-kHz frequency component is above the hearing threshold of killer whales but below the threshold for potential injuries.

Deng, Zhiqun; Carlson, Thomas J.; Xu, Jinshan; Martinez, Jayson J.; Weiland, Mark A.; Mueller, Robert P.; Myers, Joshua R.; Jones, Mark E.

2011-09-30T23:59:59.000Z

77

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2) Progress on the Sea Floor Probe: (2a) With the Consortium's decision to divorce its activities from those of the Joint Industries Program (JIP), due to the JIP's selection of a site in 1300m of water, the Sea Floor Probe (SFP) system was revived as a means to emplace arrays in the shallow subsurface until arrangements can be made for boreholes at >1000m water depth. (2b) The SFP penetrometer has been designed and construction begun. (2c) The SFP geophysical and pore-fluid probes have been designed. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (3a) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes. (3b) Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor. (3c) A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: (4a) Laboratory tests were performed using bubbles of different sizes in waters of different salinities to test the sensitivity of the. Differences were detected satisfactorily. (4b) The system was field tested, first at the dock and then at the shallow water test site at Cape Lookout Bight where methane bubbles from the sea floor, naturally, in 10m water depth. The system successfully detected peaks in bubbling as spike decreases in conductivity. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (5a) Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' continues. AutoCAD design and manual construction of mounting pieces for major optical components have been completed. (5b) Initial design concepts for IR-ATR sensor probe geometries have been established and evaluated. Initial evaluations of a horizontal ATR (HATR) sensing probe with fiber optic guiding light have been performed and validate the design concept as a potentially viable deep sea sensing pr

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2005-11-01T23:59:59.000Z

78

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). The CMRET has conducted one very significant research cruise during this reporting period: a March cruise to perform sea trials of the Station Service Device (SSD), the custom Remotely Operated Vehicle (ROV) built to perform several of the unique functions required for the observatory to become fully operational. March's efforts included test deployments of the SSD and Florida Southern University's mass spectrometer designed to measure hydrocarbon gases in the water column and The University of Georgia's microbial collector. The University of Georgia's rotational sea-floor camera was retrieved as was Specialty Devices storm monitor array. The former was deployed in September and the latter in June, 2006. Both were retrieved by acoustic release from a dispensable weight. Cruise participants also went prepared to recover any and all instruments left on the sea-floor during the September Johnson SeaLink submersible cruise. One of the pore-fluid samplers, a small ''peeper'' was retrieved successfully and in fine condition. Other instrumentation was left on the sea-floor until modifications of the SSD are complete and a return cruise is accomplished.

J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

2007-03-31T23:59:59.000Z

79

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-05-18T23:59:59.000Z

80

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period: one in April, one in June, one in September. April's effort was dedicated to surveying the mound at MC118 with the Surface-Source-Deep-Receiver (SSDR) seismic surveying system. This survey was completed in June and water column and bottom samples were collected via box coring. A microbial filtering system developed by Consortium participants at the University of Georgia was also deployed, run for {approx}12 hours and retrieved. The September cruise, designed to deploy, test, and in some cases recover, geochemical and microbial instruments and experiments took place aboard Harbor Branch's Seward Johnson and employed the Johnson SeaLink manned submersible. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in a previously submitted report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs. In addition, Barrodale Computing Services Ltd. (BCS) completed their work; their final report is the bulk of the semiannual report that precedes (abstract truncated)

Carol Lutken

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling  

Science Conference Proceedings (OSTI)

The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

NSTec Aerial Measurement Systems

2012-07-31T23:59:59.000Z

82

Underwater wireless ad hoc sensor networks are aimed at remotely monitoring various aquatic activities, such as marine biological and zoological lives, geological changes, and  

E-Print Network (OSTI)

Abstract Underwater wireless ad hoc sensor networks are aimed at remotely monitoring various aquatic activities, such as marine biological and zoological lives, geological changes, and underwater quality of service is more difficult in underwater net- works due to large underwater propagation delay

Kumar, M. Jagadesh

83

Monitor Worldwide  

NLE Websites -- All DOE Office Websites (Extended Search)

NRC guidance on the need for integration of performance assessment and data collection NUREG-1573 Monitor Scientific Monitoring Monitoring * Two distinct situations - A proposed...

84

SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY  

Science Conference Proceedings (OSTI)

We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

Van der Horst, A. J.; Finger, M. H. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorgone, N. M. [Connecticut College, New London, CT 06320 (United States); Kaneko, Y.; Goegues, E.; Lin, L. [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A. [University of Alabama, Huntsville, CSPAR, Huntsville, AL 35805 (United States); Granot, J. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Watts, A. L. [Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Bissaldi, E.; Gruber, D. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85748 Garching (Germany); Gehrels, N.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gibby, M. H.; Giles, M. M., E-mail: A.J.VanDerHorst@uva.nl [Jacobs Technology, Inc., Huntsville, AL (United States); and others

2012-04-20T23:59:59.000Z

85

Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

J. Robert Woolsey; Thomas McGee; Carol Lutken

2008-05-31T23:59:59.000Z

86

Continuous Emissions Monitoring Guidelines  

Science Conference Proceedings (OSTI)

Since the 2002 update of this manual, the Environmental Protection Agency (EPA) has been extremely active in its efforts to expand continuous emissions monitoring (CEM) requirements through a variety of regulatory instruments. Additional monitoring requirements have resulted from EPA's Clean Air Interstate Rule and Cross-State Air Pollution Rule. EPA attempted to impose mercury (Hg) monitoring requirements in its now-vacated Clean Air Mercury Rule. Most recently, EPA has proposed mercury, particulate mat...

2011-12-20T23:59:59.000Z

87

Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: monitoring report No. 3. Report No. 1023  

DOE Green Energy (OSTI)

The current legislative activity covers the following: federal funds, state financial incentives, air quality bills, transmission line access, state energy agency reorganization, and state energy taxes. Current regulatory activities of the California Energy Commission, and the Lake County Air Pollution Control District are reviewed. (MHR)

Not Available

1980-07-20T23:59:59.000Z

88

RADIATION MONITORING  

E-Print Network (OSTI)

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

89

Pausing and activating thread state upon pin assertion by external logic monitoring polling loop exit time condition  

DOE Patents (OSTI)

A system and method for enhancing performance of a computer which includes a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program are executed by a processer. The processor processes instructions from the program. A wait state in the processor waits for receiving specified data. A thread in the processor has a pause state wherein the processor waits for specified data. A pin in the processor initiates a return to an active state from the pause state for the thread. A logic circuit is external to the processor, and the logic circuit is configured to detect a specified condition. The pin initiates a return to the active state of the thread when the specified condition is detected using the logic circuit.

Chen, Dong; Giampapa, Mark; Heidelberger, Philip; Ohmacht, Martin; Satterfield, David L; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

2013-05-21T23:59:59.000Z

90

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

91

Reflred - Monitor  

Science Conference Proceedings (OSTI)

... power bumps due to weather conditions affecting the electrical supply), so use with caution. Be careful when mixing monitor and time data in the ...

92

Environmental Monitoring Plan  

SciTech Connect

The purpose of the environmental monitoring plan (EMP) is to promote the early identification of, and response to, potential adverse environmental impacts associated with DOE operations. Environmental monitoring supports the Integrated Safety Management System (ISMS) to detect, characterize, and respond to releases from DOE activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of the DOE activity. In addition, the EMP addresses the analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of radionuclide samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. Until recently, environmental monitoring at Lawrence Livermore National Laboratory (LLNL) was required by DOE Order 5400.1, which was canceled in January 2003. LLNL is in the process of adopting the ISO 14001 Environmental Management Systems standard, which contains requirements to perform and document environmental monitoring. The ISO 14001 standard is not as prescriptive as DOE Order 5400.1, which expressly required an EMP. LLNL will continue to prepare the EMP because it provides an organizational framework for ensuring that the work is conducted appropriately. The environmental monitoring addressed by the plan includes preoperational characterization and assessment, and effluent and surveillance monitoring. Additional environmental monitoring is conducted at LLNL as part of the compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). This EMP does not address the technical requirements for such monitoring.

Althouse, P E; Bertoldo, N A; Bowen, B M; Brown, R A; Campbell, C G; Christofferson, E; Gallegos, G M; Grayson, A R; Jones, H E; Larson, J M; Laycak, D; Mathews, S; Peterson, S R; Revelli, M J; Rueppel, D; Williams, R A; Wilson, K; Woods, N

2005-11-23T23:59:59.000Z

93

Advanced Monitoring systems initiative  

SciTech Connect

The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

2004-09-30T23:59:59.000Z

94

Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08  

SciTech Connect

Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initial retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.

DEFIGH PRICE, C.

2000-09-25T23:59:59.000Z

95

Weld Monitor  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring of Laser Beam Welding Monitoring of Laser Beam Welding Using Infrared Weld Emissions P. G. Sanders, J. S. Keske, G. Kornecki, and K. H. Leong Technology Development Division Argonne National Laboratory Argonne, IL 60439 USA The submitted manuscript has been authorized by a contractor of the U. S. Government under contract No. W-31-109-ENG-38. Accordingly, the U. S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. Abstract A non-obtrusive, pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld

96

Benchmark Monitoring: Retired Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed Batch Jobs Completed Parallel Jobs Usage Reports Hopper Benchmark Monitoring Edison Benchmark Monitoring Carver Benchmark Monitoring Benchmark Monitoring: Retired Systems...

97

Environmental Monitoring Program Quality Assurance Project Plan  

SciTech Connect

The Quality Assurance Project Plan (QAPP) is intended to document the quality assurance of the Environmental Monitoring Program. The Quality Assurance Project Plan has two parts and is written to become a chapter in the Environmental Monitoring Plan. Part A describes the management responsibilities and activities performed to assure the quality of the Environmental Monitoring Program. Part B covers the documentation requirements for changes in the Monitoring Program, and provides details on control of the design and implementation of quality assurance activities.

Holland, R.C.

1993-06-01T23:59:59.000Z

98

PDSF Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

PDSF Monitoring PDSF Monitoring The plot below is a measure of the read and write rates a single user would experience via the PDSF batch system. Jobs are submitted sequentially every hour to the debug queue. If a jobs doesn't finish in 8 minutes, it is killed and a -1 rate is written out. The read rates are calculated by copying a directory containing 2 files totaling 274 MB from the eliza directories to the $TMPDIR on the node running the job. The write rates are calculated by untarring a tarball on the eliza directories. The write rates are typically around a factor of two slower than the read rates, because the data still has to travel to the compute node and then back to the eliza for writing. The I/O rates are taken from the ganglia monitoring and serve as a measure of the amount of

99

Energy Analysis Department A Review of Market MonitoringA Review of Market Monitoring  

E-Print Network (OSTI)

;Energy Analysis Department Approach (cont)Approach (cont) · Synthesize information on market monitoringEnergy Analysis Department A Review of Market MonitoringA Review of Market Monitoring Activities of authority - Reporting responsibilities - Impact of market monitoring: Case Studies #12;Energy Analysis

100

High Precision Long-Term Monitoring of Radiatively Active and Related Trace Gases at Surface Sites and from Aircraft in the Southern Hemisphere Atmosphere  

Science Conference Proceedings (OSTI)

Routine high precision measurements of atmospheric CO2, CH4, CO, H2, N2O, and CO2 stable isotopes are conducted by CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia). Of particular relevance to global monitoring of ...

R. J. Francey; L. P. Steele; R. L. Langenfelds; B. C. Pak

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Monitor 1979  

SciTech Connect

The status, improvements, and accomplishments of the Monitor remote-handling system previously reported are updated. It also outlines the goals for the future to improve the efficiency and speed of remote-maintenance operations at the Clinton P. Anderson Meson Physics Facility (LAMPF).

Grisham, D.L.; Ekberg, E.L.; Lambert, J.E.; Meyer, R.E.; Stroik, P.J.; Wickham, M.D.

1979-01-01T23:59:59.000Z

102

Monitoring well  

DOE Patents (OSTI)

A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

Hubbell, J.M.; Sisson, J.B.

1999-06-29T23:59:59.000Z

103

Monitoring well  

DOE Patents (OSTI)

A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

104

Overview - WIPP Effluent Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the WIPP Effluent Monitoring Program Compliance with Title 40 CFR Part 191, Subpart A Environmental Standards for Management and Storage L. Frank-Supka, D. J. Harward, S. C. Casey May 2005 INTRODUCTION This document provides an overview of the effluent air monitoring activities at the Waste Isolation Pilot Plant (WIPP), in Carlsbad, New Mexico. The WIPP Effluent Monitoring Program is designed to comply with the U.S. Environmental Protection Agency (EPA) radiation protection standards for management and storage of spent nuclear fuel, high-level radioactive waste and transuranic (TRU)-waste at the WIPP. The standards issued by the EPA are contained in Title 40 Code of Federal Regulations (CFR), Part 191, Subpart A. The standards require the

105

Rack Protection Monitor  

DOE Patents (OSTI)

A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

Orr, Stanley G.

1998-10-21T23:59:59.000Z

106

Rack protection monitor  

DOE Patents (OSTI)

A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

Orr, Stanley G. (Wheaton, IL)

2000-01-01T23:59:59.000Z

107

Tritium monitor  

DOE Patents (OSTI)

A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

Chastagner, Philippe (Augusta, GA)

1994-01-01T23:59:59.000Z

108

Tritium monitor  

DOE Patents (OSTI)

A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

Chastagner, P.

1994-06-14T23:59:59.000Z

109

Tritium monitor  

DOE Patents (OSTI)

This invention is comprised of a system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

Chastagner, P.

1992-12-31T23:59:59.000Z

110

NETL: Ambient Monitoring - Steubenville Comprehensive Air Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Steubenville Comprehensive Air Monitoring Project (SCAMP) Steubenville Comprehensive Air Monitoring Project (SCAMP) The National Ambient Air Quality Standards for airborne fine particles (PM2.5) are based on the mass of PM2.5 measured at outdoor monitoring stations; however, most people spend the majority of their time indoors. In order to fully understand the relationship between ambient PM2.5 and human health effects, it is important to define how ambient PM2.5 concentrations and compositions compare to those actually breathed by humans during normal daily activities. The objective of SCAMP is to measure the concentrations of PM2.5 and other potential air pollutants at ambient monitoring stations in and around Steubenville, OH, and relate them to the pollutant concentrations in air that is actually breathed by people living in the area. Steubenville was chosen by DOE for this study because of the ability to integrate its results with those of the UORVP, and also because Steubenville was one of the six cities where correlations between ambient PM2.5 mass and adverse health effects had been noted. These correlations had been cited by EPA as one of the primary justifications for its 1997 ambient PM2.5 standards. Complete characterization of the relationships between ambient PM2.5 and human exposure, including the chemical components of PM2.5 at various locations, will provide a comprehensive database for use in subsequent epidemiological studies, long-range transport studies, and State Implementation Program development. CONSOL Energy is the primary performer of SCAMP, and will provide the necessary coordination and data integration between the various components of the study.

111

SRNL - Natural Attenuation Monitor  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Attenuation Monitor covers Natural Attenuation Monitor Published by the US DOE Monitored Natural Attenuation and Enhanced Attenuation for Chlorinated Solvents Technology...

112

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

MJ Hartman; PE Dresel; JW Lindberg; DR Newcomer; EC Thornton

2000-10-18T23:59:59.000Z

113

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

1999-10-06T23:59:59.000Z

114

Ecological Monitoring and Compliance Program 2012 Report  

Science Conference Proceedings (OSTI)

The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2012. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2012, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

Hall, Derek B.; Anderson, David C.; Greger, Paul D.; Ostler, W. Kent; Hansen, Dennis J.

2013-07-03T23:59:59.000Z

115

Ecological Monitoring and Compliance Program 2011 Report  

SciTech Connect

The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada National Security Site and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program's activities conducted by National Security Technologies, LLC, during calendar year 2011. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex. During 2011, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

Hansen, D. J., Anderson, D. C., Hall, D. B., Greger, P. D., Ostler, W. K.

2012-06-13T23:59:59.000Z

116

Ecological Monitoring and Compliance Program 2008 Report  

SciTech Connect

The Ecological Monitoring and Compliance Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2008. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC).

Dennis J. Hansen, David C. Anderson, Derek B. Hall, Paul D. Greger, W. Kent Ostler

2009-04-30T23:59:59.000Z

117

Ecological Monitoring and Compliance Program 2010 Report  

Science Conference Proceedings (OSTI)

The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2010. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2010, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

Hansen, D.J.; Anderson, D.C.; Hall, D.B.; Greger, P.D.; Ostler, W.K.

2011-07-01T23:59:59.000Z

118

Environmental Monitoring Plan, Revision 6  

SciTech Connect

The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. Specifically, environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring is also a major component of compliance demonstration for permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. LLNL prepares the EMP because it provides an organizational framework for ensuring that environmental monitoring work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 458.1, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies.

Gallegos, G M; Bertoldo, N A; Blake, R G; Campbell, C G; Grayson, A R; Nelson, J C; Revelli, M A; Rosene, C A; Wegrecki, T; Williams, R A; Wilson, K R; Jones, H E

2012-03-02T23:59:59.000Z

119

Display space usage and window management operation comparisons between single monitor and multiple monitor users  

E-Print Network (OSTI)

The continuing trend toward greater processing power, larger storage, and in particular increased display surface by using multiple monitor supports increased multi-tasking by the computer user. The concomitant increase in desktop complexity has the potential to push the overhead of window management to frustrating and counterproductive new levels. It is difficult to adequately design for multiple monitor systems without understanding how multiple monitor users differ from, or are similar to, single monitor users. Therefore, we deployed a tool to a group of single monitor and multiple monitor users to log window management activity. Analysis of the data collected from this tool revealed that usage of interaction components may change with an increase in number of monitors, and window visibility can be a useful measure of user display space management activity, especially for multiple monitor users. The results from this analysis begin to fill a gap in research about real-world window management practices.

Dugald Ralph Hutchings; Greg Smith; Brian Meyers; Mary Czerwinski; George Robertson

2004-01-01T23:59:59.000Z

120

Evaluation of Passive Monitors for Measuring Indoor Radon and Formaldehyde  

Science Conference Proceedings (OSTI)

Passive monitors for indoor air pollutants can furnish a cost-effective alternative to larger, more sophisticated, active monitors. In this study, three passive radon monitors provided sufficient accuracy and precision to support their use in utility measurement programs. However, the marginal performance of a passive formaldehyde monitor indicated the need for a vigorous quality assurance program to quantify its performance.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

1999 Environmental Monitoring Program Report  

SciTech Connect

This report describes the calendar year 1999 compliance monitoring and environmental surveillance activities of the Idaho National Engineering and Environmental Laboratory management and operating contractor Environmental Monitoring Program. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1999 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The Idaho National Engineering and Environmental Laboratory complied with permits and applicable regulations, with the expectation of nitrogen in two disposal pond effluent streams iron and total coliform bacteria in groundwater downgradient from one disposal well, and coliform bacteria in drinking water systems at two facilities. Maintenance activities were performed on the two drinking water systems and tested prior to putting back into service. The monitoring and surveillance results demonstrate that the public health and environment were protected.

L. V. Street

2000-09-01T23:59:59.000Z

122

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

123

Routine Radiological Environmental Monitoring Plan. Volume 1  

SciTech Connect

The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

Bechtel Nevada

1999-12-31T23:59:59.000Z

124

INSTRUMENTATION FOR ENVIRONMENTAL MONITORING  

E-Print Network (OSTI)

ENVIRONMENTAL MONITORING R. D. McLaughlin, M. S. Hunt, D. L.ENVIRONMENTAL MONITORING R. D. McLaughlin, M. S. Hunt, D. L.

McLaughlin, R.D.

2010-01-01T23:59:59.000Z

125

Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996  

Science Conference Proceedings (OSTI)

As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

Naidu, J.R.; Paquette, D.; Lee, R. [and others

1996-10-01T23:59:59.000Z

126

Modern Performance Monitoring  

Science Conference Proceedings (OSTI)

Today's diverse and decentralized computer world demands new thinking about performance monitoring and analysis.

Mark Purdy

2006-02-01T23:59:59.000Z

127

Environmental Monitoring Plan, Revision 5  

SciTech Connect

The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 450.1A, Environmental Protection Program. Specifically, in conformance with DOE Order 450.1A, Attachment 1, paragraph 1(b)(5), environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring also serves to demonstrate compliance with permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality. (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work. (3) An integrated sampling approach to avoid duplicative data collection. Until its cancellation in January 2003, DOE Order 5400.1 required the preparation of an environmental monitoring plan. Neither DOE Order 450.1A nor the ISO 14001 standard are as prescriptive as DOE Order 5400.1, in that neither expressly requires an EMP. However, LLNL continues to prepare the EMP because it provides an organizational framework for ensuring that this work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 5400.5, Radiation Protection of the Public and the Environment, and DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 450.1A, DOE Order 5400.5, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies. (See LLNL [1992] and LLNL [2008] for information about LLNL's CERCLA activities).

Gallegos, G M; Blake, R G; Bertoldo, N A; Campbell, C G; Coty, J; Folks, K; Grayson, A R; Jones, H E; Nelson, J C; Revelli, M A; Wegrecki, T; Williams, R A; Wilson, K

2010-01-27T23:59:59.000Z

128

Packet personal radiation monitor  

DOE Patents (OSTI)

A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

Phelps, J.E.

1988-03-31T23:59:59.000Z

129

Packet personal radiation monitor  

DOE Patents (OSTI)

A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

Phelps, James E. (Knoxville, TN)

1989-01-01T23:59:59.000Z

130

INTEC Groundwater Monitoring Report 2006  

SciTech Connect

This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

J. R. Forbes S. L. Ansley M. Leecaster

2007-02-01T23:59:59.000Z

131

Environmental Monitoring Plan  

SciTech Connect

Environmental monitoring personnel from Lawrence Livermore National Laboratory (LLNL) prepared this ''Environmental Monitoring Plan'' (EMP) to meet the requirements in the U.S. Department of Energy (DOE) ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE 1991) and applicable portions of DOE Orders 5400.1 and 5400.5 (see WSS B93 and B94 in Appendix B). ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' is followed as a best management practice; under Work Smart Standards, LLNL complies with portions of DOE Orders 5400.1 and 5400.5 as shown in Appendix B. This document is a revision of the May 1999 EMP (Tate et al. 1999) and is current as of March 1, 2002. LLNL is one of the nation's premier applied-science national security laboratories. Its primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable, and to prevent the spread and use of nuclear weapons worldwide. LLNL's programs in advanced technologies, energy, environment, biosciences, and basic science apply LLNL's unique capabilities and enhance the competencies needed for this national security mission. LLNL's mission also involves working with industrial and academic partners to increase national competitiveness and improve science education. LLNL's mission is dynamic and has changed over the years to meet new national needs. In keeping with the Laboratory's mission, the environment, safety, and health (ES&H) have top priority. LLNL's policy is to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage. The environment, safety, and health are to be priority considerations in the planning and execution of all work activities at the Laboratory (LLNL 2001). Furthermore, it is the policy of LLNL to comply with applicable ES&H laws, regulations, and requirements. Under Contract 48, Appendix F, the Laboratory commits to minimizing its waste streams and to avoiding adverse impacts to the environment from its operations (UC/DOE 2001).

Althouse, P E; Biermann, A; Brigdon, S L; Brown, R A; Campbell, C G; Christofferson, E; Clark, L M; Folks, K J; Gallegos, G M; Gouveia, F J; Grayson, A; Harrach, R J; Hoppes, W G; Jones, H; Mathews, S; Merrigan, J R; Peterson, S R; Revelli, M; Rueppel, D; Sanchez, L; Tate, P J; Vellinger, R J; Ward, B; Williams, R

2006-01-10T23:59:59.000Z

132

Performance Analysis - Environmental Monitoring, Surveillance, and Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Analysis - Environmental Monitoring, Surveillance, and Performance Analysis - Environmental Monitoring, Surveillance, and Control Programs Within the U.S. Department of Energy, October 2002 Performance Analysis - Environmental Monitoring, Surveillance, and Control Programs Within the U.S. Department of Energy, October 2002 This report documents the results of a U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) analysis of DOE environmental monitoring, surveillance, and control activities. The analysis is based primarily on DOE Headquarters independent oversight evaluations of environmental monitoring and surveillance activities that were conducted at 14 different sites across the DOE complex during fiscal years 1999 through 2002. Independent oversight evaluations determined that all sites had established

133

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

Facebook icon Twitter icon UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

134

Corrosion monitoring apparatus  

DOE Patents (OSTI)

A corrosion monitoring device in an aqueous system which includes a formed crevice and monitoring the corrosion of the surfaces forming the crevice by the use of an a-c electrical signal.

Isaacs, Hugh S. (Shoreham, NY); Weeks, John R. (Stony Brook, NY)

1980-01-01T23:59:59.000Z

135

Portal radiation monitor  

DOE Patents (OSTI)

A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

Kruse, Lyle W. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

136

The Savannah River Site's Groundwater Monitoring Program  

Science Conference Proceedings (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

Not Available

1990-10-18T23:59:59.000Z

137

Ecological Monitoring and Compliance Program 2007 Report  

SciTech Connect

In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate the potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.

Dennis Hansen, David Anderson, Derek Hall, Paul Greger, W. Kent Ostler

2008-03-01T23:59:59.000Z

138

Operating Experience Review of Tritium-in-Water Monitors  

SciTech Connect

Monitoring tritium facility and fusion experiment effluent streams is an environmental safety requirement. This paper presents data on the operating experience of a solid scintillant monitor for tritium in effluent water. Operating experiences were used to calculate an average monitor failure rate of 4E-05/hour for failure to function. Maintenance experiences were examined to find the active repair time for this type of monitor, which varied from 22 minutes for filter replacement to 11 days of downtime while waiting for spare parts to arrive on site. These data support planning for monitor use; the number of monitors needed, allocating technician time for maintenance, inventories of spare parts, and other issues.

S. A. Bruyere; L. C. Cadwallader

2011-09-01T23:59:59.000Z

139

ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM CALENDAR YEAR 2005 REPORT  

Science Conference Proceedings (OSTI)

The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test and Evaluation Complex (NPTEC).

BECHTEL NEVADA ECOLOGICAL SERVICES

2006-03-01T23:59:59.000Z

140

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

142

2002 WIPP Environmental Monitoring Plan  

SciTech Connect

DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

Washington TRU Solutions LLC

2002-09-30T23:59:59.000Z

143

Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

1993-07-01T23:59:59.000Z

144

Structural health monitoring activities at National Laboratories  

Science Conference Proceedings (OSTI)

Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States); James, G.H.; Simmermacher, T. [Sandia National Labs., Albuquerque, NM (United States)

1997-09-01T23:59:59.000Z

145

Comprehensive air monitoring plan: general monitoring report  

DOE Green Energy (OSTI)

Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

Not Available

1980-03-31T23:59:59.000Z

146

Ecological Monitoring and Compliance Program Fiscal Year 1999 Report  

Science Conference Proceedings (OSTI)

The Ecological and Compliance program, funded through the U. S. Department of Energy, Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 1999. Program activities included: (1) biological surveys at proposed construction sites (2) desert tortoise compliance (3) ecosystem mapping (4) sensitive species and unique habitat monitoring and (5) biological monitoring at the HAZMAT Spill Center.

Cathy A. Wills

1999-12-01T23:59:59.000Z

147

Near-facility environmental monitoring quality assurance project plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

McKinney, S.M.

1997-11-24T23:59:59.000Z

148

REAL TIME MONITORING OF INFRASTRUCTURE USING TDR TECHNOLOGY: CASE HISTORIES  

E-Print Network (OSTI)

. Remote system installed to monitor subsidence along a highway over an active coal mine. #12;Figure 5 abandoned coal mine. In spite of periodic visual monitoring, a 5 m diameter hole, 3 m deep suddenly opened experiencing active subsidence over an abandoned coal mine (O'Connor and Murphy, 1997). #12;At this site

149

Edison Benchmark Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Benchmark Monitoring Benchmark Results Select Benchmark CAM GAMESS GTC IMPACT-T MAESTRO MILC PARATEC Submit Last edited: 2013-06-25 22:45:11...

150

Future of Condition Monitoring for Wind Turbines | OpenEI Community  

Open Energy Info (EERE)

Future of Condition Monitoring for Wind Turbines Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of...

151

Simple beam profile monitor  

Science Conference Proceedings (OSTI)

An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

Gelbart, W.; Johnson, R. R.; Abeysekera, B. [ASD Inc. Garden Bay, BC (Canada); Best Theratronics Ltd Ottawa Ontario (Canada); PharmaSpect Ltd., Burnaby BC (Canada)

2012-12-19T23:59:59.000Z

152

Waste Isolation Pilot Plant Environmental Monitoring Plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2004-02-19T23:59:59.000Z

153

Monitoring Jobs on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Jobs Monitoring Jobs Monitoring Jobs Monitoring Edison Batch Jobs The batch system provides the command to monotor your jobs. We are listing the commands commonly used to submit and monitor the jobs. For more informaiton please refer to the man pages of these commands. Job Commands Command Description qsub batch_script Submits batch script to the queue. The output of qsub will be a jobid qdel jobid Deletes a job from the queue qhold jobid Puts a job on hold in the queue. qrls jobid Releases a job from hold. qalter [options] jobid Change attributes of submitted job. (See below.) qmove new_queue jobid Move job to new queue. Remember, the new queue must be one of the submission queues (premium, regular, or low) qstat -a Lists jobs in submission order (more useful than qstat without options) Also takes -u and -f [jobid]> options

154

PROTECTIVE CLOTHING MONITORING SYSTEM  

SciTech Connect

An automatic conveyor-type laundry monitoring system, whlch monitors laboratory coats and coveralls for both alpha and beta-gamma contamination, was developed and installed at the Hanford Laundry Facility to improve monitoring efficiency and control. The instrument employs eight alpha and seven beta-gamma scintillation large-area detectors, a garment conveyor, solid state circuitry, and appropriate signaling devices. Oarments are manually placed on hangers which are then placed onto an automatic loading mechanism. Each garment is conveyed past detectors where it is monitored for beta-gamma and alpha contamination. Contaminated garments are rejected and dropped into a special contniner if spot contamination exceeds 1000 disintegrations per minute (dis/min) of alpha or 5000 dis/min of mixed fission products. The garments which are not rejected pass through for folding and distribution. The system, which requires only one attendant, can effectively monitor 500 garments per standard shift. System operation was fully successful for ten months. (auth)

Rankin, M.O.; Spear, W.G.

1963-08-01T23:59:59.000Z

155

Forest Monitoring for Action (FORMA) | Open Energy Information  

Open Energy Info (EERE)

Forest Monitoring for Action (FORMA) Forest Monitoring for Action (FORMA) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Monitoring for Action (FORMA) Agency/Company /Organization: Center for Global Development Sector: Land, Climate Focus Area: Forestry Topics: GHG inventory, Resource assessment Resource Type: Maps Website: www.cgdev.org/section/initiatives/_active/forestmonitoringforactionfor Cost: Free Forest Monitoring for Action (FORMA) Screenshot References: FORMA[1] "Forest Monitoring for Action (FORMA) uses freely available satellite data to generate rapidly updated online maps of tropical forest clearing, providing useful information for local and national forest conservation programs, as well as international efforts to curb greenhouse gas emissions by paying to keep forests intact."

156

Geothermal progress monitor report No. 6  

DOE Green Energy (OSTI)

Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

Not Available

1982-06-01T23:59:59.000Z

157

Review Functional hemodynamic monitoring  

E-Print Network (OSTI)

Hemodynamic monitoring is a central component of intensive care. Patterns of hemodynamic variables often suggest cardiogenic, hypovolemic, obstructive, or distributive (septic) etiologies to cardiovascular insufficiency, thus defining the specific treatments required. Monitoring increases in invasiveness, as required, as the risk for cardiovascular instability-induced morbidity increases because of the need to define more accurately the diagnosis and monitor the response to therapy. Monitoring is also context specific: requirements during cardiac surgery will be different from those in the intensive care unit or emergency department. Solitary hemodynamic values are useful as threshold monitors (e.g. hypotension is always pathological, central venous pressure is only elevated in disease). Some hemodynamic values can only be interpreted relative to metabolic demand, whereas others have multiple meanings. Functional hemodynamic monitoring implies a therapeutic application, independent of diagnosis such as a therapeutic trial of fluid challenge to assess preload responsiveness. Newer methods for assessing preload responsiveness include monitoring changes in central venous pressure during spontaneous inspiration, and variations in arterial pulse pressure, systolic pressure, and aortic flow variation in response to vena caval collapse during positive pressure ventilation or passive leg raising. Defining preload responsiveness using these functional measures, coupled to treatment protocols, can improve outcome from critical illness. Potentially, as these and newer, less invasive hemodynamic measures are validated, they could be incorporated into such protocolized care in a costeffective manner.

Michael R Pinsky; Didier Payen

2005-01-01T23:59:59.000Z

158

Seismic monitoring at The Geysers  

DOE Green Energy (OSTI)

During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

1993-04-01T23:59:59.000Z

159

Environmental monitoring plan - environmental monitoring section. Revision 1  

Science Conference Proceedings (OSTI)

This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

1994-11-01T23:59:59.000Z

160

Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982  

Science Conference Proceedings (OSTI)

A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D. [comps.

1983-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

162

Fuel Integrity Monitoring and Failure Evaluation Handbook, Revision 1  

Science Conference Proceedings (OSTI)

This handbook documents the current status of light water reactor (LWR) fuel integrity monitoring activities in the U.S. nuclear power industry, with an emphasis on current fuel reliability methods and fuel failure mitigation techniques. The handbook provides information on boiling water reactor (BWR) and pressurized water reactor (PWR) fuel release activity monitoring techniques, including trending and interpreting the activity data with respect to the condition of the failed rods. It also presents an i...

2003-11-14T23:59:59.000Z

163

Monitoring Jobs on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Jobs Monitoring Jobs Monitoring Jobs Monitoring Hopper Batch Jobs See the man pages for more options. The Job Information page has more information on current queue status, completed jobs, ALPS logs and job summary statistics. Job Commands Command Description qsub batch_script Submits batch script to the queue. The output of qsub will be a jobid qdel jobid Deletes a job from the queue qhold jobid Puts a job on hold in the queue. To delete a job from the hopper xfer queue users must add an additional parameter @hopper06 Example:6004861.hopper06@hopper06 qrls jobid Releases a job from hold. qalter [options] jobid Change attributes of submitted job. (See below.) qmove new_queue jobid Move job to new queue. Remember, the new queue must be one of the submission queues (premium, regular, or low)

164

What We Monitor & Why  

NLE Websites -- All DOE Office Websites (Extended Search)

by monitoring wildlife, plants, water quality, and air quality. June 27, 2012 Raft Trip: rafts on the Rio Grande Workers prepare for the annual Fall sampling campaign on the...

165

WIPP Documents - Environmental Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

issued by the EPA are contained in Title 40 CFR, Part 191, Subpart A. Strategic Plan for Groundwater Monitoring at the WIPP DOEWIPP-03-3230 Describes the groundwater...

166

High Temperature ESP Monitoring  

SciTech Connect

The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

Jack Booker; Brindesh Dhruva

2011-06-20T23:59:59.000Z

167

Meteorological Monitoring Program  

SciTech Connect

The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

Hancock, H.A. Jr. [ed.; Parker, M.J.; Addis, R.P.

1994-09-01T23:59:59.000Z

168

Structure function monitor  

DOE Patents (OSTI)

Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM); Ackermann, Mark R. (Albuquerque, NM)

2012-01-24T23:59:59.000Z

169

Committee on Monitoring Research Terms of Reference  

E-Print Network (OSTI)

The Council is, therefore, developing an overall proposal for monitoring the progress of research within NOAA. The four key elements of the new monitoring strategy are: To link research milestones with activities in the Program Operating Plans of the goal and program teams, the Annual Operating Plans of the Line Offices and the performance objectives of the NOAA strategic plan; To regularly evaluate the quality, relevance, and value of NOAA’s research, both internally in NOAA, and by external review teams; To use a NOAA-wide database to track research accomplishments, and the outcomes in society that result from them; To track the financial reporting of research activities across the Agency. Because monitoring of research in NOAA is proposed to be systematic and ongoing, it is appropriate to establish a permanent Committee of the Research Council for that purpose. The NOAA Executive Panel endorsed such a Committee. Definitions Research and development are defined as:

unknown authors

2007-01-01T23:59:59.000Z

170

Host Event Based Network Monitoring  

SciTech Connect

The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

Jonathan Chugg

2013-01-01T23:59:59.000Z

171

Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations  

SciTech Connect

The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergencies where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.

NSTec Aerial Measurement Systems

2012-07-31T23:59:59.000Z

172

Design of a Nanometer Beam Size Monitor for ATF2  

E-Print Network (OSTI)

We developed an electron beam size monitor for extremely small beam sizes. It uses a laser interference fringe for a scattering target with the electron beam. Our target performance is measurement using 90 electron bunches for 25 - 6000 nm beam size. A precise laser interference fringe control system using an active feedback function is incorporated to the monitor to achieve the target performance. We describe an overall design, implementations, and performance estimations of the monitor.

Taikan Suehara; Masahiro Oroku; Takashi Yamanaka; Hakutaro Yoda; Tomoya Nakamura; Yoshio Kamiya; Yosuke Honda; Tatsuya Kume; Toshiaki Tauchi; Tomoyuki Sanuki; Sachio Komamiya

2008-10-30T23:59:59.000Z

173

Development of Deepwater Riser Monitoring Systems  

Science Conference Proceedings (OSTI)

In recent years, the exploration activity of oil and gas industry in ultra deepwater is numerous. The main offshore industries around the world are busy building drilling systems for deeper and deeper water, progressively using all kinds of new technologies. ... Keywords: Riser, Monitoring, Acoustic

Dai Wei; Bai Yong

2011-01-01T23:59:59.000Z

174

Ubiquitous monitoring and assessment of childhood obesity  

Science Conference Proceedings (OSTI)

Childhood obesity is a significant health problem in current societies that is increasing at an alarming way among population of all ages. To date, studies on the effectiveness of treatments for childhood obesity in the medium and long term suggest a ... Keywords: Children obesity, E-therapy, Physical activity detection, Wireless monitoring

Irene Zaragozá, Jaime Guixeres, Mariano Alcañiz, Ausiás Cebolla, Javier Saiz, Julio Álvarez

2013-08-01T23:59:59.000Z

175

VME system monitor board  

SciTech Connect

Much of the machinery throughout the APS will be controlled by VME based computers. In order to increase the reliability of the system, it is necessary to be able to monitor the status of each VME crate. In order to do this, a VME System Monitor was created. In addition to being able to monitor and report the status (watchdog timer, temperature, CPU (Motorola MVME 167) state (status, run, fail), and the power supply), it includes provisions to remotely reset the CPU and VME crate, digital I/O, and parts of the transition module (serial port and ethernet connector) so that the Motorla MVME 712 is not needed. The standard VME interface was modified on the System Monitor so that in conjunction with the Motorola MVME 167 a message based VXI interrupt handler could is implemented. The System Monitor is a single VME card (6U). It utilizes both the front panel and the P2 connector for I/O. The front panel contains a temperature monitor, watchdog status LED, 4 general status LEDs, input for a TTL interrupt, 8 binary inputs (24 volt, 5 volt, and dry contact sense), 4 binary outputs (dry contact, TTL, and 100 mA), serial port (electrical RS-232 or fiber optic), ethernet transceiver (10 BASE-FO or AUI), and a status link to neighbor crates. The P2 connector is used to provide the serial port and ethernet to the processor. In order to abort and read the status of the CPU, a jumper cable must be connected between the CPU and the System Monitor.

NONE

1996-02-01T23:59:59.000Z

176

High Performance Network Monitoring  

SciTech Connect

Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

Martinez, Jesse E [Los Alamos National Laboratory

2012-08-10T23:59:59.000Z

177

Ecological Monitoring and Compliance Program Fiscal Year 2003 Report  

SciTech Connect

The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2003.

Bechtel Nevada

2003-12-01T23:59:59.000Z

178

Usability in multiple monitor displays  

Science Conference Proceedings (OSTI)

An experimental study was conducted to examine the impact of multiple monitors on user performance and multitasking. Forty-three participants were assigned to two groups - a multi-monitor group and a singlemonitor group - to carry out a series of tasks. ... Keywords: large display monitor, multiple monitors, multitasking, usability, user performance

Jacob M. Truemper; Hong Sheng; Michael G. Hilgers; Richard H. Hall; Morris Kalliny; Basanta Tandon

2008-10-01T23:59:59.000Z

179

Monitoring Jobs on Carver  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Jobs Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status, completed jobs, and job summary statistics. Command Description qsub batch_script Submit batch script to queue; returns job_id. qdel job_id Delete job from queue. qhold job_id Place job on hold in queue. qrls job_id Release held job. qalter Change attributes of submitted job. qmove new_queue job_id Move job to a different queue. qstat -a List jobs in submission order. qstat -f job_id Produce detailed report about job. qs List jobs in priority order. showq List jobs in priority order, categorized by job state. showstart job_id Produce estimate of start time for job. checkjob job_id Produce scheduling diagnostics for job.

180

United States Environmental Monitoring  

Office of Legacy Management (LM)

EPA 60014-91/030 EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud, B.B. Dicey, D.G. Easterly, C.A. Fontana, R.W. Holloway, A.A. Mullen, V.E. Niemann, W.G. Phillips, D.D. Smith, N.R. Sunderland, D.J. Thome, and Nuclear Radiation Assessment Division Prepared for: U.S. Department of Energy under Interagency Agreement Number DE-A108-86-NV10522

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fiber optic monitoring device  

DOE Patents (OSTI)

A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

Samborsky, J.K.

1993-10-05T23:59:59.000Z

182

1987 environmental monitoring report  

Science Conference Proceedings (OSTI)

The primary purpose of Brookhaven National Laboratory's (BNL) environmental monitoring program is to determine whether: facility operations, waste treatment, and control systems functioned as designed to contain environmental pollutants; and the applicable environmental standards and effluents control requirements were met. This annual report for calendar year 1987 follows the recommendations given by the Department of Energy (DOE) but has been broadened to meet site-specific environmental monitoring needs. This program includes the sampling and analysis for radioactivity, water quality indices, metals, and organic compounds. 32 refs., 17 figs., 70 tabs.

Miltenberger, R.P.; Royce, B.A.; Naidu, J.R. (eds.)

1988-04-01T23:59:59.000Z

183

Fiber optic monitoring device  

DOE Patents (OSTI)

This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

Samborsky, J.K.

1992-12-31T23:59:59.000Z

184

Vapor concentration monitor  

DOE Patents (OSTI)

An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

Bayly, John G. (Deep River, CA); Booth, Ronald J. (Deep River, CA)

1977-01-01T23:59:59.000Z

185

NSLS Weekly Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Weekly Activities There are a variety of weekly meetings for NSLS staff and users. These are posted regularly on the TV monitors (User Information Channel 22), along with any time...

186

Facility effluent monitoring plan for the 327 Facility  

Science Conference Proceedings (OSTI)

The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

187

Seismic monitoring at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

This report summarizes the efforts of LBL to utilize MEQ data in reservoir definition as well as in evaluating its performance. Results of the study indicate that the velocity and attenuation variations correlate with the known geology of the field. At the NW Geysers, high velocity anomalies correspond to metagraywacke and greenstone units while low velocity anomalies seem to be associated with Franciscan melanges. Low Vp/Vs and high attenuation delineate the steam reservoir suggesting undersaturation of the reservoir rocks. Ongoing monitoring of Vp/Vs may be useful in tracking the expansion of the steam zone with time. Spatial and temporal patterns of seismicity exhibit compelling correlation with geothermal exploitation. Clusters of MEQs occur beneath active injection wells and appear to shift with changing injection activities. High resolution MEQ locations hold promise for inferring fluid flow paths, especially in tracking injectate. This study has demonstrated that continuous seismic monitoring may be useful as an active reservoir management tool.

Romero, A.E. Jr.; Kirkpatrick, A.; Majer, E.L.; Peterson, J.E. Jr.

1994-09-01T23:59:59.000Z

188

Drift compensated inertial position sensor for healthcare patient monitoring  

E-Print Network (OSTI)

In order to provide more effective health care, especially to the elderly, we must enable the physician to monitor the patient outside of the clinic or hospital. A patient's activities are a critical indicator of his or ...

Nelson, David Lee, M. Eng. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

189

Health Monitoring System Technology Assessments---Cost Benefits Analysis  

Science Conference Proceedings (OSTI)

The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and ...

Kent Renee M.; Murphy Dennis A.

2000-01-01T23:59:59.000Z

190

Lidar Monitoring of the Water Vapor Cycle in the Troposphere  

Science Conference Proceedings (OSTI)

The water vapor mixing ratio distribution in the lower and middle troposphere has been continuously monitored, using an active lidar system. The methodology of the differential absorption laser method used for these measurements is summarized and ...

C. Cahen; G. Megie; P. Flamant

1982-10-01T23:59:59.000Z

191

Microsoft PowerPoint - WGA presentation on mkt monitor 110403.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Review of Market Monitoring A Review of Market Monitoring A Review of Market Monitoring A Review of Market Monitoring Activities at U.S. Independent System Activities at U.S. Independent System Operators Operators Bernard Lesieutre & Charles Goldman Lawrence Berkeley National Laboratory Western Interstate Energy Board Committee on Regional Electric Power Cooperation Las Vegas NV November 4, 2003 Energy Analysis Department Approach Approach * Focused on four operating ISOs - CAISO, ISO-NE, NYISO, and PJM * Conducted Interviews - ISO market monitoring staff - External Market monitors (e.g., CAISO MSC) - State PUC and FERC OMOI staff * Review documents on Market Monitoring - ISO Market Monitoring plans; Annual Reports - Regulatory proceedings Energy Analysis Department Approach (cont) Approach (cont) * Synthesize information on market monitoring

192

WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)  

SciTech Connect

The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

2000-01-27T23:59:59.000Z

193

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

194

Energy monitoring system  

SciTech Connect

A system for monitoring and displaying the consumption of energy by measuring the actual energy consumed and comparing the measured energy consumption with an ideal or desired energy consumption. The desired energy consumption data may be based upon actual operations or may be generated by ideal consumption characteristics. In some instances, the ideal figures may be modified to compensate for variations in external conditions.

Bertolasi, R.B.

1976-12-21T23:59:59.000Z

195

The Drought Monitor  

Science Conference Proceedings (OSTI)

The Drought Monitor was started in spring 1999 in response to a need for improved information about the status of drought across the United States. It serves as an example of interagency cooperation in a time of limited resources. The Drought ...

Mark Svoboda; Doug LeComte; Mike Hayes; Richard Heim; Karin Gleason; Jim Angel; Brad Rippey; Rich Tinker; Mike Palecki; David Stooksbury; David Miskus; Scott Stephens

2002-08-01T23:59:59.000Z

196

Monitoring informs management  

SciTech Connect

Improved regional monitoring and reporting of greenhouse-gas emissions depends on accurate estimates of emissions from different land-use regimes. An analysis suggests that measuring emissions per crop yield may be an optimum metric for refining land-management decisions.

West, Tristram O.

2011-10-24T23:59:59.000Z

197

of seashore Why monitor  

E-Print Network (OSTI)

Resource Manage ment at the Swedish University of Agricultural Sciences in Umeå. The survey of habitats and the field survey, the total area of shore habitats along the coast can be calculated and their overall of seashore monitoring Over an aerial photo of each sample unit, a hexagonal grid is laid. At every crossing

198

Environmental monitoring, restoration and assessment: What have we learned  

Science Conference Proceedings (OSTI)

The Twenty-Eighth Hanford Symposium on Health and the Environment was held in Richland, Washington, October 16--19, 1989. The symposium was sponsored by the US Department of Energy and the Pacific Northwest Laboratory, operated by Battelle Memorial Institute. The symposium was organized to review and evaluate some of the monitoring and assessment programs that have been conducted or are currently in place. Potential health and environmental effects of energy-related and other industrial activities have been monitored and assessed at various government and private facilities for over three decades. Most monitoring is required under government regulations; some monitoring is implemented because facility operators consider it prudent practice. As a result of these activities, there is now a substantial radiological, physical, and chemical data base for various environmental components, both in the United States and abroad. Symposium participants, both platform and poster presenters, were asked to consider, among other topics, the following: Has the expenditure of millions of dollars for radiological monitoring and assessment activities been worth the effort How do we decide when enough monitoring is enough Can we adequately assess the impacts of nonradiological components -- both inorganic and organic -- of wastes Are current regulatory requirements too restrictive or too lenient Can monitoring and assessment be made more cost effective Papers were solicited in the areas of environmental monitoring; environmental regulations; remediation, restoration, and decommissioning; modeling and dose assessment; uncertainty, design, and data analysis; and data management and quality assurance. Individual reports are processed separately for the databases.

Gray, R.H. (ed.)

1990-01-01T23:59:59.000Z

199

Hydrogen and Oxygen Gas Monitoring System Design and Operation  

DOE Green Energy (OSTI)

This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

2007-06-01T23:59:59.000Z

200

Electrical energy monitoring in an industrial plant  

E-Print Network (OSTI)

This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor on energy consumption and demand is covered, including installation of correction and the effect of increasing the power factor on demand and energy consumption block sizes. The installation of capacitance correction has increased the low power factor of this facility from the low 60% range to the mid-to-high 70% range. A method has been developed to predict savings based on precorrection monitored data in the event the exact amount of capacitance installed is unknown. Savings for the month of February, 1994, are found to be $1327.56. This method can be used as a diagnostic tool to determine the amount of active capacitance. In this plant, that amount was found to be 315 KVAC, which correlates reasonably well with the amount active in the plant. The monitoring installation is described, and other uses (besides that dealing with power factor correction) are covered. Those uses include monitoring plant and equipment performance and productivity, and savings due to missed opportunities for equipment turn off.

Dorhofer, Frank Joseph

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Environmental Groundwater Monitoring Report  

Office of Legacy Management (LM)

-460 -460 Environmental Groundwater Monitoring Report Third Quarter, 1997 October 1997 Approved for public release; further dissemination unlimited. Environmental Restoration U.S. Department of Energy Nevada Operations Office This report has been reproduced directly from the best available copy. 1 - I : ~vailablk to DOE and DOE contractors from the. Office of Scientific - and Technical .Information, P.O. Box 62, Oak Ridge, TN 3783 1 ; prices available from (423) 576-840 1. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22 16 1, telephone (703) 487-4650. RULISON SITE GROUNDWATER MONITORING REPORT THIRD QUARTER, 1997 DOE Nevada Operations Office Las Vegas, Nevada

202

Cycle isolation monitoring  

SciTech Connect

There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

2009-07-15T23:59:59.000Z

203

Method for radioactivity monitoring  

DOE Patents (OSTI)

The disclosure relates to a method for analyzing uranium and/or thorium contents of liquid effluents preferably utilizing a sample containing counting chamber. Basically, 185.7-keV gamma rays following .sup.235 U alpha decay to .sup.231 Th which indicate .sup.235 U content and a 63-keV gamma ray doublet found in the nucleus of .sup.234 Pa, a granddaughter of .sup.238 U, are monitored and the ratio thereof taken to derive uranium content and isotopic enrichment .sup.235 U/.sup.235 U + .sup.238 U) in the liquid effluent. Thorium content is determined by monitoring the intensity of 238-keV gamma rays from the nucleus of .sup.212 Bi in the decay chain of .sup.232 Th.

Umbarger, C. John (Los Alamos, NM); Cowder, Leo R. (Santa Fe, NM)

1976-10-26T23:59:59.000Z

204

Relay contact monitoring system  

Science Conference Proceedings (OSTI)

A switching system for switching on and off heating and air conditioning units in an environmental control system. The switching system includes a thermostat and a relay conductively coupled to the thermostat. The relay has a contact, which is responsive to a change signal for changing its position. The system further includes a programmable monitor having predetermined positions stored in a memory. The monitor is conductively coupled to the contact and to the thermostat for continually determining the position of the contact, and for sending a change signal to the relay for switching the position of the contact, as needed, to be in conformance with a predetermined position stored in the memory. 3 figs.

Mehta, V.

1994-01-11T23:59:59.000Z

205

Radiation monitor reporting requirements  

SciTech Connect

Within High-Level Waste Management (HLWM), CAMs and VAMPs are currently considered Class B equipment, therefore, alarm conditions associated with the CAMs and VAMPs result in an Unusual Occurrence or Off-Normal notification and subsequent occurrence reporting. Recent equipment difficulties associated with Continuous Air Monitors (CAMs) and Victoreen Area Radiation Monitors (VAMPs) have resulted in a significant number of notification reports. These notification have the potential to decrease operator sensitivity to the significance of specific CAM and VAMP failures. Additionally, the reports are extremely costly and are not appropriate as a means for tracking and trending equipment performance. This report provides a technical basis for a change in Waste Management occurrence reporting categorization for specific CAM and VAMP failure modes.

Bates, W.F.

1993-12-10T23:59:59.000Z

206

Multizone infiltration monitoring system  

DOE Green Energy (OSTI)

A multizone infiltration monitoring system (MIMS) using a single tracer gas has been developed. MIMS measures zonal infiltration and exfiltration as well as interzonal air movement rates. The system has been used at the 4-zone test house at the SERI interim field site, and this paper presents preliminary results. The present system can determine zonal infiltration rates, and the results show significant differences in infiltration rates for the various zones.

Wortman, D.N.; Burch, J.; Judkoff, R.

1982-06-01T23:59:59.000Z

207

Benzene Monitor System report  

Science Conference Proceedings (OSTI)

Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale {open_quotes}SRAT/SME/PR{close_quotes} and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard{trademark} sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system ({+-}0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge & trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer`s computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants).

Livingston, R.R.

1992-10-12T23:59:59.000Z

208

Advanced Distribution Monitoring  

Science Conference Proceedings (OSTI)

Advanced Distribution Automation (ADA) is a concept for a fully controllable and flexible distribution system that will facilitate the exchange of electrical energy AND information between participants and system components. Advances in the monitoring of system parameters like voltages, currents and breaker/switch positions as well as environmental variables like temperature and wind speed will be required in order to fully implement ADA. This report presents background information on distribution monito...

2005-12-05T23:59:59.000Z

209

1984 environmental monitoring report  

Science Conference Proceedings (OSTI)

The environmental monitoring program has been designed to ensure that BNL facilities operate such that the applicable environmental standards and effluent control requirements have been met. A listing, as required by DOE Order 5484.1 of BNL facilities, of environmental agencies and permits is provided in the Environmental Program Information Section 3.0, Table B. Since the aquifer underlying Long Island has been designated a ''sole source'' aquifer, the Environmental Protection Agency (EPA) Drinking Water Standards have been used in the assessment of ground water data. However, the limits prescribed in the regulations are not directly applicable to the monitoring well data since (1) the standards apply to a community water supply system, i.e., one serving more than 25 individuals, and (2) the standards represent an annual average concentration. Since the monitoring wells are not components of the Laboratory's water supply system, the EPA drinking water standards are employed as reference criteria to which the surveillance well data is compared. The standards also serve as guidance levels for any appropriate remedial action. 36 refs., 9 figs., 40 tabs.

Day, L.E.; Miltenberger, R.P.; Naidu, J.R. (eds.)

1985-04-01T23:59:59.000Z

210

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

211

5.6 Security Monitoring  

Science Conference Proceedings (OSTI)

... monitoring of the cloud-provider infrastructure to demonstrate compliance with cloud-subscriber security policies and auditing requirements. ...

2010-11-02T23:59:59.000Z

212

An Effective Method of Automatic Image Mosaic for Remote Video Monitoring System  

Science Conference Proceedings (OSTI)

Current remote video monitoring system in substation can not fully play the role it is supposed to have in real-time active supervision. In order to improve the effect of remote video monitoring system, image mosaic technology is introduced firstly. ... Keywords: Image Mosaic, SIFT Algorithm, Remote Video Monitoring System

Zhao Zhenbing; Wang Rui; Zhang Tiefeng

2010-11-01T23:59:59.000Z

213

A frequency monitoring system development for wide-area power grid protection  

Science Conference Proceedings (OSTI)

There have been recent research activities on GPS-based FNET to prevent wide-area blackouts by monitoring frequency deviation. This paper introduces a system for monitoring regional frequencies in power grid developed as an advanced research project ... Keywords: Frequency monitoring, Power grid protection, Wide-area power grid

Yoon Sang Kim; Junho Ko; Dong-Kwang Shin; Chul-Hwan Kim; Chul-Won Park

2013-06-01T23:59:59.000Z

214

Adequate monitoring of service compositions  

Science Conference Proceedings (OSTI)

Monitoring is essential to validate the runtime behaviour of dynamic distributed systems. However, monitors can inform of relevant events as they occur, but by their very nature they will not report about all those events that are not happening. In ... Keywords: Adequacy criteria, Branch coverage, Choreography, Monitoring, Operation coverage

Antonia Bertolino; Eda Marchetti; Andrea Morichetta

2013-08-01T23:59:59.000Z

215

Environmental monitoring via compressive sensing  

Science Conference Proceedings (OSTI)

Environmental monitoring aims to describe the state of the environment. It identifies environmental issues to show us how well our environmental objectives are being met. Traditional large-scale sensor networks for environmental monitoring suffers from ... Keywords: compressive sensing, environmental monitoring, information management, sensor networks

Shulin Yan; Chao Wu; Wei Dai; Moustafa Ghanem; Yike Guo

2012-08-01T23:59:59.000Z

216

Protecting against physical resource monitoring  

Science Conference Proceedings (OSTI)

This paper considers the problem of resource monitoring. We consider the scenario where an adversary is physically monitoring on the resource access, such as the electricity line or gas pipeline, of a user in order to learn private information about ... Keywords: differential privacy, resource monitoring, smart grids, smart metering

Gergely Acs; Claude Castelluccia; William Lecat

2011-10-01T23:59:59.000Z

217

Waste Isolation Pilot Plant Environmental Monitoring Plan  

SciTech Connect

DOE Order 5400.1, General Environmental Protection Program Requirements (DOE, 1990a), requires each DOE facility to prepare an EMP. This document is prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment (DOE, 1990b); Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) 834, Radiation Protection of the Public and Environment (Draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1 (DOE, 1995), which is the driver for the Annual Site Environmental Report (ASER) and the guidance source for preparing many environmental program documents. The WIPP project is operated by Westinghouse Electric Company, Waste Isolation Division (WID), for the DOE. This plan defines the extent and scope of the WIPP's effluent and environmental monitoring programs during the facility's operational life and also discusses the WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE, 1991). This document references DOE orders and other federal and state regulations affecting environmental monitoring programs at the site. WIPP procedures, which implement the requirements of this program plan, are also referenced. The DOE regulates its own activities for radiation protection of the public under the authority of the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011). The effluent and environmental monitoring activities prescribed by DOE Order 5400.5 and the DOE/EH-0173T guidance manual are designed to ensure that DOE facilities implement standards and regulations to protect members of the public and the environment against undue risk from radiation. Effluent and environmental monitoring also provide 1999 Environmental Monitoring Plan DOE/WIPP 99-2194 the data necessary to demonstrate compliance with applicable environmental protection regulations. Other federal agencies, such as the U.S. Environmental Protection Agency (EPA), are empowered through specific legislation to regulate certain aspects of DOE activities potentially affecting public health and safety or the environment. Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards (43 FR 47707), requires the heads of executive agencies to ensure that all federal facilities and activities comply with applicable pollution control standards and to take all necessary actions for the prevention, control, and abatement of environmental pollution. Beyond statutory requirements, the DOE has established a general environmental protection policy. The Environmental Policy Statement (issued by then Secretary Herrington on January 8, 1986, and extended on January 7, 1987) describes the DOE's commitment to national environmental protection goals in that it conducts operations ''in an environmentally safe and sound manner . . . in compliance with the letter and spirit of applicable environmental statutes, regulations, and standards'' (DOE, 1986). This Environmental Policy Statement also states the DOE's commitment to ''good environmental management in all of its programs and at all of its facilities in order to correct existing environmental problems, to minimize risks to the environment or public health, and to anticipate and address pote

Westinghouse Electric Company Waste Isolation Division

1999-09-29T23:59:59.000Z

218

Savannah River Site Environmental Monitoring Plan. Volume 1, Section 1000 Addendum: Revision 3  

SciTech Connect

This document -- the Savannah River Site Environmental Monitoring Plan (SRS EM Plan) -- has been prepared according to guidance contained in the DOE 5400 Series orders, in 10 CFR 834, and in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and environmental Surveillance [DOE, 1991]. The SRS EM Plan`s purpose is to define the criteria, regulations, and guideline requirements with which SRS will comply. These criteria and requirements are applicable to environmental monitoring activities performed in support of the SRS Environmental Monitoring Program (SRS EM Program), WSRC-3Q1-2, Volume 1, Section 1100. They are not applicable to monitoring activities utilized exclusively for process monitoring/control. The environmental monitoring program requirements documented in the SRS EM Plan incorporate all applicable should requirements of DOE/EH-0173T and expand upon them to include nonradiological environmental monitoring program requirements.

Jannik, G.T.

1994-10-01T23:59:59.000Z

219

Analysis and monitoring design for networks  

Science Conference Proceedings (OSTI)

The idea of applying experimental design methodologies to develop monitoring systems for computer networks is relatively novel even though it was applied in other areas such as meteorology, seismology, and transportation. One objective of a monitoring system should always be to collect as little data as necessary to be able to monitor specific parameters of the system with respect to assigned targets and objectives. This implies a purposeful monitoring where each piece of data has a reason to be collected and stored for future use. When a computer network system as large and complex as the Internet is the monitoring subject, providing an optimal and parsimonious observing system becomes even more important. Many data collection decisions must be made by the developers of a monitoring system. These decisions include but are not limited to the following: (1) The type data collection hardware and software instruments to be used; (2) How to minimize interruption of regular network activities during data collection; (3) Quantification of the objectives and the formulation of optimality criteria; (4) The placement of data collection hardware and software devices; (5) The amount of data to be collected in a given time period, how large a subset of the available data to collect during the period, the length of the period, and the frequency of data collection; (6) The determination of the data to be collected (for instance, selection of response and explanatory variables); (7) Which data will be retained and how long (i.e., data storage and retention issues); and (8) The cost analysis of experiments. Mathematical statistics, and, in particular, optimal experimental design methods, may be used to address the majority of problems generated by 3--7. In this study, the authors focus their efforts on topics 3--5.

Fedorov, V.; Flanagan, D.; Rowan, T.; Batsell, S.

1998-06-01T23:59:59.000Z

220

On-line transformer monitoring  

Science Conference Proceedings (OSTI)

There are presently many different approaches to transformer monitoring, either on the market or under development. There are also, many different opinions about how on-line monitoring should be accomplished. On the one hand, efforts are being made to develop expert systems that monitor all transformer parameters and generate an estimate of overall transformer condition. On the other hand, a large number of transformer monitors, designed to monitor one or two specific parameters are already on the market. Another important factor to consider in choosing a monitor is who receives the information and how it is transmitted. The ultimate transformer monitor should feed into the supervisory control and data acquisition (Scada) system. This paper discusses the various aspects of this issue including asset protection, cost control, dissolved gases, pinpointing bad bushings and current transformers, hot spot measurement partial discharge, and water-in-oil measurements. 10 figs.

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

222

Lithium niobate explosion monitor  

DOE Patents (OSTI)

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

223

Monitoring of tritium  

DOE Patents (OSTI)

The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

Corbett, James A. (Turtle Creek, PA); Meacham, Sterling A. (Greensburg, PA)

1981-01-01T23:59:59.000Z

224

PERSONAL RADIATION MONITOR  

DOE Patents (OSTI)

A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

Dilworth, R.H.; Borkowski, C.J.

1961-12-26T23:59:59.000Z

225

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

226

Modelling geomagnetic activity data  

Science Conference Proceedings (OSTI)

Strong geomagnetic activity is a hazard to electronics and electric power facilities. Assessment of the actual geomagnetic activity level from local magnetometer monitoring therefore is of importance for risk assessment but also in earth sciences and ... Keywords: geomagnetism, neuro fuzzy modelling, self organizing map, signal processing, wavelets

Ernst D. Schmitter

2008-01-01T23:59:59.000Z

227

Special Nuclear Material Portal Monitoring at the Nevada Test Site  

SciTech Connect

Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program.

DeAnn Long; Michael Murphy

2008-07-01T23:59:59.000Z

228

Cat Heart Rate Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Cat Heart Rate Monitoring Cat Heart Rate Monitoring Name: Shakti Status: student Grade: 9-12 Location: TX Country: USA Date: Summer 2010 Question: What is the best way to find a cat's heart rate using a stethoscope? Because I have tried to hear their heart beat but their purring is all I can hear. If I shouldn't use a stethoscope, then what should I use? Replies: Hi Shakti! If you want to use a stethoscope, the trick is to get your cat to stop purring. Two good ways that I have found to help stop the purring 1. Cover their nose (generally cats don't like this and will stop purring) or 2. Put on the tap to drip or lightly stream water (also, they generally don't like this and will stop purring). Alternatively, you can get their heart rate from feeling their pulse. A good place to try to feel a pulse is right where the leg attaches to the abdomen - in an area called the inguinal region. Now granted there are some heart conditions that will cause an animals pulse and their heart rates don't match up, and it's hard to feel if you have a fat cat, but it's a good place to try if you are really trying to get a heart rate in a healthy kitty!

229

1985 environmental monitoring report  

Science Conference Proceedings (OSTI)

The environmental monitoring program is designed to determine that BNL facilities operate such that the applicable environmental standards and effluent control requirements have been met. The data were evaluated using the appropriate environmental regulatory criteria. The environmental levels of radioactivity and other pollutants found in the vicinity of BNL during 1985 are summarized in this report. Detailed data are not included in the main body of the report, but are tabulated and presented in Appendix D. The environmental data include external radiation levels; radioactive air particulates; tritium concentrations; the amounts and concentrations of radioactivity in and the water quality of the stream into which liquid effluents are released; the water quality of the potable supply wells; the concentrations of radioactivity in biota from the stream; the concentrations of radioactivity in and the water quality of ground waters underlying the Laboratoy; concentrations of radioactivity in milk samples obtained in the vicinity of the Laboratory; and the 1984 strontium-90 data which was not available for inclusion in the 1984 Environmental Monitoring Report. In 1985, the results of the surveillance program demonstraed that the Laboratory has operated within the applicable environmental standards.

Day, L.E.; Miltenberger, R.P.; Naidu, J.R. (eds.)

1986-04-01T23:59:59.000Z

230

Plant sentinels and molecular probes that monitor environmental munitions contaminants  

Science Conference Proceedings (OSTI)

Plants accumulate TNT and similar compounds from soil. Their sessile nature requires that plants adapt to environmental changes by biochemical and molecular means. In principle, it is possible to develop a monitoring capability based on expression of any gene that is activated by specific environmental conditions. The authors have identified plant genes activated upon exposure to TNT. Partial gene sequences allow design of DNA probes that measure TNT-induced gene activity. These will be used to develop sensitive assays that monitor gene expression in plants growing in environments possibly contaminated with explosives.

Jackson, P.J.; DeWitt, J.G.; Hill, K.K.; Kuske, C.R.; Kim, D.Y. [Los Alamos National Lab., NM (United States). Genomics and Structural Biology Group

1994-08-01T23:59:59.000Z

231

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009  

SciTech Connect

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

Brenda R. Pace; Julie B. Braun

2009-10-01T23:59:59.000Z

232

Performance assessment on continuous air monitors under real operating conditions  

Science Conference Proceedings (OSTI)

In the nuclear industry, workers may be exposed to artificial radioactive aerosols. These aerosols are generally composed of particles with a diameter measuring between 0.1 {mu}m and 10 {mu}m. To protect workers in nuclear facilities, monitors that continuously measure radioactivity in the air are used. The main function of the monitor is to provide real-time measurement of activity concentration. Measurement of aerosol activity concentration can be affected by a number of factors specific to the aerosols and the instrument. The first part of the article will present the general operating principles of continuous air monitors (CAMs) and inherent measurement difficulties, as well as the main standard tests. The second section describes the experimental ICARE facility The ICARE facility generates standard artificial and natural radioactive aerosols for calibrating continuous air monitors under real operating conditions. (authors)

Monsanglant-Louvet, C.; Liatimi, N.; Gensdarmes, F. [Inst. of Radioprotection and Nuclear Safety- IRSN, Saclay (France)

2011-07-01T23:59:59.000Z

233

Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991  

Science Conference Proceedings (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

1992-01-01T23:59:59.000Z

234

United States Environmental Monitoring EPA  

Office of Legacy Management (LM)

United United States Environmental Monitoring EPA 600/R-93/141 Environmental Protection Systems Laboratory January 1992 Agency P.O. Box 93478 Las Vegas NV 89193-3478 Research and Development _EPA Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1991 Available to DOE and DOE contractors from the Office of Scientificand Technical Information, P.O. Box 62, Oak ridge,TN 39831; pricesavailablefrom (615) 576-8401 Availableto the publicfrom the NationalTechnicalInformationService, U.S. Departmentof Commerce, 5285 Port Royal Road, Springfield, VA 22161 Price Code: PrintedCopyof MicroficheA01 Frontand back cover: CommunityMonitorStation (front) and Whole BodyLaboratory(back), Craig A. Tsosle EnvironmentalMonitoringSystemsLaboratory-LasVegas, Nevada Offsite Environmental Monitoring Report:

235

Flow cytometer jet monitor system  

DOE Patents (OSTI)

A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

236

Monitoring and Mitigation of  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitigation of Mitigation of Sustained Localized Pitting Corrosion FINAL REPORT DOE FEW 49297 YuPo J. Lin, Edward J. St.Martin, and James R. Frank Argonne National Laboratory Argonne, IL 60439 January 2003 Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 Monitoring and Mitigation of Sustained Localized Pitting Corrosion Submitted to: Nancy C. Comstock U.S. Department of Energy (DOE) National Petroleum Technology Office By: YuPo J. Lin, Edward J. St.Martin, and James R. Frank Argonne National Laboratory Argonne, IL 60439 January 2003 The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-Eng-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on

237

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

238

Electron launching voltage monitor  

DOE Patents (OSTI)

An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

Mendel, Clifford W. (Albuquerque, NM); Savage, Mark E. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

239

Sidewall, appearance monitor  

Science Conference Proceedings (OSTI)

This patent describes a sidewall appearance monitor. It comprises: a frame, a fixed upper chuck and a vertically-movable lower chuck for supporting a tire on the frame, means for inflating the tire, means for rotating the tire when inflated, a tread probe and support therefor depending vertically from the frame, an upper probe mounted and the frame adjacent the upper sidewall of tire, a pair of normally vertical support arms horizontally-spaced from each other and straddling the tread probe and support therefor. The lower prove being mounted between the lower ends of the support arms, means for mounting the upper ends of the support arms to swing the support arms between a vertical operative position and a horizontal inoperative position above the level of the tire, whereby the lower chuck may move downwardly to release the tire and the tire may be moved laterally away from the chucks without interference from the lower probe.

Hayes, R.H.

1990-01-30T23:59:59.000Z

240

Audible radiation monitor  

DOE Patents (OSTI)

This invention consists of a method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

Odell, D.M.C.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Regional Approach to Market Monitoring in the West  

Science Conference Proceedings (OSTI)

Market monitoring involves the systematic analysis of pricesand behavior in wholesale power markets to determine when and whetherpotentially anti-competitive behavior is occurring. Regional TransmissionOrganizations (RTOs) typically have a market monitoring function. Becausethe West does not have active RTOs outside of California, it does nothave the market monitoring that RTOs have. In addition, because the Westoutside of California does not have RTOs that perform centralized unitcommitment and dispatch, the rich data that are typically available tomarket monitors in RTO markets are not available in the West outside ofCalifornia. This paper examines the feasibility of market monitoring inthe West outside of California given readily available data. We developsimple econometric models of wholesale power prices in the West thatmight be used for market monitoring. In addition, we examine whetherproduction cost simulations that have been developed for long-runplanning might be useful for market monitoring. We find that simpleeconometric models go a long ways towards explaining wholesale powerprices in the West and might be used to identify potentially anomalousprices. In contrast, we find that the simulated prices from a specificset of production cost simulations exhibit characteristics that aresufficiently different from observed prices that we question theirusefulness for explaining price formation in the West and hence theirusefulness as a market monitoring tool.

Barmack, Matthew; Kahn, Edward; Tierney, Susan; Goldman, Charles

2006-10-01T23:59:59.000Z

242

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

Broad-based deployment of postcombustion nitrogen oxide (NOx) control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOx control mandates has highlighted the need for continuous ammonia monitoring capabilities. EPRI has investigated the potential that tunable diode laser (TDL) spectroscopy can have in the continuous monitoring of ammonia slip. Field measurement programs for validation of TDL-based monitors, however, have yi...

2006-12-21T23:59:59.000Z

243

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

Broad-based deployment of post-combustion nitrogen oxide (NOX) control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOX control mandates has highlighted the need for continuous ammonia monitoring capabilities. EPRI has investigated the potential that tunable diode laser (TDL) spectroscopy can have in the continuous monitoring of ammonia slip. Field measurement programs for validation of TDL-based monitors, however, have y...

2007-02-19T23:59:59.000Z

244

Monitoring, verification, and accounting  

NLE Websites -- All DOE Office Websites (Extended Search)

verification, and accounting (MVA) activities are underway verification, and accounting (MVA) activities are underway to ensure the injected CO 2 remains in the geologic formation. The first plant has been capturing CO 2 since December 2012, while the second plant completed construction in February and began carbon capture operations in March. Both units are now operating at full capacity. More than 222,000 tons of CO 2 have been captured and provided for storage

245

The Geothermal Progress Monitor: Design and Implementation  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) is an information system that links the various elements of the public and private sectors of the geothermal industry. The monitoring effort emphasizes the identification and analysis of indicators of what the main participants in geothermal energy utilization--field developers, energy users and government agencies--are doing to foster the discovery, confirmation and use of this resource. The major indicators considered both important and measurable are leasing activities, drilling efforts, feasibility studies, construction plans and progress, costs of installations, levels of investment, environmental study and regulatory activities, legislative status and changes, and government monetary investments in projects and activities. The GPM is unique in that it is a network, a process, a project staff and a product. As a process, the GPM identifies, acquires stores, tabulates, analyzes and reports on the information obtained through its network structure. The GPM project staff maintains the other aspects of the GPM and in particular produces pertinent analyses and responds to queries by providing information or directing the requestors to the appropriate sources. Finally, the GPM is a periodic report which summarizes activities, status and trends in the geothermal industry.

Entingh, D.J.; Lopez, A.F.; Neham, E.A.

1981-02-01T23:59:59.000Z

246

DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM  

SciTech Connect

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues to advance, but is behind the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. The test bench for the Test and Evaluation (Tasks 4 & 5) and the laboratory prototype were constructed by the end of the period. During assembly, however, several of the key subassemblies became galled together, and had to be cut apart. These parts are being remachined with harder surfaces to prevent recurrence of this problem. One key component, the MR damper mandrel, has been redesigned into a three-piece assembly which will facilitate assembly and reduce the cost of replacement of worn components. The remade parts will be delivered by April 19, and the prototype assembled. Testing will begin during the first week of May and is anticipated to be completed before the revised end date for Phase I, May 31, 2004.

Martin E. Cobern

2004-04-17T23:59:59.000Z

247

Ecological Monitoring and Compliance Program Fiscal/Calendar Year 2004 Report  

SciTech Connect

The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during the Fiscal Year 2004 and the additional months of October, November, and December 2004, reflecting a change in the monitoring period to a calendar year rather than a fiscal year as reported in the past. This change in the monitoring period was made to better accommodate information required for the Nevada Test Site Environmental Report, which reports on a calendar year rather than a fiscal year. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Hazardous Materials Spill Center.

Bechtel Nevada

2005-03-01T23:59:59.000Z

248

1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory  

Science Conference Proceedings (OSTI)

This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.

NONE

1997-09-01T23:59:59.000Z

249

Ecological Monitoring and Compliance Program 2006 Report  

SciTech Connect

The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows were avoided during construction activities. Twenty one of the 34 projects had sites within the distribution range of the threatened desert tortoise. NNSA/NSO must comply with the terms and conditions of a permit (called a Biological Opinion) from the U.S. Fish and Wildlife Service (FWS) when conducting work in tortoise habitat. No tortoises were found in or displaced from project areas. No desert tortoises were accidentally injured or killed, nor were any captured or displaced from project sites. One desert tortoise was accidentally killed along a paved road. One site specific re-vegetation plan was submitted this year as required by the desert tortoise habitat re-vegetation plan approved in 2004. This year a total of 1.89 ha (4.69 ac) of tortoise habitat was disturbed. Re-vegetation of habitat at the Bren Tower burn was completed in the spring of 2006. In the summer of 2006, NSTec scientists prepared a Biological Assessment of the security activities that were being conducted at the Device Assembly Facility (DAF). NNSA requested a Biological Opinion from FWS in late 2006. Ecosystem mapping and data management in 2006 focused primarily on two tasks: (a) converting hardcopies of about 17 reports (EMAC annual reports and selected topical reports from 1996 to 2003) into electronic versions (Portable Document Format [PDF] files) to facilitate electronic document exchange, rapid retrieval, duplication, and printing, and (b) conducting an annual vegetation survey to determine wildland fire hazards on the NTS. Copies of the PDF documents were sent to DOE's Office of Scientific and Technical Information website in Oak Ridge, Tennessee, and the DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Public Reading Facility.

David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

2007-03-01T23:59:59.000Z

250

Ecological Monitoring and Compliance Program 2006 Report  

SciTech Connect

The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows were avoided during construction activities. Twenty one of the 34 projects had sites within the distribution range of the threatened desert tortoise. NNSA/NSO must comply with the terms and conditions of a permit (called a Biological Opinion) from the U.S. Fish and Wildlife Service (FWS) when conducting work in tortoise habitat. No tortoises were found in or displaced from project areas. No desert tortoises were accidentally injured or killed, nor were any captured or displaced from project sites. One desert tortoise was accidentally killed along a paved road. One site specific revegetation plan was submitted this year as required by the desert tortoise habitat revegetation plan approved in 2004. This year a total of 1.89 ha (4.69 ac) of tortoise habitat was disturbed. Revegetation of habitat at the Bren Tower burn was completed in the spring of 2006. In the summer of 2006, NSTec scientists prepared a Biological Assessment of the security activities that were being conducted at the Device Assembly Facility (DAF). NNSA requested a Biological Opinion from FWS in late 2006. Ecosystem mapping and data management in 2006 focused primarily on two tasks: (a) converting hardcopies of about 17 reports (EMAC annual reports and selected topical reports from 1996 to 2003) into electronic versions (Portable Document Format [PDF] files) to facilitate electronic document exchange, rapid retrieval, duplication, and printing, and (b) conducting an annual vegetation survey to determine wildland fire hazards on the NTS.

David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

2007-03-01T23:59:59.000Z

251

Geothermal Progress Monitor report No. 8. Progress report  

SciTech Connect

Geothermal Progress Monitor (GPM) Report Number 8 presents information concerning ongoing technology transfer activities and the mechanisms used to support these activities within geothermal R and D programs. A state-by-state review of major geothermal development activities for the reporting period 1 February 1983 through 31 July 1983 is provided. Recent drilling and exploration efforts and the current status of geothermal electric power plant development in the United States are summarized.

1983-11-01T23:59:59.000Z

252

Idaho National Laboratory Cultural Resource Monitoring Report for 2013  

SciTech Connect

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resource recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.

Julie B. Williams; Brenda Pace

2013-10-01T23:59:59.000Z

253

Monitoring smartphones for anomaly detection  

Science Conference Proceedings (OSTI)

In this paper we demonstrate how to monitor a smartphone running Symbian operating system and Windows Mobile in order to extract features for anomaly detection. These features are sent to a remote server because running a complex intrusion detection ... Keywords: anomaly detection, monitoring, smartphones

Aubrey-Derrick Schmidt; Frank Peters; Florian Lamour; Christian Scheel; Seyit Ahmet Çamtepe; Sahin Albayrak

2009-02-01T23:59:59.000Z

254

Pantex Plant meteorological monitoring program  

SciTech Connect

The current meteorological monitoring program of the US Department of Energy`s Pantex Plant, Amarillo, Texas, is described in detail. Instrumentation, meteorological data collection and management, and program management are reviewed. In addition, primary contacts are noted for instrumentation, calibration, data processing, and alternative databases. The quality assurance steps implemented during each portion of the meteorological monitoring program are also indicated.

Snyder, S.F.

1993-07-01T23:59:59.000Z

255

Remote Monitoring Technology Guidelines for Radiation Protection: Field Implementation of Remote Monitoring  

Science Conference Proceedings (OSTI)

EPRI has performed extensive work in developing and promoting radiation protection technologies to control worker exposure and ensure worker safety. This guideline provides radiation protection personnel with a comprehensive approach for implementing remote monitoring technology (RMT) in field activities to control worker exposure. The guideline was prepared by the EPRI RMT Working Group, which focuses on RMT application in radiation protection programs. This document draws heavily from analysis and reco...

2004-11-01T23:59:59.000Z

256

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

257

AREA RADIATION MONITOR  

DOE Patents (OSTI)

S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

1962-06-12T23:59:59.000Z

258

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

259

Optical oxygen concentration monitor  

DOE Patents (OSTI)

A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

Kebabian, Paul (Acton, MA)

1997-01-01T23:59:59.000Z

260

Optical oxygen concentration monitor  

DOE Patents (OSTI)

A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

Kebabian, P.

1997-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ORISE: Media Analysis and Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Analysis and Monitoring Media Analysis and Monitoring The Oak Ridge Institute for Science and Education (ORISE) uses comprehensive media analysis and monitoring tools to define media interest and the public's perceptions of a particular issue. ORISE's media analysis process includes analyzing news reports combined with media outlet data, such as circulation, readership, number of viewers and listeners; recording frequency of publication and collecting quotes from subject matter experts. To improve the overall consistency and efficiency of the process, ORISE employs tools, such as AutoINFORM (Auto Immunization News FOR Managers), that enable the monitoring of social media, email and other Web content. On average, ORISE tracks, codes and analyzes more than 17,000 articles daily, monitoring 1,400+ news resources and 1,000+ blogs. Annually, the

262

IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS  

Science Conference Proceedings (OSTI)

The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

263

Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office. Revision 1  

Science Conference Proceedings (OSTI)

This report describes environmental monitoring activities at Hanford Reservation. Attention is focused on effluent monitoring and environmental surveillance. All Hanford contractors reviewed potential sources of contamination. A facility effluent monitoring plan was written for each facility with the potential to release significant quantities of hazardous materials, addressing both radiological and nonradiological effluent monitoring. The environmental surveillance program assesses onsite and offsite environmental impacts and offsite human health exposures. The program monitors air, surface water, sediment, agricultural products, vegetation, soil, and wildlife. In addition, independent onsite surveillance is conducted to evaluate the effectiveness of Hanford Site effluent controls in order to comply with applicable environmental standards and regulations.

Not Available

1994-11-09T23:59:59.000Z

264

NETL: Ambient Monitoring - Southern Fine Particulate Monitoring Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Southern Fine Particulate Monitoring Project (SRI) Southern Fine Particulate Monitoring Project (SRI) Southern Research Institute (SRI), Birmingham, AL, is operating a research station in North Birmingham for monitoring fine particulate matter (PM2.5) that exists in that part of the Deep South. The station will be a core PM2.5 mass monitoring and chemical speciation station in the nationwide EPA PM2.5 network. As such, it will be a complement and supplement to DOE-NETL's other ongoing projects for monitoring fine particulate matter in the upper Ohio River valley. Locating additional monitoring equipment in the Deep South will fill an important gap in the national particulate monitoring effort. The region's topography, weather patterns, and variety of emission sources may affect the chemical make-up and airborne transport of fine particles in ways that are different than in other parts of the country. The project's results will support DOE's comprehensive program to evaluate ambient fine particulate matter through better understanding of the chemical and physical properties of these materials.

265

Near Facility Environmental Monitoring Quality Assurance Project Plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

MCKINNEY, S.M.

2000-05-01T23:59:59.000Z

266

APS ALternative Fuel (Hydrogen) Pilot Plant Monitoring System  

NLE Websites -- All DOE Office Websites (Extended Search)

502 502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard James Francfort July 2005 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-05-00502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard a James Francfort b July 2005 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office

267

Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

Not Available

1994-06-14T23:59:59.000Z

268

Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System  

Science Conference Proceedings (OSTI)

Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

2013-08-08T23:59:59.000Z

269

Augmented Fish Monitoring, 1988 Annual Report.  

DOE Green Energy (OSTI)

Since 1986 Washington department of Fisheries (WDF) has participated in the Columbia Basin Augmented Fish Health Monitoring Project. This project provides a standardized level of fish health information from all Agencies rearing fish in the Columbia Basin. WDF has actively participated in this project, and completed its second year of fish health monitoring, data collection and pathogen inspection during 1988. This report will present data collected from January 1, 1988 to December 31, 1988 and will compare sampling results from 1987 and 1988. The analysis will be divided in two sections: adult analysis and juvenile analysis. The adult analysis will include results from screening at spawning for viral pathogens and bacterial kidney disease (BKD), and evaluation of causes of pre-spawning loss. The juvenile analysis will include pre-release examination results, mid-term rearing exam results and evaluation of the Organosomatic Analysis completed on index stocks. Additionally, highlights from monthly monitoring exams will identify any significant and unusual findings from the routine exams completed in 1988. 6 refs., 8 figs., 14 tabs.

Michak, Patty

1989-05-01T23:59:59.000Z

270

Monitored Geologic Repository Test Evaluation Plan  

SciTech Connect

The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

M.B. Skorska

2002-01-02T23:59:59.000Z

271

Strategies To Detect Hidden Geothermal Systems Based On Monitoring and  

Open Energy Info (EERE)

To Detect Hidden Geothermal Systems Based On Monitoring and To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Strategies To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Details Activities (5) Areas (1) Regions (0) Abstract: We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse

272

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA,  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. To these ends, we are acquiring a dense grid

273

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

274

Application And Evaluation Of Biomagnetic And Biochemical Monitoring Of The  

Open Energy Info (EERE)

Evaluation Of Biomagnetic And Biochemical Monitoring Of The Evaluation Of Biomagnetic And Biochemical Monitoring Of The Dispersion And Deposition Of Volcanically-Derived Particles At Mt Etna, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application And Evaluation Of Biomagnetic And Biochemical Monitoring Of The Dispersion And Deposition Of Volcanically-Derived Particles At Mt Etna, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Biomagnetic monitoring, using tree leaves as passive surfaces for particle collection, has been shown to be a promising technique for assessing the dispersion and deposition of particles in the context of anthropogenic pollution. By comparing leaves' magnetic properties with trace metal levels measured in the leaves, we here assess the utility of

275

Essential Grid Workflow Monitoring Elements  

SciTech Connect

Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

2005-07-01T23:59:59.000Z

276

Gap and stripline combined monitor  

DOE Patents (OSTI)

A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

Yin, Y.

1986-08-19T23:59:59.000Z

277

Gap and stripline combined monitor  

DOE Patents (OSTI)

A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

Yin, Yan (Palo Alto, CA)

1986-01-01T23:59:59.000Z

278

Best management practices plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Best Management Practices (BMP) Plan has been developed as part of the environmental monitoring program at Waste Area Grouping (WAG) 6. The BMP Plan describes the requirements for personnel training, spill prevention and control, environmental compliance, and sediment/erosion control as they relate to environmental monitoring activities and installation of Monitoring Station 4 at WAG 6.

Not Available

1994-02-01T23:59:59.000Z

279

Influence of Extraterrestrial Radiation on Radiation Portal Monitors  

Science Conference Proceedings (OSTI)

Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

Keller, Paul E.; Kouzes, Richard T.

2009-06-01T23:59:59.000Z

280

monitoring data | OpenEI  

Open Energy Info (EERE)

monitoring data monitoring data Dataset Summary Description Freedom Field is a not-for-profit organization formed to facilitate development and commercialization of renewable energy solutions. The organization has installed a variety of renewable energy generating technologies at their facility (located at Rock River Water Reclamation in Rockford, IL), with the intention of serving as a demonstration facility. The facility monitors data (at 5-minute intervals) from a weather station, 12.4 kW of PV panels (56 220-watt panels), a 10kW wind turbine (HAWT), a 1.2 kW wind turbine (VAWT), an absorption cooling system, and biogas burners. Source Freedom Field Date Released July 19th, 2011 (3 years ago) Date Updated Unknown Keywords biogas monitoring data PV radiance solar temperature

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced nonintrusive load monitoring system  

E-Print Network (OSTI)

There is a need for flexible, inexpensive metering technologies that can be deployed in many different monitoring scenarios. Individual loads may be expected to compute information about their power consumption. Utility ...

Wichakool, Warit, 1977-

2011-01-01T23:59:59.000Z

282

New technologies for item monitoring  

SciTech Connect

This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

Abbott, J.A. [EG & G Energy Measurements, Albuquerque, NM (United States); Waddoups, I.G. [Sandia National Labs., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

283

Condition Monitoring of Wind Turbines  

Science Conference Proceedings (OSTI)

Based on industry experience, after four years of operation, failures of wind turbine gearboxes, generators, and other major components become common, and each failure typically requires major repairs and/or component replacement. Wind project owners and operators who apply lube oil monitoring, vibration-signature analysis, and other condition monitoring technology can expect to detect subtle changes in machine condition that often lead to major failures if left unrepaired. The estimated cost savings of ...

2006-03-27T23:59:59.000Z

284

PEM fuel cell monitoring system  

DOE Patents (OSTI)

Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

Meltser, M.A.; Grot, S.A.

1998-06-09T23:59:59.000Z

285

ORR Deer Hunt Monitoring Program  

SciTech Connect

The primary purpose for the initiation of deer hunts on the Oak Ridge Reservation (ORR) was deer population control to reduce collisions with vehicles and maintain a healthy herd and habitat. As of 1997, thirteen annual deer hunts have been conducted on the ORR. The deer hunt monitoring program (DHMP) has two components -- a field screening monitoring program and a confirmatory laboratory analysis program of both retained and randomly selected released deer samples.

Scofield, P.A.; Teasley, N.A.

1999-09-01T23:59:59.000Z

286

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

The increasing use of post combustion NOx control systems such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) has heightened the need for reliable continuous monitoring of ammonia slip. This report describes laboratory tests conducted to assess the ability of the Norsk Elektro Optik's (NEO) LaserGas II tunable diode laser monitor to measure ammonia under highly controlled conditions over a typical range of process conditions.

2007-08-14T23:59:59.000Z

287

PEM fuel cell monitoring system  

DOE Patents (OSTI)

Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

Meltser, Mark Alexander (Pittsford, NY); Grot, Stephen Andreas (West Henrietta, NY)

1998-01-01T23:59:59.000Z

288

DOE Monitoring Energy Infrastructure, Responds as Isaac Makes Landfall |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitoring Energy Infrastructure, Responds as Isaac Makes Monitoring Energy Infrastructure, Responds as Isaac Makes Landfall DOE Monitoring Energy Infrastructure, Responds as Isaac Makes Landfall August 29, 2012 - 11:45am Addthis Hurricane Isaac is makes its way toward the Gulf Coast and the Energy Department provides details on the storm’s impact, and the recovery and restoration activities being undertaken. | Photo courtesy of NOAA Hurricane Isaac is makes its way toward the Gulf Coast and the Energy Department provides details on the storm's impact, and the recovery and restoration activities being undertaken. | Photo courtesy of NOAA William Bryan William Bryan Deputy Assistant Secretary of Infrastructure Security and Energy Restoration What To Do During The Storm Listen to the direction of local authorities.

289

Monitoring Switchyard Electricity | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Switchyard ... Monitoring Switchyard Electricity Monitoring electricity coming in through the switchyard to the Y-12 Plant...

290

Stack Monitor Operating Experience Review  

Science Conference Proceedings (OSTI)

Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative “all modes” failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

L. C. Cadwallader; S. A. Bruyere

2009-05-01T23:59:59.000Z

291

Improved Characterization and Monitoring of Electromagnetic ...  

LLNL's technology is useful in fields such as power systems engineering, security monitoring, and vehicle tracking to identify, locate and monitor a ...

292

Definition: Thermal Overload Monitoring | Open Energy Information  

Open Energy Info (EERE)

Overload Monitoring Jump to: navigation, search Dictionary.png Thermal Overload Monitoring Technology including sensors, information processors and communications that can detect...

293

Continuous Emission Monitoring Guidelines -- 2002 Update  

Science Conference Proceedings (OSTI)

This 2002 update to the "Continuous Emission Monitoring Guidelines" reflects information learned from current utility continuous emission monitoring (CEM) system (CEMS) installations and practices.

2002-08-30T23:59:59.000Z

294

Environmental Monitoring Plan (EMP), Environmental Protection...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Water Chapter 11 - Potable Water Chapter 12 - Groundwater Monitoring Chapter 13 - Landfill Gas and Leachate Monitoring Appendix A - Acronyms and Technical Terms Appendix B...

295

Market Monitoring Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market Monitoring Tools Market Monitoring Tools Use dispatch, profit, revenueoffer price, withholding sensitivities to identify opportunities for local advantage that give some...

296

Geothermal Progress Monitor 12  

DOE Green Energy (OSTI)

Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

None

1990-12-01T23:59:59.000Z

297

Smooth Brome Monitoring at Rocky Flats-2005 Results | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring...

298

RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS  

Science Conference Proceedings (OSTI)

Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

Pogge, James R [ORNL; Zhukov, Alexander P [ORNL

2010-01-01T23:59:59.000Z

299

Quality Assurance Program Plan for radionuclide airborne emissions monitoring  

SciTech Connect

This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

Vance, L.M.

1993-07-01T23:59:59.000Z

300

The Community Environmental Monitoring Program in the 21st Century: The Evolution of a Monitoring Network  

SciTech Connect

This paper focuses on the evolution of the various operational aspects of the Community Environmental Monitoring Program (CEMP) network following the transfer of program administration from the U.S. Environmental Protection Agency (EPA) to the Desert Research Institute (DRI) of the Nevada System of Higher Education in 1999-2000. The CEMP consists of a network of 29 fixed radiation and weather monitoring stations located in Nevada, Utah, and California. Its mission is to involve stakeholders directly in monitoring for airborne radiological releases to the off site environment as a result of past or ongoing activities on the Nevada Test Site (NTS) and to make data as transparent and accessible to the general public as feasible. At its inception in 1981, the CEMP was a cooperative project of the U.S. Department of Energy (DOE), DRI, and EPA. In 1999-2000, technical administration of the CEMP transitioned from EPA to DRI. Concurrent with and subsequent to this transition, station and program operations underwent significant enhancements that furthered the mission of the program. These enhancements included the addition of a full suite of meteorological instrumentation, state-of-the-art electronic data collectors, on-site displays, and communications hardware. A public website was developed. Finally, the DRI developed a mobile monitoring station that can be operated entirely on solar power in conjunction with a deep-cell battery, and includes all meteorological sensors and a pressurized ion chamber for detecting background gamma radiation. Final station configurations have resulted in the creation of a platform that is well suited for use as an in-field multi-environment test-bed for prototype environmental sensors and in interfacing with other scientific and educational programs. Recent and near-future collaborators have included federal, state, and local agencies in both the government and private sectors. The CEMP also serves as a model for other programs wishing to involve stakeholders with a meaningful role in the process of monitoring and data collection.

Hartwell, W.T.; Tappen, J.; Karr, L.

2007-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE - Office of Legacy Management -- Rulison Monitoring  

Office of Legacy Management (LM)

Rulison Monitoring Rulison Monitoring Rulison, Colorado, Site Natural Gas Well Monitoring Results Monitoring Results for Natural Gas Wells Near Project Rulison Third Quarter 2013 Monitoring Results for Natural Gas Wells Near Project Rulison Second Quarter 2013 Monitoring Results Natural Gas Wells Near Project Rulison Fourth Quarter 2012 and First Quarter 2013 Monitoring Results Natural Gas Wells Near Project Rulison Third Quarter 2012. Monitoring Results for Natural Gas Wells Near Project Rulison (2nd quarter 2012) Monitoring Results for Natural Gas Wells Near Project Rulison (1st quarter 2012) Monitoring Results Natural Gas Wells Near Project Rulison (4th quarter 2011) Project Rulison Monitoring Results for Water Vapor in Gas at the Holmes Mesa Compressor Station, Garfield County, Colorado (3rd quarter

302

Blue LED for RS Monitor  

E-Print Network (OSTI)

Abstract We report on a design of RS gain monitor system based on blue LED. Gain of each RS PMT is monitored by a LED, which is mounted in front of the PMT window in its _-metal shield. The blue LED well simulates scintillation light with its short pulse and wavelength. The LED is as small as 3 mmOE. The light yield is stable and has small temperature dependence. These are nice properties to install in present RS system with small modification and to operate without air conditioning. In this note we will present outline of our design and test results which demonstrate its desirable properties. 1 Introduction RS gain monitor has been carried out with K_2 events at E787. They are sat- isfactory to monitor long and medium term stability but it is not satisfactory to monitor short term stability and to check PMT and related electronics quickly and frequently. These capabilities are important to reduce setup time and loss time in long E949 run. For these purpose triggerable and stable light source is required at RS system. We consider two types of monitoring system. One is the system which consists of one light source and its light distribution network, such as a Xe lamp with a optical fiber network. It has the advantage that light intensity of the source itself can be monitored and be corrected. But, practically, it is not easy to estimate light output of individual fiber correctly by checking light source and to handle optical fibers, and we have to think out a solution how we introduce lights to RS or its PMT. Also the system is rather expensive and it will take long time to

unknown authors

2000-01-01T23:59:59.000Z

303

Cooperative monitoring workshop: Focus on the Middle East  

SciTech Connect

Sandia National Laboratories and the Institute for Global Conflict and Cooperation hosted a workshop on the application of cooperative monitoring to the Middle East. The workshop, held in Albuquerque, New Mexico, from July 17 through 21, 1994, was sponsored by the US Department of Energy, the Arms Control and Disarmament Agency, and the US Department of State. The meeting, which focused on use of technical monitoring tools and sharing of collected information to facilitate regional agreements, included participants from five regional countries as well as from American universities, the US government, and US National Laboratories. Some attendees previously participated in meetings of the Arms Control and Regional Security working group of the Middle East Multilateral Peace Talks. The workshop combined presentations, demonstrations and hands-on experimentation with monitoring hardware and software. An exercise was conducted to evaluate and recommend cooperative monitoring options for a model agreement between two hypothetical countries. Historical precedents were reviewed and the role of environmental and natural resource conflicts explored. These activities were supplemented by roundtable discussions covering Middle East security issues, the relationship of ``national means`` to cooperative monitoring, and cooperative monitoring of ballistic missiles in the Middle East.

Pregenzer, A.L.; Vannoni, M.; Biringer, K.; Dobranich, P.

1995-05-01T23:59:59.000Z

304

Engineering Task Plan for Standard Hydrogen Monitoring System Operation  

DOE Green Energy (OSTI)

Tanks that are known or suspected to retain and occasionally release flammable gases are equipped with Standard Hydrogen Monitoring System (SHMS) cabinets. These cabinets contain Whittaker{trademark} electrochemical cells and may also have a gas chromatograph (GC) and/or a Bruel and Kjaer infrared photo-acoustic multi-gas monitor (B&K). The GC and B&K will be referred to collectively as ''analytical instruments'' in this document. Using these instruments, a tank can be monitored for hydrogen, helium, ammonia, methane, and nitrous oxide. Air from the tank vent header (for actively ventilated tanks) or dome space (for passively ventilated tanks) is drawn continuously through the monitoring instruments via a sample pump. This monitoring is performed to track the gas release behavior of selected waste storage tanks and to help identify any potentially serious gas release behavior. Vapor grab samples may be obtained from the SHMS as well and analyzed with a mass spectrometer to obtain concentration data about hydrogen and other gases. This document describes the requirements for the operation, maintenance, calibration, and data collection for the Standard Hydrogen Monitoring System. Additionally, this document defines who is responsible for the various tasks.

MCCAIN, D.J.

1999-11-11T23:59:59.000Z

305

Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001  

Science Conference Proceedings (OSTI)

The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000.

NONE

2002-12-31T23:59:59.000Z

306

Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000  

Science Conference Proceedings (OSTI)

The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

None

2001-12-01T23:59:59.000Z

307

(Stanford Linear Accelerator Center) annual environmental monitoring report, January--December 1989  

SciTech Connect

This progress report discusses environmental monitoring activities at the Stanford Linear Accelerator Center for 1989. Topics include climate, site geology, site water usage, land use, demography, unusual events or releases, radioactive and nonradioactive releases, compliance summary, environmental nonradiological program information, environmental radiological program information, groundwater protection monitoring ad quality assurance. 5 figs., 7 tabs. (KJD)

Not Available

1990-05-01T23:59:59.000Z

308

WiGriMMA: A Wireless Grid Monitoring Model Using Agents  

Science Conference Proceedings (OSTI)

The complexity, heterogeneity, device mobility and the unpredictable user behavior demands proper automation of monitoring activity in the wireless Grid to enable the user needs. Since the wireless devices can dynamically join/leave the Grid, and its ... Keywords: Agent, Credit management, Device state control, Grid monitoring, Wireless Grid

Mahantesh N. Birje; Sunilkumar S. Manvi

2011-12-01T23:59:59.000Z

309

IESID: Automatic system for monitoring ground deformation on the Deception Island volcano (Antarctica)  

Science Conference Proceedings (OSTI)

When establishing the relative distance between two GNSS-GPS stations with sub-centimeter accuracy, it is necessary to have auxiliary data, some of which can only be collected some time after the moment of measurement. However, for monitoring highly-active ... Keywords: Antarctica, GNSS-GPS satellite geodesy, Volcano monitoring

Luis Miguel Peci; Manuel Berrocoso; RaúL PáEz; Alberto FernáNdez-Ros; AmóS De Gil

2012-11-01T23:59:59.000Z

310

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network (OSTI)

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases detail within the context of shale gas drilling activities in New York, as well as their uses

Wang, Z. Jane

311

Final report on Weeks Island Monitoring Phase : 1999 through 2004.  

SciTech Connect

This Final Report on the Monitoring Phase of the former Weeks Island Strategic Petroleum Reserve crude oil storage facility details the results of five years of monitoring of various surface accessible quantities at the decommissioned facility. The Weeks Island mine was authorized by the State of Louisiana as a Strategic Petroleum Reserve oil storage facility from 1979 until decommissioning of the facility in 1999. Discovery of a sinkhole over the facility in 1992 with freshwater inflow to the facility threatened the integrity of the oil storage and led to the decision to remove the oil, fill the chambers with brine, and decommission the facility. Thereafter, a monitoring phase, by agreement between the Department of Energy and the State, addressed facility stability and environmental concerns. Monitoring of the surface ground water and the brine of the underground chambers from the East Fill Hole produced no evidence of hydrocarbon contamination, which suggests that any unrecovered oil remaining in the underground chambers has been contained. Ever diminishing progression of the initial major sinkhole, and a subsequent minor sinkhole, with time was verification of the response of sinkholes to filling of the facility with brine. Brine filling of the facility ostensively eliminates any further growth or new formation from freshwater inflow. Continued monitoring of sinkhole response, together with continued surface surveillance for environmental problems, confirmed the intended results of brine pressurization. Surface subsidence measurements over the mine continued throughout the monitoring phase. And finally, the outward flow of brine was monitored as a measure of the creep closure of the mine chambers. Results of each of these monitoring activities are presented, with their correlation toward assuring the stability and environmental security of the decommissioned facility. The results suggest that the decommissioning was successful and no contamination of the surface environment by crude oil has been found.

Ehgartner, Brian L.; Munson, Darrell Eugene

2005-05-01T23:59:59.000Z

312

Analyzing harmonic monitoring data using data mining  

Science Conference Proceedings (OSTI)

Harmonic monitoring has become an important tool for harmonic management in distribution systems. A comprehensive harmonic monitoring program has been designed and implemented on a typical electrical MV distribution system in Australia. The monitoring ... Keywords: classification, clustering, data mining, harmonics, monitoring system, power quality, segmentation

Ali Asheibi; David Stirling; Danny Soetanto

2006-11-01T23:59:59.000Z

313

Wind Turbine Drivetrain Condition Monitoring (Presentation)  

DOE Green Energy (OSTI)

This presentation details the Gearbox Reliability Collaborative Condition Monitoring program at NREL.

Sheng, S.

2011-10-01T23:59:59.000Z

314

Robustness provided by internet monitoring systems  

Science Conference Proceedings (OSTI)

Internet applications such as Wealth Management Banking Programs require a very high degree of robustness. To attain this continuous testing - that is monitoring the systems over a period of time - is suggested. The preparation of an appropriate site-monitoring ... Keywords: continuous testing, internet, internet offering, monitoring systems, requirements, robustness, site monitoring, soft launch, test environment, testing recommendation, transitional state

Barry Dellar

2002-01-01T23:59:59.000Z

315

Survey of hydrogen monitoring devices  

DOE Green Energy (OSTI)

Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for this monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.

Lai, W.

1981-01-01T23:59:59.000Z

316

Device for monitoring cell voltage  

SciTech Connect

A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

Doepke, Matthias (Garbsen, DE); Eisermann, Henning (Edermissen, DE)

2012-08-21T23:59:59.000Z

317

Monitoring probe for groundwater flow  

DOE Patents (OSTI)

A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

1994-01-01T23:59:59.000Z

318

Idaho National Laboratory Environmental Monitoring Plan  

SciTech Connect

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2008-04-01T23:59:59.000Z

319

Idaho National Laboratory Site Environmental Monitoring Plan  

SciTech Connect

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2012-08-01T23:59:59.000Z

320

Idaho National Laboratory Site Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

Joanne L. Knight

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AN IONIZATION CHAMBER LAUNDRY MONITOR  

SciTech Connect

The determination of the amount of contamination remaining on a garment after it has been washed is an important part of hot laundry operations. In the past garments were monitored by measuring the contamination concentrated in the crotch with a GM tube probe. This type of spot check does not detect any isolated hot spots on other pants of the garment. To monitor the entire garment with a GM tube instrument is excessively time consuming for a large number of garments. To overcome these difficulties a sensitive, large-volume ionization chamber was constructed. It is rectangular in shape, 5 ft high by 2 1/2 ft wide by 4 in. deep. The center electrode is of a grid type and is mounted halfway between the front window and the back of the chamber. In a 0.5-mr/hr field, 180 v is sufficient to saturate toe chamber. In order to insure beta sensitivity, the front window has an equivalent thickness of approximately 7 mg/cm/sup 2/. The measuring device is a line-operated electrometer circuit equipped with an alarm that may be set at the rejection limit for the type of garment being monitored. A fullscale deflection on the most sensitive range is given by 2 to 3 mu C of liquid mixed fission products deposited on a garment. Since the chamber monitors the entire garment, the results are independent of the location of the contarnination. In practice, garments may be monitored at the rate of 7 per min, while only 3 per min may be completely checked with a GM tube probs. Field tests indicate that this instrument is stable and trouble free. Background causes a meter deflection of about 20 divisions, which is low enough to give reliable accuracy for monitoring garments. (auth)

Chester, J.D.; Handloser, J.S.

1958-06-01T23:59:59.000Z

322

Monitoring Energy Consumption of Smartphones  

E-Print Network (OSTI)

With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.

Ding, Fangwei; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

2012-01-01T23:59:59.000Z

323

Nonradiological Liquid Effluent Monitoring Program FY 1991, annual report  

Science Conference Proceedings (OSTI)

A monitoring program for nonradioactive parameters and pollutants in liquid effluents was initiated in October 1985 for facilities operated by EG G Idaho, Inc., for the US Department of Energy at the Idaho National engineering Laboratory. Program design and implementation are discussed in this report. Design and methodologies for sampling, analysis, and data management are also discussed. Monitoring results for 12 liquid effluent streams from fiscal year 1987 through fiscal year 1991 are presented with emphasis on fiscal year 1991 (October 1990 through September 1991) activities.

Peterson-Wright, L.J.; Meachum, T.R.; Einerson, J.J.

1992-06-01T23:59:59.000Z

324

Nonradiological Liquid Effluent Monitoring Program FY 1991, annual report  

Science Conference Proceedings (OSTI)

A monitoring program for nonradioactive parameters and pollutants in liquid effluents was initiated in October 1985 for facilities operated by EG&G Idaho, Inc., for the US Department of Energy at the Idaho National engineering Laboratory. Program design and implementation are discussed in this report. Design and methodologies for sampling, analysis, and data management are also discussed. Monitoring results for 12 liquid effluent streams from fiscal year 1987 through fiscal year 1991 are presented with emphasis on fiscal year 1991 (October 1990 through September 1991) activities.

Peterson-Wright, L.J.; Meachum, T.R.; Einerson, J.J.

1992-06-01T23:59:59.000Z

325

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31T23:59:59.000Z

326

Downhole Vibration Monitoring and Control System  

SciTech Connect

The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE funding.

Martin E. Cobern

2007-09-30T23:59:59.000Z

327

Heat Exchanger Monitoring and Its Application to Cleaning and Antifoulant Use  

E-Print Network (OSTI)

Many refineries and chemical plants are presently experiencing considerable fuel savings and reduced maintenance costs as a result of their heat exchanger monitoring activities. Significant energy credits can be generated with proper applications of heat exchanger monitoring, the development of an optimum cleaning strategy and the use of antifoulants. This paper presents a brief overview of the heat exchanger monitoring procedure, and through examples, it shows the incentives of monitoring to measure base fouling, to determine optimum cleaning cycles, and to determine the effects of an antifoulant to control fouling.

Garcia, E.; Leach, S. H.; VanNostrand, W. L.

1983-01-01T23:59:59.000Z

328

Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project  

Science Conference Proceedings (OSTI)

Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State.

Rieger, JoAnne T.; Hartman, Mary J.

2005-06-16T23:59:59.000Z

329

Future of Condition Monitoring for Wind Turbines - Q & A | OpenEI...  

Open Energy Info (EERE)

Turbines - Q & A Home > Future of Condition Monitoring for Wind Turbines Content Group Activity By term Q & A Feeds Question Post date Answers Searching for Data Sets on existing...

330

Future of Condition Monitoring for Wind Turbines | OpenEI Community  

Open Energy Info (EERE)

Groups > Groups > Future of Condition Monitoring for Wind Turbines Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You...

331

Future of Condition Monitoring for Wind Turbines | OpenEI Community  

Open Energy Info (EERE)

Future of Condition Monitoring for Wind Turbines > Posts by term Content Group Activity By term Q & A Feeds Groups Menu You must login in order to post into this group. Recent...

332

Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas  

DOE Green Energy (OSTI)

This document covers the activities of monitoring environmental aspects at designated geothermal wells in Texas and Louisiana during the second quarter of 1990 by the Louisiana Geological Survey, Louisiana State University under contract with US DOE. 1 fig. (FSD)

Not Available

1990-01-01T23:59:59.000Z

333

Clip-on wireless wearable microwave sensor for ambulatory cardiac monitoring  

E-Print Network (OSTI)

We present a new type of non-contact sensor for use in ambulatory cardiac monitoring. The sensor operation is based on a microwave Doppler technique; however, instead of detecting the heart activity from a distance, the ...

Fletcher, Richard Ribon

334

Toward Active Monitoring of Piping Using Ultrasonic Guided Waves  

Science Conference Proceedings (OSTI)

Piping in nuclear power plants is exposed to severe environmental conditions so that it is very susceptible to failure caused by the growth of defects. Thus

Joon?Soo Park; Young H. Kim; Sung?Jin Song; Jae?Hee Kim; Heung?Seop Eom; Kwang?Hee Im

2004-01-01T23:59:59.000Z

335

An Overview of Acid Rain Monitoring Activities in North America  

Science Conference Proceedings (OSTI)

The various forms of acidic components that may be deposited from the atmosphere are reviewed. These components are classified into three categories: wet deposition (rain and snow), dry deposition (particles and gases), and special events (dews, ...

Joe Wisniewski; John D. Kinsman

1982-06-01T23:59:59.000Z

336

Clean Slate 1 revegetation and monitoring plan  

SciTech Connect

This document constitutes a reclamation plan for the short-term and long-term stabilization of land disturbed by activities associated with the cleanup of radionuclide contaminated surface soil at the Clean Slate 1 site. This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. The results of reclamation trials at Area 11, Area 19 and more recently the reclamation demonstration plots at the Double Tracks cleanup site, have been summarized and incorporated into this reclamation and monitoring plan. The plan also contains procedures for monitoring both the effectiveness and success of short-term and long-term soil stabilization. The Clean Slate 1 site is located on the Tonopah Test Range. The surface soils were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Short-term stabilization consists of the application of a chemical soil stabilizer that is applied immediately following excavation of the contaminated soils to minimize Pu resuspension. Long-term stabilization is accomplished by the establishment of a permanent vegetation.

Anderson, D.C.; Hall, D.B.

1997-07-01T23:59:59.000Z

337

Monitoring and visualizing information resources  

SciTech Connect

The continuous increase in information necessitates monitoring and display techniques that maximize comprehension yet minimize effort. In this paper, we discuss the use of hypertools, confluent zoom and graphical encoding of text as solutions to this problem, and we introduce Irwin and information resource and display tool.

McCrickard, D.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Graphics, Visualization, and Usability Center; Rowan, T.H. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

338

Quality monitored distributed voting system  

DOE Patents (OSTI)

A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

Skogmo, D.

1997-03-18T23:59:59.000Z

339

Continuous emission monitor for incinerators  

Science Conference Proceedings (OSTI)

This paper describes the development of Fourier transform infrared (FTIR) spectroscopy to continuous monitoring of incinerator emissions. Fourier transform infrared spectroscopy is well suited to this application because it can identify and quantify selected target analytes in a complex mixture without first separating the components in the mixture. Currently, there is no on-stream method to determine the destruction of hazardous substances, such as benzene, or to continuously monitor for hazardous products of incomplete combustion (PICs) in incinerator exhaust emissions. This capability is especially important because of Federal regulations in the Clean Air Act of 1990, which requires the monitoring of air toxics (Title III), the Resource Conservation and Recovery Act (RCRA), and the Toxic Substances Control Act (TSCA). An on-stream continuous emission monitor (CEM) that can differentiate species in the ppm and ppb range and can calculate the destruction and removal efficiency (DRE) could be used to determine the safety and reliability of incinerators. This information can be used to address reasonable public concern about incinerator safety and aid in the permitting process.

Demirgian, J.

1992-01-01T23:59:59.000Z

340

Continuous emission monitor for incinerators  

Science Conference Proceedings (OSTI)

This paper describes the development of Fourier transform infrared (FTIR) spectroscopy to continuous monitoring of incinerator emissions. Fourier transform infrared spectroscopy is well suited to this application because it can identify and quantify selected target analytes in a complex mixture without first separating the components in the mixture. Currently, there is no on-stream method to determine the destruction of hazardous substances, such as benzene, or to continuously monitor for hazardous products of incomplete combustion (PICs) in incinerator exhaust emissions. This capability is especially important because of Federal regulations in the Clean Air Act of 1990, which requires the monitoring of air toxics (Title III), the Resource Conservation and Recovery Act (RCRA), and the Toxic Substances Control Act (TSCA). An on-stream continuous emission monitor (CEM) that can differentiate species in the ppm and ppb range and can calculate the destruction and removal efficiency (DRE) could be used to determine the safety and reliability of incinerators. This information can be used to address reasonable public concern about incinerator safety and aid in the permitting process.

Demirgian, J.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Device for monitoring utility usage  

SciTech Connect

A device for monitoring utility usage for installation and use by homeowners and consumers with existing public utility meters having a disk that is mounted inside a transparent case and that rotates in response to electrical current usage, the device is described comprising: a disk rotation monitoring assembly for mounting on the exterior of the transparent case, said monitoring assembly comprising: (a) a sensor for sensing disk rotation speed and generating a signal in response thereto; and (b) means for mounting said sensor on the transparent case, said mounting means further comprising means for holding said sensor, means for attaching said holding means to the transparent case, and means for adjusting the position of said holding means to enable precise alignment of said sensor with the plane of the disk such that said sensor is in optical communication with the edge of said disk; one or more remote display terminals in electrical communication with said monitoring assembly, each of said one or more remote terminals comprising: (a) means for receiving said signal and processing said signal into utility consumption data; (b) an electronic memory for storing said data; (c) a visual display for displaying data in a reader-usable format about consumption; and (d) a display controller that enables selective displaying of any of said data on said visual display.

Green, R.G.

1993-05-25T23:59:59.000Z

342

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

The broad-based deployment of post-combustion NOx control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOx control mandates has highlighted the need for continuous ammonia monitoring capabilities. The Electric Power Research Institute (EPRI) has been investigating the potential that tunable diode laser spectroscopy (TDLS) can have ...

2012-08-29T23:59:59.000Z

343

Strain-optic voltage monitor  

DOE Patents (OSTI)

A voltage monitor which uses the shift in absorption edge of crystalline material to measure strain resulting from electric field-induced deformation of piezoelectric or electrostrictive material, providing a simple and accurate means for measuring voltage applied either by direct contact with the crystalline material or by subjecting the material to an electric field.

Weiss, J.D.

1995-12-31T23:59:59.000Z

344

Fast monitoring of traffic subpopulations  

Science Conference Proceedings (OSTI)

Network accounting, forensics, security, and performance monitoring applications often need to examine detailed traces from subsets of flows ("subpopulations"), where the application desires flexibility in specifying the subpopulation (e.g., to detect ... Keywords: counters, flexsample, sampling, traffic statistics, traffic subpopulations

Anirudh Ramachandran; Srinivasan Seetharaman; Nick Feamster; Vijay Vazirani

2008-10-01T23:59:59.000Z

345

Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.  

SciTech Connect

The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

Holland, Robert C.

2011-03-01T23:59:59.000Z

346

Evaluation and Monitoring of Wild /Natural Steelhead Trout Production, 1996 Annual Report.  

SciTech Connect

This project was initiated to provide additional, and more definitive, information regarding wild steelhead Oncorhynchus mykiss populations in Idaho. Important streams for wild steelhead production were identified and selected for monitoring. Monitoring activities employed among streams varied, but generally included: aerial redd counts, placement of adult weirs, enumeration of juveniles through mask and snorkel counts, and emigrant trapping. This report details activities during the 1996 field season.

Leth, Brian D.; Holubetz, Terry B.; Nemeth, Doug (Idaho Department of Fish and Game, Boise, ID)

2000-01-01T23:59:59.000Z

347

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The  

Open Energy Info (EERE)

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews the use of earthquake studies in the field of geothermal exploration. Local, regional and teleseismic events can all provide useful information about a geothermal area on various scales. It is imperative that data collection is conducted in properly designed, realistic experiments. Ground noise is still of limited usefulness as a prospecting tool. The utility of the method cannot yet be assessed because of its undeveloped methodology and the paucity of case histories.

348

Sitewide Categorical Exclusion for Site Characterization and Environmental Monitoring  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.1 SWCX for Site Characterization and Environmental Monitoring- .1 SWCX for Site Characterization and Environmental Monitoring- Revision 0 Sitewide Categorical Exclusion for Site Characterization and Environmental Monitoring Introduction As defined in the U.S. Department of Energy's (DOE) Richland Operations Office L'ltegrated l\1anagement System Procedure, .._1\fEPA Analysis at Hanford, a sitewide categorical exclusion is: An application of DOE categorical exclusions described in 10 CFR 1021, Appendices A and B, which may apply to Hanford Site proposed actions (activities) that are "sitewide" in nature and extent, which the cognizant DOE Hanford NCO has determined fit within the scope (i.e., same nature and intent, and of the same or lesser scope) of DOE categorical exclusions described in 10 CFR 1021 Appendices A and B. The cognizant DOE Hanford NCO may issue specific sitewide

349

Aerial Radiation Monitoring Data over Sea Near Fukushima | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerial Radiation Monitoring Data over Sea Near Fukushima Aerial Radiation Monitoring Data over Sea Near Fukushima Aerial Radiation Monitoring Data over Sea Near Fukushima The enclosed package represents radiation data collected over the ocean with the fixed-wing aircraft (C-12) on April 5th, April 18th, and May 9th. The data were collected with an array of large thallium activated sodium iodide (NaI(T)) crystals and associated readout electronics to produce time and location referenced measurements. These results represent raw data that have been validated. They do not include any further evaluation. AMS C12 Sea Data.csv AMS C12 Sea Data Dictionary.pdf AMS C12 Sea Data.kmz More Documents & Publications Social Security Number Reduction Project 2011 - Federal Viewpoint Survey Reports Appendices for the Basis Document

350

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

351

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010  

SciTech Connect

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

INL Cultural Resource Management Office

2010-10-01T23:59:59.000Z

352

PNC/DOE Remote Monitoring Project at Japan`s Joyo Facility  

Science Conference Proceedings (OSTI)

The Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the US Department of Energy (DOE) are cooperating on the development of a remote monitoring system for nuclear nonproliferation efforts. This cooperation is part of a broader safeguards agreement between PNC and DOE. A remote monitoring system is being installed in a spent fuel storage area at PNC`s experimental reactor facility Joyo in Oarai. The system has been designed by Sandia National Laboratories (SNL) and is closely related to those used in other SNL remote monitoring projects. The Joyo project will particularly study the unique aspects of remote monitoring in contribution to nuclear nonproliferation. The project will also test and evaluate the fundamental design and implementation of the remote monitoring system in its application to regional and international safeguards efficiency. This paper will present a short history of the cooperation, the details of the monitoring system and a general schedule of activities.

Ross, M.; Hashimoto, Yu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Senzaki, Masao; Shigeto, Toshinori [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Sonnier, C. [Jupiter Corp., Albuquerque, NM (United States); Dupree, S.; Ystesund, K.; Hale, W. [Sandia National Labs., Albuquerque, NM (United States)

1996-07-25T23:59:59.000Z

353

Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13  

SciTech Connect

This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

Richard P. Wells

2007-03-23T23:59:59.000Z

354

Power System Monitoring Using Petri Net Embeddings  

E-Print Network (OSTI)

A failure in a power transmission line causes a number of circuit breakers to activate in an eort to isolate the failure and prevent it from corrupting the rest of the power system. Based on information from these physically distributed protective devices, a central controller needs to quickly identify and locate the failure. The task becomes challenging due to the complexity of modern power transmission networks and due to the possibility of multiple sensor failures or incorrect operation of protective devices. In this paper we investigate a solution to this problem using Petri net models. Our approach is attractive because it allows concurrent/incremental processing of the information that arrives at the controller and because it requires only simple calculations (linear checks) during execution time. Most reasoning is implicitly performed at design time, which gives our method an important edge for real-time monitoring. Furthermore, these same techniques can potentially handle mult...

C. N. Hadjicostis; G. C. Verghese

2000-01-01T23:59:59.000Z

355

Environmental monitoring report for Calendar Year 1986  

Science Conference Proceedings (OSTI)

The results of the 1986 environmental monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. Two of three large tokamak machines, the Princeton Large Torus (PLT) and the Tokamak Fusion Test Reactor (TFTR) were in operation during the year. The Princeton Beta Experiment (PBX) was shut down in December 1985 to undergo major modifications, and will recommence operations in 1987. PLT was shut down in December 1986. In addition, the S-1 Spheromak and the Radio-Frequency Test Facility (RFTF) were operated on a limited basis in 1986. The Environmental Committee became a standing committee of the Executive Safety Board (ESB) and continued to review items of environmental importance. During CY86 no adverse effects to the environment or public resulted from any operational program activities at PPPL, and the Laboratory was in compliance with all applicable federal, state, and local environmental regulations.

Stencel, J.R.

1987-05-01T23:59:59.000Z

356

Clean Slate 1 revegetation and monitoring plan  

SciTech Connect

This document is a reclamation plan for short-term and long-term stabilization of land disturbed by activities associated with interim cleanup of radionuclide-contaminated surface soil at the Clean Slate 1 site (located on the Tonopah Test Range). This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. Reclamation demonstration plots were established near the Double Tracks cleanup site in the fall of 1994 to evaluate the performance of several native plant species and to evaluate different irrigation strategies. Results of that study, and the results from numerous other studies conducted at other sites (Area 11 and Area 19 of the Nevada Test Site), have been summarized and incorporated into this final reclamation plan for the cleanup of the Clean Slate 1 site. The plan also contains procedures for monitoring both short-term and long-term reclamation.

NONE

1996-09-01T23:59:59.000Z

357

Fiscal Year 2003 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the Groundwater Monitoring Project. It documents well and constituent lists for the monitoring required by the Atomic Energy Act of 1954 and its implementing orders.

Hartman, Mary J.; Dresel, P. EVAN; Lindberg, Jon W.; McDonald, John P.; Newcomer, Darrell R.; Thornton, Edward C.

2002-11-01T23:59:59.000Z

358

Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure  

SciTech Connect

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

Bill Wilborn, NNSA /NFO; Kathryn Knapp, NNSA /NFO; Irene Farnham, N-I; Sam Marutzky, N-I

2013-02-24T23:59:59.000Z

359

Environmental Monitoring Plan: Environmental Monitoring Section. Appendix A, Procedures  

Science Conference Proceedings (OSTI)

This document presents information about the environmental monitoring program at Lawrence Livermore National Laboratory. Topics discussed include: air sampling; air tritium calibrations; storm water discharge; non-storm water discharge; sampling locations; ground water sampling; noise and blast forecasting; analytical laboratory auditing; document retention; procedure writing; quality assurance programs for sampling; soil and sediment sampling; sewage sampling; diversion facility tank sampling; vegetation and foodstuff sampling; and radiological dose assessments.

NONE

1995-02-01T23:59:59.000Z

360

Wireless Sensor Network for Electric Transmission Line Monitoring  

SciTech Connect

Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8)

Alphenaar, Bruce

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Engineering task plan for standard hydrogen monitoring system operation  

DOE Green Energy (OSTI)

Tanks that are known or suspected to retain and occasionally release flammable gases are equipped with Standard Hydrogen Monitoring System (SHMS) cabinets. These cabinets contain Whittaker{trademark} electrochemical cells and may also have a gas chromatograph (GC) and/or a Bruel and Kjaer infrared photo-acoustic multi-gas monitor (B and K). The GC and B and K will be referred to collectively as ''analytical instruments'' in this document. Using these instruments, a tank can be monitored for hydrogen, ammonia, methane, and nitrous oxide. Air from the tank vent header (for actively ventilated tanks) or dome space (for passively ventilated tanks) is drawn continuously through the monitoring instruments via a sample pump. This monitoring is performed to track the gas release behavior of selected waste storage tanks and to help identify any potentially serious gas release behavior. Vapor grab samples are obtained from the SHMS as well and are analyzed with a mass spectrometer to obtain concentration data about hydrogen and other gases.

MCCAIN, D.J.

1999-06-02T23:59:59.000Z

362

Special Nuclear Material Portal Monitoring at the Nevada Test Site  

SciTech Connect

In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC&A) Manager at the time decided that the program needed to be strengthened and MC&A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program.

Mike Murphy

2008-03-01T23:59:59.000Z

363

Idaho Habitat and Natural Production Monitoring : Annual Report 1989.  

DOE Green Energy (OSTI)

Project 83-7 was established under the Northwest Power Planning Council's 1982 Fish and Wildlife Program to monitor natural production of anadromous fish, evaluate Bonneville Power Administration (BPA) habitat improvement projects, and develop a credit record for off-site mitigation projects in Idaho. Project 83-7 is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject (Part 1) are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density data from monitoring and evaluation of BPA habitat projects and from other Idaho Department of Fish and Game (IDFG) management and research activities. Primary objectives of the intensive monitoring subproject (Part 2) are to determine the number of returning chinook and steelhead adults necessary to achieve optimal smolt production and to develop mitigation accounting based on increases in smolt production. Two locations are being intensively studied to meet these objectives. Field work began in 1987 in the upper Salmon River and Crooked River (South Fork Clearwater River tributary). 22 refs., 10 figs., 17 tabs.

Kiefer, Russell B.; Forster, Katharine A.

1991-01-01T23:59:59.000Z

364

Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

number in the table field, respectively. The status of the measurement is color coded: green means OK, yellow means warning, red means critical, brown means unknown, and gray...

365

Injection monitoring with seismic arrays and adaptive noise cancellation  

DOE Green Energy (OSTI)

Although the application of seismic methods, active and passive, to monitor in-situ reservoir stimulation processes is not new, seismic arrays and array processing technology coupled with a new noise cancellation method has not been attempted. Successful application of seismic arrays to passively monitor in-situ reservoir stimulation processes depends on being able to sufficiently cancel the expected large amplitude background seismic noise typical of an oil or geothermal production environment so that small amplitude seismic signals occurring at depth can be detected and located. This report describes the results of a short field experiment conducted to test both the application of seismic arrays for in-situ reservoir stimulation monitoring and the active noise cancellation technique in a real reservoir production environment. Although successful application of these techniques to in-situ reservoir stimulation monitoring would have the greatest payoff in the oil industry, the proof-of-concept field experiment site was chosen to be the Geysers geothermal field in northern California. This site was chosen because of known high seismicity rates, a relatively shallow production depth, cooperation and some cost sharing the UNOCAL Oil Corporation, and the close proximity of the site to LLNL. The body of this report describes the Geysers field experimental configuration and then discusses the results of the seismic array processing and the results of the seismic noise cancellation followed by a brief conclusion. 2 refs., 11 figs.

Harben, P.E.; Harris, D.B.; Jarpe, S.P.

1991-01-01T23:59:59.000Z

366

ENVIRONMENTAL OVERSIGHT AND MONITORING AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

OVERSIGHT AND MONITORING AGREEMENT OVERSIGHT AND MONITORING AGREEMENT (Agreement in Principle) Between the United States Department of Energy and the State of Idaho 1. This Agreement in Principle (Agreement) is voluntarily entered into by the United States Department of Energy (DOE), under the authority of 42 U.S.C. §71 01 et. seq., and the State of Idaho (State) under the authority of Article IV, Section S of the Idaho Constitution and Idaho Code § 39-10S. DOE's designated lead for purposes of this Agreement is the DOE's Idaho Operations Office (DOE-ID) and DOE's Naval Reactors Idaho Branch Office for Naval Nuclear Propulsion Program matters. The State's designated lead for purposes of this Agreement is the Department of Environmental Quality (DEQ). This Agreement replaces the Environmental Oversight and

367

Online circuit breaker monitoring system  

E-Print Network (OSTI)

Circuit breakers are used in a power system to break or make current flow through power system apparatus. Reliable operation of circuit breakers is very important to the well-being of the power system. Historically this is achieved by regular inspection and maintenance of the circuit breakers. An automated online circuit breaker monitoring system is proposed to monitor condition, operation and status of high and medium voltage circuit breakers. By tracking equipment condition, this system could be used to perform maintenance only when it is needed. This could decrease overall maintenance cost and increase equipment reliability. Using high accurate time synchronization, this system should enable development of system-wide applications that utilize the data recorded by the system. This makes possible tracking sequence of events and making conclusions about their effect on-line. This solution also enables reliable topology analysis, which can be used to improve power flow analysis, state estimation and alarm processing.

Djekic, Zarko

2007-12-01T23:59:59.000Z

368

Monitoring Control Applications at CERN  

E-Print Network (OSTI)

The Industrial Controls and Engineering (EN-ICE) group [1] of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other subsystems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of cOntrols Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) [2] SCADA and makes usage of the Joint COntrols Project (JCOP) [3] and the UNified INdustrial COntrol System (UNICOS) [4] Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and L...

Bernard, F; Milcent, H; Petrova, L B; Varela, F

2011-01-01T23:59:59.000Z

369

Community Environmental Monitoring Program (CEMP) Data related to Air, Soil, and Water Monitoring around the Nevada Test Site  

DOE Data Explorer (OSTI)

The Community Environmental Monitoring Program (CEMP) is a network of 29 monitoring stations located in communities surrounding and downwind of the Nevada Test Site (NTS) that monitor the airborne environment for manmade radioactivity that could result from NTS activities. The network stations, located in Nevada, Utah, and California are comprised of instruments that collect a variety of environmental radiological and meteorological data. The emphasis of the CEMP is to monitor airborne radioactivity and weather conditions, and make the results available to the public. Instrumentation that records these data is connected to a datalogger, and real-time radiation levels or weather conditions can immediately and easily be seen on a display at each station. These data are transmitted via direct or wireless internet connection, landline or cellular phone, or satellite transmission to DRI's Western Regional Climate Center in Reno, Nevada, and are updated as frequently as every 10 minutes on the World Wide Web at http://www.cemp.dri.edu. DOE and DRI also publish the results of the monitoring program and distribute these reports throughout the network community. The reports provide summaries of average values for each station and the entire network, and show deviations from the expected range values. [Copied from the CEMP website (Introduction) at http://www.cemp.dri.edu/cemp/moreinfo.html

370

Stress-Based Fatigue Monitoring  

Science Conference Proceedings (OSTI)

The FatiguePro software, developed by the Electric Power Research Institute (EPRI) and first deployed in 1989, is a fatigue monitoring program that is widely used around the world to assist with aging management of nuclear power plants. The FatiguePro stress-based fatigue (SBF) module has used a single stress term for calculating fatigue usage factors. This simplified approach was chosen not only because of computer limitations at the time, but also because the conventional stress cycle counting algorith...

2011-12-05T23:59:59.000Z

371

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

This report provides results from performance tests of a Laser Tech Group (LTG) Lightwise tunable diode laser (TDL) monitor at the University of California–Riverside's laboratory test facility. More stringent nitrogen oxide(s) (NOx)-control mandates for coal-fired boilers have engendered broad-based deployment of post-combustion NOx control systems. It is possible to increase NOx reductions early in the catalyst life cycle through increased reagent injection, with a concomitant increase in ammonia (NH3) ...

2009-07-13T23:59:59.000Z

372

Microsensors for Continuous Emission Monitoring  

Science Conference Proceedings (OSTI)

Continuous emission monitors have evolved during the last fifteen years to include smaller and more compact units. The trend in miniaturizing detectors, as well as all electronic components, is the focus of this report. Micro- sensors, miniature spectrometers, and nano-sized sensors are only a few of the developments that are currently being incorporated into gas sensing instruments by industrial laboratories, research institutes and universities. This report focuses on the use of miniaturized sensors an...

2006-11-21T23:59:59.000Z

373

Wyoming mineral development monitoring system  

Science Conference Proceedings (OSTI)

The monitoring system covers, or will cover, all segments of the mineral industry except oil and gas exploration under one of eight main sections: coal uranium, bentonite, power plants, refineries, gas plants, synthetic fuels, trona, and others. Projects are grouped alphabetically by county and indexed by county, commodity, and company. Index maps all the location of projects within the state. A notebook format allows easy updating of information on ownership, production, numbers of employees, contracts, etc.

Not Available

1984-01-01T23:59:59.000Z

374

Job Monitoring MIB - V1.0  

Science Conference Proceedings (OSTI)

This document provides a printer industry standard SNMP MIB for (1) monitoring the status and progress of print jobs (2) obtaining resource requirements before a job is processed, (3) monitoring resource consumption while a job is being processed and ...

R. Bergman; T. Hastings; S. Isaacson; H. Lewis

1999-11-01T23:59:59.000Z

375

An extensible monitoring and adaptation framework  

Science Conference Proceedings (OSTI)

Several techniques have been defined for the monitoring and adaptation of applications. However, such techniques usually work in isolation and cannot be easily integrated to tackle complex monitoring and adaptation scenarios. Furthermore, applications ...

Razvan Popescu; Athanasios Staikopoulos; Siobhán Clarke

2009-11-01T23:59:59.000Z

376

Ultralow-Power Electronics for Cardiac Monitoring  

E-Print Network (OSTI)

Ultralow-power electronics for cardiac monitoring make possible the development of new light-weight and low-cost devices that are ideal for long-term medical measurements and home-based tele-monitoring services. Nowadays, ...

Turicchia, Lorenzo

377

Why We Should Monitor the Climate  

Science Conference Proceedings (OSTI)

A successful global climate monitoring system must fulfill clear societal objectives. For some aspects of climate monitoring, the societal goals are understood and are clearly stated, but long-term, decadal/centennial climate predictions have, in ...

Richard Goody; James Anderson; Thomas Karl; Roberta Balstad Miller; Gerald North; Joanne Simpson; Graeme Stephens; Warren Washington

2002-06-01T23:59:59.000Z

378

On-line Condenser Fouling Monitor Development  

Science Conference Proceedings (OSTI)

This newly developed, innovative, on-line fouling monitor can continuously display the cleanliness factor of an operating condenser. The monitor facilitates optimization of cooling water treatment and condenser cleaning schedules.

1998-03-17T23:59:59.000Z

379

Use of sensors in monitoring civil structures  

E-Print Network (OSTI)

This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

Daher, Bassam William, 1979-

2004-01-01T23:59:59.000Z

380

Wind Turbine Drivetrain Condition Monitoring - An Overview  

DOE Green Energy (OSTI)

This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

Sheng, S; Veers, P.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gas characterization monitoring system functional design criteria  

DOE Green Energy (OSTI)

The purpose of this document is to provide the functional design criteria for the Gas Characterization Monitoring Systems (Standard-E Hydrogen Monitoring Systems,) to be designed, fabricated and installed on the Waste Tank Farms in the Hanford 200 Areas.

Schneider, T.C.

1997-06-01T23:59:59.000Z

382

Monitoring and Managing PDSF Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring and Managing Jobs Monitoring and Managing Jobs Monitoring and Managing Jobs Action How to do it Comment Get a summary of all batch jobs sgeusers Shows a tally of all jobs for all users including their states. This is a script that parses the output of qstat and is maintained by PDSF staff (located in /common/usg/bin). Do "sgeusers -h" for usage info. Get a listing of your jobs and their states qstat -u user_name If you skip the -u option, you'll get all the jobs on PDSF. qstat_long -u user_name Regular qstat truncates job names to 10 characters. If you need a full name - use qstat_long. Get detailed info about a specific job qstat -j job_ID You can get job_ID by listing your jobs as described above. See how much cputime a job has used qstat -j job_ID Look in the next to the last line or grep the output on "usage". Note that in the memory usage GBs stands for Gigabyte-seconds.

383

Transformative monitoring approaches for reprocessing.  

SciTech Connect

The future of reprocessing in the United States is strongly driven by plant economics. With increasing safeguards, security, and safety requirements, future plant monitoring systems must be able to demonstrate more efficient operations while improving the current state of the art. The goal of this work was to design and examine the incorporation of advanced plant monitoring technologies into safeguards systems with attention to the burden on the operator. The technologies examined include micro-fluidic sampling for more rapid analytical measurements and spectroscopy-based techniques for on-line process monitoring. The Separations and Safeguards Performance Model was used to design the layout and test the effect of adding these technologies to reprocessing. The results here show that both technologies fill key gaps in existing materials accountability that provide detection of diversion events that may not be detected in a timely manner in existing plants. The plant architecture and results under diversion scenarios are described. As a tangent to this work, both the AMUSE and SEPHIS solvent extraction codes were examined for integration in the model to improve the reality of diversion scenarios. The AMUSE integration was found to be the most successful and provided useful results. The SEPHIS integration is still a work in progress and may provide an alternative option.

Cipiti, Benjamin B.

2011-09-01T23:59:59.000Z

384

2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico  

SciTech Connect

This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

None

2011-02-01T23:59:59.000Z

385

2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico  

SciTech Connect

This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico. Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

None

2011-02-01T23:59:59.000Z

386

Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

NONE

1997-11-10T23:59:59.000Z

387

The Savannah River Site`s Groundwater Monitoring Program. First quarter, 1990  

Science Conference Proceedings (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program`s activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

Not Available

1990-10-18T23:59:59.000Z

388

Body Area Networks & Pervasive Health Monitoring  

Science Conference Proceedings (OSTI)

... and also possible integration with existing IT ... monitors and eye pressure sensing systems. ... interference issues, reliability, energy efficiency, and ...

2013-05-15T23:59:59.000Z

389

TECHNIQUES FOR MONITORING PLUTONIUM IN THE ENVIRONMENT  

E-Print Network (OSTI)

h· Also used is a total dissolution method for soil samplesfor monitoring methods which require dissolution of a bulk

Nero Jr., A.V.

2011-01-01T23:59:59.000Z

390

Process Monitoring & Signal Validation - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Monitoring & Signal Validation Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems...

391

Guidelines for the Monitoring, Evaluation, Reporting, Verification...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation, Reporting, Verification, and Certification of Forestry Projects for Climate Change Mitigation Title Guidelines for the Monitoring, Evaluation, Reporting,...

392

Efficiency Improvement Opportunities for Personal Computer Monitors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvement Opportunities for Personal Computer Monitors: Implications for Market Transformation Programs Title Efficiency Improvement Opportunities for Personal...

393

Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

Not Available

1994-04-01T23:59:59.000Z

394

The community environmental monitoring program: a model for stakeholder involvement in environmental monitoring  

Science Conference Proceedings (OSTI)

Since 1981, the Community Environmental Monitoring Program (CEMP) has involved stakeholders directly in its daily operation and data collection, as well as in dissemination of information on radiological surveillance in communities surrounding the Nevada Test Site (NTS), the primary location where the United States (US) conducted nuclear testing until 1992. The CEMP is funded by the US Department of Energy's National Nuclear Security Administration, and is administered by the Desert Research Institute (DRI) of the Nevada System of Higher Education. The CEMP provides training workshops for stakeholders involved in the program, and educational outreach to address public concerns about health risk and environmental impacts from past and ongoing NTS activities. The network includes 29 monitoring stations located across an approximately 160,000 km{sup 2} area of Nevada, Utah and California in the southwestern US. The principal radiological instruments are pressurized ion chambers for measuring gamma radiation, and particulate air samplers, primarily for alpha/beta detection. Stations also employ a full suite of meteorological instruments, allowing for improved interpretation of the effects of meteorological events on background radiation levels. Station sensors are wired to state-of-the-art data-loggers that are capable of several weeks of on-site data storage, and that work in tandem with a communications system that integrates DSL and wireless internet, land line and cellular phone, and satellite technologies for data transfer. Data are managed through a platform maintained by the Western Regional Climate Center (WRCC) that DRI operates for the U.S. National Oceanic and Atmospheric Administration. The WRCC platform allows for near real-time upload and display of current monitoring information in tabular and graphical formats on a public web site. Archival data for each station are also available on-line, providing the ability to perform trending analyses or calculate site-specific exposure rates. This configuration also allows for remote programming and troubleshooting of sensors. Involvement of stakeholders in the monitoring process provides a number of benefits, including increased public confidence in monitoring results, as well as decreasing costs by more than 50 percent from when the program was managed entirely by U.S. federal employees. Additionally, the CEMP provides an ideal platform for testing new environmental sensors. (authors)

Hartwell, William T. [Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, Nevada (United States); Shafer, David S. [Division of Hydrological Sciences, Desert Research Institute, Las Vegas, Nevada (United States)

2007-07-01T23:59:59.000Z

395

GRAD: a tool for program analysis and progress monitoring  

DOE Green Energy (OSTI)

Information required for development, monitoring, and evaluation of Federal geothermal programs is extensive, and is needed on a timely basis to optimize the allocation of resources. This paper describes the development and operation of the Geothermal Resource Areas Database (GRAD). GRAD was created as part of the National Geothermal Progress Monitor System in 1979. The database is organized around the concept of a geothermal area and provides broad coverage of geothermal development activities in the United States. Sixteen records, covering pre-lease, lease, and post-lease activities have been defined for each area. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publicly available for retrieval and use.

Yen, W.W.S.; Lawrence, J.D.

1981-06-01T23:59:59.000Z

396

Westinghouse Hanford Company operational environmental monitoring annual report, CY 1992  

SciTech Connect

This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1992 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State in 1992. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and to control the impacts of nuclear facilities and waste sites on the workers and the local environment. Additionally, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although impacts from nuclear facilities are still seen on the Hanford Site and are slightly elevated when compared to offsite, these impacts are less than in previous years.

Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.

1993-07-01T23:59:59.000Z

397

Dual sensitivity mode system for monitoring processes and sensors  

DOE Patents (OSTI)

A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

Wilks, Alan D. (Mount Prospect, IL); Wegerich, Stephan W. (Glendale Heights, IL); Gross, Kenneth C. (Bolingbrook, IL)

2000-01-01T23:59:59.000Z

398

Dynamic properties of a radiometric monitoring system  

Science Conference Proceedings (OSTI)

On-line radiometric monitors (nuclear meters) have been in use in the industry for many years. They have been utilised for coal quality monitoring, in the control systems for coal blending, or for separating coals in the heavy media separation process. ... Keywords: adaptive monitor, nuclear meter dynamics, stochastic signal, stochastic signal filtration

Stanislaw Cierpisz

2009-07-01T23:59:59.000Z

399

Wireless sensor networks for habitat monitoring  

Science Conference Proceedings (OSTI)

We provide an in-depth study of applying wireless sensor networks to real-world habitat monitoring. A set of system design requirements are developed that cover the hardware design of the nodes, the design of the sensor network, and the capabilities ... Keywords: environmental monitoring, habitat monitoring, low power systems, sensor network architecture, wireless sensor networks

Alan Mainwaring; David Culler; Joseph Polastre; Robert Szewczyk; John Anderson

2002-09-01T23:59:59.000Z

400

Security protocols, properties, and their monitoring  

Science Conference Proceedings (OSTI)

This paper examines the suitability and use of runtime verification as means for monitoring security protocols and their properties. In particular, we employ the runtime verification framework introduced in [5] to monitor complex, history-based security-properties ... Keywords: language-based security, monitoring of history-based properties, runtime verification, security automata, security protocols, temporal logic

Andreas Bauer; Jan Juerjens

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DATA MONITORING AND ANALYSIS PROGRAM MANUAL  

E-Print Network (OSTI)

DATA MONITORING AND ANALYSIS PROGRAM MANUAL LBNL/PUB-5519 (3), Rev. 0 Effective Date: _July 23 Data Monitoring and Analysis Program Manual REVISION HISTORY Revision Date Revision Description #12;LBNL/PUB-5519 (3), Rev. 0 Page 3 of 23 Data Monitoring and Analysis Program Manual TABLE OF CONTENTS

402

1997 LMITCO Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

This report describes the calendar year 1997 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs and compares 1997 data with program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standard, and to ensure protection of human health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends indicating a loss of control or unplanned releases from facility operations. With the exception of one nitrogen sample in the disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond, compliance with permits and applicable regulations was achieved. Data collected by the Environmental Monitoring Program demonstrate that public health and the environment were protected.

Andersen, B.; Street, L.; Wilhelmsen, R.

1998-09-01T23:59:59.000Z

403

Geopressured-geothermal well activities in Louisiana  

DOE Green Energy (OSTI)

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

404

IEC STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION  

Science Conference Proceedings (OSTI)

This paper presents IEC/SC 45B Radiation protection instrumentation and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2.

Voytchev, Miroslav [IRSN; Ambrosi, P. [Physikalisch-Technische Bundesanstalt (PTB); Behrens, R. [Physikalisch-Technische Bundesanstalt (PTB); Chiaro Jr, Peter John [ORNL

2011-01-01T23:59:59.000Z

405

On-Line Monitoring Diagnostic Analysis for Large Power Transformers  

Science Conference Proceedings (OSTI)

Through its Light Water Reactor Sustainability Program, Idaho National Laboratory (INL) is conducting research to develop and demonstrate the on-line monitoring capabilities of active components in existing nuclear power plants. A pilot project is currently underway to apply these capabilities to generator step-up transformers (GSUs) and emergency diesel generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working together to implement the pilot project. The EPRI Fleetwide ...

2013-05-24T23:59:59.000Z

406

2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

West, W. J.; Lucas, J. G.; Gano, K. A.

2011-11-14T23:59:59.000Z

407

2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

Science Conference Proceedings (OSTI)

This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

C. T. Lindsey, A. L. Johnson

2010-09-30T23:59:59.000Z

408

300 Area TEDF NPDES Permit Compliance Monitoring Plan  

SciTech Connect

This monitoring plan describes the activities and methods that will be employed at the 300 Area Treated Effluent Disposal Facility (TEDF) in order to ensure compliance with the National Discharge Elimination System (NPDES) permit. Included in this document are a brief description of the project, the specifics of the sampling effort, including the physical location and frequency of sampling, the support required for sampling, and the Quality Assurance (QA) protocols to be followed in the sampling procedures.

Loll, C.M.

1994-10-13T23:59:59.000Z

409

2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

K. A. Gano; C. T. Lindsey

2007-09-27T23:59:59.000Z

410

2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report  

SciTech Connect

The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

C. T. Lindsey; K. A. Gano

2008-09-30T23:59:59.000Z

411

Acoustic emission monitoring for assessment of steel bridge details  

SciTech Connect

Acoustic emission (AE) testing was deployed on details of two large steel Interstate Highway bridges: one cantilever through-truss and one trapezoidal box girder bridge. Quantitative measurements of activity levels at known and suspected crack locations were made by monitoring AE under normal service loads (e.g., live traffic and wind). AE indications were used to direct application of radiography, resulting in identification of a previously unknown flaw, and to inform selection of a retrofit detail.

Kosnik, D. E.; Corr, D. J. [Infrastructure Technology Institute, Northwestern University, Evanston, IL 60208 (United States); Hopwood, T. [Kentucky Transportation Center, University of Kentucky, Lexington, KY 40506 (United States)

2011-06-23T23:59:59.000Z

412

On-Line Monitoring Diagnostic Analysis for Emergency Diesel Generators  

Science Conference Proceedings (OSTI)

Through its Light Water Reactor Sustainability Program, Idaho National Laboratory (INL) is conducting research to develop and demonstrate the on-line monitoring capabilities of active components in existing nuclear power plants. A pilot project is currently underway to apply these capabilities to generator step-up transformers (GSUs) and emergency diesel generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working together to implement the pilot project. The EPRI Fleetwide ...

2013-05-24T23:59:59.000Z

413

Active Sensors | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Active Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Sensors Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Remote Sensing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement, delineate faults, create high-resolution DEMS, quantify fault kinemaics, develop lineament maps, Geophysical Monitoring Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png Active Sensors: Sensors that emit their own source of energy then measure the

414

TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup Draft Work Plan - February 4, 2008 More...

415

DOE - Office of Legacy Management -- Rio_Monitoring  

Office of Legacy Management (LM)

RioMonitoring Rio Blanco, Colorado, Site Natural Gas Well Monitoring Results Project Rio Blanco Monitoring Results Fourth Quarter 2010 Separated Water at a Natural Gas Plant,...

416

Augmented Fish Health Monitoring, 1988 Annual Report.  

DOE Green Energy (OSTI)

Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. Second year activities focused on full implementation of disease surveillance activities and histopathological support services to participating state agencies. Persistent and sometimes severe disease losses were caused by infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho and in spring chinook salmon at hatcheries on the lower Columbia River. Diagnostic capability was enhanced by the installation, for field use, of enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center for the detection and assay of bacterial kidney disease and by a dot-blot'' training session for virus identification at the Lower Columbia Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River basin National Fish hatcheries. Case history data was fully documented in a computerized data base for storage and analysis. This report briefly describes work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin. It also summarizes the health status of fish reared at those hatcheries and provides a summary of case history data for calendar year 1988. 2 refs., 4 tabs.

Warren, James W.

1989-08-15T23:59:59.000Z

417

Inventory of current environmental monitoring projects in the US-Canadian transboundary region  

SciTech Connect

This document presents the results of a study commissioned to survey and summarize major environmental monitoring projects in the US-Canadian transboundary region. Projects with field sites located within 400 km (250 mi) of the border and active after 1980 were reviewed. The types of projects included: ambient air-quality monitoring, ambient water-quality monitoring, deposition monitoring, forest/vegetation monitoring and research, soil studies, and ecosystem studies. Ecosystem studies included projects involving the measurement of parameters from more than one monitoring category (e.g., studies that measured both water and soil chemistry). Individual descriptions were formulated for 184 projects meeting the spatial and temporal criteria. Descriptions included the official title for the project, its common abbreviation, program emphasis, monitoring site locations, time period conducted, parameters measured, protocols employed, frequency of sample collection, data storage information, and the principal contact for the project. A summary inventory subdivided according to the six monitoring categories was prepared using a computerized data management system. Information on major centralized data bases in the field of environmental monitoring was also obtained, and summary descriptions were prepared. The inventory and data base descriptions are presented in appendices to this document.

Glantz, C.S.; Ballinger, M.Y.; Chapman, E.G.

1986-05-01T23:59:59.000Z

418

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders (''surveillance monitoring''); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J; Dresel, P Evan; Lindberg, Jon W; Newcomer, Darrell R; Thornton, Edward C

2001-10-31T23:59:59.000Z

419

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2001-10-31T23:59:59.000Z

420

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008  

Science Conference Proceedings (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

Brenda R. Pace

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity teleseismic-seismic monitoring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Monitored Geologic Repository Project Description Document  

SciTech Connect

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

422

Ecological Monitoring and Compliance Program Fiscal Year 2001  

SciTech Connect

The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2001. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species were conducted for 23 NTS projects. Eleven sites were in desert tortoise habitat. These projects have the potential to disturb a total of 588 acres, where 568 acres of disturbance would be off-road driving. No tortoises were found in or displaced from project areas, and no tortoise s were accidentally injured or killed at project areas. One tortoise was crushed by a vehicle on a paved road. A topical report describing the classification of habitat types on the NTS was completed and distributed. The report is the culmination of three years of field vegetation mapping and the analysis of vegetation data from over 1,500 ecological landform units. Compilation of historical wildlife data was initiated. A long-term monitoring plan for important plant species that occur on the NTS was completed. Site-wide monitoring was conducted for the western burrowing owl, bat species of concern, wild horses, and raptor nests. Sixty-nine of 77 known owl burrows were monitored. As in previous years, some owls were present year round on the NTS. An overall decrease in active owl burrows was observed within all three ecoregions (Mojave Desert, Transition, Great Basin Desert) from October through January. An increase in active owl burrows was observed from mid March to early April. A total of 55 juvenile owls was detected from 11 breeding pairs. Pellet analysis of burrowing owls was completed which identified key prey species. A total of 272 bats, representing 10 bat species were captured in mist-nets at water sources in the Great Basin Desert ecoregion. Bats were detected with the Anabat II call-recording system at water sources and selected tunnel and mine entrances. Thirty-seven adult horses and 11 foals were counted this year. Two of the eleven foals observed last year survived to yearlings. Seven active raptor nests were found and monitored this year. These included two Great-horned Owl nests, three Barn Owl nests, and two Red-tailed Hawk nests. Selected wetlands and man-made water sources were monitored for physical parameters and wildlife use. No dead animals were observed this year in any plastic-lined sump. The chemical spill test plans for four experiments at the HAZMAT Spill Center were reviewed for their potential to impact biota downwind of spills on Frenchman Lake playa.

C. A. Wills

2001-12-01T23:59:59.000Z

423

Definition: Line Transformer Monitors | Open Energy Information  

Open Energy Info (EERE)

Transformer Monitors Transformer Monitors Jump to: navigation, search Dictionary.png Line Transformer Monitors Transformer Monitoring System can monitor different aspects of transformers, including oil levels and multiple temperatures within the transformer. This allows for analysis of the health of either individual key power transformers or multiple power transformers networked in the system. For example, the transformer monitors provide transformer oil dissolved gas analysis (DGA), oil temperature, ambient temperature, and moisture in oil measurements. These measurements are made in relation to transformer load.[1] Related Terms transformer, system, transformer References ↑ https://www.smartgrid.gov/category/technology/line_transformer_monitors [[Cat LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

424

ORISE: DOE's Radiation Exposure Monitoring System (REMS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring System (REMS) Monitoring System (REMS) ORISE maintains large database of radition exposure records for the U.S. Department of Energy ORISE staff monitoring radiation data for DOE Rule 10 CFR 835 establishes the U.S. Department of Energy's (DOE) occupational protection rule and requires assessment and recording of radiation doses to individuals who are exposed to sources of radiation or contamination. The Radiation Exposure Monitoring System (REMS) database is the radiation exposure data repository for all monitored DOE employees, contractors, subcontractors and members of the public. REMS maintains dose records for all monitored individuals dating back to 1969. Aggregated, site-specific data are available on the Radiation Exposure Monitoring System website for all years since 1986. Currently,

425

Environmental regulatory guide for radiological effluent monitoring and environmental surveillance  

SciTech Connect

Under the Atomic Energy Act of 1954, as amended, the US Department of Energy (DOE) is obligated to regulate its own activities so as to provide radiation protection for both workers and the public.'' Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards,'' further requires the heads of executive agencies to ensure that all Federal facilities and activities comply with applicable pollution control standards and to take all actions necessary for the prevention, control, and abatement of environmental pollution. This regulatory guide describes the elements of an acceptable effluent monitoring and environmental surveillance program for DOE sites involving radioactive materials. These elements are applicable to all DOE and contractor activities for which the DOE exercises environmental, safety, and health responsibilities, and are intended to be applicable over the broad range of DOE facilities and sites. In situations where the high-priority elements may not provide sufficient coverage of a specific monitoring or surveillance topic, the document provides additional guidance. The high-priority elements are written as procedures and activities that should'' be performed, and the guidance is written as procedures and activities that should'' be performed. The regulatory guide both incorporates and expands on requirements embodied in DOE 5400.5 and DOE 5400.1. 221 refs., 2 figs., 6 tabs.

Not Available

1991-01-01T23:59:59.000Z

426

Implementation of U.S. transparency monitoring under the U.S./Russian HEU purchase agreement  

SciTech Connect

During the past three years US monitoring at Russian nuclear facilities, subject to the HEU Purchase Agreement, has evolved as MINATOM and DOE negotiators worked to improve transparency rights and as additional Russian facilities began processing HEU. The number of Russian nuclear facilities subject to US monitoring has increased from two in 1996 to the current four. In that time, physical monitoring, which only permitted visual inspections and access to process forms is being supplemented by instrumentation which detects U-235 enrichment of material in containers and instrumentation which is used to confirm that blending of HEU into LEU at the blending facilities is taking place. This paper summarizes the US HEU Transparency monitoring activities performed in Russian facilities. It then summarizes the process used to certify the Blend Down Monitoring System (BDMS) that is currently in use at one of these facilities.

Benton, J B; Glaser, J W; Mastal, E F

1999-07-21T23:59:59.000Z

427

Flammable gas tank safety program: Technical basis for gas analysis and monitoring  

DOE Green Energy (OSTI)

Several Hanford waste tanks have been observed to exhibit periodic releases of significant quantities of flammable gases. Because potential safety issues have been identified with this type of waste behavior, applicable tanks were equipped with instrumentation offering the capability to continuously monitor gases released from them. This document was written to cover three primary areas: (1) describe the current technical basis for requiring flammable gas monitoring, (2) update the technical basis to include knowledge gained from monitoring the tanks over the last three years, (3) provide the criteria for removal of Standard Hydrogen Monitoring System(s) (SHMS) from a waste tank or termination of other flammable gas monitoring activities in the Hanford Tank farms.

Estey, S.D.

1998-04-22T23:59:59.000Z

428

Apparatus for monitoring crystal growth  

SciTech Connect

A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

Sachs, Emanual M. (Watertown, MA)

1981-01-01T23:59:59.000Z

429

Method of monitoring crystal growth  

DOE Patents (OSTI)

A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

Sachs, Emanual M. (Watertown, MA)

1982-01-01T23:59:59.000Z

430

MOISTURE MONITOR TESTING AND CALIBRATION  

SciTech Connect

ABS>Electrolytic moisture monitors which continuously analyze the moisture content of gases are commercially available. After a period of operation, these instruments may give erroneous readings, frequently because of damage to the electrolytic cell. A gas with a known and reproducible moisture content within the operating range would be useful for making operational response tests on these monltors and for checking their calibration. A paired- hydrate system of a chemical compound exhibits a water vapor pressure that is constant at a constant temperature. ff an unreactive gas is allowed to equilibrate with a paired-hydrate system, the moisture content of the gas is determined by the vapor pressure of the hydrate pair, the total pressure, and the temperature. Hydrated magnesium perchlorate was prepared which contained between four and six moles of water per mole of perchlorate. This material was pulverized lightly then packed into a stainless steel column and 100 cc/minute of air at atmospheric pressure was passed through the bed. The exit air from the column was analyzed with a moisture monitor. A gas residence time of two minutes in the column was found to be sufficient for establishing moisture equilibrium in the exit flow. The moisture content of the exit air was found to vary from 34 to 70 ppm by volume as the temperature of the paired-hydrate system varied from 20 to 28 un. Concent 85% C. Other paired-hydrate systems can extend this range to higher moisture levels. (auth)

Montgomery, C.D.; Googin, J.M.; Phillips, L.R.

1963-03-14T23:59:59.000Z

431

REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT  

Science Conference Proceedings (OSTI)

Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring the pipeline and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method developed by Southwest Research Institute (SwRI) consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating (thus resulting in a signal path to ground) changes the signal received at the receiving stations. The IACC method was shown to be a viable method that can be used to continuously monitor pipelines for third-party contact. Electrical connections to the pipeline can be made through existing cathodic protection (CP) test points without the need to dig up the pipe. The instrumentation is relatively simple, consisting of (1) a transmitting station with a frequency-stable oscillator and amplifier and (2) a receiving station with a filter, lock-in amplifier, frequency-stable oscillator, and remote reporting device (e.g. cell phone system). Maximum distances between the transmitting and receiving stations are approximately 1.61 km (1 mile), although the length of pipeline monitored can be twice this using a single transmitter and one receiver on each side (since the signal travels in both directions). Certain conditions such as poor pipeline coatings or strong induced 60-Hz signals on the pipeline can degrade IACC performance, so localized testing should be performed to determine the suitability for an IACC installation at a given location. The method can be used with pipelines having active CP systems in place without causing interference with operation of the CP system. The most appropriate use of IACC is monitoring of localized high-consequence areas where there is a significant risk of third-party contact (e.g. construction activity). The method also lends itself to temporary, low-cost installation where there is a short-term need for monitoring.

Gary L. Burkhardt

2005-12-31T23:59:59.000Z

432

Guidelines manual for surface monitoring of geothermal areas  

DOE Green Energy (OSTI)

The following are covered: preliminary investigation, design of monitoring system, and monitoring operations. Included in appendices are: characteristics of geothermal subsidence, guidelines for specifications for monitoring subsidence, instruments for monitoring, formats for data presentation, and statistical analyses. (MHR)

Van Til, C.J.

1979-05-01T23:59:59.000Z

433

Wide area network monitoring system for HEP experiments at Fermilab  

SciTech Connect

Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centers. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

Grigoriev, Maxim; /Fermilab; Cottrell, Les; Logg, Connie; /SLAC

2004-12-01T23:59:59.000Z

434

Hanford Site Groundwater Monitoring for Fiscal Year 2000  

SciTech Connect

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2001-03-01T23:59:59.000Z

435

Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant, January--December 1995  

Science Conference Proceedings (OSTI)

The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (benthic macroinvertebrates, fish). This report focuses on ESD activities occurring from Jan. 1995 to Dec. 1995, although activities conducted outside this period are included as appropriate.

Kszos, L.A. [ed.

1996-04-01T23:59:59.000Z

436

Facility effluent monitoring plan for the 3720 facility  

SciTech Connect

This report describes the effluent monitoring plan for the 3720 facility. Airborne and liquid effluents are monitored.

Ballinger, M.Y.

1994-11-01T23:59:59.000Z

437

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network (OSTI)

Advanced pipeline monitoringDesign of mobile pipeline floating sensor “SewerSnortIllustration of mobile pipeline floating sensor monitoring

Lim, Jungsoo

2012-01-01T23:59:59.000Z

438

Independent Activity Report, Lawrence Livermore National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Lawrence Livermore National Laboratory Activity Report, Lawrence Livermore National Laboratory - October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities [HIAR LLNL-2012-10-23] The purpose of this Office of Health, Safety and Security (HSS) Independent Oversight activity was to maintain site operational awareness of key nuclear safety performance areas, monitor ongoing site oversight and planning activities for Lawrence Livermore National Laboratory (LLNL) nuclear facilities, and identify and initiate coordination of future HSS oversight activities at the site, including planned HSS targeted reviews planned for Fiscal Year (FY) 2013. Independent Activity Report, Lawrence Livermore National Laboratory -

439

Analyzing neural correlates of attentional changes during the exposure to virtual environments: application of transcranial doppler monitoring  

Science Conference Proceedings (OSTI)

Transcranial Doppler monitoring (TCD) has been proposed as a tool to be used in Augmented Cognition (AugCog) systems to monitor brain activation during the performance of different cognitive tasks. In the present study, the main goal is to analyze variations ... Keywords: augmented cognition, cognitive state assessment, neurophysiological data, transcranial doppler, virtual reality

Beatriz Rey; Vera Parkhutik; José Tembl; Mariano Alcañiz

2011-07-01T23:59:59.000Z

440

<