National Library of Energy BETA

Sample records for activity static temperature

  1. Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    2003. Estimation of static formation temperatures in geothermal wells. Energy conversion and management. 44(8):1343-1355. Page Area Activity Start Date Activity...

  2. Static Temperature Survey At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Medicine...

  3. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

  4. Static Temperature Survey At Maui Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Maui Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Maui Area (DOE GTP) Exploration Activity Details...

  5. Static Temperature Survey At Wister Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Wister Area (DOE GTP) Exploration Activity...

  6. Static Temperature Survey At Chena Area (Erkan, Et. Al., 2008...

    Open Energy Info (EERE)

    Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Once a hole is drilled the natural-state pressure distribution with depth is essentially...

  7. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area...

  8. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue...

  9. Static Temperature Survey At San Andreas Region (Williams, Et...

    Open Energy Info (EERE)

    San Andreas Region (Williams, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At San Andreas Region...

  10. Static Temperature Survey At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  11. Category:Static Temperature Survey | Open Energy Information

    Open Energy Info (EERE)

    Static Temperature Survey Jump to: navigation, search Geothermalpower.jpg Looking for the Static Temperature Survey page? For detailed information on Static Temperature Survey,...

  12. Static Temperature Survey At Hot Pot Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Hot Pot Area (DOE GTP) Exploration Activity...

  13. Static Temperature Survey At U.S. South Region (Smith & Dees...

    Open Energy Info (EERE)

    U.S. South Region (Smith & Dees, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At U.S. South Region (Smith &...

  14. Static Temperature Survey At Rio Grande Rift Region (Morgan,...

    Open Energy Info (EERE)

    Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann,...

  15. Static Temperature Survey At Vale Hot Springs Area (Combs, Et...

    Open Energy Info (EERE)

    temperature gradient. After the hole reached TD, a pressure-temperature storage ("memory") tool was also used to compare temperature data with that previously taken by the PRT...

  16. Static Temperature Survey At Newberry Caldera Area (Combs, Et...

    Open Energy Info (EERE)

    temperature measurements. These temperature logs were taken with Sandia's platinum-resistance-thermometer (PRT) tool which along with a Sandia logging truck remained on-site for...

  17. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley caldera groundwater system based on detailed integration of results from pump tests, fluid level monitoring, temperature logging, and fluid samplinganalysis of the...

  18. Estimation of static formation temperatures in geothermal wells...

    Open Energy Info (EERE)

    Humeros geothermal field, Mexico, using the Horner and the spherical radial flow (SRF) methods. The results showed that the Horner method underestimates formation temperatures,...

  19. Static Temperature Survey At Coso Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet. Water chemistry indicates that this geothermal resource is a hot-water rather than a...

  20. Static Temperature Survey At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    create computer simulations of the heat flow patterns in the East Rift Zone References Albert J. Rudman, David Epp (1983) Conduction Models Of The Temperature Distribution In The...

  1. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    beneath the resurgent dome. References Christopher Farrar, Jacob DeAngelo, Colin Williams, Frederick Grubb, Shaul Hurwitz (2010) Temperature Data From Wells in Long Valley...

  2. Static Temperature Survey At Reese River Area (Henkle & Ronne...

    Open Energy Info (EERE)

    Usefulness not indicated DOE-funding Unknown Notes Temperature logs were run on well 56-4 on March 22, April 28 and Nov. 9, 2007. The respective maximum bottom hole...

  3. Static Temperature Survey At Steamboat Springs Area (Combs, Et...

    Open Energy Info (EERE)

    DOE-funding Unknown Notes Numerous temperature logs were taken with Sandia'splatinum-resistance-thermometer (PRT) tool which along with a Sandia logging truck remained on-site for...

  4. Static Temperature Survey At Molokai Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to...

  5. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect (OSTI)

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  6. Temperature and epi thickness dependence of the heavy ion induced latchup threshold for a CMOS/epi 16K static RAM

    SciTech Connect (OSTI)

    Smith, L.S.; Nichols, D.K.; Coss, J.R.; Price, W.E.; Binder, D.

    1987-12-01

    Data have been obtained with krypton and xenon ions for the latchup threshold vs. temperature of four different versions of a Harris CMOS/epi 16K static RAM. These special versions of the HM6516 RAM have 12-micron, 9-micron, 7-micron and 5-micron epi thicknesses, as grown. The test data showed a marked improvement in latchup resistance with decreasing epi thickness and with decreasing temperature over the range of 25/sup 0/C (operating chip ambient) to 100/sup 0/C.s.

  7. Overview of Fraunhofer IPM Activities in High Temperature Bulk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development ...

  8. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel ...

  9. High temperature solid oxide fuel development activities

    SciTech Connect (OSTI)

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  10. Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Device Development | Department of Energy Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology. PDF icon konig.pdf More

  11. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect (OSTI)

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W20E; 10N20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  12. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect (OSTI)

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  13. Rectifier cabinet static breaker

    DOE Patents [OSTI]

    Costantino, Jr, Roger A. (Mifflin, PA); Gliebe, Ronald J. (Library, PA)

    1992-09-01

    A rectifier cabinet static breaker replaces a blocking diode pair with an SCR and the installation of a power transistor in parallel with the latch contactor to commutate the SCR to the off state. The SCR serves as a static breaker with fast turnoff capability providing an alternative way of achieving reactor scram in addition to performing the function of the replaced blocking diodes. The control circuitry for the rectifier cabinet static breaker includes on-line test capability and an LED indicator light to denote successful test completion. Current limit circuitry provides high-speed protection in the event of overload.

  14. Static & Dynamic Response of 3D Solids

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  15. Axial static mixer

    DOE Patents [OSTI]

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  16. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  17. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  18. Static Scale Conversion (SSC)

    Energy Science and Technology Software Center (OSTI)

    2007-01-19

    The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle inmore » motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility.« less

  19. Self-calibrated active pyrometer for furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  20. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  1. Active Fault Controls At High-Temperature Geothermal Sites- Prospectin...

    Open Energy Info (EERE)

    model in which recently active (Holocene) faults are preferred conduits for migration of thermal water from deep crustal depths, and we infer that the detection of sites...

  2. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  3. Static tetraquark and pentaquark potentials

    SciTech Connect (OSTI)

    Alexandrou, C.; Koutsou, G.

    2005-01-01

    We evaluate the static qqqq and qqqqq potentials in the quenched theory at {beta}=5.8 and {beta}=6.0 on a lattice of size 16{sup 3}x32. We compare the static potentials to the sum of two meson potentials for the tetraquark system and to the sum of the baryonic and mesonic potentials for the pentaquark state, as well as, with the confining potential obtained in the strong coupling expansion.

  4. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    SciTech Connect (OSTI)

    Graciani, J.; Stacchiola, D.; Yang, F.; Evans, J.; Vidal, A. B.; Rodriguez, J. A.; Sanz, J. F.

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.

  5. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graciani, J.; Stacchiola, D.; Yang, F.; Evans, J.; Vidal, A. B.; Rodriguez, J. A.; Sanz, J. F.

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2more » (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less

  6. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    SciTech Connect (OSTI)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  7. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    SciTech Connect (OSTI)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  8. Static latching arrangement and method

    DOE Patents [OSTI]

    Morrison, Larry (Manteca, CA)

    1988-01-01

    A latching assembly for use in latching a cable to and unlatching it from a given object in order to move an object from one location to another is disclosed herein. This assembly includes a weighted sphere mounted to one end of a cable so as to rotate about a specific diameter of the sphere. The assembly also includes a static latch adapted for connection with the object to be moved. This latch includes an internal latching cavity for containing the sphere in a latching condition and a series of surfaces and openings which cooperate with the sphere in order to move the sphere into and out of the latching cavity and thereby connect the cable to and disconnect it from the latch without using any moving parts on the latch itself.

  9. CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe

    Broader source: Energy.gov [DOE]

    This presentation on high temperature proton exchange membrane fuel cells was given at the High Temperature Membrane Working Group Meeting in May 2007.

  10. Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter

    SciTech Connect (OSTI)

    Niwa, Akitsugu; Kobayashi, Takashi Nagase, Takashi; Naito, Hiroyoshi; Goushi, Kenichi; Adachi, Chihaya

    2014-05-26

    Using steady-state and time-resolved photoluminescence (PL) spectroscopy, we have investigated the temperature dependence of PL properties of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN), which have a small energy gap between its singlet and triplet excited states and thus exhibits efficient thermally activated delayed fluorescence [H. Uoyama et al., Nature 492, 235 (2012)]. Below around 100?K, PL quantum efficiency of 4CzIPN thin films is largely suppressed and strong photoexcitation intensity dependence appears. These features can be explained by using rate equations for the densities of singlet and triplet excited states considering a triplet-triplet annihilation process.

  11. Static Temperature Survey At Fort Bliss Area (Combs, Et Al.,...

    Open Energy Info (EERE)

    well. A suite of geophysical logs (gamma ray, neutron, sonic, and resistivity) was also run after completion of drilling. References Jim Combs, John T. Finger, Colin Goranson,...

  12. Static Temperature Survey At Kilauea Summit Area (Keller, Et...

    Open Energy Info (EERE)

    L. Trowbridge Grose, John C. Murray, Catherine K. Skokan (1979) Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Additional References Retrieved...

  13. Static Temperature Survey At Chena Area (Benoit, Et Al., 2007...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown References Dick Benoit, Gwen Holdmann, David Blackwell (2007) Low Cost Exploration, Testing, And Development Of The Chena...

  14. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Notes Two deeper wells encountered temps of 327 and 329 oF References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake...

  15. Static Temperature Survey At Lassen Volcanic National Park Area...

    Open Energy Info (EERE)

    indicate that the well has penetrated a lateral outflow plume of thermal water (Goff et al., 1988). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid...

  16. Static Temperature Survey (Cull, 1981) | Open Energy Information

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown Notes Although absolute values of heat flow may not be accurately determined with conventional techniques even at depths of 1000 m,...

  17. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy Citation Details In-Document Search Title: Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical

  18. Deflagration Rates and Molecular Bonding Trends of Statically...

    Office of Scientific and Technical Information (OSTI)

    Molecular Bonding Trends of Statically Compressed Secondary Explosives Citation Details In-Document Search Title: Deflagration Rates and Molecular Bonding Trends of Statically ...

  19. Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development

    Broader source: Energy.gov [DOE]

    Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology.

  20. Low and Room Temperature X-ray Structures of Protein Kinase A Ternary Complexes Shed New Light on Its Activity

    SciTech Connect (OSTI)

    Fisher, Zoe; Hanson, Leif; Kovalevsky, Andrey; Langan, Paul

    2012-01-01

    Posttranslational protein phosphorylation by protein kinase A (PKA) is a ubiquitous signaling mechanism which regulates many cellular processes. A low temperature X-ray structure of the PKA catalytic subunit (PKAc) ternary complex with ATP and a 20-residue peptidic inhibitor (IP20) at the physiological Mg2+ concentration of < 0.5mM revealed a single metal ion in the active site. The lack of a second metal in the low-temperature LT-PKAc-MgATP-IP20 renders the and phosphoryl groups of ATP to be very flexibile, with high thermal B-factors. Thus, the second metal is crucial for tight positioning of the terminal phosphoryl for transfer to a substrate, as demonstrated by comparison of the former structure with LT-PKAc- Mg2ATP-IP20 complex. In addition to the kinase activity, PKAc is also able to slowly catalyze the hydrolysis of ATP using a water molecule as a substrate. We found that at room temperature under X-ray irradiation ATP can be readily and completely hydrolyzed into ATP and a free phosphate ion in the crystals of the ternary complex LT-PKAc- Mg2ATP-IP20. The cleavage of ATP may be aided by X-ray-born free hydroxyl radicals, a very reactive chemical species, that move quickly through the crystal at room temperature. The phosphate anion is clearly visible in the electron density maps; it remains in the active site, but slides about 2 from its position in ATP toward Ala21 of IP20 that mimics the phosphorylation site. The phosphate, thus, pushes the peptidic inhibitor away from the product ADP, while resulting in dramatic conformational changes of IP20 terminal residues 24 and 25. X-ray structures of PKAc in complex with non-hydrolyzable ATP analog, AMPPNP, at both room and low temperatures demonstrated no temperature effects on the conformation and position of IP20.

  1. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  2. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect (OSTI)

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.

  3. Variational approach for static mirror structures

    SciTech Connect (OSTI)

    Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  4. Optically activated sub-millimeter dielectric relaxation in amorphous thin film silicon at room temperature

    SciTech Connect (OSTI)

    Rahman, Rezwanur; Ohno, Tim R.; Taylor, P. C.; Scales, John A.

    2014-05-05

    Knowing the frequency-dependent photo-induced complex conductivity of thin films is useful in the design of photovoltaics and other semi-conductor devices. For example, annealing in the far-infrared could in principle be tailored to the specific dielectric properties of a particular sample. The frequency dependence of the conductivity (whether dark or photo-induced) also gives insight into the effective dimensionality of thin films (via the phonon density of states) as well as the presence (or absence) of free carriers, dopants, defects, etc. Ultimately, our goal is to make low-noise, phase-sensitive room temperature measurements of the frequency-dependent conductivity of thin films from microwave frequencies into the far-infrared; covering, the frequency range from ionic and dipole relaxation to atomic and electronic processes. To this end, we have developed a high-Q (quality factor) open cavity resonator capable of resolving the complex conductivity of sub-micron films in the range of 100350?GHz (0.10.35 THz, or 0.41?meV). In this paper, we use a low-power green laser to excite bound charges in high-resistivity amorphous silicon thin film. Even at room temperature, we can resolve both the dark conductivity and photo-induced changes associated with dielectric relaxation and possibly some small portion of free carriers.

  5. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    SciTech Connect (OSTI)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energys High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

  6. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect (OSTI)

    James O'Brien

    2012-09-01

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during JanuaryAugust 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  7. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    SciTech Connect (OSTI)

    Briggs, Timothy; English, Shawn Allen; Nelson, Stacy Michelle

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  8. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T.; Pyatina, T.

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cements permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  9. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T.; Pyatina, T.

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cements permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  10. Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO2 supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Mi -Young; Kyriakidou, Eleni A.; Choi, Jae -Soon; Toops, Todd J.; Binder, Andrew J.; Thomas, Cyril; Schwartz, Viviane; Chen, Jihua; Hensley, Dale K.; Parks, II, James E.

    2016-01-18

    In this study, we investigated the impact of ZrO2 on the performance of palladium-based oxidation catalysts with respect to low-temperature activity, hydrothermal stability, and sulfur tolerance. Pd supported on ZrO2 and SiO2 were synthesized for a comparative study. Additionally, in an attempt to maximize the ZrO2 surface area and improve sulfur tolerance, a Pd support with ZrO2-dispersed onto SiO2 was studied. The physicochemical properties of the catalysts were examined using ICP, N2 sorption, XRD, SEM, TEM, and NH3-, CO2-, and NOx-TPD. The activity of the Pd catalysts were measured from 60 to 600 °C in a flow of 4000 ppmmore » CO, 500 ppm NO, 1000 ppm C3H6, 4% O2, 5% H2O, and Ar balance. The Pd catalysts were evaluated in fresh, sulfated, and hydrothermally aged states. Overall, the ZrO2-containing catalysts showed considerably higher CO and C3H6 oxidation activity than Pd/SiO2 under the reaction conditions studied.« less

  11. Static & Dynamic Response of 2D Solids

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemorecontact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.less

  12. Static & Dynamic Response of 2D Solids

    Energy Science and Technology Software Center (OSTI)

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore »contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  13. FACET Tolerances for Static and Dynamic Misalignments

    SciTech Connect (OSTI)

    Federico, Joel

    2012-07-13

    The Facility for AdvancedAccelerator and Experimental Tests (FACET) at the SLAC National Accelerator Laboratory is designed to deliver a beam with a transverse spot size on the order of 10 {micro}m x 10 {micro}m in a new beamline constructed at the two kilometer point of the SLAC linac. Commissioning the beamline requires mitigating alignment errors and their effects, which can be significant and result in spot sizes orders of magnitude larger. Sextupole and quadrupole alignment errors in particular can introduce errors in focusing, steering, and dispersion which can result in spot size growth, beta mismatch, and waist movement. Alignment errors due to static misalignments, mechanical jitter, energy jitter, and other physical processes can be analyzed to determine the level of accuracy and precision that the beamline requires. It is important to recognize these effects and their tolerances in order to deliver a beam as designed.

  14. Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

    SciTech Connect (OSTI)

    Carr, C W; Bude, J D; Shen, N; Demange, P

    2010-10-26

    Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  15. Dynamic temperature measurements with embedded optical sensors...

    Office of Scientific and Technical Information (OSTI)

    A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible ...

  16. Liquid methanol under a static electric field

    SciTech Connect (OSTI)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (?0.31 V/) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/, as is also the case of water, but the resulting ionic conductivity (?0.40 S cm{sup ?1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  17. Selecting a static uninterruptible power supply

    SciTech Connect (OSTI)

    Palko, E.

    1996-10-01

    In the not-so-distant past, quality electric power received from the utility company could be properly defined as a power supply with reasonably good voltage regulation accompanied by relatively few and brief outages. This simple but adequate definition lost all validity with the launching of the solid-state electronic revolution--and most notably, with the proliferation of digital electronics. There are numerous types of power conditioners that eliminate or minimize power quality problems on an individual basis. Such equipment includes surge suppressors that effectively arrest transient spikes, voltage regulators that cope with problems of voltage deviation, and shielded isolation transformers that effectively screen out electrical noise. There are also hybrid conditioners that combine two or more of these individual functions. But when problems are severe, and supplied systems and equipment have a low tolerance level for even occasional and minor power quality aberrations--and where operations must be maintained on total loss of power--only a uninterruptible power supply (UPS) suffices. Static UPSs are offered in three basic versions--online, line interactive, and offline. Each is described.

  18. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    SciTech Connect (OSTI)

    Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  19. Measuring Static and Dynamic Properties of Frozen Silty Soils

    SciTech Connect (OSTI)

    Furnish, M.D.

    1998-09-30

    A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.

  20. Secure communication of static information by electronic means

    DOE Patents [OSTI]

    Gritton, Dale G. (Pleasanton, CA)

    1994-01-01

    A method and apparatus (10) for the secure transmission of static data (16) from a tag (11) to a remote reader (12). Each time the static data (16) is to be transmitted to the reader (12), the 10 bits of static data (16) are combined with 54 bits of binary data (21), which constantly change from one transmission to the next, into a 64-bit number (22). This number is then encrypted and transmitted to the remote reader (12) where it is decrypted (26) to produce the same 64 bit number that was encrypted in the tag (11). With a continual change in the value of the 64 bit number (22) in the tag, the encrypted numbers transmitted to the reader (12) will appear to be dynamic in character rather than being static.

  1. Deflagration Rates and Molecular Bonding Trends of Statically Compressed

    Office of Scientific and Technical Information (OSTI)

    Secondary Explosives (Conference) | SciTech Connect Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives Citation Details In-Document Search Title: Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives We discuss our measurements of the chemical reaction propagation rate as a function of pressure. Materials investigated have included CL-20, HMX, TATB, and RDX crystalline powders, LX-04, Comp B, and nitromethane.

  2. The most incompressible metal osmium at static pressures above 750

    Office of Scientific and Technical Information (OSTI)

    gigapascals (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The most incompressible metal osmium at static pressures above 750 gigapascals Citation Details In-Document Search Title: The most incompressible metal osmium at static pressures above 750 gigapascals Authors: Dubrovinsky, L. ; Dubrovinskaia, N. ; Bykova, E. ; Bykov, M. ; Prakapenka, V. ; Prescher, C. ; Glazyrin, K. ; Liermann, H.-P. ; Hanfland, M. ; Ekholm, M. ; Feng, Q. ; Pourovskii, L.V. ;

  3. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  4. Partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal at a medium temperature

    SciTech Connect (OSTI)

    Liming Shi; Xuchang Xu

    2005-12-01

    Laboratory experiments were conducted to investigate the reactivity of partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal. Sulfation tests were performed at 550{sup o}C using a fixed bed reactor under conditions simulating economizer zone injection flue gas desulfurization. Activation experiments were conducted with water or steam using a range of temperatures between 100 and 550{sup o}C. The results showed that the reactivity of the sorbents was closely related to the content of Ca(OH){sub 2} formed in the activation process, which varied with the water or steam temperature. The sulfur dioxide capture capacity of Ca(OH){sub 2} in the sorbent is higher than that of CaO at a medium temperature. Water or steam temperatures in the range of 100-200{sup o}C are favorable to the formation of Ca(OH){sub 2} from CaO. 15 refs., 8 figs., 2 tabs.

  5. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    SciTech Connect (OSTI)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T. [Fusion and Materials for Nuclear System Division, Oak Ridge National Laboratory, Oak Ridge (United States); Rasmussen, David A.; Hechler, Michael P. [U.S. ITER Project Office, Oak Ridge National Laboratory, Oak Ridge (United States); Pearce, Robert J. H.; Dremel, Mattias [ITER Organization, 13115 St. Paul-lez-Durance (France); Boissin, J.-C. [Consultant, Grenoble (France)

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  6. Memorandum Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  7. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  8. Fluorescent lamp with static magnetic field generating means

    DOE Patents [OSTI]

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  9. Fluorescent lamp with static magnetic field generating means

    DOE Patents [OSTI]

    Moskowitz, Philip E. (Peabody, MA); Maya, Jakob (Brookline, MA)

    1987-01-01

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

  10. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect (OSTI)

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  11. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  12. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  13. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  14. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  15. THE AKARI 2.5-5.0 ?m SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    SciTech Connect (OSTI)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook; Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon; Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu; Oyabu, Shinki; Ohyama, Youichi E-mail: mim@astro.snu.ac.kr

    2015-01-01

    We present 2.5-5.0?m spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0?m spectral region contains emission lines such as Br? (2.63?m), Br? (4.05?m), and polycyclic aromatic hydrocarbons (3.3?m), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson etal. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ?1100 K and ?220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  16. Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence

    SciTech Connect (OSTI)

    Reddy, K. Sandeep; Kumar, Raghwendra; Verma, Mahendra K.

    2014-10-15

    We perform direct numerical simulations of quasi-static magnetohydrodynamic turbulence and compute various energy transfers including the ring-to-ring and conical energy transfers, and the energy fluxes of the perpendicular and parallel components of the velocity field. We show that the rings with higher polar angles transfer energy to ones with lower polar angles. For large interaction parameters, the dominant energy transfer takes place near the equator (polar angle ??(?)/2 ). The energy transfers are local both in wavenumbers and angles. The energy flux of the perpendicular component is predominantly from higher to lower wavenumbers (inverse cascade of energy), while that of the parallel component is from lower to higher wavenumbers (forward cascade of energy). Our results are consistent with earlier results, which indicate quasi two-dimensionalization of quasi-static magnetohydrodynamic flows at high interaction parameters.

  17. Variable-Width Datapath for On-Chip Network Static Power Reduction

    SciTech Connect (OSTI)

    Michelogiannakis, George; Shalf, John

    2013-11-13

    With the tight power budgets in modern large-scale chips and the unpredictability of application traffic, on-chip network designers are faced with the dilemma of designing for worst- case bandwidth demands and incurring high static power overheads, or designing for an average traffic pattern and risk degrading performance. This paper proposes adaptive bandwidth networks (ABNs) which divide channels and switches into lanes such that the network provides just the bandwidth necessary in each hop. ABNs also activate input virtual channels (VCs) individually and take advantage of drowsy SRAM cells to eliminate false VC activations. In addition, ABNs readily apply to silicon defect tolerance with just the extra cost for detecting faults. For application traffic, ABNs reduce total power consumption by an average of 45percent with comparable performance compared to single-lane power-gated networks, and 33percent compared to multi-network designs.

  18. Performance of pancake coils of parallel co-wound Ag/BSCCO tape conductors in static and ramped magnetic fields

    SciTech Connect (OSTI)

    Schwenterly, S.W.; Lue, J.W.; Lubell, M.S.; Walker, M.S.; Hazelton, D.W.; Haldar, P.; Rice, J.A.; Hoehn, J.G. Jr.; Motowidlo, L.R.

    1994-12-31

    Critical Currents are reported for several Ag/BSCCO single-pancake coils in static magnetic fields ranging from 0 to 5 T and temperatures from 4.2 K to 105 K. The sample coils were co-wound of one to six tape conductors in parallel. Since the closed loops formed in such an arrangement could lead to eddy current heating or instability in changing fields, one of the coils was also tested in helium gas, in fields ramped at rates of up to 1.5 T/s. For these quasi-adiabatic tests, at each temperature the transport current was set just below the critical value for a preset static field of 3.3 or 4.9 T. The field was then rapidly ramped down to zero, held for 20 sec, and then ramped back up to the original value. The maximum observed temperature transient of about 1.7 K occurred at 9 K, for a field change of 4.75 T. The temperature transients became negligible when the sample was immersed in liquid helium. Above 30 K, the transients were below 1 K. These results give confidence that parallel co-wound HTSC coils are stable in a rapidly-ramped magnetic field, without undue eddy current heating.

  19. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 2/5/2014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste Isolation Pilot Plant (WIPP) 26 miles east of Carlsbad, New Mexico. The activation occurred as a result of an emergency incident at the site. More information will be provided as soon as the extent of the emergency is determined. The Joint Information Center (JIC), located at 4021 National Parks Highway, has been

  20. Oscillating and static universes from a single barotropic fluid

    SciTech Connect (OSTI)

    Kehayias, John; Scherrer, Robert J.

    2015-12-09

    We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, p=f(ρ). We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability (“no-go” theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.

  1. Static properties of nuclear matter within the Boson Loop Expansion

    SciTech Connect (OSTI)

    Alberico, W.M.; Cenni, R. Garbarino, G.; Quaglia, M.R.

    2008-08-15

    The use of the Boson Loop Expansion is proposed for investigating the static properties of nuclear matter. We explicitly consider a schematic dynamical model in which nucleons interact with the scalar-isoscalar {sigma} meson. The suggested approximation scheme is examined in detail at the mean field level and at the one- and two-loop orders. The relevant formulas are provided to derive the binding energy per nucleon, the pressure and the compressibility of nuclear matter. Numerical results of the binding energy at the one-loop order are presented for Walecka's {sigma}-{omega} model in order to discuss the degree of convergence of the Boson Loop Expansion.

  2. NREL: Measurements and Characterization - Static Time-of-Flight Secondary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Mass Spectrometry (SIMS) Static Time-of-Flight Secondary Ion Mass Spectrometry (SIMS) Image of high mass resolution and mass accuracy provided by TOF SIMS We used the high mass resolution and mass accuracy of TOF SIMS to study surface cleanliness of in-oxide-coated glass after different types of isolation scribes and cleaning processes. Not all processes were equal. As-received in tin oxide was heavily contaminated with silicone oils (not shown). An acidic wash resulted in contamination

  3. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    SciTech Connect (OSTI)

    Horning, R.D.; Staudenmann, J.

    1987-05-25

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 /sup 0/C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a/sub perpendicular/>a/sub parallel/ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  4. Static-stress analysis of dual-axis safety vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    An 8-ft-diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high-explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the shellto-nozzle interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  5. Tritiated Dust Levitation by Beta Induced Static Charge

    SciTech Connect (OSTI)

    C.H. Skinner; C.A. Gentile; L. Ciebiera; S. Langish

    2003-06-04

    Tritiated particles have been observed to spontaneously levitate under the influence of a static electric field. Tritium containing co-deposits were mechanically scraped from tiles that had been used in the Tokamak Fusion Test Reactor (TFTR) inner limiter during the deuterium-tritium campaign and were placed in a glass vial. On rubbing the plastic cap of the vial a remarkable ''fountain'' of particles was seen inside the vial. Particles from an unused tile or from a TFTR co-deposit formed during deuterium discharges did not exhibit this phenomenon. It appears that tritiated particles are more mobile than other particles and this should be considered in assessing tokamak accident scenarios and in occupational safety.

  6. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect (OSTI)

    Mosher, J.C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  7. Memorandum, Approval of a Permanent Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 102 1)

    Broader source: Energy.gov [DOE]

    Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

  8. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  9. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Energy Savers [EERE]

    Department of Energy Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan,

  10. Determination of the Limits of Quasi-Static and Dynamic Solutions...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Determination of the Limits of Quasi-Static and Dynamic Solutions for Problems with Frictional Interfaces. Citation Details In-Document Search Title: Determination ...

  11. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  12. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  13. Static-stress analysis of dual-axis confinement vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.

  14. Quasi-static energy absorption of hollow microlattice structures

    SciTech Connect (OSTI)

    Liu, YL; Schaedler, TA; Jacobsen, AJ; Chen, X

    2014-12-01

    We present a comprehensive modeling and numerical study focusing on the energy quasi-static crushing behavior and energy absorption characteristics of hollow tube microlattice structures. The peak stress and effective plateau stress of the hollow microlattice structures are deduced for different geometrical parameters which gives volume and mass densities of energy absorption, D-v and D-m, scale with the relative density, (rho) over bar, as D-v similar to (rho) over bar (1) (5) and D-m similar to (rho) over bar (0 5), respectively, fitting very well to the experimental results of both 60 degrees inclined and 90 degrees predominately microlattices. Then the strategies for energy absorption enhancement are proposed for the engineering design of microlattice structures. By introducing a gradient in the thickness or radius of the lattice members, the buckle propagation can be modulated resulting in an increase in energy absorption density that can exceed 40%. Liquid filler is another approach to improve energy absorption by strengthening the microtruss via circumference expansion, and the gain may be over 100% in terms of volume density. Insight into the correlations between microlattice architecture and energy absorption performance combined with the high degree of architecture control paves the way for designing high performance microlattice structures for a range of impact and impulse mitigation applications for vehicles and structures. (C) 2014 Elsevier Ltd. All rights reserved.

  15. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    SciTech Connect (OSTI)

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-02-18

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 ??. A sensitivity of 1190 pF/? is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.

  16. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System  SWATS In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil

  17. The curious case of HD 41248. A pair of static signals buried behind red noise

    SciTech Connect (OSTI)

    Jenkins, J. S.; Tuomi, M.

    2014-10-20

    Gaining a better understanding of the effects of stellar-induced radial velocity noise is critical for the future of exoplanet studies since the discovery of the lowest-mass planets using this method will require us to go below the intrinsic stellar noise limit. An interesting test case in this respect is that of the southern solar analog HD 41248. The radial velocity time series of this star has been proposed to contain either a pair of signals with periods of around 18 and 25 days, which could be due to a pair of resonant super-Earths, or a single and varying 25 day signal that could arise due to a complex interplay between differential rotation and modulated activity. In this work, we build up more evidence for the former scenario, showing that the signals are still clearly significant, even after more than 10 yr of observations, and they likely do not change in period, amplitude, or phase as a function of time, the hallmarks of static Doppler signals. We show that over the last two observing seasons, this star was more intrinsically active and the noise reddened, highlighting why better noise models are needed to find the lowest amplitude signals, in particular, models that consider noise correlations. This analysis shows that there is still sufficient evidence for the existence of two super-Earths on the edge of, or locked into, a 7:5 mean motion resonance orbiting HD 41248.

  18. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  19. CARISMA: A Networking Project for High Temperature PEMFC MEA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe This...

  20. Evaluation of Pseudo-Static Coefficients According to Performance-Based Criteria

    SciTech Connect (OSTI)

    Biondi, Giovanni; Maugeri, Michele; Cascone, Ernesto

    2008-07-08

    A rational procedure is presented for the selection of the equivalent seismic coefficient to be introduced in the pseudo-static analysis of geotechnical systems which, at failure, behave as a 1-degree of freedom system. It is shown that although pseudo-static and displacement analyses may be regarded as alternative methods of analysis, the seismic coefficient may be related to earthquake-induced permanent displacements and, then, to the expected level of damage. Following the proposed procedure a pseudo-static analysis in accordance with performance based design can be carried out.

  1. Stability of the Einstein static universe in the presence of vacuum energy

    SciTech Connect (OSTI)

    Carneiro, Saulo; Tavakol, Reza

    2009-08-15

    The Einstein static universe has played a central role in a number of emergent scenarios recently put forward to deal with the singular origin of the standard cosmological model. Here we study the existence and stability of the Einstein static solution in the presence of vacuum energy corresponding to conformally invariant fields. We show that the presence of vacuum energy stabilizes this solution by changing it to a center equilibrium point, which is cyclically stable. This allows nonsingular emergent cosmological models to be constructed in which initially the Universe oscillates indefinitely about an initial Einstein static solution and is thus past eternal.

  2. Monitoring the subsurface with quasi-static deformation

    SciTech Connect (OSTI)

    Sneider, Roel; Spetzler, Hartmut

    2013-09-06

    This project consisted of three sub-projects that are all aimed at monitoring the subsurface with geophysical methods. The objectives of these sub-projects are: to investigate the use of seismic waves for remote monitoring of temperature changes in the Yucca Mountain nuclear repository; to investigate the use of measured changes in the tidal tilt as a diagnostic for the infiltration of fluids in the subsurface; and to extract the electrostatic response from dynamic field fluctuations.

  3. Method for using global optimization to the estimation of surface-consistent residual statics

    DOE Patents [OSTI]

    Reister, David B. (Knoxville, TN); Barhen, Jacob (Oak Ridge, TN); Oblow, Edward M. (Knoxville, TN)

    2001-01-01

    An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.

  4. Au-Ag Alloy Static High Pressure EOS measurements: FY09 summary...

    Office of Scientific and Technical Information (OSTI)

    Static high-pressure measurements of the equation of state of a Gold-Silver alloy (23.5 ... EOS curves of silver and gold, taken from the literature, are shown for comparison. We fit ...

  5. Stability of the Einstein static universe in Einstein-Cartan theory

    SciTech Connect (OSTI)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, Tabriz, 53714-161 (Iran, Islamic Republic of)

    2014-06-01

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  6. Determination of the Limits of Quasi-Static and Dynamic Solutions for

    Office of Scientific and Technical Information (OSTI)

    Problems with Frictional Interfaces. (Journal Article) | SciTech Connect Journal Article: Determination of the Limits of Quasi-Static and Dynamic Solutions for Problems with Frictional Interfaces. Citation Details In-Document Search Title: Determination of the Limits of Quasi-Static and Dynamic Solutions for Problems with Frictional Interfaces. Abstract not provided. Authors: Brake, Matthew Robert ; Hills, David A. Publication Date: 2013-07-01 OSTI Identifier: 1106209 Report Number(s):

  7. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the

  8. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery

    SciTech Connect (OSTI)

    Han, Eun Young; Zhang Xin; Yan Yulong; Sharma, Sunil; Penagaricano, Jose; Moros, Eduardo; Corry, Peter

    2012-01-01

    At University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9-1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  9. Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector |

    Energy Savers [EERE]

    Department of Energy Nonprocess Energy in U.S. Manufacturing Sector Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector The Nonprocess Energy Static Sankey diagram shows how energy is used for supporting functions by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Process Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize

  10. Static Sankey Diagram of Onsite Generation in U.S. Manufacturing Sector |

    Energy Savers [EERE]

    Department of Energy Onsite Generation in U.S. Manufacturing Sector Static Sankey Diagram of Onsite Generation in U.S. Manufacturing Sector The Onsite Generation Static Sankey diagram shows how steam and electricity are generated by U.S. manufacturing plants. Click on the Full Sector, Process Energy, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the

  11. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    SciTech Connect (OSTI)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

  12. Comparison of direct and quasi-static methods for neutron kinetic calculations with the EDF R and D COCAGNE code

    SciTech Connect (OSTI)

    Girardi, E.; Guerin, P.; Dulla, S.; Nervo, M.; Ravetto, P.

    2012-07-01

    Quasi-Static (QS) methods are quite popular in the reactor physics community and they exhibit two main advantages. First, these methods overcome both the limits of the Point Kinetic (PK) approach and the issues of the computational effort related to the direct discretization of the time-dependent neutron transport equation. Second, QS methods can be implemented in such a way that they can be easily coupled to very different external spatial solvers. In this paper, the results of the coupling between the QS methods developed by Politecnico di Torino and the EDF R and D core code COCAGNE are presented. The goal of these activities is to evaluate the performances of QS methods (in term of computational cost and precision) with respect to the direct kinetic solver (e.g. {theta}-scheme) already available in COCAGNE. Additionally, they allow to perform an extensive cross-validation of different kinetic models (QS and direct methods). (authors)

  13. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive EnvironmentsSignificant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Suter, Jonathan D.

    2012-09-01

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  14. Unequal density effect on static structure factor of coupled electron layers

    SciTech Connect (OSTI)

    Saini, L. K. Nayak, Mukesh G.

    2014-04-24

    In order to understand the ordered phase, if any, in a real coupled electron layers (CEL), there is a need to take into account the effect of unequal layer density. Such phase is confirmed by a strong peak in a static structure factor. With the aid of quantum/dynamical version of Singwi, Tosi, Land and Sjlander (so-called qSTLS) approximation, we have calculated the intra- and interlayer static structure factors, S{sub ll}(q) and S{sub 12}(q), over a wide range of density parameter r{sub sl} and interlayer spacing d. In our present study, the sharp peak in S{sub 22}(q) has been found at critical density with sufficiently lower interlayer spacing. Further, to find the resultant effect of unequal density on intra- and interlayer static structure factors, we have compared our results with that of the recent CEL system with equal layer density and isolated single electron layer.

  15. Practical substrate and apparatus for static and continuous monitoring by surface-enhanced raman spectroscopy

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1987-01-01

    A substrate for use in surface-enhanced Raman spectroscopy (SERS) is disclosed, comprising a support, preferably flexible, coated with roughness-imparting microbodies and a metallized overcoating. Also disclosed is apparatus for using the aforesaid substrate in continuous and static SERS trace analyses, especially of organic compounds.

  16. Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data

    SciTech Connect (OSTI)

    Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning

    2003-03-10

    The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.

  17. Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory

    SciTech Connect (OSTI)

    J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

    2010-01-01

    Silicon carbide (SiC) temperature monitors are now available for use as temperature sensors in Advanced Test Reactor (ATR) irradiation test capsules. Melt wires or paint spots, which are typically used as temperature sensors in ATR static capsules, are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that may have occurred during irradiation. As part of the efforts initiated by the ATR National Scientific User Facility (NSUF) to make SiC temperature monitors available, a capability was developed to complete post-irradiation evaluations of these monitors. As discussed in this report, the Idaho National Laboratory (INL) selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. This document describes the INL efforts to develop the capability to complete these resistance measurements. In addition, the procedure is reported that was developed to assure that high quality measurements are made in a consistent fashion.

  18. High pressure and high temperature apparatus

    DOE Patents [OSTI]

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  19. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    SciTech Connect (OSTI)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-07-08

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state.

  20. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect (OSTI)

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  1. On the dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever

    SciTech Connect (OSTI)

    Finot, Eric; Fabre, Arnaud; Passian, Ali; Thundat, Thomas

    2014-03-01

    Mechanical resonators shaped like microcantilevers have been demonstrated as a platform for very sensitive detection of chemical and biological analytes. However, its use as an analytical tool will require fundamental understanding of the molecular absorption-induced effects in the static and dynamic sensor response. The effect of absorption-induced surface stress on the microcantilever response is here investigated using palladium hydride formation. It is shown that the resonance and deformation states of the cantilever monitored simultaneously exhibit excellent correlation with the phase of the hydride formation. However, the associated frequency shifts and quasistatic bending are observed to be independent during solid solution phase. Importantly, absorption-induced changes in the elastic parameters of the palladium film are found to play a dominant role in the static and dynamic response. The presented results help in discerning the parameters that control the cantilever response as well as the relationships between these parameters.

  2. Control of high-order harmonics for attoscience using a static-electric-field pattern

    SciTech Connect (OSTI)

    Serrat, Carles

    2011-12-15

    Quantum control in high-order-harmonic generation is considered theoretically by using a spatial distribution of static electric fields along the propagation direction of the driving field. It is shown that the trajectories of the electrons during its acceleration by the laser field in the high-harmonics-generation process can be controlled by periodically distributed static electric fields, which conveniently shape the driving laser field during propagation. Applying this mechanism, a quasi-phase-matching scheme that leads to filtered enhanced high harmonics is achieved. The harmonics in the plateau region are enhanced due to periodical phase variations in the long quantum trajectories as a consequence of the faster change experienced by the intensity-dependent phase along the longer electron trajectories. This effect should be observed in all quasi-phase-matching schemes based on perturbation of the microscopic quantum phase. The richness of adding a static-electric-field spatial pattern in the interaction region suggests a general scheme for feedback loop control in high-order-harmonic generation.

  3. Interaction of biological systems with static and ELF electric and magnetic fields

    SciTech Connect (OSTI)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J.

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

  4. High strain in polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys under overlapped static and oscillating magnetic fields

    SciTech Connect (OSTI)

    Montanher, D. Z.; Pereira, J. R. D.; Ctica, L. F.; Santos, I. A.; Gotardo, R. A. M.; Viana, D. S. F.; Garcia, D.; Eiras, J. A.

    2014-09-21

    Martensitic polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys, with a stacking period of 14 atomic planes at room temperature, were innovatively processed by combining high-energy ball milling and powder metallurgy. Bulk samples were mechanically coupled to a piezoelectric material in a parallel configuration, and the mechanical deformation of the studied system due to the twin's variant motion was investigated under overlapped static and oscillating magnetic fields. A reversible and high mechanical deformation is observed when the frequency of the oscillating magnetic field is tuned with the natural vibration frequency of this system. In this condition, a linear deformation as a function of the static magnetic field amplitude occurs in the 4 kOe range, and a mechanical deformation of 2% at 10 kOe is observed.

  5. Pressure Temperature Log At Fort Bliss Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss...

  6. Pressure Temperature Log At Silver Peak Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak...

  7. Pressure Temperature Log At Flint Geothermal Area (DOE GTP) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Flint Geothermal Area (DOE GTP) Exploration Activity Details Location Flint...

  8. Pressure Temperature Log At Glass Buttes Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

  9. Pressure Temperature Log At Colrado Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Colrado Area (DOE GTP) Exploration Activity...

  10. Pressure Temperature Log At Alum Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Alum Area (DOE GTP) Exploration Activity Details...

  11. Pressure Temperature Log At Wister Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Wister Area (DOE GTP) Exploration Activity...

  12. Pressure Temperature Log At Maui Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Maui Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Maui Area (DOE GTP) Exploration Activity Details...

  13. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect (OSTI)

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  14. Laboratory Studies of the Effects of Static and Variable Magnetic Fields on Freshwater Fish

    SciTech Connect (OSTI)

    Cada, Glenn F; Bevelhimer, Mark S; Fortner, Allison M; Riemer, Kristina P; Schweizer, Peter E

    2012-04-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the effect on aquatic organisms of electromagnetic fields (EMF) created by the projects. The submerged electrical generator will emit an EMF into the surrounding water, as will underwater cables used to transmit electricity from the generator to the shore, between individual units in an array (inter-turbine cables), and between the array and a submerged step-up transformer. The electric current moving through these cables will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of fish and benthic invertebrates (Gill et al. 2005, 2009). It is known that numerous marine and freshwater organisms are sensitive to electrical and magnetic fields, often depending on them for such diverse activities as prey location and navigation (DOE 2009; Normandeau et al. 2011). Despite the wide range of aquatic organisms that are sensitive to EMF and the increasing numbers of underwater electrical transmitting cables being installed in rivers and coastal waters, little information is available to assess whether animals will be attracted, repelled, or unaffected by these new sources of EMF. This knowledge gap is especially significant for freshwater systems, where electrosensitive organisms such as paddlefish and sturgeon may interact with electrical transmission cables. We carried out a series of laboratory experiments to test the sensitivity of freshwater fish and invertebrates to the levels of EMF that are expected to be produced by HK projects in rivers. In this context, EM fields are likely to be emitted primarily by generators in the water column and by transmission cables on or buried in the substrate. The HK units will be located in areas of high-velocity waters that are used as only temporary habitats for most riverine species, so long-term exposure of fish and benthic invertebrates to EMF is unlikely. Rather, most aquatic organisms will be briefly exposed to the fields as they drift downstream or migrate upstream. Because the exposure of most aquatic organisms to EMF in a river would be relatively brief and non-lethal, we focused our investigations on detecting behavioral effects. For example, attraction to the EM fields could result in prolonged exposures to the fields or the HK rotor. On the other hand, avoidance reactions might hinder upstream migrations of fish. The experiments reported here are a continuation of studies begun in FY 2010, which focused on the potential effects of static magnetic fields on snails, clams, and fathead minnows (Cada et al. 2011). Those experiments found little indication that the behaviors of these freshwater species were a

  15. Static SIMS Analysis of Carbonate on Basic Alkali-bearing Surfaces

    SciTech Connect (OSTI)

    Groenewold, Gary Steven; Gianotto, Anita Kay; Cortez, Marnie Michelle; Appelhans, Anthony David; Olsen, J.E.; Shaw, A. D.; Karahan, C.; Avci, R.

    2003-02-01

    Carbonate is a somewhat enigmatic anion in static secondary ion mass spectrometry (SIMS) because abundant ions containing intact CO32- are not detected when analyzing alkaline-earth carbonate minerals common to the geochemical environment. In contrast, carbonate can be observed as an adduct ion when it is bound with alkali cations. In this study, carbonate was detected as the adduct Na2CO3Na+ in the spectra of sodium carbonate, bicarbonate, hydroxide, oxalate, formate and nitrite and to a lesser extent nitrate. The appearance of the adduct Na2CO3Na+ on hydroxide, oxalate, formate and nitrite surfaces was interpreted in terms of these basic surfaces fixing CO2 from the ambient atmosphere. The low abundance of Na2CO3Na+ in the static SIMS spectrum of sodium nitrate, compared with a significantly higher abundance in salts having stronger conjugate bases, suggested that the basicity of the conjugate anions correlated with aggressive CO2 fixation; however, the appearance of Na2CO3Na+ could not be explained simply in terms of solution basicity constants. The oxide molecular ion Na2O+ and adducts NaOHNa+ and Na2ONa+ also constituted part of the carbonate spectral signature, and were observed in spectra from all the salts studied. In addition to the carbonate and oxide ions, a low-abundance oxalate ion series was observed that had the general formula Na2-xHxC2O4Na+, where 0 < x < 2. Oxalate adsorption from the laboratory atmosphere was demonstrated but the oxalate ion series also was likely to be formed from reductive coupling occurring during the static SIMS bombardment event. The remarkable spectral similarity observed when comparing the sodium salts indicated that their surfaces shared common chemical speciation and that the chemistry of the surfaces was very different from the bulk of the particle. Copyright 2003 John Wiley & Sons, Ltd.

  16. Activity report

    SciTech Connect (OSTI)

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  17. Static strain aging behavior of ultra low carbon bake hardening steel

    SciTech Connect (OSTI)

    De, A.K.; Cooman, B.C. de; Vandeputte, S.

    1999-09-10

    A detailed study of static strain aging in ultra low carbon (ULC) steel has not yet been reported. Therefore, the present study was carried out to gain an understanding of the aging kinetics in a ULC steel with a total carbon content of 20 ppm. The influence of dislocation density on the aging process was also taken into account. The kinetics of the aging were determined by means of the measurement of strength properties rather than solute concentration as it was experienced that quantitative estimation of such low amount of carbon during aging course would be too difficult with the existing diagnostic tools.

  18. Finite size effects in the static structure factor of dusty plasmas

    SciTech Connect (OSTI)

    Davletov, A. E. Yerimbetova, L. T.; Mukhametkarimov, Ye. S.; Ospanova, A. K.

    2014-07-15

    Based on the previously developed pseudopotential model of the dust particles interaction, which takes into account both the finite size and screening effects, the equilibrium distribution functions are investigated in a broad range of plasma parameters. The treatment stems entirely from the renormalization theory of plasma particles interactions which leads to the so-called generalized Poisson-Boltzmann equation. In particular, an analytical expression for the static structure factor of the dust particles is proposed and its non-monotonic behavior in the hyper-netted chain approximation is found in a specified domain of plasma parameters to indicate the formation of short- or even long-range order in the system.

  19. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    SciTech Connect (OSTI)

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  20. High-temperature thermodynamics of the ferromagnetic Kondo-lattice model

    SciTech Connect (OSTI)

    Roeder, H.; Singh, R.R.; Zang, J.

    1997-09-01

    We present a high-temperature series expansion for the ferromagnetic Kondo-lattice model in the large coupling limit, which is used to model colossal magnetoresistance (CMR) perovskites. Our results show the expected crossover to Curie-Weiss behavior at a temperature related to the bandwidth. Estimates for the magnetic transition temperatures are in the experimentally observed range. The compressibility shows that the high-temperature charge excitations can be modeled by spinless fermions. The CMR effect itself, however, warrants the inclusion of dynamic effects and cannot be explained by a static calculation. {copyright} {ital 1997} {ital The American Physical Society}

  1. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Steyert, William A. (Los Alamos, NM)

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  2. Λb→pl⁻ν¯l form factors from lattice QCD with static b quarks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Detmold, William; Lin, C.-J. David; Meinel, Stefan; Wingate, Matthew

    2013-07-23

    We present a lattice QCD calculation of form factors for the decay Λb→pμ⁻ν¯μ, which is a promising channel for determining the Cabibbo-Kobayashi-Maskawa matrix element |Vub| at the Large Hadron Collider. In this initial study we work in the limit of static b quarks, where the number of independent form factors reduces to two. We use dynamical domain-wall fermions for the light quarks, and perform the calculation at two different lattice spacings and at multiple values of the light-quark masses in a single large volume. Using our form factor results, we calculate the Λb→pμ⁻ν¯μ differential decay rate in the range 14more » GeV²≤q²≤q²max, and obtain the integral ∫q²max 14 GeV²[dΓ/dq²]dq²/|Vub|²=15.3±4.2 ps⁻¹. Combined with future experimental data, this will give a novel determination of |Vub| with about 15% theoretical uncertainty. The uncertainty is dominated by the use of the static approximation for the b quark, and can be reduced further by performing the lattice calculation with a more sophisticated heavy-quark action.« less

  3. Device for self-verifying temperature measurement and control

    DOE Patents [OSTI]

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  4. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  5. Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots

    SciTech Connect (OSTI)

    Midgett, Aaron G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Hillhouse, Hugh W. [Univ. of Washington, Seattle, WA (United States); Hughes, Barbara K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Nozik, Arthur J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Beard, Matthew C. [Univ. of Colorado, Boulder, CO (United States)

    2010-09-22

    Recent reports question the validity of pulsed fs-laser experiments for measuring the photon-to-exciton quantum yields (QYs) that result from multiple exciton generation (MEG). The repetitive nature of these experiments opens up an alternative relaxation pathway that may produce artificially high results. We present transient-absorption (TA) data for 4.6 and 6.6 nm diameter PbSe quantum dots (QDs) at a variety of pump photon energies. The data are collected under laminar flow conditions with volumetric flow rates ranging from 0 to 150 mL/min (resulting in Reynolds numbers up to 460). The results are modeled with a spatially resolved population balance of generation, recombination, convective replacement, and accumulation of long-lived excited QDs. By comparing the simulations and experiments, the steady-state population of the long-lived QD-excited states and their kinetics are determined for different experimental conditions. We also improve upon reported photon-to-exciton QYs for PbSe QDs. We find differences in the observed TA dynamics between flowing and static conditions that depend upon photon fluence, pump photon energy, and quality of the QD surfaces. For excitation energies below 2 Eg, independent of QD size or photon fluence, we observe no flow rate dependence in the TA dynamics. At excitation energies of h? > 3 Eg, we observe differences between static and flowing conditions that are most pronounced for high photon fluences. At 3.7 Eg and for 4.6 nm PbSe QDs we find a QY of 1.2 0.1 and at 4.5 Eg the QY is 1.55 0.05. With 6.6 nm QDs excited at 4.7 Eg we observe no difference between static and flowing conditions and find a QY of 1.61 0.05. We also find that by treating the surface of QDs, we can decrease the charging probability (Pg ? 5 10-5) by a factor of 3-4. The observed variations suggest that different QD samples vary regarding their susceptibility to the creation of long-lived states.

  6. MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

    SciTech Connect (OSTI)

    Albert C. Reynolds; Dean S. Oliver; Fengjun Zhang; Yannong Dong; Jan Arild Skjervheim; Ning Liu

    2003-01-01

    Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir models. In general, boundary locations, average permeability and porosity, relative permeability curves, and local flow properties may all need to be adjusted to achieve a plausible reservoir model that honors all data. In this project, we will characterize the distribution of geologic facies as an indicator random field, making use of the tools of geostatistics as well as the tools of inverse and probability theory for data integration.

  7. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  8. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect (OSTI)

    Jesse, Stephen; Morozovska, A. N.; Kalinin, Sergei V; Eliseev, E. A.; Yang, Nan; Doria, Sandra; Tebano, Antonello

    2013-01-01

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  9. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density and Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. Materials Each group of students will need the following: Balloon

  10. Sub-Hour Solar Data for Power System Modeling From Static Spatial Variability Analysis: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Ibanez, E.; Brinkman, G.; Lew, D.

    2012-12-01

    High penetration renewable integration studies need high quality solar power data with spatial-temporal correlations that are representative of a real system. This paper will summarize the research relating sequential point-source sub-hour global horizontal irradiance (GHI) values to static, spatially distributed GHI values. This research led to the development of an algorithm for generating coherent sub-hour datasets that span distances ranging from 10 km to 4,000 km. The algorithm, in brief, generates synthetic GHI values at an interval of one-minute, for a specific location, using SUNY/Clean Power Research, satellite-derived, hourly irradiance values for the nearest grid cell to that location and grid cells within 40 km.

  11. Continuum resonance induced electromagnetic torque by a rotating plasma response to static resonant magnetic perturbation field

    SciTech Connect (OSTI)

    Liu Yueqiang; Connor, J. W.; Cowley, S. C.; Ham, C. J.; Hastie, R. J.; Hender, T. C.

    2012-10-15

    A numerical study is carried out, based on a simple toroidal tokamak equilibrium, to demonstrate the radial re-distribution of the electromagnetic torque density, as a result of a rotating resistive plasma (linear) response to a static resonant magnetic perturbation field. The computed electromagnetic torque peaks at several radial locations even in the presence of a single rational surface, due to resonances between the rotating response, in the plasma frame, and both Alfven and sound continuum waves. These peaks tend to merge together to form a rather global torque distribution, when the plasma resistivity is large. The continuum resonance induced net electromagnetic torque remains finite even in the limit of an ideal plasma.

  12. Analysis of Godiva-IV delayed-critical and static super-prompt-critical conditions

    SciTech Connect (OSTI)

    Mosteller, Russell D; Goda, Joetta M

    2009-01-01

    Super-prompt-critical burst experiments were conducted on the Godiva-IV assembly at Los Alamos National Laboratory from the 1960s through 2005. Detailed and simplified benchmark models have been constructed for four delayed-critical experiments and for the static phase of a super-prompt-critical burst experiment. In addition, a two-dimensional cylindrical model has been developed for the super-prompt-critical condition. Criticality calculations have been performed for all of those models with four modern nuclear data libraries: ENDFIB-VI, ENDF/8-VII.0, JEFF-3.1 , and JENDL-3.3. Overall, JENDL-3.3 produces the best agreement with the reference values for k{sub eff}.

  13. High-Temperature Oxide Regrowth on Mechanically-Damaged Surfaces

    SciTech Connect (OSTI)

    Blau, Peter Julian; Lowe, Tracie M

    2008-01-01

    Here we report the effects of mechanical damage from a sharp stylus on the regrowth of oxide layers on a Ni-based superalloy known as Pyromet 80A . It was found that the oxide that reformed on the damaged portion of a pre-oxidized surface differed from that which formed on undamaged areas after the equal exposures to elevated temperature in air. These findings have broad implications for modeling the processes of material degradation in applications such as exhaust valves in internal combustion engines because they imply that static oxidation data for candidate materials may not adequately reflect their reaction to operating environments that involve both mechanical contact and oxidation.

  14. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  15. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  16. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E. (Vashon, WA); Poole, Donald R. (Woodinville, WA); Schmidt, Eckart W. (Bellevue, WA); Wang, Charles (Lafayette, IN)

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  17. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  18. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  19. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  20. Static downhole characteristics of well CGEH-1 at Coso Hot Springs...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (5) Acoustic Logs At Coso Geothermal Area (1977) Cuttings Analysis At Coso Geothermal Area (1977) Gamma Log At Coso Geothermal Area...

  1. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  2. Efficiency of static core turn-off in a system-on-a-chip with variation

    DOE Patents [OSTI]

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  3. Intensity-modulated radiosurgery with rapidarc for multiple brain metastases and comparison with static approach

    SciTech Connect (OSTI)

    Wang Jiazhu; Pawlicki, Todd; Rice, Roger; Mundt, Arno J.; Sandhu, Ajay; Lawson, Joshua; Murphy, Kevin T.

    2012-04-01

    Rotational RapidArc (RA) and static intensity-modulated radiosurgery (IMRS) have been used for brain radiosurgery. This study compares the 2 techniques from beam delivery parameters and dosimetry aspects for multiple brain metastases. Twelve patients with 2-12 brain lesions treated with IMRS were replanned using RA. For each patient, an optimal 2-arc RA plan from several trials was chosen for comparison with IMRS. Homogeneity, conformity, and gradient indexes have been calculated. The mean dose to normal brain and maximal dose to other critical organs were evaluated. It was found that monitor unit (MU) reduction by RA is more pronounced for cases with larger number of brain lesions. The MU-ratio of RA and IMRS is reduced from 104% to 39% when lesions increase from 2 to 12. The dose homogeneities are comparable in both techniques and the conformity and gradient indexes and critical organ doses are higher in RA. Treatment time is greatly reduced by RA in intracranial radiosurgery, because RA uses fewer MUs, fewer beams, and fewer couch angles.

  4. Relativistic static thin dust disks with an inner edge: An infinite family of new exact solutions

    SciTech Connect (OSTI)

    Gonzalez, Guillermo A.; Gutierrez-Pineres, Antonio C.; Vina-Cervantes, Viviana M.

    2009-06-15

    An infinite family of new exact solutions of the vacuum Einstein equations is presented. The solutions are static and axially symmetric and correspond to an infinite family of thin dust disks with a central inner edge. The metric functions of all the solutions can be explicitly computed, and can be expressed in a simple manner in terms of oblate spheroidal coordinates. The energy density of all the disks of the family is positive everywhere and well behaved, so that the corresponding energy-momentum tensor is in full agreement with all the energy conditions. Moreover, although the total mass of the disks is infinite, the solutions are asymptotically flat and the Riemann tensor is regular everywhere, as it is shown by computing the curvature scalars. Now, besides its importance as a new family of exact solutions of the vacuum Einstein equations, the main importance of this family of solutions is that it can be easily superposed with the Schwarzschild solution in order to describe thin disks surrounding a central black hole. Accordingly, a detailed analysis of this superposition will be presented in a subsequent paper.

  5. Static and dynamic pressure effects on the thermolysis of nitroalkanes in solution

    SciTech Connect (OSTI)

    Brower, K.R. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Chemistry; Davis, L.L.; Naud, D.L. [Los Alamos National Lab., NM (United States); Wang, J. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry

    1998-12-31

    The authors have measured the effects of static and shock-induced pressures on the decomposition rates and mechanisms of various nitroalkanes dissolved in different solvents with and without organic amine catalysts. While nitroalkanes without {alpha}-hydrogen decompose by homolysis of the C-NO{sub 2} bond over a wide range of conditions, the decomposition pathway of nitroalkanes having {alpha}-hydrogens (i.e., acidic nitroalkanes) is complicated and follows different decomposition mechanisms depending on the availability of organic base and reaction pressure. The Nef reaction is also an important reaction pathway. The five known decomposition pathways, homolysis of the C-NO{sub 2} bond, bimolecular reaction between the aci-form and aci-ion, cyclization of the aci-form, elimination of nitrous acid, and the Nef reaction, are highly dependent on the reaction conditions, such as pressure, presence of organic amines, water, alcohols, and polarity of solvent. The authors discuss the results of several tests used to support these various decomposition mechanisms.

  6. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  7. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

  8. Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP) ...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP)...

  9. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  10. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  11. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  12. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  13. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  14. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F. (Orland Park, IL)

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  15. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  16. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  17. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  18. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  19. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  20. Group 3: Humidity, Temperature, and Voltage

    Broader source: Energy.gov [DOE]

    This PowerPoint presentation, focused on humidity, temperature and voltage testing, was originally presented by John Wohlgemuth at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO. It summarizes the activities of a working group chartered to develop accelerated stress tests that can be used as comparative predictors of module life versus stresses associated with humidity, temperature and voltage.

  1. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    SciTech Connect (OSTI)

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.

  2. Buckling behavior of stiffened panels under static and dynamic loading with particular emphasis on the response of the stiffener outstands

    SciTech Connect (OSTI)

    Louca, L.A.; Harding, J.E.

    1995-12-31

    This paper presents results on the buckling behavior of stiffened panels loaded axially under static loading and dynamically under transverse blast pressures. Particular emphasis is placed on the torsional behavior of the outstands. The study has been carried out using non-linear finite element (FE) packages and plastic mechanism techniques. For the static analysis, an FE package (LUSAS) has been used to obtain load deflection curves, including both the peak load and the unloading characteristic for a range of geometries. The responses of stiffened panels subjected to blast loading have also been investigated using various pressure time curves. Both a simple model, consisting of a flat-panel and an individual stiffener and a more complex model of a complete blast wall have been analyzed. The analysis package (DYNA3D) accounts for material and geometric non-linearities and strain rate effects which can significantly influence the capacity of the panel. As for the static results, the dynamic analyses have been correlated with previous experimental results. The effect of tripping is shown to have a significant influence on the response, and earlier yield of the panel, when the stiffeners are in compression, is highlighted. It is also shown that provided there is adequate in-plane support to allow the panels to develop membrane action, blast pressures exceeding one bar can be resisted.

  3. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  4. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  5. Pressure Temperature Log At Soda Lake Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake...

  6. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  7. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  8. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  9. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  10. Formalism for testing theories of gravity using lensing by compact objects: Static, spherically symmetric case

    SciTech Connect (OSTI)

    Keeton, Charles R.; Petters, A.O.

    2005-11-15

    We are developing a general, unified, and rigorous analytical framework for using gravitational lensing by compact objects to test different theories of gravity beyond the weak-deflection limit. In this paper we present the formalism for computing corrections to lensing observables for static, spherically symmetric gravity theories in which the corrections to the weak-deflection limit can be expanded as a Taylor series in one parameter, namely, the gravitational radius of the lens object. We take care to derive coordinate-independent expressions and compute quantities that are directly observable. We compute series expansions for the observables that are accurate to second order in the ratio {epsilon}={theta} /{theta}{sub E} of the angle subtended by the lens's gravitational radius to the weak-deflection Einstein radius, which scales with mass as {epsilon}{proportional_to}M {sup 1/2}. The positions, magnifications, and time delays of the individual images have corrections at both first and second order in {epsilon}, as does the differential time delay between the two images. Interestingly, we find that the first-order corrections to the total magnification and centroid position vanish in all gravity theories that agree with general relativity in the weak-deflection limit, but they can remain nonzero in modified theories that disagree with general relativity in the weak-deflection limit. For the Reissner-Nordstroem metric and a related metric from heterotic string theory, our formalism reveals an intriguing connection between lensing observables and the condition for having a naked singularity, which could provide an observational method for testing the existence of such objects. We apply our formalism to the galactic black hole and predict that the corrections to the image positions are at the level of 10 {mu}arc s (microarcseconds), while the correction to the time delay is a few hundredths of a second. These corrections would be measurable today if a pulsar were found to be lensed by the galactic black hole, and they should be readily detectable with planned missions like MAXIM.

  11. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  12. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  13. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  14. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate knowledge of aqueous chemistry at high temperatures and pressures is important in many applications including nuclear waste disposal and energy extraction. Sandia's Defense Waste Management Programs is equipped with a state-of-the-art hydrothermal experimental system that allows us to obtain high quality kinetic and equilibrium data at temperatures and pressures of interest up to 600 o C and 1,000 bars (100 MPa). This state-of-the-art hydrothermal experimental system includes the

  15. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  16. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect (OSTI)

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  17. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  18. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    SciTech Connect (OSTI)

    Sethi, Brahmananda Sarma, S. Srinivasan, A. Santra, S. B.

    2014-04-24

    Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical phenomenon in such materials has received increased experimental and theoretical attention for better understanding of the magnetic phase transition behavior as well as further development of ferromagnetic shape memory materials. In the present study we report the preparation and characterization of bulk Co{sub 45}Ni{sub 25}Ga{sub 30} alloy, prepared by a sequence of arc melting technique followed by homogenization at 1150 C for 24 hours and ice-water quenching. Structural and magnetic properties of the alloys were studied by means of X-ray diffraction and vibrating sample magnetometer in an applied field range of 18 kOe equipped with a high temperature oven. We have determined the critical temperature T{sub C} (?375.5 K) and the critical exponents viz; ?=0.40, ?=1.68 and ?=5.2. Asymptotic critical exponents ?, ?, and ? obey Widom scaling relation, ?+?=??, and the magnetization data satisfy the scaling equation of state for second-order phase transition in the asymptotic critical region.

  19. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  20. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  1. ORNL Quasi-Static Mechanical Characterization and Analysis: FY09 Annual Report to TARDEC

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Kirkland, Timothy Philip; Strong, Kevin T; Holmquist, Timothy

    2009-12-01

    The testing and evaluation of candidate glasses for transparent armor served as a primary goal. Other armor ceramics were evaluated too, in support of the development of innovative test methods, whose use will ultimately help in the improvement of armor ceramics or help in better predicting their ballistic performance. The following summarizes this report and this year's work: (1) The elastic properties of a spherical indenter affect the forces necessary to initiate fracture in a target ceramics. The lower the elastic modulus of an indenter material, the easier (i.e., lower forces required) it is to initiate fracture. This implies the fracture initiation of an armor ceramic will depend on the elastic properties of a projectile material, and that this effect, represented by the Dundurs Parameter, can be managed to guide improvement of both armor and projectile materials. (2) The largest flaws in a population dictate both contact damage and fracture initiations. This implies the ballistic response of armor ceramics will improve if those large flaws are precluded from appearing in the materials during their processing. (3) Failure stress dependence on effective area for Hertzian indentation was developed. Such analysis is adaptable to predict ballistically produced fracture initiation as a function of projectile material and projectile size. (4) A simple, quick, and inexpensive test method was developed to measure the apparent yield stress of armor ceramics. This is significant because yield stress is used as input in ballistic models, and yield stress is traditionally measured using (complex, timeconsuming, and expensive) shock physics experiments. (5) Radial confinement increases the necessary indentation forces to initiate fracture and yield-like responses in ceramics. Ballistic improvement of an armor ceramic will occur if the ceramic can be compressively pre-stressed. (6) The median crack produced by a Hertzian indent is associated with a dramatic increase in target ceramic compliance. More so than any other produced damage mechanism. This suggests that a ballistically induced median crack in an armor ceramic may be associated with the dwell penetration event. (7) Glass exhibits tensile strength that is very much dependent on the amount of material, the side being tested (air versus tin if a float glass), and where it is being tensile stressed (in the middle or near an edge). The management of these effects will improve ballistic resistance of transparent armor (or any ceramic armor that is undergoing deflection as a consequence of a ballistic impact). (8) Plasma-arc heat treatment is a quick and relatively inexpensive method to improve the strength of glass. It is implementable into the production line for the mass production of glass. Increased strain-to-failure and bending deflections are concomitant with increased strength, and therefore, ballistic resistance is improvable using this method. (9) The Hertzian stress field at high contact stresses is very similar to the stress field from a ballistic impact. This is significant because the results from Hertzian indentation measurements have the prospect of being used as input in ballistic models to predict dwell conditions. (10) The understanding of glass densification and fragmentation behaviors are aided by piezo-Raman spectroscopy and quasi-static, high-energy fracture. Continued refinement of these test methods will improve the understanding of glass impact resistance. (11) In addition to glass, strength-size scaling was evident in SiC and B{sub 4}C. Previously proposed strength dependencies on rate from shock experiments may instead be explained by this strength-size scaling effect. (12) The quantification of strength-size scaling in armor ceramics clearly shows there is no single strength value that can be used to describe that ceramic. A ballistic modeler can therefore use more appropriate failure stress value(s) as input to predict deflection and expanding cavity responses in the ceramic target. These follow-on efforts are recommended based on the above statem

  2. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W. (Livermore, CA); Shell, Thomas E. (Livermore, CA)

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  3. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  4. Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF

    SciTech Connect (OSTI)

    Byun, Thak Sang; Toloczko, Mychailo B.; Saleh, Tarik A.; Maloy, Stuart A.

    2013-01-14

    To expand the knowledge base for fast reactor core materials, fracture toughness has been evaluated for high dose HT9 steel using miniature disk compact tension (DCT) specimens. The HT9 steel DCT specimens were machined from the ACO-3 fuel duct of the Fast Flux Test Facility (FFTF), which achieved high doses in the range of 3148 dpa at 378504 C. The static fracture resistance (J-R) tests have been performed in a servohydraulic testing machine in vacuum at selected temperatures including room temperature, 200 C, and each irradiation temperature. Brittle fracture with a low toughness less than 50 MPa pm occurred in room temperature tests when irradiation temperature was below 400 C, while ductile fracture with stable crack growth was observed when irradiation temperature was higher. No fracture toughness less than 100 MPa pm was measured when the irradiation temperature was above 430 C. It was shown that the influence of irradiation temperature was dominant in fracture toughness while the irradiation dose has only limited influence over the wide dose range 3148 dpa. A slow decrease of fracture toughness with test temperature above room temperature was observed for the nonirradiated and high temperature (>430 *C) irradiation cases, which indicates that the ductilebrittle transition temperatures (DBTTs) in those conditions are lower than room temperature. A comparison with the collection of existing data confirmed the dominance of irradiation temperature in the fracture toughness of HT9 steels.

  5. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  6. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  7. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  8. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  9. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  10. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  11. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore » have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less

  12. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  13. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  14. Criteria for initiation of delamination in quasi-static punch-shear tests of a carbon-fiber composite material.

    SciTech Connect (OSTI)

    Chin, Eric Brian; English, Shawn Allen; Briggs, Timothy

    2015-09-01

    V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.

  15. Use of PuBe source to simulate neutron-induced single event upsets in static RAMS

    SciTech Connect (OSTI)

    Normand, E.; Wert, J.L.; Doherty, W.R.; Oberg, D.L.; Measel, P.R.; Criswell, T.L.

    1988-12-01

    Neutron induced single event upsets were measured in static memory devices using a 10 curie PuBe source. The PuBe source conservatively overestimates the spectrum of fast neutrons emitted by a radioisotope thermoelectric generator (RTG). For the 93L422, the neutron-induced upset rate compared favorably with calculated values derived using the burst generation concept. By accounting for the production of the ionizing particles by the PuBe and RTG neutron spectra, convenient upper bound SEU upset rates for memory devices near an RTG can be derived.

  16. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  17. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  18. Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography

    SciTech Connect (OSTI)

    Fabbri, A.; Farese, S.; Navarro-Salas, J.; Sanchis-Alepuz, H.; Olmo, G.J.

    2006-05-15

    Motivated by the quest for black holes in anti-de Sitter braneworlds, and, in particular, by the holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected ones, we numerically solve the semiclassical Einstein equations (backreaction equations) with matter fields in the (zero-temperature) Boulware vacuum state. In the absence of an exact analytical expression for in four dimensions we work within the s-wave approximation. Our results show that the quantum corrected solution is very similar to Schwarzschild spacetime until very close to the horizon, but then a bouncing surface for the radial function appears which prevents the formation of an event horizon. We also analyze the behavior of the geometry beyond the bounce, where a curvature singularity arises. In the dual theory, this indicates that the corresponding 5D static classical braneworld solution is not a black hole but rather a naked singularity.

  19. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  20. ARM - Measurement - Sea surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  1. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  2. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  3. Evaluation of static pressure drops and PM10 and TSP emissions for modified 1D-3D cyclones

    SciTech Connect (OSTI)

    Holt, G.A.; Baker, R.V.; Hughs, S.E.

    1999-12-01

    Five modifications of a standard 1D3D cyclone were tested and compared against the standard 1D3D design in the areas of particulate emissions and static pressure drop across the cyclone. The modifications to the 1D3D design included a 2D2D inlet, a 2D2D air outlet, a D/3 trash exit, an expansion chamber with a D/3 trash exit, and a tapered air outlet duct. The 1D3D modifications that exhibited a significant improvement in reducing both PM10 and total suspended particulate (TSP) emissions were the designs with the 2D2D inlet and air exhaust combined with either the conical D/3 tail cone or the expansion chamber. In reference to the standard 1D3D cyclone, the average reduction in PM10 emissions was 24 to 29% with a 29 to 35% reduction observed in TSP emissions. The modifications with the tapered air outlets did not show any significant improvements in controlling PM10 emissions. However, the modification with the tapered air outlet/expansion chamber combination exhibited statistical significance in reducing TSP emissions by 18% compared to the 1D3D cyclone. All modifications tested exhibited lower static pressure drops than the standard 1D3D.

  4. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick (Peoria, IL); Duffy, Kevin Patrick (Metamora, IL)

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  5. Development and evaluation of aperture-based complexity metrics using film and EPID measurements of static MLC openings

    SciTech Connect (OSTI)

    Götstedt, Julia; Karlsson Hauer, Anna; Bäck, Anna

    2015-07-15

    Purpose: Complexity metrics have been suggested as a complement to measurement-based quality assurance for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). However, these metrics have not yet been sufficiently validated. This study develops and evaluates new aperture-based complexity metrics in the context of static multileaf collimator (MLC) openings and compares them to previously published metrics. Methods: This study develops the converted aperture metric and the edge area metric. The converted aperture metric is based on small and irregular parts within the MLC opening that are quantified as measured distances between MLC leaves. The edge area metric is based on the relative size of the region around the edges defined by the MLC. Another metric suggested in this study is the circumference/area ratio. Earlier defined aperture-based complexity metrics—the modulation complexity score, the edge metric, the ratio monitor units (MU)/Gy, the aperture area, and the aperture irregularity—are compared to the newly proposed metrics. A set of small and irregular static MLC openings are created which simulate individual IMRT/VMAT control points of various complexities. These are measured with both an amorphous silicon electronic portal imaging device and EBT3 film. The differences between calculated and measured dose distributions are evaluated using a pixel-by-pixel comparison with two global dose difference criteria of 3% and 5%. The extent of the dose differences, expressed in terms of pass rate, is used as a measure of the complexity of the MLC openings and used for the evaluation of the metrics compared in this study. The different complexity scores are calculated for each created static MLC opening. The correlation between the calculated complexity scores and the extent of the dose differences (pass rate) are analyzed in scatter plots and using Pearson’s r-values. Results: The complexity scores calculated by the edge area metric, converted aperture metric, circumference/area ratio, edge metric, and MU/Gy ratio show good linear correlation to the complexity of the MLC openings, expressed as the 5% dose difference pass rate, with Pearson’s r-values of −0.94, −0.88, −0.84, −0.89, and −0.82, respectively. The overall trends for the 3% and 5% dose difference evaluations are similar. Conclusions: New complexity metrics are developed. The calculated scores correlate to the complexity of the created static MLC openings. The complexity of the MLC opening is dependent on the penumbra region relative to the area of the opening. The aperture-based complexity metrics that combined either the distances between the MLC leaves or the MLC opening circumference with the aperture area show the best correlation with the complexity of the static MLC openings.

  6. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. Device and method for self-verifying temperature measurement and control

    DOE Patents [OSTI]

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  8. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  9. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  10. Active-R filter

    DOE Patents [OSTI]

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  11. AAPG Low-Temperature Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Name or Ancillary Text eere.energy.gov Low Temperature Geothermal Resources Tim Reinhardt Low Temperature and Coproduced Resources Team Lead Geothermal Technologies Program U.S. Department of Energy AAPG's Low Temperature Webinar November 18, 2010 Energy Efficiency & Renewable Energy eere.energy.gov Presentation Overview * What are Low Temperature Geothermal Resources? * Where do low temperature geothermal resources fit within petroleum exploration and production? * What is

  12. Heat exchanger temperature response for duty-cycle transients in the NGNP/HTE.

    SciTech Connect (OSTI)

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12

    Control system studies were performed for the Next Generation Nuclear Plant (NGNP) interfaced to the High Temperature Electrolysis (HTE) plant. Temperature change and associated thermal stresses are important factors in determining plant lifetime. In the NGNP the design objective of a 40 year lifetime for the Intermediate Heat Exchanger (IHX) in particular is seen as a challenge. A control system was designed to minimize temperature changes in the IHX and more generally at all high-temperature locations in the plant for duty-cycle transients. In the NGNP this includes structures at the reactor outlet and at the inlet to the turbine. This problem was approached by identifying those high-level factors that determine temperature rates of change. First are the set of duty cycle transients over which the control engineer has little control but which none-the-less must be addressed. Second is the partitioning of the temperature response into a quasi-static component and a transient component. These two components are largely independent of each other and when addressed as such greater understanding of temperature change mechanisms and how to deal with them is achieved. Third is the manner in which energy and mass flow rates are managed. Generally one aims for a temperature distribution that minimizes spatial non-uniformity of thermal expansion in a component with time. This is can be achieved by maintaining a fixed spatial temperature distribution in a component during transients. A general rule of thumb for heat exchangers is to maintain flow rate proportional to thermal power. Additionally the product of instantaneous flow rate and heat capacity should be maintained the same on both sides of the heat exchanger. Fourth inherent mechanisms for stable behavior should not be compromised by active controllers that can introduce new feedback paths and potentially create under-damped response. Applications of these principles to the development of a plant control strategy for the reference NGNP/HTE plant can be found in the body of this report. The outcome is an integrated plant/control system design. The following conclusions are drawn from the analysis: (1) The plant load schedule can be managed to maintain near-constant hot side temperatures over the load range in both the nuclear and chemical plant. (2) The reactor open-loop response is inherently stable resulting mainly from a large Doppler temperature coefficient compared to the other reactivity temperature feedbacks. (3) The typical controller used to manage reactor power production to maintain reactor outlet temperature at a setpoint introduces a feedback path that tends to destabilize reactor power production in the NGNP. (4) A primary loop flow controller that forces primary flow to track PCU flow rate is effective in minimizing spatial temperature differentials within the IHX. (5) Inventory control in both the primary and PCU system during ramp load change transients is an effective means of maintaining high NGNP thermal efficiency while at reduced electric load. (6) Turbine bypass control is an effective means for responding to step changes in generator load when equipment capacity limitations prevent inventory control from being effective. (7) Turbine bypass control is effective in limiting PCU shaft over speed for the loss of generator load upset event. (8) The proposed control strategy is effective in limiting time variation of the differential spatial temperature distribution in the IHX during transients. Essentially the IHX can be made to behave in a manner where each point in the IHX experiences approximately the same temperature rate of change during a transient. (9) The stability of the closed-loop Brayton cycle was found to be sensitive to where one operates on the turbo-machine performance maps. There are competing interests: more stable operation means operating on the curves at points that reduce overall cycle efficiency. Future work should address in greater detail elements that came to light in the course of this work. Specifically: (1) A stability analysi

  13. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  14. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  15. ARM - Lesson Plans: Temperature of the Pacific Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature of the Pacific Ocean Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Temperature of the Pacific Ocean Objective The objective of this activity is to demonstrate how the earth's temperature has varied gradually in the past. Materials Each student or group of students

  16. HTP kinetics studies on isolated elementary combustion reactions over wide temperature ranges

    SciTech Connect (OSTI)

    Fontijn, A.; Adusei, G.Y.; Hranisavlevic, J.; Bajaj, P.N.

    1993-12-01

    The goals of this project are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions, (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made mainly by using the pseudo-static HTP (high-temperature photochemistry) technique. While continuing rate coefficient measurements, further aspects of kinetics research are being explored. Thus, starting from the data obtained, a method for predicting the temperature dependence of rate coefficients of oxygen-atom olefin experiment and confirms the underlying mechanistic assumptions. Mechanistic information of another sort, i.e. by product analysis, has recently become accessible with the inauguration of our heated flow tube mass spectrometer facility; early results are reported here. HTP experiments designed to lead to measurements of product channels by resonance fluorescence have started.

  17. Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures

    SciTech Connect (OSTI)

    Ye, L. Gopman, D. B.; Rehm, L.; Backes, D.; Wolf, G.; Kent, A. D.; Ohki, T.; Kirichenko, A. F.; Vernik, I. V.; Mukhanov, O. A.

    2014-05-07

    We present the quasi-static and dynamic switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 12?K between parallel and anti-parallel spin-valve states is investigated for slowly varied current as well as for current pulses with durations as short as 200 ps. We demonstrate 100% switching probability with current pulses 0.6?ns in duration. We also present a switching probability diagram that summarizes device switching operation under a variety of pulse durations, amplitudes, and polarities.

  18. Recommendations for a Static Cosmic Ray Shield for Enriched Germanium Detectors

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Orrell, John L.; Ankney, Austin S.; Berguson, Timothy J.

    2011-09-21

    This document provides a detailed study of cost and materials that could be used to shield the detector material of the international Tonne-scale germanium neutrinoless double-beta decay experiment from hadronic particles from cosmic ray showers at the Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during storage; in particular, when the detector material is being worked on at the detector manufacturer's facility. This work considers two options for shielding the detector material from cosmic ray particles. One option is to use a pre-existing structure already located near the detector manufacturer, such as Canberra Industries in Meriden, Connecticut. The other option is to build a shield onsite at a detector manufacturer's site. This paper presents a cost and efficiency analysis of such construction.

  19. Slow and static spin correlations in Dy(2+x)Ti(2-x)O(7-d)

    SciTech Connect (OSTI)

    Gardner, Jason; Ehlers, Georg; Fouquet, Peter; Farago, Bela; Stewart, John Ross

    2011-01-01

    The static and dynamic spin correlations in the spin ices Dy{sub 2.3}Ti{sub 1.7}O{sub 6.85} and Dy{sub 2}Ti{sub 2}O{sub 7} have been studied in polarized neutron diffraction and neutron spin echo experiments. The measurements reveal that, below 100 mK, the magnetic scattering braodens and shifts to higher |Q| upon stuffing the pyrochlore lattice with additional Dy{sup 3+} ions. These observations can be related, by means of reverse Monte Carlo simulation, to the modified distribution of near-neighbour distances and an overall more antiferromagnetic character of the near-neighbour couplings. The dynamic measurements show that the spin correlations are slower in the stuffed system. These results will be discussed and compared to the holmium analogues.

  20. Exact analysis of particle dynamics in combined field of finite duration laser pulse and static axial magnetic field

    SciTech Connect (OSTI)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-11-15

    Dynamics of a charged particle is studied in the field of a relativistically intense linearly polarized finite duration laser pulse in the presence of a static axial magnetic field. For a finite duration laser pulse whose temporal shape is defined by Gaussian profile, exact analytical expressions are derived for the particle trajectory, momentum, and energy as function of laser phase. From the solutions, it is shown that, unlike for the monochromatic plane wave case, resonant phase locking time between the particle and laser pulse is finite. The net energy transferred to the particle does not increase monotonically but tends to saturate. It is further shown that appropriate tuning of cyclotron frequency of the particle with the characteristic frequency in the pulse spectrum can lead to the generation of accelerated particles with variable energies in MeV-TeV range.

  1. Compliant high temperature seals for dissimilar materials

    DOE Patents [OSTI]

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  2. Low temperature catalyst system for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  4. Quasi-static model of collimated jets and radio lobes. I. Accretion disk and jets

    SciTech Connect (OSTI)

    Colgate, Stirling A.; Li, Hui; Fowler, T. Kenneth; Pino, Jesse

    2014-07-10

    This is the first of a series of papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetic helix that could explain both the observed radio jet/lobe structures on very large scales and ultimately the enormous power inferred from the observed ultra-high-energy cosmic rays. In this work, we solve a set of one-dimensional equations similar to the steady-state standard accretion disk model, but now including the large-scale magnetic fields giving rises to jets. We find that the frequently made assumption that large-scale fields are frozen into the disk is fundamentally incorrect, due to the necessity for current and the accreting mass to flow perpendicular to magnetic flux surfaces. A correct treatment greatly simplifies the calculations, yielding fields that leave the disk nearly vertically with magnetic profiles uniquely determined by disk angular momentum conservation. Representative solutions of the magnetic fields in different radial regions of the disk surface are given, and they determine the overall key features in the jet structure and its dissipation, which will be the subjects of later papers.

  5. Results of fracture mechanics analyses of the ederer cranes in the device assembly facility using reduced static fracture-toughness values

    SciTech Connect (OSTI)

    Dalder, E. N. C.

    1996-11-01

    The effects of a decreased static fracture-toughness value from that used in the previous fracture-mechanics analyses of the Ederer cranes in the Device Assembly Facility were examined to see what effects, if any, would be exerted on the fatigue crack growth and fracture behavior of the cranes. In particular, the behavior of the same 3 critical locations on the lower flanges of the load beams of the Ederer 5 ton and 4 ton cranes, were examined, with the reduced static fracture-toughness value.

  6. Exploration Guides For Active High-Temperature Geothermal Systems...

    Open Energy Info (EERE)

    field (or ore deposit), iv) hydrothermal fluids and their surface expression, and v) geothermal reservoirs as against epithermal orebodies, have enabled us to formulate...

  7. Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  9. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  10. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  11. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  12. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  13. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  14. High Temperature Materials Interim Data Qualification Report

    SciTech Connect (OSTI)

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  15. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  16. Development of a High-Temperature Diagnostics-While-Drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... excess of 225C in both static conditions and in ... eliminated should probably be backed up by metallic seals. ... some of the drilling dynamic behaviors it is intended ...

  17. Seeing Stripes: Competition and Complexity in High-Temperature...

    Office of Scientific and Technical Information (OSTI)

    electronic structure in solids. Some of the challenges of experimentally 'seeing' both static and fluctuating stripes will be discussed. Authors: Tranquada, John 1 + Show Author...

  18. Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate

    SciTech Connect (OSTI)

    Yu, J. M.; Balbuena, P. B.; Budzien, J. L.; Leung, Kevin

    2011-02-22

    We applied static and dynamic hybrid functional density functional theory (DFT) calculations to study the interactions of one and two excess electrons with ethylene carbonate (EC) liquid and clusters. Optimal structures of (EC)n and (EC)n- clusters devoid of Li+ ions, n = 16, were obtained. The excess electron was found to be localized on a single EC in all cases, and the EC dimeric radical anion exhibits a reduced barrier associated with the breaking of the ethylene carbonoxygen covalent bond compared to EC-. In ab initio molecular dynamics (AIMD) simulations of EC- solvated in liquid EC, large fluctuations in the carbonyl carbonoxygen bond lengths were observed. AIMD simulations of a two-electron attack on EC in EC liquid and on Li metal surfaces yielded products similar to those predicted using nonhybrid DFT functionals, except that CO release did not occur for all attempted initial configurations in the liquid state.

  19. Effect of moderate magnetic annealing on the microstructure, quasi-static and viscoelastic mechanical behavior of a structural epoxy

    SciTech Connect (OSTI)

    Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid; Li, Dongsheng

    2012-01-01

    In this study the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle x-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent to the macro scale creep compliance was calculated using the aforementioned nano-creep data. Using the continuous complex compliance (CCC) analysis, the phase lag angle, tan (?), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter , A/d(0), from short term(80 ), creep tests and the creep compliance J(t) from the long term(2700 s) creep tests with the tan(?) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that under low magnetic fields both the quasi-static and viscoelastic mechanical properties of the epoxy have been improved.

  20. Sensors for low temperature application

    DOE Patents [OSTI]

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  1. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  2. Network Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics Network Activity Network Activity PDSF Network Uplinks to NERSC (dual 10 Gbps) NERSC Uplink to ESnet Last edited: 2011-03-31 22:20:59...

  3. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  4. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  5. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  6. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  7. Temperature-dependent structural study of microporous CsAlSi{sub 5}O{sub 12}

    SciTech Connect (OSTI)

    Fisch, Martin; Armbruster, Thomas Kolesov, Boris

    2008-03-15

    CsAlSi{sub 5}O{sub 12} crystals were synthesized at high temperature by slow cooling of a vanadium oxide flux. Single-crystal X-ray diffraction structure analysis and electron microprobe analyses yielded the microporous CAS zeolite framework structure of Cs{sub 0.85}Al{sub 0.85}Si{sub 5.15}O{sub 12} composition. High-temperature single-crystal and powder X-ray diffraction studies were utilized to analyze anisotropic thermal expansion. Rietveld refined cell constants from powder diffraction data, measured in steps of 25 deg. C up to 700 deg. C, show a significant decrease in expansion above 500 deg. C. At 500 deg. C, a displacive, static disorder-dynamic disorder-type phase transition from the acentric low-temperature space group Ama2 to centrosymmetric Amam (Cmcm in standard setting) was found. Thermal expansion below the phase transition is governed by rigid-body TO{sub 4} rotations accompanied by stretching of T-O-T angles. Above the phase transition at 500 deg. C all atoms, except one oxygen (O6), are fixed on mirror planes. Temperature-dependent polarized Raman single-crystal spectra between -270 and 300 deg. C and unpolarized spectra between room temperature and 1000 deg. C become increasingly less resolved with rising temperature confirming the disordered static-disordered dynamic type of the phase transition. - Graphical abstract: Temperature-dependent structural evolution of microporous CsAlSi{sub 5}O{sub 12} has been investigated by single-crystal and powder X-ray diffraction, as well as Raman spectroscopy. Results yielded a phase transition of order-disorder type.

  8. Low Temperature/Coproduced/Geopressured Subprogram Overview ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low TemperatureCoproducedGeopressured Subprogram Overview Low TemperatureCoproducedGeopressured Subprogram Overview This overview of GTP's Low TemperatureCoproduced...

  9. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  10. Activation detector

    DOE Patents [OSTI]

    Bell, Zane William (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn Allen (Oak Ridge, TN) [Oak Ridge, TN

    2009-12-08

    A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.

  11. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  12. Pion dynamics at finite temperature

    SciTech Connect (OSTI)

    Toublan, D.

    1997-11-01

    The pion decay constant and mass are computed at low temperature within chiral perturbation theory to two loops. The effects of the breaking of Lorentz symmetry by the thermal equilibrium state are discussed. The validity of the Gell-Mann{endash}Oakes{endash}Renner relation at finite temperature is examined. {copyright} {ital 1997} {ital The American Physical Society}

  13. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  14. Investigating Temperature Effects on PV Arrays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schmidt Unit Title: Circuits and Electricity Subject: Physics Lesson Title: Investigating Temperature Effects on PV Arrays Grade Level(s): 11/12 Date(s): July 18, 2014 Lesson Length: 1 Class Period (65 minutes) * Learning Goal(s) [What should students know, understand, or be able to do as a result of this lab or activity.] Students will be able to measure current and voltage using a Multimeter. Students will be able to calculate the power of a PV array using voltage and current. Students will

  15. High Temperature Materials Laboratory third annual report

    SciTech Connect (OSTI)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  16. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Low-temperature Stirling Engine for Geothermal Electricity Generation Citation Details In-Document Search Title: Low-temperature Stirling Engine for Geothermal Electricity Generation Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth’s crust where this energy is concentrated

  17. High Temperature Materials Overview Richard Wright Idaho National Laboratory

    Office of Environmental Management (EM)

    Temperature Materials Overview Richard Wright Idaho National Laboratory Advanced Reactor Technologies September 17, 2015 Objectives  Provide Technology Development to Support Future Design and Deployment of Very High Temperature Gas Cooled Reactors: - Pressure Vessel - Steam Generator and Intermediate Heat Exchanger (IHX) - Support Codes and Standards Activities for SiC/SiC composites and Materials Handbook  Program Goals - Alloy 617 Code Case Submittal for ASME approval by FY15 allowing

  18. Geothermal Energy (5 Activities)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy (Five Activities) Grades: 5-8 Topic: Geothermal Authors: Laura J. W. Butterfield, Ph.D., Brandon A. Gillette, and Richard Shin Owner: National Renewable Energy Laboratory This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Geothermal Energy Laura J. W. Butterfield, Ph.D. Brandon A. Gillette Richard Shin Middle School For the Teacher Deep inside the Earth, at depths near 150 kilometers, the temperature

  19. Fish Producers Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Fish Producers Aquaculture Low Temperature Geothermal Facility Facility Fish Producers...

  20. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory: ... Success Stories from the High Temperature Materials Laboratory (HTML) User ...

  1. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion Discusses ...

  2. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature ...

  3. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory and ... Materials Characterization Capabilities at the High Temperature Materials Laboratory and ...

  4. Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Jackson...

  5. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  6. Flint Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Flint Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Flint...

  7. Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Facility...

  8. Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Facility...

  9. Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Facility...

  10. Duckwater Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Duckwater Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Duckwater Aquaculture Low Temperature Geothermal Facility Facility Duckwater Sector...

  11. Castlevalley Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility...

  12. Method for measuring surface temperature

    DOE Patents [OSTI]

    Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  13. Effect of tunnel injection through the Schottky gate on the static and noise behavior of GaInAs/AlInAs high electron mobility transistor

    SciTech Connect (OSTI)

    Moro-Melgar, Diego; Mateos, Javier Gonzlez, Toms Vasallo, Beatriz G.

    2014-12-21

    By using a Monte Carlo simulator, the influence of the tunnel injection through the Schottky contact at the gate electrode of a GaInAs/AlInAs High Electron Mobility Transistor (HEMT) has been studied in terms of the static and noise performance. The method used to characterize the quantum tunnel current has been the Wentzel-Kramers-Brillouin (WKB) approach. The possibility of taking into account the influence of the image charge effect in the potential barrier height has been included as well. Regarding the static behavior, tunnel injection leads to a decrease in the drain current I{sub D} due to an enhancement of the potential barrier controlling the carrier transport through the channel. However, the pinch-off is degraded due to the tunneling current. Regarding the noise behavior, since the fluctuations in the potential barrier height caused by the tunnel-injected electrons are strongly coupled with the drain current fluctuations, a significant increase in the drain-current noise takes place, even when the tunnel effect is hardly noticeable in the static I-V characteristics, fact that must be taken into account when designing scaled HEMT for low-noise applications. In addition, tunnel injection leads to the appearance of full shot noise in the gate current.

  14. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  15. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  16. Moderate Temperature | Open Energy Information

    Open Energy Info (EERE)

    temperature level. Thus, reservoirs in the 190 to 230C range should have liquid water as the mobile fluid phase, and as such, this class is reasonably well constrained....

  17. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B. (Melbourne, FL)

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  18. Investigating the Effects of Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating the Effects of Temperature on Power Output Objective: Students will use concepts learned in class to explore the many variables that effect the efficiency of solar panels in regards to power output. Materials: * PV Array or Solar Panel * 2 Multimeter * Frozen Ice Packs * Low Power DC Bulb * Halogen Lamp (500 Watts) * 4 or 5 Alligator clip wires * Timer Investigative Question: How does the power output change as the temperature of the PV system changes. Procedure: 1) Attach the

  19. Temperature sensors for OTEC applications

    SciTech Connect (OSTI)

    Seren, L.; Panchal, C.B.; Rote, D.M.

    1984-05-01

    Ocean thermal energy conversion (OTEC) applications require accurate measurement of temperatures in the 0 to 30/sup 0/C range. This report documents an experimental examination of commercially available quartz-crystal thermometers and thermistors. Three fixed-point baths were used for temperature measurements: the distilled-water/distilled-ice-water slurry, the triple-point-of-water cell, and the gallium melting-point cell. The temperature of carefully prepared ice-water slurries was verified routinely as 0.001 +- 0.003/sup 0/C. Quartz-crystal probes proved accurate to about 1 to 2 mK, with drift errors of the same order over a few days. Bead- and disk-type thermistor probes were found to be about equally stable with time in the 0 to 30/sup 0/C range. The overall probable error of using thermistors was found to be +-4 mK. A solid-block temperature bath suitable for on-site calibrations in OTEC work was used in the temperature-sweeping mode. Various polynomial fits were examined for the purpose of thermistor calibration; fits of order two and higher yielded about equally accurate calculated temperatures.

  20. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  1. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  2. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O'Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. A dosimetric comparison of 3D-CRT, IMRT, and static tomotherapy with an SIB for large and small breast volumes

    SciTech Connect (OSTI)

    Michalski, Andrea; Atyeo, John; Cox, Jennifer; Rinks, Marianne; Morgia, Marita; Lamoury, Gillian

    2014-07-01

    Radiation therapy to the breast is a complex task, with many different techniques that can be employed to ensure adequate dose target coverage while minimizing doses to the organs at risk. This study compares the dose planning outcomes of 3 radiation treatment modalities, 3 dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and static tomotherapy, for left-sided whole-breast radiation treatment with a simultaneous integrated boost (SIB). Overall, 20 patients with left-sided breast cancer were separated into 2 cohorts, small and large, based on breast volume. Dose plans were produced for each patient using 3D-CRT, IMRT, and static tomotherapy. All patients were prescribed a dose of 45 Gy in 20 fractions to the breast with an SIB of 56 Gy in 20 fractions to the tumor bed and normalized so that D{sub 98%} > 95% of the prescription dose. Dosimetric comparisons were made between the 3 modalities and the interaction of patient size. All 3 modalities offered adequate planning target volume (PTV) coverage with D{sub 98%} > 95% and D{sub 2%} < 107%. Static tomotherapy offered significantly improved (p = 0.006) dose homogeneity to the PTV{sub boost} {sub eval} (0.079 0.011) and breast minus the SIB volume (Breast{sub SIB}) (p < 0.001, 0.15 0.03) compared with the PTV{sub boost} {sub eval} (0.085 0.008, 0.088 0.12) and Breast{sub SIB} (0.22 0.05, 0.23 0.03) for IMRT and 3D-CRT, respectively. Static tomotherapy also offered statistically significant reductions (p < 0.001) in doses to the ipsilateral lung mean dose of 6.79 2.11 Gy compared with 7.75 2.54 Gy and 8.29 2.76 Gy for IMRT and 3D-CRT, respectively, and significantly (p < 0.001) reduced heart doses (mean = 2.83 1.26 Gy) compared to both IMRT and 3D-CRT (mean = 3.70 1.44 Gy and 3.91 1.58 Gy). Static tomotherapy is the dosimetrically superior modality for the whole breast with an SIB compared with IMRT and 3D-CRT. IMRT is superior to 3D-CRT in both PTV dose conformity and reduction of mean doses to the ipsilateral lung.

  4. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  5. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  6. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  7. Low to moderate temperature nanolaminate heater

    DOE Patents [OSTI]

    Eckels, J. Del; Nunes, Peter J.; Simpson, Randall L.; Hau-Riege, Stefan; Walton, Chris; Carter, J. Chance; Reynolds, John G.

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  8. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter (Livermore, CA)

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  9. A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites for Low-Temperature SCR of NOx A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites for Low-Temperature SCR...

  10. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  11. High Temperature Thermoelectric Materials Characterization for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program 2009 DOE

  12. High Temperature Superconductivity Partners | Department of Energy

    Office of Environmental Management (EM)

    High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partners/stakeholders in the High Temperature Superconductivity Program PDF icon High Temperature Superconductivity Partners More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 High-Temperature Superconductivity Cable Demonstration Projects

  13. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  14. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  15. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  16. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  17. Test plan for: TSAP bit qualification: Temperature criteria

    SciTech Connect (OSTI)

    Ralston, G.L.

    1995-10-23

    This is the Test Plan for acquiring TSAP bit temperature performance data. Hanford Site waste tanks are currently being sampled by several methods. One of these, Rotary Mode Core Sampling (RMCS), uses a cutting bit/sample tube arrangement to obtain core samples of tank contents. Recent efforts to improve sample recovery have resulted in a new bit/sample tube design. Prior to field use, bit performance in two key areas needs to be tested. These areas are: penetration into steel plate, and a temperature rise as a function of downforce, rpm, and time. A performance test in the above two areas was conducted in August, 1995. Based on a review of that test activity, selected follow-on testing is planned to confirm data obtained in the temperature area. The results of both test activities will then be released as a single test report.

  18. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    SciTech Connect (OSTI)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  19. Catalyst activator

    DOE Patents [OSTI]

    McAdon, Mark H. (Midland, MI); Nickias, Peter N. (Midland, MI); Marks, Tobin J. (Evanston, IL); Schwartz, David J. (Lake Jackson, TX)

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  20. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    SciTech Connect (OSTI)

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-15

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  1. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  2. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  3. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  4. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  5. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  6. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  7. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  8. Distinct summer and winter bacterial communities in the active...

    Office of Scientific and Technical Information (OSTI)

    Biology University of Tromso, Tromso, Norway The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil...

  9. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect (OSTI)

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup 1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvn waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvn wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvn waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  10. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  11. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  12. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  13. Lakeview Residences Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility...

  14. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  15. Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility...

  16. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Info (EERE)

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  17. Ennis Laundry Industrial Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry...

  18. Gone Fishing Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Gone Fishing Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Gone Fishing Aquaculture Low Temperature Geothermal Facility Facility Gone Fishing...

  19. Temperature effects on airgun signatures (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Temperature effects on airgun signatures Experiments in an 850 liter water tank were performed in order to study temperature effects on airgun signatures, and to...

  20. Understanding the Temperature and Humidity Environment Inside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) Understanding the Temperature and Humidity ...

  1. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  2. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  3. Advanced Low Temperature Absorption Chiller Module Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature ...

  4. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use of ...

  5. High Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric ...

  6. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV, Temperature, ...

  7. Extremely Low Temperature | Open Energy Information

    Open Energy Info (EERE)

    Extremely Low Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in...

  8. Hyder Valley Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Valley Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Valley Aquaculture Low Temperature Geothermal Facility Facility Hyder Valley Sector...

  9. Countryman Well Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Countryman Well Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Countryman Well Greenhouse Low Temperature Geothermal Facility Facility Countryman...

  10. Wards Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Wards...

  11. Express Farms Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms...

  12. Hyder Ranch Aquaculture Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    Hyder Ranch Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Ranch Aquaculture Low Temperature Geothermal Facility Facility Hyder Ranch Sector...

  13. Manzanita Estates District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  14. Opline Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Opline Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Opline Farms Aquaculture Low Temperature Geothermal Facility Facility Opline Farms...

  15. Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Liskey...

  16. Summer Lake Aquaculture Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility...

  17. Marana Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Marana Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Marana Aquaculture Low Temperature Geothermal Facility Facility Marana Sector Geothermal...

  18. The Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name The Greenhouse Greenhouse Low Temperature Geothermal Facility Facility The Greenhouse Sector...

  19. Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Bliss Greenhouse...

  20. Jackpot Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Jackpot Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Jackpot Aquaculture Low Temperature Geothermal Facility Facility Jackpot Sector Geothermal...

  1. Safford Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Safford Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Aquaculture Low Temperature Geothermal Facility Facility Safford Sector Geothermal...

  2. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  3. Belmont Springs Hatchery Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Belmont Springs Hatchery Aquaculture Low Temperature Geothermal Facility Facility...

  4. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Dispenser Photocathode Using Elemental Cesium Room Temperature Dispenser Photocathode Using Elemental Cesium Los Alamos National Laboratory (LANL) researchers have...

  5. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, Donald O. (Goleta, CA); Burger, Arnold (Nashville, TN)

    1994-01-01

    An optically transparent furnace (10) having a detection apparatus (29) with a pedestal (12) enclosed in an evacuated ampule (16) for growing a crystal (14) thereon. Temperature differential is provided by a source heater (20), a base heater (24) and a cold finger (26) such that material migrates from a polycrystalline source material (18) to grow the crystal (14). A quartz halogen lamp (32) projects a collimated beam (30) onto the crystal (14) and a reflected beam (34) is analyzed by a double monochromator and photomultiplier detection spectrometer (40) and the detected peak position (48) in the reflected energy spectrum (44) of the reflected beam (34) is interpreted to determine surface temperature of the crystal (14).

  6. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  7. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  8. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  9. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  10. Low-Temperature Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Diesel Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  12. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    SciTech Connect (OSTI)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  13. Dilaton field minimally coupled to 2+1 gravity; uniqueness of the static Chan-Mann black hole and new dilaton stationary metrics

    SciTech Connect (OSTI)

    Garca-Diaz, Alberto A.

    2014-01-14

    Using the Schwarzschild coordinate frame for a static cyclic symmetric metric in 2+1 gravity coupled minimally to a dilaton logarithmically depending on the radial coordinate in the presence of an exponential potential, by solving first order linear Einstein equations, the general solution is derived and it is identified with the ChanMann dilaton solution. In these coordinates, a new stationary dilaton solution is obtained; it does not allow for a de SitterAnti-de Sitter limit at spatial infinity, where its structural functions increase indefinitely. On the other hand, it is horizonless and allows for a naked singularity at the origin of coordinates; moreover, one can identify at a large radial coordinate a (quasi-local) mass parameter and in the whole space a constant angular momentum. Via a general SL(2,R)transformation, applied on the static cyclic symmetric metric, a family of stationary dilaton solutions has been generated. A particular SL(2,R)transformation is identified, which gives rise to the rotating ChanMann dilaton solution. All the exhibited solutions have been characterized by their quasi-local energy, mass, and momentum through their series expansions at spatial infinity. The algebraic structure of the Riccienergy-momentum, and Cotton tensors is given explicitly.

  14. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    SciTech Connect (OSTI)

    Kirtman, Bernard; Springborg, Michael; Rérat, Michel; Ferrero, Mauro; Lacivita, Valentina; Dovesi, Roberto; Orlando, Roberto

    2015-01-22

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  15. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  16. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  17. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  18. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    SciTech Connect (OSTI)

    Kim, Hyunsoo

    2013-05-15

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti#12;cially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s#6; superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.

  19. Method and apparatus for optical temperature measurements

    DOE Patents [OSTI]

    Angel, S.M.; Hirschfeld, T.B.

    1986-04-22

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.

  20. Method and apparatus for optical temperature measurements

    DOE Patents [OSTI]

    Angel, S. Michael; Hirschfeld, Tomas B.

    1988-01-01

    A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.

  1. Fuel processor temperature monitoring and control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2002-01-01

    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  2. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect (OSTI)

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  3. High temperature sealed electrochemical cell

    DOE Patents [OSTI]

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  4. Develop NREL Center for Low Temperature Research/Project Data Collection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop NREL Center for Low Temperature Research/Project Data Collection P.I. Tom Williams NREL Low Temperature Demonstration Projects May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov * DOE requested NREL to take a leadership role in development of an RD&D program for low-temperature geothermal resources - New AOP-funded activity in FY10 * Funding and authorization in process *

  5. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    SciTech Connect (OSTI)

    Pasto, Arvid

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  6. High Temperature Reverse By-Pass Diodes Bias and Failures | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reverse By-Pass Diodes Bias and Failures High Temperature Reverse By-Pass Diodes Bias and ... US & Japan TG 4 Activities of QA Forum Thermal Reliability Study of Bypass Diodes in ...

  7. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  8. Spin Hall magnetoresistance at high temperatures

    SciTech Connect (OSTI)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  9. Overview of Japanese Activities in Thermoelectrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japanese Activities in Thermoelectrics Overview of Japanese Activities in Thermoelectrics An overview presentation of R&D projects on thermoelectric power generation technology. PDF icon kajikawa.pdf More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office

  10. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  11. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  12. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  13. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, Arthur J. (Albuquerque, NM); Spates, James J. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM)

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  14. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Phillip, Bradley L. (Shaker Heights, OH)

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  15. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Phillip, Bradley L. (20976 Fairmount Blvd., Shaker Heights, Cuyahoga County, OH 44120)

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  16. High temperature interfacial superconductivity (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: High temperature interfacial superconductivity Citation Details In-Document Search Title: High temperature interfacial superconductivity High-temperature superconductivity ...

  17. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  18. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  19. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  20. High temperature control rod assembly

    DOE Patents [OSTI]

    Vollman, Russell E. (Solana Beach, CA)

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  1. Room temperature ferrimagnetism and ferroelectricity in strained...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5 Mn 0.5 O 3 Citation Details In-Document Search Title: Room temperature ...

  2. High-Temperature Falling-Particle Receiver

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conceptual drawing illustrates a high-temperature falling-particle receiver system that ... the potential to increase the maximum temperature of the heat-transfer media to more than ...

  3. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  4. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells...

  5. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  6. Oceanridge Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Oceanridge Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  7. Arrowhead Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Arrowhead Fisheries Sector Geothermal energy Type Aquaculture Location Susanville, California Coordinates...

  8. Dashun Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Dashun Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  9. Pacific Aquafarms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Pacific Aquafarms Sector Geothermal energy Type Aquaculture Location Niland, California Coordinates 33.2400366,...

  10. Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Nurseries Greenhouse Low Temperature Geothermal Facility Facility Tsuji Nurseries Sector Geothermal energy Type Greenhouse Location Susanville, California Coordinates...

  11. Low Temperature Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Geothermal Energy Low Temperature Geothermal Energy Presented at the Technology Planning Workshop for Low-Temperature, Coproduced, and Geopressured Geothermal Energy, July 13-14, 2010, Golden, Colorado PDF icon 20100713_lowtemp_blackwell.pdf More Documents & Publications Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) AAPG Low-Temperature Webinar Power Plays: Geothermal Energy In Oil and Gas Field

  12. Carbon nanotube temperature and pressure sensors

    DOE Patents [OSTI]

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  13. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  14. Andreev current for low temperature thermometry

    SciTech Connect (OSTI)

    Faivre, T. Pekola, J. P.; Golubev, D. S.

    2015-05-04

    We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminum is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: For instance, it does not conduct heat and its reading does not saturate until at lower temperatures. Another merit is that the responsivity is constant over a wide temperature range.

  15. Determining Outdoor CPV Cell Temperature: Preprint

    SciTech Connect (OSTI)

    Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

    2011-07-01

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  16. High Temperature Interfacial Superconductivity - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Cuprate superconductors exhibit relatively high transition temperatures, but their unit cells are complex and large. Localizing a...

  17. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  18. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  19. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  20. Low Temperature Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Geothermal Technologies Office » Low-Temperature & Coproduced Resources » Low Temperature Projects Low Temperature Projects Projects within the Low-Temperature and Coproduced Subprogram are a part of the Hydrothermal exploration program in the Geothermal Technologies Office. Projects in the Low-Temp portfolio can be accessed in our projects database. During the 2013 Peer Review meeting, hydrothermal and low-temp projects were presented with progress updates. See the 2013 Peer

  1. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  2. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  3. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  4. High-Temperature Superconductivity Cable Demonstration Projects |

    Office of Environmental Management (EM)

    Department of Energy High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into the Power Delivery Infrastructure PDF icon High-Temperature Superconductivity Cable Demonstration Projects More Documents & Publications HTS Cable Projects Superconductivity Program Overview Columbus HTS Power Cable

  5. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  6. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  7. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  8. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  9. Phonon densities of states and related thermodynamic properties of high temperature ceramics.

    SciTech Connect (OSTI)

    Loong, C.-K.

    1998-08-28

    Structural components and semiconductor devices based on silicon nitride, aluminum nitride and gallium nitride are expected to function more reliably at elevated temperatures and at higher levels of performance because of the strong atomic bonding in these materials. The degree of covalency, lattice specific heat, and thermal conductivity are important design factors for the realization of advanced applications. We have determined the phonon densities of states of these ceramics by the method of neutron scattering. The results provide a microscopic interpretation of the mechanical and thermal properties. Moreover, experimental data of the static, structures, and dynamic excitations of atoms are essential to the validation of interparticle potentials employed for molecular-dynamics simulations of high-temperature properties of multi-component ceramic systems. We present an overview of neutron-scattering investigations of the atomic organization, phonon excitations, as well as calculations of related thermodynamic properties of Si{sub 3}N{sub 4}, {beta}-sialon, AlN and GaN. The results are compared with those of the oxide analogs such as SiO{sub 2} and Al{sub 2}O{sub 3}.

  10. Room temperature nonlinear magnetoelectric effect in lead-free and Nb-doped AlFeO{sub 3} compositions

    SciTech Connect (OSTI)

    Ctica, Luiz F.; Santos, Guilherme M.; Santos, Ivair A.; Freitas, Valdirlei F.; Coelho, Adelino A.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar S.; Garcia, Ducinei; Eiras, Jos A.

    2015-02-14

    It is still a challenging problem to obtain technologically useful materials displaying strong magnetoelectric coupling at room temperature. In the search for new effects and materials to achieve this kind of coupling, a nonlinear magnetoelectric effect was proposed in the magnetically disordered relaxor ferroelectric materials. In this context, the aluminum iron oxide (AlFeO{sub 3}), a room temperature ferroelectric relaxor and magnetic spin glass compound, emerges as an attractive lead-free magnetoelectric material along with nonlinear magnetoelectric effects. In this work, static, dynamic, and temperature dependent ferroic and magnetoelectric properties in lead-free AlFeO{sub 3} and 2 at.?% Nb-doped AlFeO{sub 3} multiferroic magnetoelectric compositions are studied. Pyroelectric and magnetic measurements show changes in ferroelectric and magnetic states close to each other (?200?K). The magnetoelectric coefficient behavior as a function of H{sub bias} suggests a room temperature nonlinear magnetoelectric coupling in both single-phase and Nb-doped AlFeO{sub 3}-based ceramic compositions.

  11. Temperature and electrical memory of polymer fibers

    SciTech Connect (OSTI)

    Yuan, Jinkai; Zakri, Ccile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-15

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  12. Temperature monitoring device and thermocouple assembly therefor

    DOE Patents [OSTI]

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  13. Low temperature sodium-beta battery

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-11-19

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  14. High Temperature Materials Interim Data Qualification Report FY 2011

    SciTech Connect (OSTI)

    Nancy Lybeck

    2011-08-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim fiscal year (FY) 2011 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under the Nuclear Quality Assurance (NQA)-1 guidelines and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from seven test series within the High Temperature Materials data stream have been entered into the NDMAS vault, including tensile tests, creep tests, and cyclic tests. Of the 5,603,682 records currently in the vault, 4,480,444 have been capture passed, and capture testing is in process for the remaining 1,123,238.

  15. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  16. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  17. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  18. Review on the effects of hydrogen at extreme pressures and temperatures on the mechanical behavior of polymers.

    SciTech Connect (OSTI)

    Hecht, Ethan S.

    2013-03-01

    The effects of hydrogen on the mechanics (e.g. strength, ductility, and fatigue resistance) of polymer materials are outlined in this report. There are a small number of studies reported in the literature on this topic, and even fewer at the extreme temperatures to which hydrogen service materials will be exposed. Several studies found little evidence that hydrogen affects the static tensile properties, long term creep, or ductile fracture of high density polyethylene or polyamide. However, there has been a report that a recoverable drop in the modulus of high density polyethylene is observable under high hydrogen pressure. A research need exists on the mechanical effects of hydrogen on the wide range of polymers used or considered for use in the hydrogen economy, due to the lack of data in the literature.

  19. Temperature detection in a gas turbine

    DOE Patents [OSTI]

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  20. Low Temperature Proton Conductivity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Conductivity Low Temperature Proton Conductivity Presentation by Tom Zawodzinski to DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop held February 1-5, 2005 in Phoenix, Arizona. PDF icon 06_zawodzinski_proton.pdf More Documents & Publications Fuel Cells for Transportation - FY 2001 Progress Report DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs, Components, and Integration Minutes of the High Temperature Membrane Working Group Meeting, Monday, May 18,

  1. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Manufacturing Barriers to High Temperature PEM Commercialization More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  2. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  3. Low-temperature geothermal database for Oregon

    SciTech Connect (OSTI)

    Black, G.

    1994-11-01

    The goals of the low-temperature assessment project, performed by the Oregon Department of Geology and Mineral Industries (DOGAMI) is aimed primarily at updating the inventory of the nation's low and moderate temperature geothermal resources. The study has begun in Oregon, where the areas of Paisley, Lakeview, Burns/Hines, Lagrande, and Vale were identified over 40 sites as having potential for direct heat utilization. Specifics sites are outlined, detailing water temperature, flow, and current uses of the sites.

  4. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  5. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis - High Temperature - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility by taking a stream of water and heating it and then splitting the water into hydrogen and oxygen product streams. A

  6. ARM - Measurement - Longwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow band of wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  7. ARM - Measurement - Longwave spectral brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectral brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation at the same spectrally resolved wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  8. ARM - Measurement - Microwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsMicrowave narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Microwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow bands of wavelengths. Categories Radiometric Instruments The above measurement is considered

  9. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  10. On the propagation of a quasi-static disturbance in a heterogeneous, deformable, and porous medium with pressure-dependent properties

    SciTech Connect (OSTI)

    Vasco, D.W.

    2011-10-01

    Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.

  11. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  12. Effect of parameter variations on the static and dynamic behaviour of a self-assembled quantum-dot laser using circuit-level modelling

    SciTech Connect (OSTI)

    Razm-Pa, M; Emami, F

    2015-01-31

    We report a new circuit model for a self-assembled quantum-dot (SAQD) laser made of InGaAs/GaAs structures. The model is based on the excited state and standard rate equations, improves the previously suggested circuit models and also provides and investigates the performance of this kind of laser. The carrier dynamic effects on static and dynamic characteristics of a SAQD laser are analysed. The phonon bottleneck problem is simulated. Quantum-dot lasers are shown to be quite sensitive to the crystal quality outside and inside quantum dots. The effects of QD coverage factor, inhomogeneous broadening, the physical source of which is the size fluctuation of quantum dots formed by self-assembly of atoms, and cavity length on the SAQD laser characteristics are analysed. The results of simulation show that an increase in the cavity length and in the QD coverage factor results in the growth of the output power. On the other hand, an increase in the coverage factor and a degradation of inhomogeneous broadening lead to an increase in the modulation bandwidth. The effect of the QD height (cylindrical shape) and stripe width of the laser cavity on QD laser modulation is also analysed. (lasers)

  13. Low Temperature Direct Use Aquaculture Geothermal Facilities...

    Open Energy Info (EERE)

    Low Temperature Direct Use Aquaculture Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYB...

  14. Low Temperature Direct Use Greenhouse Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Greenhouse Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  15. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation PDF icon lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  16. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  17. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 -- Washington D.C. PDF icon lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  18. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  19. Low-Temperature Geothermal Projects Nationwide

    SciTech Connect (OSTI)

    DOE Geothermal Technologies

    2013-04-01

    Poster of low-temperature and co-produced geothermal projects nationwide. This map poster summarizes completed, ongoing and proposed projects for FY14.

  20. Room temperature ferrimagnetism and ferroelectricity in strained...

    Office of Scientific and Technical Information (OSTI)

    room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. ...

  1. Low temperature proton conducting oxide devices

    DOE Patents [OSTI]

    Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

    2008-08-19

    A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

  2. Low Temperature Direct Use Industrial Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Industrial Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  3. Hydrothermal Convection Systems with Reservoir Temperatures greater...

    Open Energy Info (EERE)

    Systems with Reservoir Temperatures greater than or equal to 90 degrees C Authors Brook, Mariner, Mabey, Swanson, Guffanti and Muffler Published Journal Assessment of...

  4. Low Temperature/Coproduced/Geopressured Subprogram Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    This overview of GTP's Low Temperature/Coproduced/Geopressured subprogram was given at GTP's Program Peer Review on May 18, 2010.

  5. Sonoluminescence Temperatures During Multi-Bubble Cavitation...

    Office of Scientific and Technical Information (OSTI)

    Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CAVITATION; BUBBLES; LIQUIDS; SOUND WAVES; ACOUSTICS; TEMPERATURE MEASUREMENT Word Cloud More Like This Full Text ...

  6. Low Temperature Material Bonding Techniq Ue

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-08-06

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  7. Americulture Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Americulture Sector Geothermal energy Type Aquaculture Location Animas, New Mexico Coordinates 31.9489799, -108.8072777...

  8. Pressure Temperature Log | Open Energy Information

    Open Energy Info (EERE)

    to reach equilibrium with the surrounding formation is going to provide the most accurate reservoir temperature (Blackwell, et al., 2010). Potential Pitfalls Fluids are being...

  9. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  10. Group 3: Humidity, Temperature, and Voltage (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01

    Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  11. High-temperature brazed ceramic joints

    DOE Patents [OSTI]

    Jarvinen, Philip O.

    1986-01-01

    High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

  12. Edward's Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleEdward%27sGreenhousesGreenhouseLowTemperatureGeothermalFacility&oldid305261" ...

  13. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect (OSTI)

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  14. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect (OSTI)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the undulators to {+-}0.01 C. This note describes the temperature measurement system under construction.

  15. One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Han, W.; Wen, W; Hanson, J; Teng, X; Marinkovic, N; Rodriguez, J

    2009-01-01

    Synchrotron-based in situ time-resolved X-ray diffraction and X-ray absorption spectroscopy were used to study pure ceria and Pd-loaded ceria nanotubes and nanorods (1D-ceria) as catalysts for the water-gas shift (WGS) reaction. While bulk ceria is very poor as WGS catalysts, pure 1D-ceria displayed catalytic activity at a temperature as low as 300 C. The reduction of the pure 1D-ceria in pure hydrogen started at 150 C, which is a much lower temperature than those previously reported for the reduction of 3D ceria nanoparticles. This low reduction temperature reflects the novel morphology of the oxide systems and may be responsible for the low-temperature WGS catalytic activity seen for the 1D-ceria. Pd-loaded 1D ceria displayed significant WGS activity starting at 200 C. During pretreatment in H{sub 2}, the ceria lattice parameter increased significantly around 60 C, which indicates that Pd-oxygen interactions may facilitate the reduction of Pd-loaded 1D-ceria. Pd and ceria both participate in the formation of the active sites for the catalytic reactions. The low-temperature hydrogen pretreatment results in higher WGS activity for Pd-loaded 1D-ceria.

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  17. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  18. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both small or medium-sized and modular by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOEs ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  19. Category:Geothermal Low Temperature Direct Use Facilities | Open...

    Open Energy Info (EERE)

    Geothermal Low Temperature Direct Use Facilities Jump to: navigation, search Low Temperature Direct Use Geothermal Facilities. Add a Low Temperature Geothermal Facility Pages in...

  20. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, ...