National Library of Energy BETA

Sample records for activity modeling-computer simulations

  1. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity...

  2. Modeling-Computer Simulations At Geysers Area (Goff & Decker...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) Exploration Activity Details...

  3. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details...

  4. Modeling-Computer Simulations (Lewicki & Oldenburg, 2004) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Lewicki & Oldenburg, 2004) Exploration Activity Details Location...

  5. Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell, 2004) Exploration Activity...

  6. Modeling-Computer Simulations (Combs, Et Al., 1999) | Open Energy...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Combs, Et Al., 1999) Exploration Activity Details Location Unspecified...

  7. Modeling-Computer Simulations At Yellowstone Region (Laney, 2005...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) Exploration Activity Details Location...

  8. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details...

  9. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details...

  10. Modeling-Computer Simulations (Ozkocak, 1985) | Open Energy Informatio...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Ozkocak, 1985) Exploration Activity Details Location Unspecified...

  11. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  12. Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Exploration Activity...

  13. Modeling-Computer Simulations (Ranalli & Rybach, 2005) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Ranalli & Rybach, 2005) Exploration Activity Details Location...

  14. Modeling-Computer Simulations At Raft River Geothermal Area ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1983) Exploration Activity Details...

  15. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

  16. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  17. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)...

  18. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration...

  19. Modeling-Computer Simulations At Obsidian Cliff Area (Hulen,...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003) Exploration Activity Details...

  20. Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details...

  1. Modeling-Computer Simulations At Coso Geothermal Area (1980)...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (1980) Exploration Activity Details Location Coso...

  2. Modeling-Computer Simulations At The Needles Area (Bell & Ramelli...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At The Needles Area (Bell & Ramelli, 2009) Exploration Activity Details...

  3. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

  4. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity...

  5. Modeling-Computer Simulations At Coso Geothermal Area (2000)...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (2000) Exploration Activity Details Location Coso...

  6. Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity...

  7. Modeling-Computer Simulations At Coso Geothermal Area (1999)...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (1999) Exploration Activity Details Location Coso...

  8. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  9. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration...

  10. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1995)...

  11. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003)...

  12. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration...

  13. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Brown & DuTeaux, 1997) Exploration...

  14. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Exploration...

  15. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration...

  16. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  17. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

  18. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al.,...

  19. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

  20. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  1. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Geothermal Area (Wilt & Haar, 1986)...

  2. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration...

  3. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley...

  4. Modeling-Computer Simulations At Nevada Test And Training Range...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nevada...

  5. Modeling-Computer Simulations At U.S. West Region (Sabin, Et...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At U.S. West Region (Sabin, Et Al., 2004) Exploration Activity Details...

  6. Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details...

  7. Modeling-Computer Simulations At U.S. West Region (Williams ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity...

  8. Modeling-Computer Simulations | Open Energy Information

    Open Energy Info (EERE)

    the risk of inaccurate predictions.1 Potential Pitfalls Uncertainties in initial reservoir conditions and other model inputs can cause inaccuracies in simulations, which...

  9. Modeling-Computer Simulations At Chocolate Mountains Area (Alm...

    Open Energy Info (EERE)

    Simulations Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature...

  10. Modeling-Computer Simulations (Walker, Et Al., 2005) | Open Energy...

    Open Energy Info (EERE)

    occurrence model for geothermal systems based on fundamental geologic data. References J. D. Walker, A. E. Sabin, J. R. Unruh, J. Combs, F. C. Monastero (2005) Development Of...

  11. Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal...

  12. Modeling-Computer Simulations At San Juan Volcanic Field Area...

    Open Energy Info (EERE)

    San Juan region, to further investigate both the thermal history of the region and the nature of the influence of the San Juan volcanic field thermal source on the thermal history...

  13. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    (2003) The Mechanics of Unrest at Long Valley Caldera, California. 2. Constraining the Nature of the Source Using Geodetic and Micro-Gravity Data John O. Langbein (2003)...

  14. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal...

  15. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal...

  16. Modeling-Computer Simulations (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    in the near surface: Available technologies for monitoring CO2 in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at...

  17. Modeling-Computer Simulations (Gritto & Majer) | Open Energy...

    Open Energy Info (EERE)

    are shown in Figure 1. The parameters of the fault were modeled after Coates and Schoenberg (1995), where the orientation of the fault relative to the finite-difference grid...

  18. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    vein structure associated with ore deposits. References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  19. Modeling-Computer Simulations At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two...

  20. Modeling-Computer Simulations At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    importance of water convection for distributing heat in the East Rift Zone. References Albert J. Rudman, David Epp (1983) Conduction Models Of The Temperature Distribution In The...

  1. Geomechanical Simulations Related to UCG Activities

    SciTech Connect (OSTI)

    Vorobiev, O; Morris, J; Antoun, T; Friedmann, S J

    2008-07-11

    This paper presents results from a recent investigation into a range of geomechanical processes induced by UCG activities. The mechanical response of the coal and host rock mass plays a role in every stage of UCG operations. For example, cavity collapse during the burn has significant effect upon the rate of the burn itself. In the vicinity of the cavity, collapse and fracturing may result in enhanced hydraulic conductivity of the rock matrix above the burn chamber. Even far from the cavity, stresses due to subsidence may be sufficient to induce new fractures linking previously isolated aquifers. These mechanical processes are very important in understanding the risk of unacceptable subsidence and the potential for groundwater contamination. The mechanical processes are inherently non-linear, involving significant inelastic response, especially in the region closest to the cavity. in addition, the response of the rock mass involves both continuum and discrete mechanical behavior. To better understand these effects, they have applied a suite of highly non-linear computational tools in both two and three dimensions to a series of UCG scenarios. The calculations include combinations of continuum and discrete mechanical responses by employing fully coupled finite element and discrete element capabilities.

  2. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  3. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect (OSTI)

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  4. ActivitySim: large-scale agent based activity generation for infrastructure simulation

    SciTech Connect (OSTI)

    Gali, Emmanuel; Eidenbenz, Stephan; Mniszewski, Sue; Cuellar, Leticia; Teuscher, Christof

    2008-01-01

    The United States' Department of Homeland Security aims to model, simulate, and analyze critical infrastructure and their interdependencies across multiple sectors such as electric power, telecommunications, water distribution, transportation, etc. We introduce ActivitySim, an activity simulator for a population of millions of individual agents each characterized by a set of demographic attributes that is based on US census data. ActivitySim generates daily schedules for each agent that consists of a sequence of activities, such as sleeping, shopping, working etc., each being scheduled at a geographic location, such as businesses or private residences that is appropriate for the activity type and for the personal situation of the agent. ActivitySim has been developed as part of a larger effort to understand the interdependencies among national infrastructure networks and their demand profiles that emerge from the different activities of individuals in baseline scenarios as well as emergency scenarios, such as hurricane evacuations. We present the scalable software engineering principles underlying ActivitySim, the socia-technical modeling paradigms that drive the activity generation, and proof-of-principle results for a scenario in the Twin Cities, MN area of 2.6 M agents.

  5. Simulations for Tracking Cosmogenic Activation in Germanium and Copper

    SciTech Connect (OSTI)

    Aguayo, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-11-01

    High-purity germanium (HPGe) detectors housed in copper cryostats and shielding materials are used in measurements of the extraordinarily rare nuclear decay process, neutrinoless double-beta decay (0???), and for dark matter searches. Cosmogenic production of 68Ge and 60Co in the germanium and copper represent an irreducible background to these experiments as the subsequent decays of these isotopes can mimic the signals of interest. These radioactive isotopes can be removed by chemical and/or isotopic separation, but begin to grow-in to the material after separation until the material is moved deep underground. This work is motivated by the need to have a reliable, experimentally benchmarked simulation tool for evaluating shielding materials used during transportation and near-surface manufacturing of experiment components. The resulting simulations tool has been used to enhance the effectiveness of an existing transport shield used to ship enriched germanium from the separations facility to the detector manufacturing facility.

  6. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    SciTech Connect (OSTI)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

  7. Modeling-Computer Simulations At U.S. West Region (Laney, 2005...

    Open Energy Info (EERE)

    Hydrothermal Systems in the Basin and Range and Cordilleran United States, Moore, Nash, Nemcok, Lutz, Norton, Kaspereit, Berard, van de Putte, Johnson and Deymonaz....

  8. MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM

    SciTech Connect (OSTI)

    Mendygral, P. J.; Jones, T. W.; Dolag, K.

    2012-05-10

    We present a pair of three-dimensional magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high-resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intracluster medium (ICM) contains quite active 'weather'. We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster, which can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in 'double-double' radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.

  9. Statistical circuit simulation with measurement-based active device models: Implications for process control and IC manufacturability

    SciTech Connect (OSTI)

    Root, D.E.; McGinty, D.; Hughes, B.

    1995-12-31

    This paper presents a new approach to statistical active circuit design which unifies device parametric-based process control and non-parametric circuit simulation. Predictions of circuit sensitivity to process variation and yield-loss of circuits fabricated in two different GaAs IC processes are described. The simulations make use of measurement-based active device models which are not formulated in terms of conventional parametric statistical variables. The technique is implemented in commercially available simulation software (HP MDS).

  10. Adaptive Detached Eddy Simulation of a High Lift Wing with Active Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control | Argonne Leadership Computing Facility Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift. Slat, flap and complex supporting structures (right sub figures) that create complex vorticity wakes are resolved in the adaptive, unstructured grid simulation (third subfigure is zoom on

  11. Adaptive Detached Eddy Simulation of a High Lift Wing with Active...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift Vorticity contours colored by speed from a...

  12. Effect of Cu2+ Activation on Interfacial Water Structure at the Sphalerite Surface as Studied by Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.; Wick, Collin D.

    2015-12-10

    In the first part of this paper, an experimental contact angle study of the fresh and Cu2+ activated sphalerite-ZnS surface as well as the covellite-CuS (001) surface is reported describing the increased hydrophobic character of the surface during Cu2+ activation. In addition to these experimental results, the fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite- CuS2 (100), and covellite-CuS (001) surfaces were examined using Molecular Dynamics Simulation (MDS). Our MDS results on the behavior of interfacial water at the fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite-CuS2 (100), and covellite-CuS (001) surfaces include simulated contact angles, water number density distribution, water dipole orientation, water residence time, and hydrogen-bonding considerations. The copper content at the Cu2+ activated sphalerite surface seems to account for the increased hydrophobicity as revealed by both experimental and MD simulated contact angle measurements. The relatively greater hydrophobic character developed at the Cu2+ activated sphalerite surface and at the copper-zinc sulfide surface has been described by MDS, based on the structure of interfacial water and its dynamic properties. L.X.D. acknowledges funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  13. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    SciTech Connect (OSTI)

    Kaper, Tasso J. Kramer, Mark A.; Rotstein, Horacio G.

    2013-12-15

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  14. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the radionuclides that is volatile in the melter and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 (99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentrations in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and 241Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. At this time, these scoping tests did not evaluate the partitioning of the radionuclides to the evaporator condensate, since ample data are available separately from other experience in the DOE complex. Results from the evaporation testing show that the neutral SBS simulant first forms turbidity at ~7.5X concentration, while the alkaline-adjusted simulant became turbid at ~3X concentration. The major solid in both cases was Kogarkoite, Na3FSO4. Sodium and lithium fluorides were also detected. Minimal solids were formed in the evaporator bottoms until a substantial fraction of liquid was removed, indicating that evaporation could minimize storage volume issues. Achievable concentration factors without significant insoluble solids were 17X at alkaline pH, and 23X at neutral pH. In both runs, significant ammonia carried over and was captured in the condenser with the water condensate. Results also indicate that with low insoluble solids formation in the initial testing at neutral pH, the use of Reverse Osmosis is a potential alternate method for concentrating the solution, although an evaluation is needed to identify equipment that can tolerate insoluble solids. Most of the ammonia remains in the evaporator bottoms during the neutral pH evaporation, but partitions to the condensate during alkaline evaporation. Disposition of both streams needs to consider the management of ammonia vapor and its release. Since this is an initial phase of testing, additional tasks related to evaporation methods are expected to be identified for development. These tasks likely include evaluation and testing of composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and evaporator condensate disposition.

  15. simulations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    simulations

  16. Predictive Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predictive Simulation Predictive Simulation Empirical To First Principle Models Computing tools currently used in nuclear industry and regulatory practice are based primarily on empirical math models to approximate, or fit, existing experimental data. Many have a pedigree reaching back to the 1970s and 1980s and were designed to support decision making and evaluate everything from behavior of individual fuel pellets to severe accident scenarios for an entire power plant. Programs like SAPHIRE,

  17. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT

    SciTech Connect (OSTI)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2007-08-08

    The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

  18. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formoreĀ Ā» labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.Ā«Ā less

  19. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect (OSTI)

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  20. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents. The sorbents, hydroxyapatite and sodium oxalate, were expected to sorb the precipitated technetium dioxide and facilitate removal. The Phase 1 tests examined a broad range of conditions and used the initial baseline simulant. The Phase 2 tests narrowed the conditions based on Phase 1 results, and used a slightly modified simulant. Test results indicate that excellent removal of {sup 99}Tc was achieved using SnCl{sub 2} as a reductant, and was effective with or without sorption onto hydroxyapatite. This reaction worked even in the presence of air (which could oxidize the stannous ion) and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >199 in one hour with only 1 g/L of SnCl{sub 2}. Prior work had shown that it was much less effective at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}c during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Reduction using FeSO{sub 4} was not effective at removing {sup 99}Tc, but did remove the Cr. Chromium is present due to partial volatility and entrainment in the off-gas, and is highly oxidizing, so would be expected to react with reducing agents more quickly than pertechnetate. Testing showed that sufficient reducing agent must be added to completely reduce the chromium before the technetium is reduced and removed. Other radionuclides are also present in this off-gas condensate stream. To enable sending this stream to the Hanford ETF, and thereby divert it from the recycle where it impacts the LAW glass volume, several of these also need to be removed. Samples from optimized conditions were also measured for actinide removal in order to examine the effect of the Tc-removal process on the actinides. Plutonium was also removed by the SnCl{sub 2} precipitation process. Results of this separation testing indicate that sorption/precipitation is a viable concept and has the potential to decontaminate the {sup 99}Tc from the stream, allowing it to be diverted away from WTP and thus eliminating the impact of the recycled halides and sulfate on the LAW glass volume. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) with or without sorbent at neutral pH to remove the Tc. Although hydroxyapatite was not necessary to effect the {sup 99}Tc removal, it may be beneficial in solid-liquid separations. Other testing will examine removal of the other radionuclides. This testing was the second phase of testing, which aimed at optimizing the process by examining the minimum amount of reductant needed and the minimum reaction time. Although results indicated that SnCl{sub 2} was effective, further work on a pH-adjusted Fe(SO{sub 4}) mixture are needed. Additional tasks are needed to examine removal of the other radionuclides, solid-liquid separation technologies, slurry rheology measurements, composition variability impacts, corrosion and erosion, and slurry storage and immobilization.

  1. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alkaline pH, with a DF of 17.9. As anticipated, ammonium ion probably interfered with the IonsivĀ®a IE-95 zeolite uptake of {sup 137}Cs. Although this DF of {sup 137}Cs was moderate, additional testing is expected to identify more effective conditions. Similarly, Monosodium Titanate (MST) was more effective at alkaline pH at removing Sr, Pu, and U, with a DF of 319, 11.6, and 10.5, respectively, within 24 hours. Actually, the IonsivĀ® IE-95, which was targeting removal of Cs, was also moderately effective for Sr, and highly effective for Pu and U at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}Tc during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Results of this separation testing indicate that sorption/precipitation was a viable concept and has the potential to decontaminate the stream. All radionuclides were at least partially removed by one or more of the materials tested. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) and sorbent at neutral pH to remove the Tc, followed by pH adjustment and the addition of zeolite (IonsivĀ® IE-95) to remove the Cs, Sr, and actinides. Addition of MST to remove Sr and actinides may not be needed. Since this was an initial phase of testing, additional tasks to improve separation methods were expected to be identified. Primarily, further testing is needed to identify the conditions for the decontamination process. Once these conditions are established, follow-on tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated LAW Off-Gas Condensate evaporation and solidification.

  2. Un Seminar On The Utilization Of Geothermal Energy For Electric...

    Open Energy Info (EERE)

    Geothermics. () . Related Geothermal Exploration Activities Activities (3) Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey...

  3. GPU accelerated fully space and time resolved numerical simulations of self-focusing laser beams in SBS-active media

    SciTech Connect (OSTI)

    Mauger, Sarah; Colin de VerdiĆØre, Guillaume; BergĆ©, Luc; Skupin, Stefan; Friedrich Schiller University, Institute of Condensed Matter Theory and Optics, 07743 Jena

    2013-02-15

    A computer cluster equipped with Graphics Processing Units (GPUs) is used for simulating nonlinear optical wave packets undergoing Kerr self-focusing and stimulated Brillouin scattering in fused silica. We first recall the model equations in full (3+1) dimensions. These consist of two coupled nonlinear Schrƶdinger equations for counterpropagating optical beams closed with a source equation for light-induced acoustic waves seeded by thermal noise. Compared with simulations on a conventional cluster of Central Processing Units (CPUs), GPU-based computations allow us to use a significant (16 times) larger number of mesh points within similar computation times. Reciprocally, simulations employing the same number of mesh points are between 3 and 20 times faster on GPUs than on the same number of classical CPUs. Performance speedups close to 45 are reported for isolated functions evaluating, e.g., the optical nonlinearities. Since the field intensities may reach the ionization threshold of silica, the action of a defocusing electron plasma is also addressed.

  4. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  5. Comparison of physical properties of quiet and active regions through the analysis of magnetohydrodynamic simulations of the solar photosphere

    SciTech Connect (OSTI)

    Criscuoli, S.

    2013-11-20

    Recent observations have shown that the photometric and dynamic properties of granulation and small-scale magnetic features depend on the amount of magnetic flux of the region they are embedded in. We analyze results from numerical hydrodynamic and magnetohydrodynamic simulations characterized by different amounts of average magnetic flux and find qualitatively the same differences as those reported from observations. We show that these different physical properties result from the inhibition of convection induced by the presence of the magnetic field, which changes the temperature stratification of both quiet and magnetic regions. Our results are relevant for solar irradiance variations studies, as such differences are still not properly taken into account in irradiance reconstruction models.

  6. SIGMOIDAL ACTIVE REGION ON THE SUN: COMPARISON OF A MAGNETOHYDRODYNAMICAL SIMULATION AND A NONLINEAR FORCE-FREE FIELD MODEL

    SciTech Connect (OSTI)

    Savcheva, A.; Van Ballegooijen, A.; DeLuca, E.; Pariat, E.; Aulanier, G.

    2012-05-01

    In this paper we show that when accurate nonlinear force-free field (NLFFF) models are analyzed together with high-resolution magnetohydrodynamic (MHD) simulations, we can determine the physical causes for the coronal mass ejection (CME) eruption on 2007 February 12. We compare the geometrical and topological properties of the three-dimensional magnetic fields given by both methods in their pre-eruptive phases. We arrive at a consistent picture for the evolution and eruption of the sigmoid. Both the MHD simulation and the observed magnetic field evolution show that flux cancellation plays an important role in building the flux rope. We compute the squashing factor, Q, in different horizontal maps in the domains. The main shape of the quasi-separatrix layers (QSLs) is very similar between the NLFFF and MHD models. The main QSLs lie on the edge of the flux rope. While the QSLs in the NLFFF model are more complex due to the intrinsic large complexity in the field, the QSLs in the MHD model are smooth and possess lower maximum value of Q. In addition, we demonstrate the existence of hyperbolic flux tubes (HFTs) in both models in vertical cross sections of Q. The main HFT, located under the twisted flux rope in both models, is identified as the most probable site for reconnection. We also show that there are electric current concentrations coinciding with the main QSLs. Finally, we perform torus instability analysis and show that a combination between reconnection at the HFT and the resulting expansion of the flux rope into the torus instability domain is the cause of the CME in both models.

  7. Activities

    Broader source: Energy.gov [DOE]

    Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

  8. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  9. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    SciTech Connect (OSTI)

    Henke, Paul S.; Mak, Chi H.

    2014-08-14

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg{sup 2+} that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  10. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  11. Body Wave Tomography For Regional Scale Assessment Of Geothermal...

    Open Energy Info (EERE)

    . () : GRC; p. () Related Geothermal Exploration Activities Activities (8) Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009)...

  12. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  13. Study of the shape of an optical window in a super-resolution state by electromagnetic-thermal coupled simulation: Effects of melting of an active layer in an optical disc

    SciTech Connect (OSTI)

    Sano, Haruyuki; Shima, Takayuki; Kuwahara, Masashi; Fujita, Yoshiya; Uchiyama, Munehisa; Aono, Yoshiyuki

    2014-04-21

    We performed a multi-physics simulation for the propagation of electromagnetic waves and heat conduction in a super-resolution optical disc that includes an active layer of InSb. Because the change in the optical constant of InSb due to the phase transition is taken into account, the melting of the active layer can be realistically simulated in our calculation. It was found that in the case of an incident light power (P) of 2 mW, a profile of the electric field intensity transmitted through the InSb layer has an asymmetric shape with a narrow peak. This beam-narrowing was suggested to be an essential mechanism of the super-resolution, because a narrower light beam allows the detection of a smaller pit structure than the optical diffraction limit. This beam-narrowing was found to be originating from a small molten region produced in the InSb layer, which works as a mask for light exposure.

  14. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  15. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of Ā—Diesel generator sets Ā—Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmoreĀ Ā» systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.Ā«Ā less

  16. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the regionĀ’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themoreĀ Ā» level of households and individual travelers. Trips a planned to satisfy the populationĀ’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account for individual traveler response to the dynamic transportation environment. In contrast, TRANSIMS provides disaggregated information that more explicitly represents the complex nature of humans interacting with the transportation system. It first generates a synthetic population that represents individuals and their households in the metropolitan region in a statistically valid way. The demographic makeup and spatial distribution of this synthetic population is derived from census data so that it matches that of the regionĀ’s real population. From survey data, a model is built of household and individual activities that may occur at home, in the workplace, school or shopping centers, for example. Trip plans including departure times, travel modes, and specific routes are created for each individual to get to his or her daily activities. TRANSIMS then simulates the movement of millions of individuals, following their trip plans throughout the transportation network, including their use of vehicles such as cars or buses, on a second-by-second basis. The virtual travel in TRANSIMS mimics the traveling and driving behavior of real people in the metropolitan region. The interactions of individual vehicles produce realistic traffic dynamics from which analysts can judge to performance of the transportation sysime and estimate vehicle emissions. Los Alamos, in cooperation with the Department of Transportation, Federal HIghway Administration and the local Metropolitan Planning Offices, has done TRANSIMS micro-simulations of auto traffic patterns in these two urban areas and completed associated scenario-based studies.Ā«Ā less

  17. Advanced Simulation Capability for Environmental Management (ASCEM) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National

  18. Reframing Accelerator Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Mori-1.png Key Challenges: Use advanced simulation tools to study the feasibility of plasma-based linear colliders and to optimize conceptual designs. Much of the...

  19. Building a Particle Simulator

    SciTech Connect (OSTI)

    Weaver, Brian Phillip; Williams, Brian J.

    2015-10-06

    The purpose of this manuscript is to illustrate how to use the simulator we have developed to generate counts from simulated spectra.

  20. Plasma Simulation Program

    SciTech Connect (OSTI)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

  1. MJO Simulation Diagnostics

    SciTech Connect (OSTI)

    Waliser, D; Sperber, K; Hendon, H; Kim, D; Maloney, E; Wheeler, M; Weickmann, K; Zhang, C; Donner, L; Gottschalck, J; Higgins, W; Kang, I; Legler, D; Moncrieff, M; Schubert, S; Stern, W; Vitart, F; Wang, B; Wang, W; Woolnough, S

    2008-06-02

    The Madden-Julian Oscillation (MJO) interacts with, and influences, a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, mid-latitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in our climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multi-model comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, due to the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the US CLIVAR MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation, to more sophisticated space-time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life-cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.

  2. Weld arc simulator

    DOE Patents [OSTI]

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  3. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  4. Air Shower Simulations

    SciTech Connect (OSTI)

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  5. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  6. Reactor refueling machine simulator

    SciTech Connect (OSTI)

    Rohosky, T.L.; Swidwa, K.J.

    1987-10-13

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console.

  7. Fast Analysis and Simulation Team | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACFast Analysis and Simulation Team

  8. Parallel Atomistic Simulations

    SciTech Connect (OSTI)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  9. Modeling & Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation Modeling & Simulation Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Harradine Physical Chemistry and Applied Spectroscopy Email Josh Smith Chemistry Communications Email The inherent knowledge of transformation has beguiled sorcerers and scientists alike. Data Analysis and Modeling & Simulation for the Chemical Sciences Project Description Almos every

  10. Device Simulation Tool - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0036_v2.jpg Device Simulation Tool Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation

  11. Modeling & Simulation publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation Ā» Modeling & Simulation Publications Modeling & Simulation publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Harradine Physical Chemistry and Applied Spectroscopy Email Josh Smith Chemistry Email The inherent knowledge of transformation has beguiled sorcerers and scientists alike. D.A. Horner, F. Lambert, J.D. Kress, and L.A. Collins,

  12. Large Eddy Simulations: Where

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eddy Simulations: Where observations and modeling collides July 18, 2015 Cascade of Models āŒ… General Circulation Models āŒ… Regional Models āŒ… Large-Eddy Simulations āŒ… Direct Numerical Simulations LES GCM vs LES History Theory What if? Using LES together with Observations Testbed LES 2 / 37 Cascade of Models General Circulation Models āŒ… Domain size: Entire Earth āŒ… Horizontal Boundary conditions: None āŒ… Horizontal grid spacing: 50km āŒ… Total number of points: about 400 ā‡„ 400 ā‡„ 100

  13. House Simulation Protocols Report

    Broader source: Energy.gov [DOE]

    Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and...

  14. Consortium for Advanced Simulation ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... | October 2015 2 of the lower core plate tends to promote manometer effects nu- merically. ... itera- tion and for this simulation the values are considered pseudo- global extremes. ...

  15. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  16. Theory, Simulation, and Computation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADTSC Theory, Simulation, and Computation Supporting the Laboratory's overarching strategy to provide cutting-edge tools to guide and interpret experiments and further our fundamental understanding and predictive capabilities for complex systems. Theory, modeling, informatics Suites of experiment data High performance computing, simulation, visualization Contacts Associate Director John Sarrao Deputy Associate Director Paul Dotson Directorate Office (505) 667-6645 Email Applying the Scientific

  17. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  18. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  19. Damselfly Network Simulator

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Damselfly is a model-based parallel network simulator. It can simulate communication patterns of High Performance Computing applications on different network topologies. It outputs steady-state network traffic for a communication pattern, which can help in studying network congestion and its impact on performance.

  20. Radio Channel Simulator (RCSM)

    Energy Science and Technology Software Center (OSTI)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  1. Converting DYNAMO simulations to Powersim Studio simulations

    SciTech Connect (OSTI)

    Walker, La Tonya Nicole; Malczynski, Leonard A.

    2014-02-01

    DYNAMO is a computer program for building and running 'continuous' simulation models. It was developed by the Industrial Dynamics Group at the Massachusetts Institute of Technology for simulating dynamic feedback models of business, economic, and social systems. The history of the system dynamics method since 1957 includes many classic models built in DYANMO. It was not until the late 1980s that software was built to take advantage of the rise of personal computers and graphical user interfaces that DYNAMO was supplanted. There is much learning and insight to be gained from examining the DYANMO models and their accompanying research papers. We believe that it is a worthwhile exercise to convert DYNAMO models to more recent software packages. We have made an attempt to make it easier to turn these models into a more current system dynamics software language, Powersim © Studio produced by Powersim AS2 of Bergen, Norway. This guide shows how to convert DYNAMO syntax into Studio syntax.

  2. Morphology of Gas Release in Physical Simulants

    SciTech Connect (OSTI)

    Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

    2014-07-03

    This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

  3. Global Feedback Simulator

    Energy Science and Technology Software Center (OSTI)

    2015-10-29

    GFS is a simulation engine that is used for the characterization of Accelerator performance parameters based on the machine layout, configuration and noise sources. It combines extensively tested Feedback models with a longitudinal phase space tracking simulator along with the interaction between the two via beam-based feedback using a computationally efficient simulation engine. The models include beam instrumentation, considerations on loop delays for in both the R and beam-based feedback loops, as well as themoreĀ Ā» ability to inject noise (both correlated and uncorrelated) at different points of the machine including a full characterization of the electron gun performance parameters.Ā«Ā less

  4. Global Feedback Simulator

    SciTech Connect (OSTI)

    2015-10-29

    GFS is a simulation engine that is used for the characterization of Accelerator performance parameters based on the machine layout, configuration and noise sources. It combines extensively tested Feedback models with a longitudinal phase space tracking simulator along with the interaction between the two via beam-based feedback using a computationally efficient simulation engine. The models include beam instrumentation, considerations on loop delays for in both the R and beam-based feedback loops, as well as the ability to inject noise (both correlated and uncorrelated) at different points of the machine including a full characterization of the electron gun performance parameters.

  5. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  6. Fundamentals of plasma simulation

    SciTech Connect (OSTI)

    Forslund, D.W.

    1985-01-01

    With the increasing size and speed of modern computers, the incredibly complex nonlinear properties of plasmas in the laboratory and in space are being successfully explored in increasing depth. Of particular importance have been numerical simulation techniques involving finite size particles on a discrete mesh. After discussing the importance of this means of understanding a variety of nonlinear plasma phenomena, we describe the basic elements of particle-in-cell simulation and their limitations and advantages. The differencing techniques, stability and accuracy issues, data management and optimization issues are discussed by means of a simple example of a particle-in-cell code. Recent advances in simulation methods allowing large space and time scales to be treated with minimal sacrifice in physics are reviewed. Various examples of nonlinear processes successfully studied by plasma simulation will be given.

  7. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  8. Energy Simulation Games Lesson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ken Walz Unit Title: Energy Efficiency and Renewable Energy (EERE) Subject: Physical, Env, and Social Sciences Lesson Title: Energy Simulation Games Grade Level(s): 6-12 Lesson Length: 1 hours (+ optional time outside class) Date(s): 7/14/2014 * Learning Goal(s) By the end of this lesson, students will have a deeper understanding of Energy Management, Policy, and Decision Making. * Connection to Energy/ Renewable Energy In this assignment you will be using two different energy simulation tools

  9. Xyce parallel electronic simulator.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

  10. Modeling & Simulation | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACModeling & Simulation content top Overview Posted by Admin on Feb 13, 2012 in | Comments 0 comments NISAC experts analyze-using modeling and simulation capabilities-critical infrastructure, along with their interdependencies, vulnerabilities, and complexities. Their analyses are used to aid decisionmakers with policy assessment, mitigation planning, education, and training and provide near-real-time assistance to crisis-response organizations. Infrastructure systems are large, complex,

  11. Advanced Simulation and Computing

    National Nuclear Security Administration (NNSA)

    NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction

  12. Simulation-Based Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation-Based Engineering Simulation-Based Engineering is focused on predicting the behavior of complex multiphase flow reactors used in fossil-energy technologies. This effort combines theory, computational modeling, experiments, and industrial input. Physics- and science-based computational models and tools are needed to support the development and deployment of advanced fossil-fuel energy devices such as gasifiers and carbon capture reactors. It is critical to develop a practical framework

  13. Theory Modeling and Simulation

    SciTech Connect (OSTI)

    Shlachter, Jack

    2012-08-23

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  14. Computer simulation | Open Energy Information

    Open Energy Info (EERE)

    Computer simulation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Computer simulation Author wikipedia Published wikipedia, 2013 DOI Not Provided...

  15. Computation & Simulation > Theory & Computation > Research >...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it. Click above to view. computational2 computational3 In This Section Computation & Simulation Computation & Simulation Extensive combinatorial results and ongoing basic...

  16. Active-R filter

    DOE Patents [OSTI]

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  17. Ion Beam Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ionmoreĀ Ā» beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.Ā«Ā less

  18. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    SciTech Connect (OSTI)

    Elvira, V. D.; Genser, K. L.; Hatcher, R.; Perdue, G.; Wenzel, H. J.; Yarba, J.

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  19. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themoreĀ Ā» user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.Ā«Ā less

  20. Sandia National Laboratories: Advanced Simulation Computing: Verification &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Verification & Validation high-fidelity simulations The Verification and Validation (V&V) program conducts two major activities at Sandia. The first is to perform assessments and studies that quantify confidence in Advanced Simulation and Computing (ASC) calculation results. The second activity develops and improves V&V and uncertainty quantification methods, metrics, and standards. Assessments This project area conducts studies and assessments for Sandia's engineering

  1. Simulating neural systems with Xyce.

    SciTech Connect (OSTI)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandia's parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  2. Parallel Dislocation Simulator

    Energy Science and Technology Software Center (OSTI)

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  3. Battery Particle Simulation

    SciTech Connect (OSTI)

    2014-09-15

    Two simulations show the differences between a battery being drained at a slower rate, over a full hour, versus a faster rate, only six minutes (a tenth of an hour). In both cases battery particles go from being fully charged (green) to fully drained (red), but there are significant differences in the patterns of discharge based on the rate.

  4. PEBBLES Mechanics Simulation Speedup

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. These simulations involve hundreds of thousands of pebbles and involve determining the entire core motion as pebbles are recirculated. Single processor algorithms for this are insufficient since they would take decades to centuries of wall-clock time. This paper describes the process of parallelizing and speeding up the PEBBLES pebble mechanics simulation code. Both shared memory programming with the Open Multi-Processing API and distributed memory programming with the Message Passing Interface API are used in simultaneously in this process. A new shared memory lock-less linear time collision detection algorithm is described. This method allows faster detection of pebbles in contact than generic methods. These combine to make full recirculations on AVR sized reactors possible in months of wall clock time.

  5. Predictive Simulation of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. Advanced Simulation Capability

    Office of Environmental Management (EM)

    4 Status Report The Advanced Simulation Capability for Environmental Management Initiative is funded by the U.S. Department of Energy Office of Environmental Management Responding to the Challenge 4 Capability Development 4 References 14 Appendix: FY14 Publications 15 and Presentations Contents Cover photo courtesy of Daniel Scott, Savannah River Ecology Laboratory. L-Lake is a 1,000-acre, man-made lake, created to disperse and cool water in L-Reactor when it was operating. Message from the

  7. Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numerical Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmoreĀ Ā» different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.Ā«Ā less

  9. Fast Analysis and Simulation Team | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsFast Analysis and Simulation Team content top Fast Analysis and Simulation Team

  10. Engineering report for simulated riser installation

    SciTech Connect (OSTI)

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  11. Structural Simulation Toolkit. Lunch & Learn

    SciTech Connect (OSTI)

    Moore, Branden J.; Voskuilen, Gwendolyn Renae; Rodrigues, Arun F.; Hammond, Simon David; Hemmert, Karl Scott

    2015-09-01

    This is a presentation outlining a lunch and learn lecture for the Structural Simulation Toolkit, supported by Sandia National Laboratories.

  12. Plasma theory and simulation research

    SciTech Connect (OSTI)

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  13. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald N

    2012-10-23

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  14. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  15. Traffic Modeling and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traffic Modeling and Simulation This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background The problems facing the country's transportation system are enormous. Over 40,000 fatalities occur each year in traffic accidents. Vehicle emissions are the leading cause of air pollution. With travel demand expected to increase more than 50% by 2020, it becomes apparent that we can't just "build our way out" of the problem. We need to

  16. Distributed Sensors Simulator

    Energy Science and Technology Software Center (OSTI)

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s)moreĀ Ā» to run. DSS in turn provides the virtual environmental embedding Ā— but exposed to the user like no true embedding could ever be.Ā«Ā less

  17. Fusion Simulation Program

    SciTech Connect (OSTI)

    Project Staff

    2012-02-29

    Under this project, General Atomics (GA) was tasked to develop the experimental validation plans for two high priority ISAs, Boundary and Pedestal and Whole Device Modeling in collaboration with the theory, simulation and experimental communities. The following sections have been incorporated into the final FSP Program Plan (www.pppl.gov/fsp), which was delivered to the US Department of Energy (DOE). Additional deliverables by GA include guidance for validation, development of metrics to evaluate success and procedures for collaboration with experiments. These are also part of the final report.

  18. Animations/simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numeric data Data plots and fgures Genome/genetics data Interactive data maps Animations/simulations Still images and photos Find scientifc research data resulting from DOE-funded research. u u u u u u Find www.osti.gov/dataexplorer Search DOE Data Explorer for Energy and Science Data + Advanced Search DOE/OSTI--C205 02/16 Explore DOE Data Explorer View the most recently added datasets or collections. Browse by titles or subjects. Discover the organizations sponsoring the data. Check out

  19. Network Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics Network Activity Network Activity PDSF Network Uplinks to NERSC (dual 10 Gbps) NERSC Uplink to ESnet Last edited: 2011-03-31 22:20:59...

  20. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  1. Confidence in Numerical Simulations

    SciTech Connect (OSTI)

    Hemez, Francois M.

    2015-02-23

    This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ā€œforecast,ā€ that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ā€œthink.ā€ This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ā€œConfidenceā€ derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.

  2. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. ThemoreĀ Ā» mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.Ā«Ā less

  3. NII Simulator 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-02

    The software listed here is a simulator for SAIC P7500 VACIS non intrusive inspection system. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed to simulate the P7500 that the Second Line of Defense communications software system must interface with. The primary use of this simulator ismoreĀ Ā» for testing of both Sandia developed and DOE contractor developed software.Ā«Ā less

  4. Status of LHC crab activity simulations and beam studies

    SciTech Connect (OSTI)

    Calaga,R.; Assman, R.; Barranco, J.; Barranco, J.; Calaga, R.; Caspers, F.; Ciapala, E.; De-Maria, R.; Koutchouk, J. P.; Linnecar, T.; Metral, E.; Morita, A.; Solyak, N.; Sun, Y.; Tomas, R.; Tuckmantel, J.; Weiler, T.; Zimmermann, F.

    2009-05-04

    The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. The general project status and some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects. beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

  5. Activation detector

    DOE Patents [OSTI]

    Bell, Zane William (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn Allen (Oak Ridge, TN) [Oak Ridge, TN

    2009-12-08

    A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.

  6. Impact of Higher Fidelity Models on Active Aerodynamic Load Control...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation of active aerodynamic load control technology is provided here. Turbine component fatigue damage calculations require time-series load histories at the turbine...

  7. Low-level tank waste simulant data base

    SciTech Connect (OSTI)

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies.

  8. VHDL Control Routing Simulator

    Energy Science and Technology Software Center (OSTI)

    1995-07-10

    The control router simulates a backplane consisting of up to 16 slot. Slot 0, reserved for a control module (cr-ctrl), generates the system clocks and provides the serial interface to the Gating Logic. The remaining 15 slots (1-15) contain routing modules (cr mod), each having up to 64 serial inputs and outputs with FIFOs. Messages to be transmitted to the Control Router are taken from text files. There are currently 17 such source files. InmoreĀ Ā» the model, the serial output of each source is connected to multiple receivers, so that there are 8 identical messages transmitted to the router for each message file entry.Ā«Ā less

  9. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect (OSTI)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  10. Simulation of the intraseasonal variability over the Eastern Pacific ITCZ

    Office of Scientific and Technical Information (OSTI)

    in climate models (Journal Article) | SciTech Connect Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models Citation Details In-Document Search Title: Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two

  11. Advanced Simulation Capability of Environmental Management | Department of

    Energy Savers [EERE]

    Energy Advanced Simulation Capability of Environmental Management Advanced Simulation Capability of Environmental Management The mission of ASCEM is to develop a modular and extensible open-source, high performance computing (HPC) modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport, and source-term degradation, enabling robust and standardized future performance and risk assessments for EM cleanup and closure activities. For more

  12. Solar Cell Simulation

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students model the flow of energy from the sun as it enters a photovoltaic cell, moves along a wire and powers a load. The game-like atmosphere involves the younger students and helps them understand the continuous nature of the flow of energy. For a related lesson, please see the activity ā€œSolar Powered Systemā€ (PDF 430 KB).

  13. BEAM SIMULATIONS USING VIRTUAL DIAGNOSTICS FOR THE DRIVER LINAC

    SciTech Connect (OSTI)

    R. C. York; X. Wu; Q. Zhao

    2011-12-21

    End-to-end beam simulations for the driver linac have shown that the design meets the necessary performance requirements including having adequate transverse and longitudinal acceptances. However, to achieve reliable operational performance, the development of appropriate beam diagnostic systems and control room procedures are crucial. With limited R&D funding, beam simulations provide a cost effective tool to evaluate candidate beam diagnostic systems and to provide a critical basis for developing early commissioning and later operational activities. We propose to perform beam dynamic studies and engineering analyses to define the requisite diagnostic systems of the driver linac and through simulation to develop and test commissioning and operational procedures.

  14. HSI Prototypes for Human Systems Simulation Laboratory

    SciTech Connect (OSTI)

    Jokstad, HĆ„kon; McDonald, Rob

    2015-09-01

    This report describes in detail the design and features of three Human System Interfact (HSI) prototypes developed by the Institutt for Energiteknikk (IFE) in support of the U.S. Department of Energyā€™s Light Water Reactor Sustainability Program under Contract 128420 through Idaho National Laboratory (INL). The prototypes are implemented for the Generic Pressurized Water Reactor simulator and installed in the Human Systems Simulation Laboratory at INL. The three prototypes are: 1) Power Ramp display 2) RCS Heat-up and Cool-down display 3) Estimated time to limit display The power ramp display and the RCS heat-up/cool-down display are designed to provide good visual indications to the operators on how well they are performing their task compared to their target ramp/heat-up/cool-down rate. The estimated time to limit display is designed to help operators restore levels or pressures before automatic or required manual actions are activated.

  15. Parallel Power Grid Simulation Toolkit

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  16. Welcome - Modeling and Simulation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCS Directorate ORNL Modeling and Simulation Group Computational Sciences & Engineering Division Home Organization Chart Staff Research Areas Major Projects Fact Sheets Publications M&S News Awards Contacts Intership Programs ORNL has lots of opportunities for students to conduct research in scientific fields. Check out our Fellowship and Intership programs Fellowships Interships RAMS Program Modeling and Simulation Group The ORNL Modeling and Simulation Group (MSG) develops

  17. The promise of quantum simulation

    SciTech Connect (OSTI)

    Muller, Richard P.; Blume-Kohout, Robin

    2015-07-21

    In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  18. Lubricant characterization by molecular simulation

    SciTech Connect (OSTI)

    Moore, J.D.; Cui, S.T.; Cummings, P.T.; Cochran, H.D.

    1997-12-01

    The authors have reported the calculation of the kinematic viscosity index of squalane from nonequilibrium molecular dynamics simulations. This represents the first accurate quantitative prediction of this measure of lubricant performance by molecular simulation. Using the same general alkane potential model, this computational approach offers the possibility of predicting the performance of potential lubricants prior to synthesis. Consequently, molecular simulation is poised to become an important tool for future lubricant development.

  19. The promise of quantum simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Muller, Richard P.; Blume-Kohout, Robin

    2015-07-21

    In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.

  20. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  1. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  2. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  3. Computer interactive resistance simulator (CIRS)

    DOE Patents [OSTI]

    Mayn, Bobby G.

    1976-01-01

    A system for simulating the insertion of electric resistance values of either positive or negative quantity into an electric circuit and for cancelling drift errors therefrom.

  4. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  5. Power Plant Modeling and Simulation

    SciTech Connect (OSTI)

    2008-07-21

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  6. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural ...

  7. Experiments āœš Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations Better Nuclear Power Research Experiments Simulations ... An international collaboration of physicists is working to improve the safety and ...

  8. Building Energy Simulation & Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation & Modeling Building Energy Simulation & Modeling Lead Performer: Lawrence ... Development (CBERD) conducts energy efficiency research and development with a focus ...

  9. Multidimensional simulation and chemical kinetics development...

    Office of Environmental Management (EM)

    Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high ...

  10. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmoreĀ Ā» formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.Ā«Ā less

  11. Electricity Portfolio Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 tomoreĀ Ā» 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of EnergyĀ’s (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.Ā«Ā less

  12. S-SEED Simulator

    Energy Science and Technology Software Center (OSTI)

    2008-11-21

    This code simulates the transient response of two self-electrooptic-effect devices (SEEDs) connected in series to form an S-SEED pair as used in all-optical high-speed switching. Both optical beam propagation and carrier motion is assumed to be normal to the epi plane, so the code is inherently 1D in nature. For each SEED, an optical input in W/cm**2 is specified as a function of time (usually a step function input). The signal is absorbed during amoreĀ Ā» double pass through the intrinsic region, with a spatially-dependent absorption coefficient that is dependent on the transient local electric field. This absorption generates electron-hole pairs that then contribute to the device current, and a transient optical output is predicted. Carriers in the semiconductor layers are generated through thermal excitation or optical absorption, move under the action of diffusion and self-consistent electric fields updated at each time step by a 1D Poisson solver, and recombine at density-dependent rates. The different epi layers are independently specified by position, thickness, doping type and density, and thus space charge effects and junction capacitance are included automatically.Ā«Ā less

  13. Fading channel simulator

    DOE Patents [OSTI]

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  14. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmoreĀ Ā» devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal.Ā«Ā less

  15. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmoreĀ Ā» devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal. The IBM PC version contains two auxiliary programs, DATAPREP and FORLIST. DATAPREP is an interactive preprocessor for creating and editing COALPREP input data. FORLIST converts carriage-control characters in FORTRAN output data to ASCII line-feed (X''0A'') characters.Ā«Ā less

  16. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.; Jung, H. B.; Wang, Guohui

    2015-07-09

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  17. Status report on high fidelity reactor simulation.

    SciTech Connect (OSTI)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-12-11

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool.

  18. Dynamic simulation of the Hanford tank waste remediation system

    SciTech Connect (OSTI)

    Harmsen, R.W., Westinghouse Hanford

    1996-05-03

    Cleaning up and disposing of approximately 50 years of nuclear waste is the main mission at the U.S. Department of Energy`s Hanford Nuclear Reservation, located in the southeastern part of the state of Washington. A major element of the total cleanup effort involves retrieving, processing, and disposing of radioactive and hazardous waste stored in 177 underground storage tanks. This effort, referred to as the Tank Waste Remediation System (TWRS), is expected to cost billions of dollars and take approximately 25 years to complete. Several computer simulations of this project are being created, focusing on both programmatic and detailed engineering issues. This paper describes one such simulation activity, using the ithink(TM)computer simulation software. The ithink(TM) simulation includes a representation of the complete TWRS cleanup system, from retrieval of waste through intermediate processing and final vitrification of waste for disposal. Major issues addressed to date by the simulation effort include the need for new underground storage tanks to support TWRS activities, and the estimated design capacities for various processing facilities that are required to support legally mandated program commitment dates. This paper discusses how the simulation was used to investigate these questions.

  19. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  20. Epidemilogical Simulation System, Version 2.4

    Energy Science and Technology Software Center (OSTI)

    2004-01-30

    EpiSims uses a detailed simulation of disease spread to evaluate demographically and geographically targeted biological threat reduction strategies. Abstract: EpiSims simulates the spread of disease and analyzes the consequences of intervention strategies in a large urban area at the level of individuals. The simulation combines models of three dynamical systems: urban social networks, disease transmission, and within-host progression of a disease. Validated population mobility and activity generation technology provides the social network models, Disease modelsmoreĀ Ā» are based on fusion of expert opinion and available data. EpiSims provides a previously unavailable detailed representation of the course of an outbreak in urban area. A letter of August 16, 2002 from the Office of Homeland Security states: "Ability of EpiSims to provide comprehensive data on daily activity patterns of individuals makes it far superior to traditional SIR models Ā— clearly had an impact on pre-attack smallpox vaccination policy." EpiSims leverages a unique Los Alamos National Laboratory resource Ā— the population mobility and activity data developed by TRANSIMS (Transportation Analysis and SiMulation System) Ā— to create epidemiological analyses at an unprecedented level of detail. We create models of microscopic (individual-level) physical and biological processes from which, through simulation, emerge the macroscopic (urban regional level) quantities that are the inputs to alternative models. For example, the contact patterns of individuals in different demographic groups determine the overall mixing rates those groups. The characteristics of a person-to-person transmission together with their contact patterns determine the reproductive numbers Ā— how many people will be infected on average by each case. Mixing rates and reproductive numbers are the basic parameters of other epidemiological models. Because interventions Ā— and peopleĀ’s reactions to them Ā— are ultimately applied at the individual level, EpiSims is uniquely suited to evaluate their macroscopic consequences. For example, the debate over the logistics of targeted vaccination for smallpox, and thus the magnitude of the threat it poses, can best be resolved through an individual- based approach. EpiSims is the only available analytical tool using the individual-based approach that can scale to populations of a million or more without introducing ad-hoc assumptions about the nature of the social network. Impact: The first study commissioned for the EpiSims project was to analyze the effectiveness of targeted vaccination and isolation strategies in the aftermath of a covert release of smallpox at a crowded urban location. In particular we compared casualties and resources required for targeted strategies with those in the case of large-scale quarantine and/or mass vaccination campaigns. We produced this analysis in a sixty-day effort, while prototype software was still under development and delivered it to the Office of Homeland Security in June 2002. More recently, EpiSims provided casualty estimates and cost/benefit analyses for various proposed responses to an attack with pneumonic plague during the TOPOFF-2 exercise. Capabilities: EpiSims is designed to simulate human-human transmissible disease, but it is part of a suite of tools that naturally allow it to estimate individual exposures to air-borne or water-borne spread. Combined with data on animal density and mobility, EpiSims could simulate diseases spread by non-human vectors. EpiSims incorporates reactions of individuals, and is particularly powerful if those reactions are correlated with demographics. It provides a standard for modeling scenarios that cuts across agencies.Ā«Ā less

  1. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileupā€“grain boundary (GB) interactions. Two Ī£11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocationsā€“GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmoreĀ Ā» these kinetic processes with the available slip systems across the GB and atomic structures of the GB.Ā«Ā less

  2. Theory, modeling and simulation: Annual report 1993

    SciTech Connect (OSTI)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  3. The Xygra gun simulation tool.

    SciTech Connect (OSTI)

    Garasi, Christopher Joseph; Lamppa, Derek C.; Aubuchon, Matthew S.; Shirley, David Noyes; Robinson, Allen Conrad; Russo, Thomas V.

    2008-12-01

    Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

  4. Terascale Simulation Tolls and Technologies

    Energy Science and Technology Software Center (OSTI)

    2006-11-01

    The Terascale Simulation Tools and Technologies (TSTT) center is a collaboration between several universities and DOE laboratories, and is funded by the DOE Scientific Discovery for Advanced Computing (SciDAC) program. The primary objective of the (TSTT) center is to develop technologies taht enable application scientists to easily use multiple mesh and discretization strageties within a single simulation on terascale computeres. This is accomplished through the development of common functional interfaces to geometry, mesh, and othermoreĀ Ā» simulation data. This package is Sandia's implementation of these interfaces.Ā«Ā less

  5. MCNP6. Simulating Correlated Data in Fission Events

    SciTech Connect (OSTI)

    Rising, Michael Evan; Sood, Avneet

    2015-12-03

    This report is a series of slides discussing the MCNP6 code and its status in simulating fission. Applications of interest include global security and nuclear nonproliferation, detection of special nuclear material (SNM), passive and active interrogation techniques, and coincident neutron and photon leakage.

  6. Catalyst activator

    DOE Patents [OSTI]

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  7. District-heating strategy model: computer programmer's manual

    SciTech Connect (OSTI)

    Kuzanek, J.F.

    1982-05-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling (DHC) systems. Such systems can reduce the amount and costs of fuels used to heat and cool buildings in a district. Twenty-eight communities have agreed to aid HUD in a national feasibility assessment of DHC systems. The HUD/DOE program entails technical assistance by Argonne National Laboratory and Oak Ridge National Laboratory. The assistance includes a computer program, called the district heating strategy model (DHSM), that performs preliminary calculations to analyze potential DHC systems. This report describes the general capabilities of the DHSM, provides historical background on its development, and explains the computer installation and operation of the model - including the data file structures and the options. Sample problems illustrate the structure of the various input data files, the interactive computer-output listings. The report is written primarily for computer programmers responsible for installing the model on their computer systems, entering data, running the model, and implementing local modifications to the code.

  8. Simulating Afterburn with LLNL Hydrocodes

    SciTech Connect (OSTI)

    Daily, L D

    2004-06-11

    Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effort is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.

  9. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amoreĀ Ā» user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.Ā«Ā less

  10. TREAT Modeling and Simulation Strategy

    SciTech Connect (OSTI)

    DeHart, Mark David

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  11. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    SciTech Connect (OSTI)

    Boring, Ronald Laurids; Shirley, Rachel Elizabeth; Joe, Jeffrey Clark; Mandelli, Diego

    2014-12-01

    Part of the U.S. Department of Energyā€™s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  12. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments You are ...

  13. First trillion particle cosmological simulation completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public data release. A paper describes the research and data release. Significance of the research The Dark Sky Simulations are an ongoing series of cosmological simulations...

  14. Clot Busting Simulations Test Potential Stroke Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clot Busting Simulations Test Potential Stroke Treatment Clot Busting Simulations Test Potential Stroke Treatment September 24, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov ...

  15. Energy Choice Simulator | Open Energy Information

    Open Energy Info (EERE)

    Choice Simulator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Choice Simulator AgencyCompany Organization: Great Plains Institute Sector: Energy Focus Area:...

  16. Climate Change Simulations with CCSM & CESM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Simulations with CCSM & CESM Climate Change Simulations with CCSM & CESM Key Challenges: Perform fundamental research on the processes that influence the natural...

  17. Mesoscale Simulations of Coarsening in GB Networks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mukul Kumar is the Principal Investigator for Mesoscale Simulations of Coarsening in GB Networks LLNL BES Programs Highlight Mesoscale Simulations of Coarsening in GB Networks The...

  18. Decades of Wind Turbine Load Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decades of Wind Turbine Load Simulation Matthew Barone , Joshua Paquette , Brian ... was used to simulate ninety-six years of operation of a five megawatt wind turbine. ...

  19. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J ...

  20. Finding Hidden Geothermal Resources In The Basin And Range Using...

    Open Energy Info (EERE)

    Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004) Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Modeling-Computer...

  1. TOPAS Tool for Particle Simulation

    Energy Science and Technology Software Center (OSTI)

    2013-05-30

    TOPAS lets users simulate the passage of subatomic particles moving through any kind of radiation therapy treatment system, can import a patient geometry, can record dose and other quantities, has advanced graphics, and is fully four-dimensional (3D plus time) to handle the most challenging time-dependent aspects of modern cancer treatments.TOPAS unlocks the power of the most accurate particle transport simulation technique, the Monte Carlo (MC) method, while removing the painstaking coding work such methods usedmoreĀ Ā» to require. Research physicists can use TOPAS to improve delivery systems towards safer and more effective radiation therapy treatments, easily setting up and running complex simulations that previously used to take months of preparation. Clinical physicists can use TOPAS to increase accuracy while reducing side effects, simulating patient-specific treatment plans at the touch of a button. TOPAS is designed as a Ā“user codeĀ” layered on top of the Geant4 Simulation Toolkit. TOPAS includes the standard Geant4 toolkit, plus additional code to make Geant4 easier to control and to extend Geant4 functionality. TOPAS aims to make proton simulation both Ā“reliableĀ” and Ā“repeatable.Ā” Ā“ReliableĀ” means both accurate physics and a high likelihood to simulate precisely what the user intended to simulate, reducing issues of wrong units, wrong materials, wrong scoring locations, etc. Ā“RepeatableĀ” means not just getting the same result from one simulation to another, but being able to easily restore a previously used setup and reducing sources of error when a setup is passed from one user to another. TOPAS control system incorporates key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes In control files. TOPAS has been used to model proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads in passive scattering and scanning modes, and has demonstrated dose calculation based on patient-specific CT data.Ā«Ā less

  2. Visual Interface for Materials Simulations

    Energy Science and Technology Software Center (OSTI)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materialsmoreĀ Ā» simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.Ā«Ā less

  3. Visual Interface for Materials Simulations

    SciTech Connect (OSTI)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materials simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.

  4. Mesoscale Simulations of Power Compaction

    SciTech Connect (OSTI)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  5. Federal Biomass Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass Activities ...

  6. Special nuclear material simulation device

    DOE Patents [OSTI]

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  7. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A

    2011-09-01

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmoreĀ Ā» does work well for another theory expected to be infrared conformal.Ā«Ā less

  8. Simulating the Dynamic Coupling of Market and Physical System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Roop, Joseph M.; Guttromson, Ross T.; Huang, Zhenyu

    2004-06-01

    Abstract-As energy trading products cover shorter time periods and demand response programs move toward real-time pricing, financial market-based activity impacts ever more directly the physical operation of the system. To begin to understand the complex interactions between the market-driven operation signals, the engineered controlled schemes, and the laws of physics, new system modeling and simulation techniques must be explored. This discussion describes requirements for new simulation tools to address such market transaction control interactions and an approach to capture the dynamic coupling between energy markets and the physical operation of the power system appropriate for dispatcher reaction time frames.

  9. simulators | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulators DOE/BC-89/3/SP. Handbook for Personal Computer Version of BOAST II: A Three- Dimensional, Three-Phase Black Oil Applied Simulation Tool. Bartlesville Project Office. January 1989. 82 pp. NTIS Order No. DE89000725. FORTRAN source code and executable program. Min. Req.: IBM PC/AT, PS-2, or compatible computer with 640 Kbytes of memory. Download 464 KB Manual 75 KB Manual 404 KB Reference paper (1033-3,v1) by Fanchi, et al. Manual 83 KB Reference paper (1033-3,v2) by Fanchi, et al. BOAST

  10. MOOSE: Multiphysics Object-Oriented Simulation Environment

    ScienceCinema (OSTI)

    Gaston, Derek

    2014-05-30

    An overview of Idaho National Laboratory's MOOSE: Multiphysics Object-Oriented Simulation Environment

  11. Activity report

    SciTech Connect (OSTI)

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  12. Microgrid and Inverter Control and Simulator Software

    SciTech Connect (OSTI)

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than the simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule produces movies of wind data with a web interface.

  13. Xyce parallel electronic simulator design.

    SciTech Connect (OSTI)

    Thornquist, Heidi K.; Rankin, Eric Lamont; Mei, Ting; Schiek, Richard Louis; Keiter, Eric Richard; Russo, Thomas V.

    2010-09-01

    This document is the Xyce Circuit Simulator developer guide. Xyce has been designed from the 'ground up' to be a SPICE-compatible, distributed memory parallel circuit simulator. While it is in many respects a research code, Xyce is intended to be a production simulator. As such, having software quality engineering (SQE) procedures in place to insure a high level of code quality and robustness are essential. Version control, issue tracking customer support, C++ style guildlines and the Xyce release process are all described. The Xyce Parallel Electronic Simulator has been under development at Sandia since 1999. Historically, Xyce has mostly been funded by ASC, the original focus of Xyce development has primarily been related to circuits for nuclear weapons. However, this has not been the only focus and it is expected that the project will diversify. Like many ASC projects, Xyce is a group development effort, which involves a number of researchers, engineers, scientists, mathmaticians and computer scientists. In addition to diversity of background, it is to be expected on long term projects for there to be a certain amount of staff turnover, as people move on to different projects. As a result, it is very important that the project maintain high software quality standards. The point of this document is to formally document a number of the software quality practices followed by the Xyce team in one place. Also, it is hoped that this document will be a good source of information for new developers.

  14. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  15. TaqMan PCR Simulator

    Energy Science and Technology Software Center (OSTI)

    2007-05-01

    TaqSim simulates various types of PRC reactions, including multiplex reactions. Given a set of primers and dearch databases, TaqSim identifies amplicons that match user defined criteria and can generate output files in a number of formats allowing it to serve as a front-end or back-end for other software.

  16. Fission Particle Emission Multiplicity Simulation

    Energy Science and Technology Software Center (OSTI)

    2006-09-27

    Simulates discrete neutron and gamma-ray emission from the fission of heavy nuclei that is either spontaneous or neutron induced. This is a function library that encapsulates the fission physics and is intended to be called Monte Carlo transport code.

  17. First trillion particle cosmological simulation completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First trillion particle cosmological simulation completed First trillion particle cosmological simulation completed A team of astrophysicists and computer scientists has created high-resolution cyber images of our cosmos. January 8, 2015 Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of the total simulation volume. Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of the total

  18. TASK 2: QUENCH ZONE SIMULATION

    SciTech Connect (OSTI)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400Ā°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual results on the pilot plant gasifier and demonstration plant design recommendations, based on cold flow simulation results.

  19. Monte Carlo Simulation Tool Installation and Operation Guide

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.

    2013-09-02

    This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.

  20. Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

    SciTech Connect (OSTI)

    Vashishta, Priya

    2014-12-01

    Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products is inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.

  1. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  2. Simulation of e-cloud driven instability and its attenuation using a simulated feedback system in the CERN SPS

    SciTech Connect (OSTI)

    Vay, J.-L.; Furman, M. A.

    2010-12-13

    Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS, and a feedback system to control the single-bunch instabilities is under active development. We present the latest improvements to the WARP-POSINST simulation framework and feedback model, and its application to the self-consistent simulations of two consecutive bunches interacting with an electron cloud in the SPS. Simulations using an idealized feedback system exhibit adequate mitigation of the instability providing that the cutoff of the feedback bandwidth is at or above 450 MHz. Artifacts from numerical noise of the injected distribution of electrons in the modeling of portions of bunch trains are discussed, and benchmarking of WARP against POSINST and HEADTAIL are presented.

  3. Stochastic Parallel PARticle Kinetic Simulator

    Energy Science and Technology Software Center (OSTI)

    2008-07-01

    SPPARKS is a kinetic Monte Carlo simulator which implements kinetic and Metropolis Monte Carlo solvers in a general way so that they can be hooked to applications of various kinds. Specific applications are implemented in SPPARKS as physical models which generate events (e.g. a diffusive hop or chemical reaction) and execute them one-by-one. Applications can run in paralle so long as the simulation domain can be partitoned spatially so that multiple events can be invokedmoreĀ Ā» simultaneously. SPPARKS is used to model various kinds of mesoscale materials science scenarios such as grain growth, surface deposition and growth, and reaction kinetics. It can also be used to develop new Monte Carlo models that hook to the existing solver and paralle infrastructure provided by the code.Ā«Ā less

  4. Quantum simulations of physics problems

    SciTech Connect (OSTI)

    Somma, R. D.; Ortiz, G.; Knill, E. H.; Gubernatis, J. E.

    2003-01-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  5. Gyrokinetic approach in particle simulation

    SciTech Connect (OSTI)

    Lee, W.W.

    1981-10-01

    A new scheme for particle simulation based on the gyrophase-averaged Vlasov equation has been developed. It is suitable for studying low-frequency microinstabilities and the associated anomalous transport in magnetically confined plasmas. The scheme retains the gyroradius effects but not the gyromotion; it is, therefore, far more efficient and versatile than the conventional ones. Furthermore, the reduced Vlasov equation is also amenable to analytical studies.

  6. Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Hendron, Robert; Engebrecht, Cheryn

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  7. Advanced Simulation and Computing Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Simulation and Computing (ASC) Program Unstable intermixing of heavy (sulfur hexafluoride) and light fluid (air). Show Caption Turbulence generated by unstable fluid flow. Show Caption Examining the effects of a one-megaton nuclear energy source detonated on the surface of an asteroid. Show Caption Los Alamos National Laboratory is home to two of the world's most powerful supercomputers, each capable of performing more than 1,000 trillion operations per second. The newer one, Cielo, was

  8. Bus Rollover Testing and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bus Rollover Testing And Simulation Computational Structural Mechanics Collaborator Research Highlights - Florida State University & Florida Department of Transportation Current research conducted at FAMU-FSU College of Engineering pertains to comprehensive crashworthiness and safety assessment of a paratransit bus on a Chevrolet 138" wheelbase. The design process of passenger compartment structure in paratransit buses is not regulated by any of crashworthiness standards. FAMU-FSU

  9. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  10. Monte Carlo Simulations of APEX

    SciTech Connect (OSTI)

    Xu, G.

    1995-10-01

    Monte Carlo simulationsof the APEX apparatus, a spectrometer designed to meausre positron-electron pairs produced in heavy-ion collisions, carried out using GEANT are reported. The results of these simulations are compared with data from measurements of conversion electron, positron and part emitting sources as well as with the results of in-beam measurements of positrons and electrons. The overall description of the performance of the apparatus is excellent.

  11. Modeling and Simulation for Safeguards

    SciTech Connect (OSTI)

    Swinhoe, Martyn T.

    2012-07-26

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  12. Nudged Elastic Band Simulations of Kink Pairs in Tungsten

    SciTech Connect (OSTI)

    Cereceda, D.; Marian, J.

    2015-01-16

    Atomistic techniques have been used to calculate energy barriers for dislocation motion that control the strength (yield stress and flow stress) of the material. In particular, the calculations focus on the change in enthalpy as a straight dislocation moves through the crystal lattice (the Peierls barrier) and kink pair formation enthalpy that controls the thermally activated double-kink mechanism important at low to moderate stresses. A novel means of assessing kink widths within atomistic simulations is introduced.

  13. Synchronization Algorithms for Co-Simulation of Power Grid and Communication Networks

    SciTech Connect (OSTI)

    Ciraci, Selim; Daily, Jeffrey A.; Agarwal, Khushbu; Fuller, Jason C.; Marinovici, Laurentiu D.; Fisher, Andrew R.

    2014-09-11

    The ongoing modernization of power grids consists of integrating them with communication networks in order to achieve robust and resilient control of grid operations. To understand the operation of the new smart grid, one approach is to use simulation software. Unfortunately, current power grid simulators at best utilize inadequate approximations to simulate communication networks, if at all. Cooperative simulation of specialized power grid and communication network simulators promises to more accurately reproduce the interactions of real smart grid deployments. However, co-simulation is a challenging problem. A co-simulation must manage the exchange of informa- tion, including the synchronization of simulator clocks, between all simulators while maintaining adequate computational perfor- mance. This paper describes two new conservative algorithms for reducing the overhead of time synchronization, namely Active Set Conservative and Reactive Conservative. We provide a detailed analysis of their performance characteristics with respect to the current state of the art including both conservative and optimistic synchronization algorithms. In addition, we provide guidelines for selecting the appropriate synchronization algorithm based on the requirements of the co-simulation. The newly proposed algorithms are shown to achieve as much as 14% and 63% im- provement, respectively, over the existing conservative algorithm.

  14. Library Analog Semiconductor Devices SPICE Simulators

    Energy Science and Technology Software Center (OSTI)

    1996-07-23

    SPICE-SANDIA.LIB is a library of parameter sets and macromodels of semiconductor devices. They are used with Spice-based (SPICE is a program for electronic circuit analysis) simulators to simulate electronic circuits.

  15. The Adaptive Multi-scale Simulation Infrastructure

    SciTech Connect (OSTI)

    Tobin, William R.

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  16. EC-130H Simulator Training Operations Facility

    High Performance Buildings Database

    Tucson, AZ The EC-130H Simulator Training Operations Facility at Davis-Monthan Air Force Base serves the mission of the 42nd Electronic Combat Squadron by providing state-of-the-art training facilities for students, instructors and support staff. Three simulator bays house one flight deck simulator and two mission crew simulators. Administrative and support areas are provided for day-to-day operations. These areas include offices, conference rooms, break rooms, and briefing rooms.

  17. Nonequilibrium molecular dynamics simulations of confined fluids...

    Office of Scientific and Technical Information (OSTI)

    ... COMPUTING, AND INFORMATION SCIENCE; BOUNDARY CONDITIONS; COMPRESSION; ENGINES; GEOMETRY; PHYSICS; DECANE; COMPUTERIZED SIMULATION; RHEOLOGY; GOLD; SHEAR; PRESSURE DEPENDENCE; ...

  18. Experiments āœš Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations = Better Nuclear Power Research Experiments āœš Simulations = Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation Damage July 31, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Radiation Damage PNNL In a study featured on the cover of a Journal of Materials Research focus issue, an international research collaboration used molecular dynamics simulations run at NERSC to identify atomic-level details of early-stage

  19. Compact simulators can improve fossil plant operation

    SciTech Connect (OSTI)

    Fray, R.; Divakaruni, S.M. )

    1995-01-01

    This article examines new and affordable technology that can simulate operations in real time and is finding application across a broad spectrum of power plant designs. A significant breakthrough for utilities, compact simulator technology, has reduced the cost of replica simulators by a factor of five to 10. This affordable technology, combined with innovative software developments, can realistically simulate the operation of fossil power plants in real time on low-cost PC or workstation platforms.

  20. Advanced Modeling & Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches

  1. Multiphysics Object Oriented Simulation Environment

    Energy Science and Technology Software Center (OSTI)

    2014-02-12

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesnĀ’t actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesnĀ’t do anything.moreĀ Ā» Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilize the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.Ā«Ā less

  2. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  3. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  4. Multiphysics Object Oriented Simulation Environment

    SciTech Connect (OSTI)

    2014-02-12

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesnĀ’t actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesnĀ’t do anything. Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilize the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.

  5. General Reactive Atomistic Simulation Program

    Energy Science and Technology Software Center (OSTI)

    2004-09-22

    GRASP (General Reactive Atomistic Simulation Program) is primarily intended as a molecular dynamics package for complex force fields, The code is designed to provide good performance for large systems, either in parallel or serial execution mode, The primary purpose of the code is to realistically represent the structural and dynamic properties of large number of atoms on timescales ranging from picoseconds up to a microsecond. Typically the atoms form a representative sample of some material,moreĀ Ā» such as an interface between polycrystalline silicon and amorphous silica. GRASP differs from other parallel molecular dynamics codes primarily due to itĀ’s ability to handle relatively complicated interaction potentials and itĀ’s ability to use more than one interaction potential in a single simulation. Most of the computational effort goes into the calculation of interatomic forces, which depend in a complicated way on the positions of all the atoms. The forces are used to integrate the equations of motion forward in time using the so-called velocity Verlet integration scheme. Alternatively, the forces can be used to find a minimum energy configuration, in which case a modified steepest descent algorithm is used.Ā«Ā less

  6. Multiphysics simulations: challenges and opportunities.

    SciTech Connect (OSTI)

    Keyes, D.; McInnes, L. C.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M.

    2012-11-29

    This report is an outcome of the workshop Multiphysics Simulations: Challenges and Opportunities, sponsored by the Institute of Computing in Science (ICiS). Additional information about the workshop, including relevant reading and presentations on multiphysics issues in applications, algorithms, and software, is available via https://sites.google.com/site/icismultiphysics2011/. We consider multiphysics applications from algorithmic and architectural perspectives, where 'algorithmic' includes both mathematical analysis and computational complexity and 'architectural' includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities. We also initiate a modest suite of test problems encompassing features present in many applications.

  7. TSA RPM Simulator 1.0

    Energy Science and Technology Software Center (OSTI)

    2009-12-02

    The software listed here is a simulator for TSA Radiation Portal Monitors with version 1.10.1A firmware. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed that simulate the TSA Radiation Portal Monitor that Second Line of Defense communications software systems must interface with. The primary use ofmoreĀ Ā» this simulator is for testing of both Sandia developed and DOE contractor developed software.Ā«Ā less

  8. TSA RPM Simulator 1.0

    SciTech Connect (OSTI)

    2009-12-02

    The software listed here is a simulator for TSA Radiation Portal Monitors with version 1.10.1A firmware. The simulator provides messages similar to those provided by this piece of equipment.To facilitate testing of the Second Line of Defense systems and similar software products from commercial software vendors, this software simulation application has been developed that simulate the TSA Radiation Portal Monitor that Second Line of Defense communications software systems must interface with. The primary use of this simulator is for testing of both Sandia developed and DOE contractor developed software.

  9. Microgrid and Inverter Control and Simulator Software

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than themoreĀ Ā» simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule produces movies of wind data with a web interface.Ā«Ā less

  10. Framework for Network Co-Simulation

    Energy Science and Technology Software Center (OSTI)

    2014-01-09

    The Framework for Network Co-Simulation (FNCS) uses a federated approach to integrate simulations which may have differing time scales. Special consideration is given to integration with a communication network simulation such that inter-simulation messages may be optionally routed through and delayed by such a simulation. In addition, FNCS uses novel time synchronization algorithms to accelerate co-simulation including the application of speculative multithreading. FNCS accomplishes all of these improvements with minimal end user intervention. Simulations canmoreĀ Ā» be integrated using FNCS while maintaining their original model input files simply by linking with the FNCS library and making appropriate calls into the FNCS API.Ā«Ā less

  11. A Simple Evacuation Modeling and Simulation Tool for First Responders

    SciTech Connect (OSTI)

    Koch, Daniel B; Payne, Patricia W

    2015-01-01

    Although modeling and simulation of mass evacuations during a natural or man-made disaster is an on-going and vigorous area of study, tool adoption by front-line first responders is uneven. Some of the factors that account for this situation include cost and complexity of the software. For several years, Oak Ridge National Laboratory has been actively developing the free Incident Management Preparedness and Coordination Toolkit (IMPACT) to address these issues. One of the components of IMPACT is a multi-agent simulation module for area-based and path-based evacuations. The user interface is designed so that anyone familiar with typical computer drawing tools can quickly author a geospatially-correct evacuation visualization suitable for table-top exercises. Since IMPACT is designed for use in the field where network communications may not be available, quick on-site evacuation alternatives can be evaluated to keep pace with a fluid threat situation. Realism is enhanced by incorporating collision avoidance into the simulation. Statistics are gathered as the simulation unfolds, including most importantly time-to-evacuate, to help first responders choose the best course of action.

  12. Waste simulant development for evaluation of LLW melter system technology

    SciTech Connect (OSTI)

    Shade, J.W.

    1994-05-25

    This document describes the LLW simulant compositions, basis for the simulants, and recipes for preparing nonradioactive simulants for LLW melter tests.

  13. simulate the dynamic distribution of lithium in the electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulate the dynamic distribution of lithium in the electrode - Sandia Energy Energy ... simulate the dynamic distribution of lithium in the electrode HomeTag:simulate the ...

  14. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  15. Sandia Energy - Large Eddy Simulation (LES) of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Eddy Simulation (LES) of Engines Home Transportation Energy Predictive Simulation of Engines Engine Combustion Modeling Large Eddy Simulation (LES) of Engines Large Eddy...

  16. Sandia Energy - Numerical Simulations of Hydrokinetics in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numerical Simulations of Hydrokinetics in the Roza Canal, Yakima Washington Home Renewable Energy Energy Water Power Computational Modeling & Simulation Numerical Simulations of...

  17. Westinghouse Waste Simulation and Optimization Software Tool - 13493

    SciTech Connect (OSTI)

    Mennicken, Kim [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01

    Radioactive waste is produced during NPP operation and NPP D and D. Different kinds of waste with different volumes and properties have to be treated. Finding a technically and commercially optimized waste treatment concept is a difficult and time consuming process. The Westinghouse waste simulation and optimization software tool is an approach to study the total life cycle cost of any waste management facility. The tool enables the user of the simulation and optimization software to plan processes and storage buildings and to identify bottlenecks in the overall waste management design before starting detailed planning activities. Furthermore, application of the software enables the user to optimize the number of treatment systems, to determine the minimum design capacity for onsite storage facilities, to identify bottlenecks in the overall design and to identify the most cost-effective treatment paths by maintaining optimal waste treatment technologies. In combination with proven waste treatment equipment and integrated waste management solutions, the waste simulation and optimization software provides reliable qualitative results that lead to an effective planning and minimization of the total project planning risk of any waste management activity. (authors)

  18. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    SciTech Connect (OSTI)

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  19. Self-consistent klystron simulations

    SciTech Connect (OSTI)

    Carlsten, B.E.; Tallerico, P.J.

    1985-01-01

    A numerical analysis of large-signal klystron behavior based on general wave-particle interaction theory is presented. The computer code presented is tailored for the minimum amount of complexity needed in klystron simulation. The code includes self-consistent electron motion, space-charge fields, and intermediate and output fields. It also includes use of time periodicity to simplify the problem, accurate representation of the space-charge fields, accurate representation of the cavity standing-wave fields, and a sophisticated particle-pushing routine. In the paper, examples are given that show the effects of cavity detunings, of varying the magnetic field profile, of electron beam asymmetries from the gun, and of variations in external load impedance. 4 refs., 7 figs.

  20. Simulation enabled safeguards assessment methodology

    SciTech Connect (OSTI)

    Bean, Robert; Bjornard, Trond; Larson, Tom

    2007-07-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wire-frame construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed. (authors)

  1. Earthquake Simulator Finds Tremor Triggers

    SciTech Connect (OSTI)

    Johnson, Paul

    2015-03-27

    Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher has found that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often long after a quake has subsided. The research provides insight into how earthquakes may be triggered and how they recur. Los Alamos researcher Paul Johnson and colleague Chris Marone at Penn State have discovered how wave energy can be stored in certain types of granular materials-like the type found along certain fault lines across the globe-and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional “aftershock zone” of a main quake. Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.

  2. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmoreĀ Ā» a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8 cents/kwhr.Ā«Ā less

  3. Sandia Cognitive Runtime Engine with Active Memory

    Energy Science and Technology Software Center (OSTI)

    2005-12-01

    The SCREAM (Sandia Cognitive Runtime Engine with Active memory) software implements a subset of a Cognitive Famework developed at Sandia National Laboratories. The software is implemented in the Umbra simulation and modular software framework, which is C++-based. SCREAM components include a Concept Instance Driver, Semantic Activation Network, Concept Database, Context Recognizer, Context Database, Episodic Memory, Egocentric Spatial Memory, Allocentric Spatial Memory, Comparator, and a Context to Abstract Action converter. At initialization, modules load the datamoreĀ Ā» files that together specify all the components of a particular cognitive model, such as concept declarations, context declarations, spreading activation weights, and context/situation-cue-patterns.Ā«Ā less

  4. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  5. Emulation to simulate low resolution atmospheric data

    SciTech Connect (OSTI)

    Hebbur Venkata Subba Rao, Vishwas [ORNL; Archibald, Richard K [ORNL; Evans, Katherine J [ORNL

    2012-08-01

    Climate simulations require significant compute power, they are complex and therefore it is time consuming to simulate them. We have developed an emulator to simulate unknown climate datasets. The emulator uses stochastic collocation and multi-dimensional in- terpolation to simulate the datasets. We have used the emulator to determine various physical quantities such as temperature, short and long wave cloud forcing, zonal winds etc. The emulation gives results which are very close to those obtained by simulations. The emulator was tested on 2 degree atmospheric datasets. The work evaluates the pros and cons of evaluating the mean first and inter- polating and vice versa. To determine the physical quantities, we have assumed them to be a function of time, longitude, latitude and a random parameter. We have looked at parameters that govern high stable clouds, low stable clouds, timescale for convection etc. The emulator is especially useful as it requires negligible compute times when compared to the simulation itself.

  6. New era for fossil power plant simulators

    SciTech Connect (OSTI)

    Hoffman, S.

    1995-09-01

    At a time when the utility industry is focusing on products and services that can enhance competitiveness, affordable fossil plant simulators are a welcome technology. In just a few years, these simulators have progressed from being an expensive tool that few utilities could afford to being a technology that many utilities feel they can`t do without. Offering a variety of benefits in the areas of fossil plant training and engineering, today`s simulators are flexible, effective, and much less expensive than their counterparts in the 1980s. A vigorous EPRI development and demonstration effort has advanced simulators beyond operator issues to a new era of application, ranging from the training of engineers to the design and testing of power plant technologies. And the technologies that have resulted from simulator development and enhancement will have beneficial uses beyond plant simulation. 8 figs.

  7. Explosive simulants for testing explosive detection systems

    DOE Patents [OSTI]

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  8. Optical Simulation for V0A

    SciTech Connect (OSTI)

    Perez Lara, Carlos; Gago Medina, Alberto; Herrera Corral, Gerardo

    2006-09-25

    The V0A detector is one of the forward detectors that will be used for trigger in the ALICE experiment at CERN. Simulation results of the optical response of the V0A elements are presented in this work. The simulations are based on the LITRANI package. The simulation results guarantee a flat response of the whole detector as well as within each cell of the array.

  9. Combined statistical and dynamical assessment of simulated

    Office of Scientific and Technical Information (OSTI)

    vegetation-rainfall in North Africa during the mid-Holocene* (Journal Article) | SciTech Connect Combined statistical and dynamical assessment of simulated vegetation-rainfall in North Africa during the mid-Holocene* Citation Details In-Document Search Title: Combined statistical and dynamical assessment of simulated vegetation-rainfall in North Africa during the mid-Holocene* A negative feedback of vegetation cover on subsequent annual precipitation is simulated for the mid-Holocene over

  10. Radio Channel Simulator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Transmission Electricity Transmission Early Stage R&D Early Stage R&D Find More Like This Return to Search Radio Channel Simulator Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryRadio Channel Simulator (RCSim) is a simulation package for making site-specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is

  11. Clot Busting Simulations Test Potential Stroke Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clot Busting Simulations Test Potential Stroke Treatment Clot Busting Simulations Test Potential Stroke Treatment September 24, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Calvariasetup.jpg The array transducer in position above the calvaria (skull). Shown are the ends of the array elements above the computational model of the skull. Researchers are using computer simulations to investigate how ultrasound and tiny bubbles injected into the bloodstream might break up blood clots,

  12. Intermediate Energy Infobook Activities (29 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Information about Intermediate Energy Infobook, 29 student activities on energy basics for grades 5-8.

  13. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building ...

  14. Mechanical Properties and Microstructural Evolution of Simulated...

    Office of Scientific and Technical Information (OSTI)

    Evolution of Simulated Heat-Affected Zones in Wrought Eglin Steel Citation Details In-Document Search Title: Mechanical Properties and Microstructural Evolution of ...

  15. ThermoElectric Power System Simulator (TEPSS)

    Broader source: Energy.gov [DOE]

    It describes the tool ThermoElectric Power System Simulator (TEPSS) which enables feasibility evaluation for thermoelectrics with various heat resources and optimizing design for specific uses.

  16. Interoperable Technologies for Advanced Petascale Simulations...

    Office of Scientific and Technical Information (OSTI)

    power plant fuel rods. We have implemented the fluid-structure interaction for 3D windmill and parachute simulations. We have continued our collaboration with PNNL, BNL, LANL,...

  17. Advanced simulation capability for environmental management ...

    Office of Scientific and Technical Information (OSTI)

    environmental management (ASCEM): An overview of initial results Citation Details In-Document Search Title: Advanced simulation capability for environmental management (ASCEM): An ...

  18. MOOSE simulating nuclear reactor CRUD buildup

    ScienceCinema (OSTI)

    None

    2014-07-21

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  19. Multiscale Simulations of Human Pathologies | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apex. Inset shows the time evolution of thrombus formation. George Karniadakis, Brown University Multiscale Simulations of Human Pathologies PI Name: George Karniadakis PI...

  20. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT

    Office of Scientific and Technical Information (OSTI)

    Key words: Environmental management; Simulation; Model; ... (GS-3, GS-4). 5. Develop predictive capabilities to ... to queue systems that control access Usability ...

  1. Advancing Internal Combustion Engine Simulations using Sensitivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Internal Combustion Engine Simulations using Sensitivity Analysis PI Name: Sibendu Som PI Email: ssom@anl.gov Institution: Argonne National Laboratory Allocation Program:...

  2. Erratum: Connection between Newtonian simulations and general...

    Office of Scientific and Technical Information (OSTI)

    Erratum: Connection between Newtonian simulations and general relativity Phys. Rev. D 83, 123505 (2011) Citation Details In-Document Search Title: Erratum: Connection between ...

  3. Communication: Quantum molecular dynamics simulation of liquid...

    Office of Scientific and Technical Information (OSTI)

    Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...

  4. Parallel Implementation of Power System Dynamic Simulation

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng; Wu, Di; Chen, Yousu

    2013-07-21

    Dynamic simulation of power system transient stability is important for planning, monitoring, operation, and control of electrical power systems. However, modeling the system dynamics and network involves the computationally intensive time-domain solution of numerous differential and algebraic equations (DAE). This results in a transient stability implementation that may not maintain the real-time constraints of an online security assessment. This paper presents a parallel implementation of the dynamic simulation on a high-performance computing (HPC) platform using parallel simulation algorithms and computation architectures. It enables the simulation to run even faster than real time, enabling the “look-ahead” capability of upcoming stability problems in the power grid.

  5. Sandia National Laboratories: Electromagnetic Environments Simulator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High bandwidth oscilloscopes and spectrum analyzers are used to acquire transient and CW ...m @ 4 m Related Links Pulsed Power Electromagnetic Environments Simulator (EMES) ...

  6. MOOSE simulating nuclear reactor CRUD buildup

    SciTech Connect (OSTI)

    2014-02-06

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  7. Monte Carlo Simulations of Cosmic Rays Hadronic Interactions

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.

    2011-04-01

    This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.

  8. Coiled Fiber Pulsed Laser Simulator

    Energy Science and Technology Software Center (OSTI)

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamoreĀ Ā» file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.Ā«Ā less

  9. Transient simulation of absorption machines

    SciTech Connect (OSTI)

    Anand, D.K.; Allen, R.W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steady-state value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  10. Transient simulation of absorption machines

    SciTech Connect (OSTI)

    Anand, D.K.; Allen, R.W.; Kumar, B.

    1982-08-01

    This paper presents a model for a water-cooled Lithium-Bromide/water absorption chiller and predicts its transient response both during the start-up phase and during the shutoff period. The simulation model incorporates such influencing factors as the thermodynamic properties of the working fluid, the absorbent, the heat-transfer configuration of different components of the chiller and related physical data. The time constants of different components are controlled by a set of key parameters that have been identified in this study. The results show a variable but at times significant amount of time delay before the chiller capacity gets close to its steadystate value. The model is intended to provide an insight into the mechanism of build-up to steady-state performance. By recognizing the significant factors contributing to transient degradation, steps can be taken to reduce such degradation. The evaluation of the residual capacity in the shut-off period will yield more realistic estimates of chiller COP for a chiller satisfying dynamic space cooling load.

  11. Simulation and sequential dynamical systems

    SciTech Connect (OSTI)

    Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.

  12. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  13. International symposium on fuel rod simulators: development and application

    SciTech Connect (OSTI)

    McCulloch, R.W.

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  14. Center for Plasma Edge Simulation (CPES) -- Rutgers University Final Report

    SciTech Connect (OSTI)

    Parashar, Manish

    2014-03-06

    The CPES scientific simulations run at scale on leadership class machines, collaborate at runtime and produce and exchange large data sizes, which present multiple I/O and data management challenges. During the CPES project, the Rutgers team worked with the rest of the CPES team to address these challenges at different levels, and specifically (1) at the data transport and communication level through the DART (Decoupled and Asynchronous Remote Data Transfers) framework, and (2) at the data management and services level through the DataSpaces and ActiveSpaces frameworks. These frameworks and their impact are briefly described.

  15. The NOvA simulation chain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aurisano, A.; Backhouse, C.; Hatcher, R.; Mayer, N.; Musser, J.; Patterson, R.; Schroeter, R.; Sousa, A.

    2015-12-23

    The NOvA experiment is a two-detector, long-baseline neutrino experiment operating in the recently upgraded NuMI muon neutrino beam. Simulating neutrino interactions and backgrounds requires many steps including: the simulation of the neutrino beam flux using FLUKA and the FLUGG interface, cosmic ray generation using CRY, neutrino interaction modeling using GENIE, and a simulation of the energy deposited in the detector using GEANT4. To shorten generation time, the modeling of detector-specific aspects, such as photon transport, detector and electronics noise, and readout electronics, employs custom, parameterized simulation applications. We will describe the NOvA simulation chain, and present details on the techniquesmoreĀ Ā» used in modeling photon transport near the ends of cells, and in developing a novel data-driven noise simulation. Due to the high intensity of the NuMI beam, the Near Detector samples a high rate of muons originating in the surrounding rock. In addition, due to its location on the surface at Ash River, MN, the Far Detector collects a large rate ((Ėœ) 140 kHz) of cosmic muons. Furthermore, we will discuss the methods used in NOvA for overlaying rock muons and cosmic ray muons with simulated neutrino interactions and show how realistically the final simulation reproduces the preliminary NOvA data.Ā«Ā less

  16. Sandia National Laboratories: Advanced Simulation and Computing:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Systems & Software Environment Computational Systems & Software Environment Advanced Simulation and Computing Computational Systems & Software Environment Integrated Codes Physics & Engineering Models Verification & Validation Facilities Operation & User Support Research & Collaboration Contact ASC Advanced Simulation and Computing Computational Systems & Software Environment Crack Modeling The Computational Systems & Software Environment

  17. Trace Replay and Network Simulation Tool

    Energy Science and Technology Software Center (OSTI)

    2015-03-23

    TraceR is a trace reply tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performances and understanding network behavior by simulating messaging in High Performance Computing applications on interconnection networks.

  18. Simulations of carbon fiber composite delamination tests

    SciTech Connect (OSTI)

    Kay, G

    2007-10-25

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  19. Method for simulating discontinuous physical systems

    DOE Patents [OSTI]

    Baty, Roy S.; Vaughn, Mark R.

    2001-01-01

    The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.

  20. A NEW GENERATION CHEMICAL FLOODING SIMULATOR

    SciTech Connect (OSTI)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2005-01-01

    The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. In this final report, we will detail our progress on Tasks 1 through 3 of the project.

  1. Cluster computing software for GATE simulations

    SciTech Connect (OSTI)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-06-15

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values.

  2. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect (OSTI)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue was significant ammonium ion formation as the acid stoichiometry was increased due to the high noble metal-high mercury feed conditions. Ammonium ion was found partitioned between the SRAT product slurry and the condensate from the lab-scale off-gas chiller downstream of the SRAT condenser. The ammonium ion was produced from nitrate ion by formic acid. Formate losses increased with increasing acid stoichiometry reaching 40% at the highest stoichiometry tested. About a third of the formate loss at higher acid stoichiometries appeared to be due to ammonia formation. The full extent of ammonia formation was not determined in these tests, since uncondensed ammonia vapor was not quantified; but total formation was bounded by the combined loss of nitrite and nitrate. Nitrate losses during ammonia formation led to nitrite-to-nitrate conversion values that were negative in three of the four tests. The negative results were an artifact of the calculation that assumes negligible SRAT nitrate losses. The sample data after acid addition indicated that some of the initial nitrite was converted to nitrate, so the amount of nitrate destroyed included nitrite converted to nitrate plus some of the added nitrate from the sludge and nitric acid. It is recommended that DWPF investigate the impact of SME product ammonium salts on melter performance (hydrogen, redox). It was recommended that the SB6 Shielded Cells qualification run be performed at 115% acid stoichiometry and allow about 35 hours of boiling for mercury stripping at the equivalent of a 5,000 lb/hr boil-up rate.

  3. Active Power Controls from Wind Power: Bridging the Gaps | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Active Power Controls from Wind Power: Bridging the Gaps Active Power Controls from Wind Power: Bridging the Gaps This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power system simulations, control simulations, and actual field tests using turbines at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC). PDF icon Active Power Controls from Wind Power.pdf More

  4. Secondary Energy Infobook Activities (19 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Information about Secondary Energy Infobook, 19 student activities on energy basics for grades 5-8 and 9-12.

  5. Integration of adaptive process control with computational simulation for spin-forming

    SciTech Connect (OSTI)

    Raboin, P. J., LLNL

    1998-03-10

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations.

  6. Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure

    SciTech Connect (OSTI)

    Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

    2009-10-27

    This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

  7. Simulation of water flow in terrestrial systems

    Energy Science and Technology Software Center (OSTI)

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmoreĀ Ā» varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.Ā«Ā less

  8. Large Eddy Simulation (LES) of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reacting Flow/Modeling/Large Eddy Simulation (LES) of Engines Large Eddy Simulation (LES) of Enginesadmin2015-10-30T01:57:44+00:00 The combination of high-performance computing (HPC) and the large eddy simulation (LES) technique has significant potential to provide new insights into the dynamics of many types of turbulent combustion processes. The objective of LES development at the CRF is to fully integrate the combined merits of HPC and LES in a manner that provides some of the

  9. MHD simulation of RF current drive in MST

    SciTech Connect (OSTI)

    Hendries, E. R.; Anderson, J. K.; Forest, C. B.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R.; Diem, S.; Harvey, R. W.

    2014-02-12

    Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S āˆ¼ 10{sup 4}) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S āˆ¼ 3Ɨ10{sup 6}) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.

  10. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    SciTech Connect (OSTI)

    Khokhlov, Alexei; Austin, Joanna

    2015-03-02

    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagrationto- detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratiory, currently the fourth fastest super-computer in the world. The HSCD is currently being actively used on BG/QMira for a systematic study of the DDT processes using computational resources provided through the 2014-2016 INCITE allocation ā€First-principles simulations of high-speed combustion and detonation.ā€ While the project was focused on hydrogen-oxygen and on DDT, with appropriate modifications of the input physics (reaction kinetics, transport coefficients, equation of state) the code has a much broader applicability to petascale simulations of high speed combustion and detonation phenomena in reacting gases, and to high speed viscous gaseous flows in general. Project activities included three major steps ā€“ (1) development of physical and numerical models, (2) code validation, and (3) demonstration simulation of flame acceleration and DDT in a long pipe.

  11. FUEL ASSEMBLY SHAKER TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.

  12. Purdue Contribution of Fusion Simulation Program

    SciTech Connect (OSTI)

    Jeffrey Brooks

    2011-09-30

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall. It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  13. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  14. Interoperable Technologies for Advanced Petascale Simulations...

    Office of Scientific and Technical Information (OSTI)

    We have simulated a step in the reprocessing and separation of spent fuels from nuclear power plant fuel rods.more We have implemented the fluid-structure interaction for 3D ...

  15. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect (OSTI)

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  16. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  17. Evaluating mixture adsorption models using molecular simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular simulation Previous Next List Joseph A. Swisher, Li-Chiang Lin, Jihan Kim, Berend Smit, AICHE J., 59, 3054-3064 (2013) DOI: 10.1002aic.14058 Abstract: The design of ...

  18. Posters Comparison Between General Circulation Model Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GCM used for this study is from the Max-Planck Institute and the University of Hamburg, Germany (ECHAM3); it is described in detail by Roeckner et al. (1992). The simulation for...

  19. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  20. Molecular dynamics simulation studies of electrolytes andelectrolyte...

    Broader source: Energy.gov (indexed) [DOE]

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es40smith.pdf More Documents & Publications Molecular Dynamics Simulation Studies of Electrolytes ...

  1. Sandia Energy - Computational Fluid Dynamics Simulations Provide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from a VWiS large-eddy simulation. One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes and...

  2. Thermal Hydraulic Simulations, Error Estimation and Parameter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Hydraulic Simulations, Error Estimation and Parameter Sensitivity Studies in Drekar::CFD Thomas M. Smith, John N. Shadid, Roger P. Pawlowski, Eric C. Cyr and Timothy M. Wildey Sandia National Laboratories September, 2013 CASL-U-2013-0203-001 SANDIA REPORT SAND2013-XXXX Unlimited Release Printed September 2013 Thermal Hydraulic Simulations, Error Estimation and Parameter Sensitivity Studies in Drekar::CFD Thomas M. Smith, John N. Shadid, Roger P. Pawlowski, Eric C. Cyr and Timothy M.

  3. Watts Bar Operating Cycles Simulated to Present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coming in our next issue of Tech Notes: Fuel Performance Predictions with VERA Watts Bar Operating Cycles Simulated to Present Among the most important accomplishments during CASL Phase 1 is the development and deployment of CASL's Virtual Environment for Reactor Applications (VERA), a high-fidelity, multi-physics engineering tool that utilizes modest high- performance computing (HPC) systems and engineering-scale clusters to simultaneously simulate the local fuel rod neutronics and coolant

  4. Sandia National Laboratories: Advanced Simulation and Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are

  5. Interoperable Technologies for Advanced Petascale Simulations (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Interoperable Technologies for Advanced Petascale Simulations Citation Details In-Document Search Title: Interoperable Technologies for Advanced Petascale Simulations Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of

  6. Transportation System Simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation System Simulation Transportation System Simulation Today's transportation systems are becoming more and more complex, with integration of communication technologies, vehicle automation and innovative mobility solutions. The advent of connected and autonomous vehicles (CAVs) will see no shortage of new technologies aimed at transforming transportation. While some will likely succeed and others fail, to truly understand their potential and their impacts on the larger transportation

  7. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  8. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  9. SUNREL Energy Simulation Software | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SUNREL Energy Simulation Software SUNRELĀ® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are dominated by the dynamic interactions between the building's envelope, its environment, and its occupants. The program is based on fundamental models of physical behavior and includes algorithms specifically for passive technologies, such as Trombe walls, programmable window shading, advanced glazings, and natural ventilation.

  10. Sandia National Laboratories: Electromagnetic Environments Simulator (EMES)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electromagnetic Environments Simulator (EMES) The Electromagnetic Environments Simulator (EMES) is a large transverse electromagnetic (TEM) cell that propagates a uniform, planar electromagnetic wave through the cell volume where test items are placed. EMES can be used for continuous wave (CW) Electromagnetic Radiation (EMR) and transient Electromagnetic Pulse (EMP) testing. The electric field is vertically polarized between the center conductor and the floor. If it is desired to illuminate test

  11. modeling-and-simulation-with-ls-dyna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling and Simulation with LS-DYNAĀ®: INSIGHTS INTO MODELING WITH A GOAL OF PROVIDING CREDIBLE PREDICTIVE SIMULATIONS Feb. 11-12, 2010 Argonne TRACC Dr. Ronald F. Kulak Announcement pdficon small This email address is being protected from spambots. You need JavaScript enabled to view it. Most applications of LS-DYNA are for complex, and often combined, physics where nonlinearities due to large deformations and material response, including failure, are the norm. Often the goal of such

  12. VISAR simulations. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    VISAR simulations. Citation Details In-Document Search Title: VISAR simulations. No abstract prepared. Authors: Furnish, Michael David Publication Date: 2010-06-01 OSTI Identifier: 1021136 Report Number(s): SAND2010-4248C TRN: US201116%%1049 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the JOWOG 32HDT held June 28-July 2, 2010 in Aldermaston, UK. Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country

  13. 3-D simulations of multiple beam klystrons

    SciTech Connect (OSTI)

    Smithe, David N.; Bettenhausen, Mike; Ludeking, Larry; Caryotakis, G.; Sprehn, Daryl; Scheitrum, Glenn [Mission Research Corporation, 8560 Cinderbed Rd., Suite 700, Newington, Virginia 22122 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States)

    1999-05-07

    The MAGIC3D simulation code is being used to assess the multi-dimensional physics issues relating to the design and operation of multiple beam klystrons. Investigations, to date, include a detailed study of the mode structure of the cavities in the 19-beam hexagonally packed geometry and a study of the velocity spread caused by the cavity mode's field profile. Some attempts to minimize this effect are investigated. Additional simulations have provided quantification of the beam loading Q in a dual input cavity, and optimization of a dual output cavity. An important goal of the simulations is an accurate picture of beam transport along the length of the MBK. We have quantified the magnitude and spatial variation of the beam-line space charge interactions within a cavity gap. Present simulations have demonstrated the transport of the beam through three cavities (the present limits of our simulation size) without difficulty; additional length simulations are expected. We have also examined unbalanced beam-line scenarios, e.g., one beam-line suppressed, and find little disturbance to the transport in individual cavity tests, with results for multiple cavity transport expected.

  14. Retrieval Activities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farms Retrieval Activities Office of River Protection Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  15. NREL: Measurements and Characterization - Simulated Module Current Versus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Voltage (I-V) Simulated Module Current Versus Voltage (I-V) The National Renewable Energy Laboratory Device Performance group uses two I-V measurement systems to assess the performance parameters for photovoltaic (PV) modules under simulated conditions: a Spire 240A pulsed solar simulator and a large-area continuous solar simulator. The following table is a condensed list of characteristics for simulated module I-V measurements instrumentation. Major Instrumentation for Outdoor Simulated

  16. Role of Modeling and Simulation in Scientific Discovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Role of Modeling and Simulation in Scientific Discovery Role of Modeling and Simulation in Scientific Discovery January 29, 2013 - 10:14am Addthis Role of Modeling and Simulation in Scientific Discovery What are the key facts? Modeling and simulation supplement theory and experimentation, improving the scientific method. Industry that has embraced modeling and simulation has realized huge savings in cost and time in getting thier products to market. Modeling and simulation should

  17. Communication Simulations for Power System Applications

    SciTech Connect (OSTI)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  18. A Holistic Approach to Modeling and Simulation for Resilience...

    Office of Scientific and Technical Information (OSTI)

    A Holistic Approach to Modeling and Simulation for Resilience and Power Configuration. Citation Details In-Document Search Title: A Holistic Approach to Modeling and Simulation for...

  19. Community Petascale Project for Accelerator Science and Simulation...

    Office of Scientific and Technical Information (OSTI)

    Title: Community Petascale Project for Accelerator Science and Simulation The UCLA Plasma Simulation Group is a major partner of the "Community Petascale Project for Accelerator ...

  20. Sandia Energy - Ice-Sheet Simulation Code Matures, Leveraging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and as the land ice component of coupled climate simulations in DOE's Earth System Model. The land ice component is responsible for simulating the evolution of the...

  1. Preliminary Benchmarking and MCNP Simulation Results for Homeland...

    Office of Scientific and Technical Information (OSTI)

    Preliminary Benchmarking and MCNP Simulation Results for Homeland Security Citation Details In-Document Search Title: Preliminary Benchmarking and MCNP Simulation Results for ...

  2. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim (Wave Energy Converter SIMulator) Home Stationary Power Energy Conversion Efficiency Water Power WEC-Sim (Wave Energy Converter SIMulator) WEC-Sim (Wave Energy Converter...

  3. Prototype heater test of the environment around a simulated waste...

    Office of Scientific and Technical Information (OSTI)

    Prototype heater test of the environment around a simulated waste package Citation Details In-Document Search Title: Prototype heater test of the environment around a simulated ...

  4. Simulated process test bed for integrated safeguards operations...

    Office of Scientific and Technical Information (OSTI)

    Simulated process test bed for integrated safeguards operations monitoring Citation Details In-Document Search Title: Simulated process test bed for integrated safeguards ...

  5. ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and Analyses of Automotive Engines Title ACCOLADES: A Scalable Workflow Framework for Large-Scale Simulation and...

  6. Overview of Vehicle and Systems Simulation and Testing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vtpn03vssslezak2012o.pdf More Documents & Publications Vehicle & Systems Simulation & Testing Overview of Vehicle and Systems Simulation and Testing Vehicle Technologies...

  7. Simulations of the electron cloud buildups and suppressions in...

    Office of Scientific and Technical Information (OSTI)

    Simulations of the electron cloud buildups and suppressions in Tevatron and main injector Citation Details In-Document Search Title: Simulations of the electron cloud buildups and ...

  8. Trillion Particle Simulation on Hopper Honored with Best Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trillion Particle Simulation on Hopper Honored with Best Paper Trillion Particle Simulation on Hopper Honored with Best Paper Berkeley Lab Researchers Bridge Gap to Exascale May...

  9. PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic...

    Office of Scientific and Technical Information (OSTI)

    PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media Citation Details In-Document Search Title: PSTD Simulations of Multiple Light Scattering in 3-D ...

  10. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  11. A New Computational Paradigm in Multiscale Simulations: Application...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Computational Paradigm in Multiscale Simulations: Application to Brain Blood Flow ... We present the computational advances that have enabled the first multiscale simulation on ...

  12. Electro-thermal-mechanical Simulation and Reliability for Plug...

    Broader source: Energy.gov (indexed) [DOE]

    Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle ...

  13. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed ...

  14. Los Alamos computer simulation improves offshore drill rig safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 24, 2015 A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs. A simulation of vortex induced motion shows how ocean currents affect ...

  15. Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Berkeley Lab research could help...

  16. Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation (LES) Applied to Advanced Engine ...

  17. Home Energy Score Update: New Simulation Training and Credential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: New Simulation Training and Credential Requirements for Assessors Home Energy Score Update: New Simulation Training and Credential Requirements for Assessors Home Energy ...

  18. The coyote universe III: simulation suite and precision emulator...

    Office of Scientific and Technical Information (OSTI)

    simulation suite and precision emulator for the nonlinear matter power spectrum Citation Details In-Document Search Title: The coyote universe III: simulation suite and ...

  19. Simulation of Distortion and Residual Stress Development During...

    Office of Scientific and Technical Information (OSTI)

    Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings Citation Details In-Document Search Title: Simulation of Distortion and Residual ...

  20. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of ...

  1. Simulation of Explosion Ground Motions Using a Hydrodynamic-to...

    Office of Scientific and Technical Information (OSTI)

    Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Citation Details In-Document Search Title: Simulation of Explosion ...

  2. Numerical Simulation of Injectivity Effects of Mineral Scaling...

    Office of Scientific and Technical Information (OSTI)

    Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir Citation Details In-Document Search Title: Numerical Simulation ...

  3. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells ...

  4. Global Simulation of Plasma Microturbulence at the Petascale...

    Office of Scientific and Technical Information (OSTI)

    Global Simulation of Plasma Microturbulence at the Petascale & Beyond (Optimizing the GTC ... Citation Details In-Document Search Title: Global Simulation of Plasma Microturbulence at ...

  5. Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurab...

    Office of Scientific and Technical Information (OSTI)

    as a hardware solution for improving time-to-solution for biomolecular simulations. ... These codes are now capable of simulating nanosecond time-scale trajectories per day on ...

  6. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  7. Sandia Energy - Molecular Dynamics Simulations Predict Fate of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Dynamics Simulations Predict Fate of Uranium in Sediments Home Highlights - Energy Research Molecular Dynamics Simulations Predict Fate of Uranium in Sediments Previous...

  8. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Simulating Wavefront Correction via Deformable Mirrors at X-Ray Beamlines Citation Details In-Document Search Title: Simulating Wavefront Correction via Deformable ...

  9. Simulation and Theory of Ions at Atmospherically Relevant Aqueous...

    Office of Scientific and Technical Information (OSTI)

    Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces Citation Details In-Document Search Title: Simulation and Theory of Ions at Atmospherically...

  10. ASCR Workshop on Turbulent Flow Simulations at the Exascale:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges...

  11. GPS Radiation Instrument Modeling and Simulation (Project w14...

    Office of Scientific and Technical Information (OSTI)

    GPS Radiation Instrument Modeling and Simulation (Project w14gpsradiation) Citation Details In-Document Search Title: GPS Radiation Instrument Modeling and Simulation (Project ...

  12. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  13. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmoreĀ Ā» surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.Ā«Ā less

  14. Post Fukushima tsunami simulations for Malaysian coasts

    SciTech Connect (OSTI)

    Koh, Hock Lye; Teh, Su Yean; Abas, Mohd Rosaidi Che

    2014-10-24

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  15. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  16. Coupled thermal stress simulations of ductile tearing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Neilsen, Michael K.; Dion, Kristin

    2016-03-01

    Predictions for ductile tearing of a geometrically complex Ti-6Al-4V plate were generated using a Unified Creep Plasticity Damage model in fully coupled thermal stress simulations. Uniaxial tension and butterfly shear tests performed at displacement rates of 0.0254 and 25.4 mm/s were also simulated. Results from these simulations revealed that the material temperature increase due to plastic work can have a dramatic effect on material ductility predictions in materials that exhibit little strain hardening. Furthermore, this occurs because the temperature increase causes the apparent hardening of the material to decrease which leads to the initiation of deformation localization and subsequent ductilemoreĀ Ā» tearing earlier in the loading process.Ā«Ā less

  17. LHC RF System Time-Domain Simulation

    SciTech Connect (OSTI)

    Mastorides, T.; Rivetta, C.

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  18. Simulation of HLNC and NCC measurements

    SciTech Connect (OSTI)

    Lu, Ming-Shih; Teichmann, T.; De Ridder, P.

    1994-03-01

    This report discusses an automatic method of simulating the results of High Level Neutron Coincidence Counting (HLNC) and Neutron Collar Coincidence Counting (NCC) measurements to facilitate the safeguards` inspectors understanding and use of these instruments under realistic conditions. This would otherwise be expensive, and time-consuming, except at sites designed to handle radioactive materials, and having the necessary variety of fuel elements and other samples. This simulation must thus include the behavior of the instruments for variably constituted and composed fuel elements (including poison rods and Gd loading), and must display the changes in the count rates as a function of these characteristics, as well as of various instrumental parameters. Such a simulation is an efficient way of accomplishing the required familiarization and training of the inspectors by providing a realistic reproduction of the results of such measurements.

  19. Proline puckering parameters for collagen structure simulations

    SciTech Connect (OSTI)

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motionā€”proline puckeringā€”becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  20. Crashworthiness simulations with DYNA3D

    SciTech Connect (OSTI)

    Schauer, D.A.; Hoover, C.G.; Kay, G.J.; Lee, A.S.; De Groot, A.J.

    1996-04-01

    Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soil has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.

  1. An optical simulation of shared memory

    SciTech Connect (OSTI)

    Goldberg, L.A.; Matias, Y.; Rao, S.

    1994-06-01

    We present a work-optimal randomized algorithm for simulating a shared memory machine (PRAM) on an optical communication parallel computer (OCPC). The OCPC model is motivated by the potential of optical communication for parallel computation. The memory of an OCPC is divided into modules, one module per processor. Each memory module only services a request on a timestep if it receives exactly one memory request. Our algorithm simulates each step of an n lg lg n-processor EREW PRAM on an n-processor OCPC in O(lg lg n) expected delay. (The probability that the delay is longer than this is at most n{sup {minus}{alpha}} for any constant {alpha}). The best previous simulation, due to Valiant, required {Theta}(lg n) expected delay.

  2. Multi-physics microstructural simulation of sintering.

    SciTech Connect (OSTI)

    Tikare, Veena

    2010-06-01

    Simulating the detailed evolution of microstructure at the mesoscale is increasingly being addressed by a number of methods. Discrete element modeling and Potts kinetic Monte Carlo have achieved success in capturing different aspects of sintering well. Discrete element cannot treat the details of neck formation and other shape evolution, especially when considering particles of arbitrary shapes. Potts kMC treats the micorstructural evolution very well, but cannot incorporate complex stress states that form especially during differential sintering. A model that is capable of simulating microstructural evolution during sintering at the mesoscale and can incorporate differential stresses is being developed. This multi-physics model that can treat both interfacial energies and the inter-particle stresses will be introduced. It will be applied to simulate microstructural evolution while resolving individual particles and the stresses that develop between them due to local shrinkage. Results will be presented and the future development of this model will be discussed.

  3. Numerical simulations of strong incompressible magnetohydrodynamic turbulence

    SciTech Connect (OSTI)

    Mason, J.; Cattaneo, F.; Perez, J. C.; Boldyrev, S.

    2012-05-15

    Magnetised plasma turbulence pervades the universe and is likely to play an important role in a variety of astrophysical settings. Magnetohydrodynamics (MHD) provides the simplest theoretical framework in which phenomenological models for the turbulent dynamics can be built. Numerical simulations of MHD turbulence are widely used to guide and test the theoretical predictions; however, simulating MHD turbulence and accurately measuring its scaling properties is far from straightforward. Computational power limits the calculations to moderate Reynolds numbers and often simplifying assumptions are made in order that a wider range of scales can be accessed. After describing the theoretical predictions and the numerical approaches that are often employed in studying strong incompressible MHD turbulence, we present the findings of a series of high-resolution direct numerical simulations. We discuss the effects that insufficiencies in the computational approach can have on the solution and its physical interpretation.

  4. Effects of simulated rare earth recycling wastewaters on biological nitrification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Riman, Richard E.; Navrotsky, Alexandra

    2015-07-16

    Current efforts to increase domestic availability of rare-earth element (REE) supplies by recycling and expanded ore processing efforts will result in increased generation of associated wastewaters. In some cases disposal to a sewage treatment plant may be favored but plant performance must be maintained. To assess the potential effects of such wastewaters on biological wastewater treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50 and 100 ppm), and the REE extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions above 10 ppm inhibited N.moreĀ Ā» europaea activity, even when initially virtually all of the REE was insoluble. The provision of TBP together with Eu increased inhibition of nitrite production by the N. europaea, although TBP alone did not substantially alter nitrifying activity N. winogradskyi was more sensitive to the stimulated wastewaters, with even 10 ppm Eu or Y inducing significant inhibition, and a complete shutdown of nitrifying activity occurred in the presence of the TBP. To analyze the availability of REEs in aqueous solutions, REE solubility has been calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, which is typically controlled by the precipitation of REE hydroxides but may also be influenced by the formation of a phosphate phase.Ā«Ā less

  5. Effects of simulated rare earth recycling wastewaters on biological nitrification

    SciTech Connect (OSTI)

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Riman, Richard E.; Navrotsky, Alexandra

    2015-07-16

    Current efforts to increase domestic availability of rare-earth element (REE) supplies by recycling and expanded ore processing efforts will result in increased generation of associated wastewaters. In some cases disposal to a sewage treatment plant may be favored but plant performance must be maintained. To assess the potential effects of such wastewaters on biological wastewater treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50 and 100 ppm), and the REE extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions above 10 ppm inhibited N. europaea activity, even when initially virtually all of the REE was insoluble. The provision of TBP together with Eu increased inhibition of nitrite production by the N. europaea, although TBP alone did not substantially alter nitrifying activity N. winogradskyi was more sensitive to the stimulated wastewaters, with even 10 ppm Eu or Y inducing significant inhibition, and a complete shutdown of nitrifying activity occurred in the presence of the TBP. To analyze the availability of REEs in aqueous solutions, REE solubility has been calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, which is typically controlled by the precipitation of REE hydroxides but may also be influenced by the formation of a phosphate phase.

  6. Xyce parallel electronic simulator : users' guide.

    SciTech Connect (OSTI)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Warrender, Christina E.; Keiter, Eric Richard; Pawlowski, Roger Patrick

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.

  7. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    SciTech Connect (OSTI)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.

  8. Multiphysics Simulation of Nuclear Reactors F

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No. 10-897 Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors F l C l R&D Fuel Cycle R&D Dr. William Martin University of Michigan In collaboration with: Los Alamos National Laboratory Argonne National Laboratory David Pointer, Technical POC Rob Versluis, Federal POC Implementation of On-the-Fly Doppler Broadening in MCNP for Multiphysics Simulation of Nuclear Reactors Final Report DE-AC07-05ID14517 Project 10-897 William R. Martin,

  9. SLUDGE BATCH 6 PHASE II FLOWSHEET SIMULATIONS

    SciTech Connect (OSTI)

    Koopman, D.; Best, D.

    2010-03-30

    Two Sludge Receipt and Adjustment Tank (SRAT) runs were used to demonstrate that a fairly wide window of acid stoichiometry was available for processing SB6 Phase II flowsheet simulant (Tank 40 simulant) while still meeting the dual goals of acceptable nitrate destruction and controlled hydrogen generation. Phase II was an intermediate flowsheet study for the projected composition of Tank 40 after transfer of SB6/Tank 51 sludge to the heel of SB5. The composition was based on August 2009 projections. A window of about 50% in total acid was found between acceptable nitrite destruction and excessive hydrogen generation.

  10. Xyce parallel electronic simulator release notes.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Hoekstra, Robert John; Mei, Ting; Russo, Thomas V.; Schiek, Richard Louis; Thornquist, Heidi K.; Rankin, Eric Lamont; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01

    The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. Specific requirements include, among others, the ability to solve extremely large circuit problems by supporting large-scale parallel computing platforms, improved numerical performance and object-oriented code design and implementation. The Xyce release notes describe: Hardware and software requirements New features and enhancements Any defects fixed since the last release Current known defects and defect workarounds For up-to-date information not available at the time these notes were produced, please visit the Xyce web page at http://www.cs.sandia.gov/xyce.

  11. Monte Carlo simulation for the transport beamline

    SciTech Connect (OSTI)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  12. Simulations Reveal Unusual Death for Ancient Stars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Reveal Unusual Death for Ancient Stars Simulations Reveal Unusual Death for Ancient Stars Findings made possible with NERSC resources and Berkeley Lab Code September 29, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov SMSweb.jpg This image is a slice through the interior of a supermassive star of 55,500 solar masses along the axis of symmetry. It shows the inner helium core in which nuclear burning is converting helium to oxygen, powering various fluid instabilities (swirling

  13. Nonlinear simulations to optimize magnetic nanoparticle hyperthermia

    SciTech Connect (OSTI)

    Reeves, Daniel B. Weaver, John B.

    2014-03-10

    Magnetic nanoparticle hyperthermia is an attractive emerging cancer treatment, but the acting microscopic energy deposition mechanisms are not well understood and optimization suffers. We describe several approximate forms for the characteristic time of Néel rotations with varying properties and external influences. We then present stochastic simulations that show agreement between the approximate expressions and the micromagnetic model. The simulations show nonlinear imaginary responses and associated relaxational hysteresis due to the field and frequency dependencies of the magnetization. This suggests that efficient heating is possible by matching fields to particles instead of resorting to maximizing the power of the applied magnetic fields.

  14. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect (OSTI)

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  15. Molecular Dynamics Simulation of Thermodynamic Properties in Uranium Dioxide

    SciTech Connect (OSTI)

    Wang, Xiangyu; Wu, Bin; Gao, Fei; Li, Xin; Sun, Xin; Khaleel, Mohammad A.; Akinlalu, Ademola V.; Liu, L.

    2014-03-01

    In the present study, we investigated the thermodynamic properties of uranium dioxide (UO2) by molecular dynamics (MD) simulations. As for solid UO2, the lattice parameter, density, and enthalpy obtained by MD simulations were in good agreement with existing experimental data and previous theoretical predictions. The calculated thermal conductivities matched the experiment results at the midtemperature range but were underestimated at very low and very high temperatures. The calculation results of mean square displacement represented the stability of uranium at all temperatures and the high mobility of oxygen toward 3000 K. By fitting the diffusivity constant of oxygen with the Vogel-Fulcher-Tamman law, we noticed a secondary phase transition near 2006.4 K, which can be identified as a ‘‘strong’’ to ‘‘fragile’’ supercooled liquid or glass phase transition in UO2. By fitting the oxygen diffusion constant with the Arrhenius equation, activation energies of 2.0 and 2.7 eV that we obtained were fairly close to the recommended values of 2.3 to 2.6 eV. Xiangyu Wang, Bin Wu, Fei Gao, Xin Li, Xin Sun, Mohammed A. Khaleel, Ademola V. Akinlalu and Li Liu

  16. A Reactive Transport Simulator for Biogeochemical Processes in Subsurface System

    Energy Science and Technology Software Center (OSTI)

    2003-04-01

    BIOGEOCHEM is a Fortran code that mumerically simulates the coupled processes of solute transport, microbial population dynamics, microbial metabolism, and geochemical reactions. The potential applications of the code include, but not limited to, (a) sensitivity and uncertainty analyses for assessing the impact of microbial activity on subsurface geochemical systems; (b) extraction of biogeochemical parameter values from field observations or laboratory measurements, (c) helping to design and optimize laboratory biogeochemical experiments, and (d) data integration. MethodmoreĀ Ā» of Solution: A finite difference method and a Newton-Raphson technique are used to solve a set of coupled nonlinear partial differential equations and algebraic equations. Practical Application: Environmental analysis, bioremediation performance assessments of radioactive or non-radioactive wase disposal, and academic research.Ā«Ā less

  17. Diffusion In Confinement: Kinetic Simulations of Self- andCollective...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffusion In Confinement: Kinetic Simulations of Self- and Collective-Diffusion Behavior of Adsorbed Gases...

  18. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  19. Parallel Performance of a Combustion Chemistry Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, Gregg; Eigenmann, Rudolf

    1995-01-01

    We used a description of a combustion simulation's mathematical and computational methods to develop a version for parallel execution. The result was a reasonable performance improvement on small numbers of processors. We applied several important programming techniques, which we describe, in optimizing the application. This work has implications for programming languages, compiler design, and software engineering.

  20. Design and Simulation of Hybridization Experiments

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    DB EXP DESIGN is a suite of three UNIX shell-like programs, DWC which computes oligomer composition of DNA texts using directed acyclic word data structures; DWO, which simulates hybridization experiments; and DMI, which calculates the information contenet of individual probes, their mutual information content, and their joint information content through estimation of Markov trees.

  1. Multiphysics Object-Oriented Simulation Environment (MOOSE)

    ScienceCinema (OSTI)

    None

    2013-05-28

    Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.

  2. Fusion Simulation Program Definition. Final report

    SciTech Connect (OSTI)

    Cary, John R.

    2012-09-05

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.

  3. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  4. Center for Advanced Modeling and Simulation Intern

    ScienceCinema (OSTI)

    Gertman, Vanessa

    2013-05-28

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  5. Evaluation of coupling approaches for thermomechanical simulations

    SciTech Connect (OSTI)

    Novascone, S. R.; Spencer, B. W.; Hales, J. D.; Williamson, R. L.

    2015-08-10

    Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics, while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.

  6. Evaluation of coupling approaches for thermomechanical simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Novascone, S. R.; Spencer, B. W.; Hales, J. D.; Williamson, R. L.

    2015-08-10

    Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics,moreĀ Ā» while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Here, problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy.Ā«Ā less

  7. Xyce parallel electronic simulator : reference guide.

    SciTech Connect (OSTI)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Warrender, Christina E.; Keiter, Eric Richard; Pawlowski, Roger Patrick

    2011-05-01

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide. The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. It is targeted specifically to run on large-scale parallel computing platforms but also runs well on a variety of architectures including single processor workstations. It also aims to support a variety of devices and models specific to Sandia needs. This document is intended to complement the Xyce Users Guide. It contains comprehensive, detailed information about a number of topics pertinent to the usage of Xyce. Included in this document is a netlist reference for the input-file commands and elements supported within Xyce; a command line reference, which describes the available command line arguments for Xyce; and quick-references for users of other circuit codes, such as Orcad's PSpice and Sandia's ChileSPICE.

  8. Advanced Simulation and Computing Business Plan

    SciTech Connect (OSTI)

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administrationā€™s (NNSAā€™s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partnersā€”partners upon whom the ASC Program relies on for todayā€™s and tomorrowā€™s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  9. Interactive Activity Detection Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Detection Tools Interactive Activity Detection Tools Tools for detecting specified activities in video data provide a key intelligence capability. High numbers of false alarms, however, reduce tool effectiveness and analyst patience. User feedback reduces false alarms * This project will reduce the number of false alarms generated by activity detection tools (including single vehicle start / stop, multi-vehicle meetings and coordinated driving patterns) by exploiting user feedback in a

  10. VOLUNTEER ACTIVITY 5

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Energy Conservation: Did I remember to...? Activity Type: Craft and Game Supports Lesson Five: Global Warming Grades 4-6

  11. Strategy and gaps for modeling, simulation, and control of hybrid systems

    SciTech Connect (OSTI)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob; Kinoshita, Robert; Mesina, George L.; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.

  12. LANL researchers simulate helium bubble behavior in fusion reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers simulate helium bubble behavior LANL researchers simulate helium bubble behavior in fusion reactors A team performed simulations to understand more fully how tungsten behaves in such harsh conditions, particularly in the presence of implanted helium that forms bubbles in the material. August 4, 2015 Simulation snapshots of the helium bubble just before bursting. Colors indicate tungsten atoms (red) and helium atoms (blue). Simulation snapshots of the helium bubble just before

  13. Advanced ST Plasma Scenario Simulations for NSTX

    SciTech Connect (OSTI)

    C.E. Kessel; E.J. Synakowski; D.A. Gates; R.W. Harvey; S.M. Kaye; T.K. Mau; J. Menard; C.K. Phillips; G. Taylor; R. Wilson; the NSTX Research Team

    2004-10-28

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high {beta} and high {beta}{sub N} inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high {beta} for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with {beta} {approx} 40% at {beta}{sub N}'s of 7.7-9, I{sub P} = 1.0 MA, and B{sub T} = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H{sub 98(y,2)} = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations.

  14. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  15. Tc Reductant Chemistry and Crucible Melting Studies with Simulated Hanford Low-Activity Waste

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Soderquist, Chuck Z.; Icenhower, Jonathan P.; McGrail, B PETER.; Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Schweiger, Michael J.; Crum, Jarrod V.; Yeager, John D.; Matyas, Josef; Darnell, Lori P.; Schaef, Herbert T.; Owen, Antionette T.; Kozelisky, Anne E.; Snow, Lanee A.; Steele, Marilyn J.

    2005-03-30

    The FY 2003 risk assessment (RA) of bulk vitrification (BV) waste packages used 0.3 wt% of the technetium (Tc) inventory as a leachable salt and found it sufficient to create a significant peak in the groundwater concentration in a 100-meter down-gradient well. Although this peak met regulatory limits, considering uncertainty in the actual Tc salt fraction, peak concentrations could exceed the maximum concentration limit (MCL) under some scenarios so reducing the leachable salt inventory is desirable. The main objective of this study was to reduce the mobile Tc species available within a BV disposal package by reducing the oxidation state of the Tc in the waste feed and/or during melting because Tc in its reduced form of Tc(IV) has a much lower volatility than Tc(VII). Reduced Tc volatility has a secondary benefit of increasing the Tc retention in glass.

  16. Adaptive Detached Eddy Simulation of a High Lift Wing with Active...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as multi-element wings. Specifically, researchers will model an array of synthetic jets that have been vectored to augment the streamwise momentum near the flap suction peak....

  17. Active Shooter Training Workshop

    Broader source: Energy.gov [DOE]

    The training workshop was based on real-world threats and issues and included a variety of guest lecturers and hands-on practical exercises. Participants utilized both live fire and engagement simulation system weaponry. The exercises were led by NTC instructors at the NTCā€™s Live Fire Range and Integrated Safety and Security Training and Evaluation Complex (ISSTEC).

  18. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  19. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of simulant materials that give the desired density and viscosity or rheological parameters.

  20. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,moreĀ Ā» the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.Ā«Ā less

  1. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Pan, Jianjun [University of South Florida, Tampa (USF)] [University of South Florida, Tampa (USF); Cheng, Xiaolin [ORNL] [ORNL; Monticelli, Luca [Institut National de la Santé et de la Recherche Médicale (INSERM) and INTS, France] [Institut National de la Santé et de la Recherche Médicale (INSERM) and INTS, France; Heberle, Frederick A [ORNL] [ORNL; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,] [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Tieleman, D. Peter [University of Calgary, ALberta, Canada] [University of Calgary, ALberta, Canada; Katsaras, John [ORNL] [ORNL

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  2. The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation

    SciTech Connect (OSTI)

    Foley, Samantha S; Elwasif, Wael R; Bernholdt, David E

    2011-11-01

    High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

  3. Simulating Biomolecules on the Petascale Supercomputers

    SciTech Connect (OSTI)

    Alam, Sadaf R [ORNL; Agarwal, Pratul K [ORNL; Geist, Al [ORNL

    2007-11-01

    Computing continues to make a signicant impact on biology. A variety of computational techniques have allowed rapid developments in design of experiments as well as collection, storage and analysis of experimental data. These developments have and are leading to novel insights into a variety of biological processes. The strength of computing in biology, however, comes from the ability to investigate those aspects of biological processes that are either dicult or are beyond the reach of experimental techniques. Particularly in the last 3 decades, availability of increasing computing power has had a signicant impact on the fundamental understanding of the biomolecules at the molecular level. Molecular biochemists and biophysicists, through theoretical multi-scale modeling and computational simulations, have been able to obtain atomistic level understanding of biomolecular structure, dynamics, folding and function. The protein folding problem, in particular, has attracted considerable interest from a variety of researchers and simulation scientists.

  4. Synchrotron-based EUV lithography illuminator simulator

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2004-07-27

    A lithographic illuminator to illuminate a reticle to be imaged with a range of angles is provided. The illumination can be employed to generate a pattern in the pupil of the imaging system, where spatial coordinates in the pupil plane correspond to illumination angles in the reticle plane. In particular, a coherent synchrotron beamline is used along with a potentially decoherentizing holographic optical element (HOE), as an experimental EUV illuminator simulation station. The pupil fill is completely defined by a single HOE, thus the system can be easily modified to model a variety of illuminator fill patterns. The HOE can be designed to generate any desired angular spectrum and such a device can serve as the basis for an illuminator simulator.

  5. Future Directions in Simulating Solar Geoengineering

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Robock, Alan; Boucher, Olivier

    2014-08-05

    Solar geoengineering is a proposed set of technologies to temporarily alleviate some of the consequences of anthropogenic greenhouse gas emissions. The Geoengineering Model Intercomparison Project (GeoMIP) created a framework of geoengineering simulations in climate models that have been performed by modeling centers throughout the world (B. Kravitz et al., The Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Science Letters, 12(2), 162-167, doi:10.1002/asl.316, 2011). These experiments use state-of-the-art climate models to simulate solar geoengineering via uniform solar reduction, creation of stratospheric sulfate aerosol layers, or injecting sea spray into the marine boundary layer. GeoMIP has been quite successful in its mission of revealing robust features and key uncertainties of the modeled effects of solar geoengineering.

  6. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect (OSTI)

    Xu, X.; Umansky, M.; Dudson, B.; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  7. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  8. Muon Simulation at the Daya Bay SIte

    SciTech Connect (OSTI)

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  9. Forcing continuous reconnection in hybrid simulations

    SciTech Connect (OSTI)

    Laitinen, T. V. Janhunen, P.; Jarvinen, R.; Kallio, E.

    2014-07-15

    We have performed hybrid simulations of driven continuous reconnection with open boundary conditions. Reconnection is started by a collision of two subsonic plasma fronts with opposite magnetic fields, without any specified magnetic field configuration as initial condition. Due to continued forced plasma inflow, a current sheet co-located with a dense and hot plasma sheet develops. The translational symmetry of the current sheet is broken by applying a spatial gradient in the inflow speed. We compare runs with and without localized resistivity: reconnection is initiated in both cases, but localized resistivity stabilizes it and enhances its efficiency. The outflow speed reaches about half of Alfvén speed. We quantify the conversion of magnetic energy to kinetic energy of protons and to Joule heating and show that with localized resistivity, kinetic energy of protons is increased on average five-fold in the reconnection in our simulation case.

  10. Geometric Modeling, Radiation Simulation, Rendering, Analysis Package

    Energy Science and Technology Software Center (OSTI)

    1995-01-17

    RADIANCE is intended to aid lighting designers and architects by predicting the light levels and appearance of a space prior to construction. The package includes programs for modeling and translating scene geometry, luminaire data and material properties, all of which are needed as input to the simulation. The lighting simulation itself uses ray tracing techniques to compute radiance values (ie. the quantity of light passing through a specific point in a specific direction), which aremoreĀ Ā» typically arranged to form a photographic quality image. The resulting image may be analyzed, displayed and manipulated within the package, and converted to other popular image file formats for export to other packages, facilitating the production of hard copy output.Ā«Ā less

  11. advanced simulation and computing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration advanced simulation and computing NNSA's missions get a boost from brain-inspired, radically different computer design The first computers to contribute to the nation's nuclear security work used thousands of vacuum tubes-which resembled fat light bulbs that gave off lots of heat-and consumed 125 kW of power to perform around 1,900 operations per second. This month NNSA's Lawrence Livermore National Laboratory (... NNSA Announces Procurement of Penguin Computing Clusters to

  12. On Extended-Term Dynamic Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation Ricky Concepcion, Ryan Elliott Sandia National Laboratories Albuquerque, NM 87185 {rconcep, rtellio}@sandia.gov Matt Donnelly Montana Tech Butte, MT 59701 mdonnelly@mtech.edu Juan Sanchez-Gasca GE Energy Schenectady, NY 12345 juan1.sanchez@ge.com Abstract-The uncontrolled intermittent availability of renew- able energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative

  13. 2014 Building America House Simulation Protocols

    Energy Savers [EERE]

    2014 Building America House Simulation Protocols E. Wilson, C. Engebrecht Metzger, S. Horowitz, and R. Hendron National Renewable Energy Laboratory Technical Report NREL/TP-5500-60988 March 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  14. NREL: National Residential Efficiency Measures Database - Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protocols Simulation Protocols One overarching objective in providing this publicly-available, centralized resource of residential building retrofit measures is to improve the technical consistency and accuracy of the results of software programs. To this end, NREL has also developed a set of recommendations regarding modeling inputs and assumptions derived from two decades of residential buildings research via the Building America Research Program. Section III of the Building America House

  15. Building America House Simulation Protocols (Revised)

    SciTech Connect (OSTI)

    Hendron, R.; Engebrecht, C.

    2010-10-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  16. Regional Transportation Simulation Tool for Emergency Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rtstep-diag TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Regional Transportation Simulation Tool for Emergency Evacuation Planning (Click to play movie) Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the

  17. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  18. Methodology for Validating Building Energy Analysis Simulations

    SciTech Connect (OSTI)

    Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  19. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect (OSTI)

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ?50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  20. Kinetic Simulations of Relativistic Radiative Magnetic Reconnection |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility This visualization shows the increased plasma density inside flux ropes In three dimensions, magnetic reconnection occurs between "ropes" of magnetic flux; this figure, from a supercomputer simulation of reconnection in ultra-relativistic electron-positron plasma, shows the increased plasma density inside flux ropes. During reconnection, magnetic energy is transferred to plasma particles; the accelerated particles emit high-energy X-rays and

  1. Beam-beam simulations for separated beams

    SciTech Connect (OSTI)

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  2. Numerical recipes for mold filling simulation

    SciTech Connect (OSTI)

    Kothe, D.; Juric, D.; Lam, K.; Lally, B.

    1998-07-01

    Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.

  3. Theory, modeling, and simulation annual report, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  4. Linac Coherent Light Source Monte Carlo Simulation

    Energy Science and Technology Software Center (OSTI)

    2006-03-15

    This suite consists of codes to generate an initial x-ray photon distribution and to propagate the photons through various objects. The suite is designed specifically for simulating the Linac Coherent Light Source, and x-ray free electron laser (XFEL) being built at the Stanford Linear Accelerator Center. The purpose is to provide sufficiently detailed characteristics of the laser to engineers who are designing the laser diagnostics.

  5. Theory, Modeling and Simulation Annual Report 2000

    SciTech Connect (OSTI)

    Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A

    2001-11-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.

  6. Theory, Modeling and Simulation Annual Report 2000

    SciTech Connect (OSTI)

    Dixon, David A.; Garrett, Bruce C.; Straatsma, Tp; Jones, Donald R.; Studham, Ronald S.; Harrison, Robert J.; Nichols, Jeffrey A.

    2001-11-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM&S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.

  7. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    SciTech Connect (OSTI)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on materialā€™s structure. Coreā€“shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of coreā€“shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  8. Mesh infrastructure for coupled multiprocess geophysical simulations

    SciTech Connect (OSTI)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.

  9. Software Framework for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  10. Xyce(Ā™) Parallel Electronic Simulator

    Energy Science and Technology Software Center (OSTI)

    2013-10-03

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.! ! Xyce is primarily used to simulate the voltage and current behavior of a circuitmoreĀ Ā» network (a network of electronic devices connected via a conductive network). As a tool, it is mainly used for the design and analysis of electronic circuits.! ! Kirchoff's conservation laws are enforced over a network using modified nodal analysis. This results in a set of differential algebraic equations (DAEs). The resulting nonlinear problem is solved iteratively using a fully coupled Newton method, which in turn results in a linear system that is solved by either a standard sparse-direct solver or iteratively using Trilinos linear solver packages, also developed at Sandia National Laboratories.Ā«Ā less

  11. Memory Optimization for Phase-field Simulations

    SciTech Connect (OSTI)

    Derek Gaston; John Peterson; Andrew Slaughter; Cody Permann; David Andrs

    2014-08-01

    Phase-field simulations are computationally and memory intensive applications. Many of the phase-field simulations being conducted in support of NEAMS were not capable of running on ā€œnormal clustersā€ with 2-4GB of RAM per core, and instead required specialized ā€œbig-memoryā€ clusters with 64GB per core. To address this issue, the MOOSE team developed a new Python-based utility called MemoryLogger, and applied it to locate, diagnose, and eradicate memory bottlenecks within the MOOSE framework. MemoryLogger allows for a better understanding of the memory usage of an application being run in parallel across a cluster. Memory usage information is captured for every individual process in a parallel job, and communicated to the head node of the cluster. Console text output from the application itself is automatically matched with this memory usage information to produce a detailed picture of memory usage over time, making it straightforward to identify the subroutines which contribute most to the applicationā€™s peak memory usage. The information produced by the MemoryLogger quickly and effectively narrows the search for memory optimizations to the most data-intensive parts of the simulation.

  12. Characterization and Simulation of Gunfire with Wavelets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    1999-01-01

    Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of thesemoreĀ Ā» records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.Ā«Ā less

  13. Real Time Simulation of Power Grid Disruptions

    SciTech Connect (OSTI)

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  14. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themoreĀ Ā» mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.Ā«Ā less

  15. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  16. Activated recombinant adenovirus proteinases

    DOE Patents [OSTI]

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  17. ALS Activity Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Activity Reports Print These hard-copy annual reports were produced from 1993-2006. They illustrated the depth and breadth of the ALS scientific program with a selection of research results. They also summarized operations and ongoing R&D, highlighted educational outreach efforts and special events, and provided yearly documentation of the beamlines and publications. The Activity Report was replaced in 2007 by ALS Spectrum. The reports for 1996-2006 are available here. Activity Report

  18. ALS Activity Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Reports Print These hard-copy annual reports were produced from 1993-2006. They illustrated the depth and breadth of the ALS scientific program with a selection of research results. They also summarized operations and ongoing R&D, highlighted educational outreach efforts and special events, and provided yearly documentation of the beamlines and publications. The Activity Report was replaced in 2007 by ALS Spectrum. The reports for 1996-2006 are available here. Activity Report 2006

  19. Activated recombinant adenovirus proteinases

    DOE Patents [OSTI]

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  20. ALS Activity Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Reports Print These hard-copy annual reports were produced from 1993-2006. They illustrated the depth and breadth of the ALS scientific program with a selection of research results. They also summarized operations and ongoing R&D, highlighted educational outreach efforts and special events, and provided yearly documentation of the beamlines and publications. The Activity Report was replaced in 2007 by ALS Spectrum. The reports for 1996-2006 are available here. Activity Report 2006

  1. ALS Activity Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Reports Print These hard-copy annual reports were produced from 1993-2006. They illustrated the depth and breadth of the ALS scientific program with a selection of research results. They also summarized operations and ongoing R&D, highlighted educational outreach efforts and special events, and provided yearly documentation of the beamlines and publications. The Activity Report was replaced in 2007 by ALS Spectrum. The reports for 1996-2006 are available here. Activity Report 2006

  2. National Service Activation Checklist

    Energy Savers [EERE]

    Service Activation Checklist You have just received information that you are being activated for national service. Covered or Not Covered If you have received notice to report for active duty - Army, Navy, Marines, Air Force, National Guard, Public Health Service, or Coast Guard and you are a Federal employee, you have employment and reemployment rights under the Uniformed Services Employment and Reemployment Act of 1994 (USERRA). Basics - Telling People What is Happening 1. Have you told your

  3. Bandwidth and Transfer Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average. Graphs for the last 8 days. Historical yearly peak days. Daily Storage Concurrency Transfer Activity This graph shows the number of transfers to the storage systems...

  4. Low Specific Activity (LSA)

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of Low Specific Activity (LSA) material.Ā  This...

  5. Better Buildings Workforce Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETTER BUILDINGS WORKFORCE ACTIVITIES Benjamin Goldstein, Better Buildings Workforce Project Manager, U.S. Department of Energy April 24, 2014 Housekeeping and Overview 1) ...

  6. Exploring Hydroelectricity (9 activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Integrated and inquiry-based activities that provide a comprehensive understanding of the scientific, economic, environmental, technological, and societal aspects of hydropower to secondary students

  7. Residential Building Activities

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  8. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentationā€”given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingā€”discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  9. Activation.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as it becomes available. The Joint Information Center (JIC), located at 4021 National Parks Highway, has been activated to provide public information. For updated information,...

  10. Work Force Restructuring Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLOSURE SITES Fernald Fluor Fernald Inc. * All contractor workforce restructuring activities for Fluor Fernald are complete * Fluor declared contract completion on 102906. Mound ...

  11. DWPF Simulant CPC Studies For SB8

    SciTech Connect (OSTI)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected during SME processing. Mercury behavior was consistent with that seen in previous SRAT runs. Mercury was stripped below the DWPF limit on 0.8 wt% for all runs. Rheology yield stress fell within or below the design basis of 1-5 Pa. The low acid Tank 40 run (106% acid stoichiometry) had the highest yield stress at 3.78 Pa.

  12. Stochastic Engine: Direct Incorporation of Measurements Into Predictive Simulations

    SciTech Connect (OSTI)

    Newmark, R L; Aines, R D; Nitao, J J; Hanley, W G; Carle, S; Ramirez, A L; Sengupta, S; Harris, D B

    2001-08-02

    We are creating a new method of combining disparate types of geologic observations and process simulations. Using Bayesian inferencing and an efficient search algorithm, we obtain a consolidated body of knowledge in the form of multiple configurations and parameter values of the system that are consistent with our existing data and process models. In so doing, we effectively estimate the distributions of both individual parameters and system-wide states, and their likelihood of occurrence. This is in contrast with conventional inversion methods, which produce a single deterministic understanding lacking quantitative information about the distribution of uncertainty. We call this combination of probabilistic evaluation and deterministic process simulators the stochastic engine. Our approach allows the investigators to rapidly improve their understanding of system progress, making it particularly valuable for active processes like injection. The Bayesian inferencing is driven by forward process models that predict data values, such as temperature or electrical voltage, for direct comparison to measured field values. We stage the stochastic searches of possible configurations and run the simplest models, such as lithology estimators, at the lower stages. The majority of possible configurations are eliminated from further consideration by the higher stages' more complex models, such as electrical resistance models for geophysical imaging, or flow and transport models for fluid movement. The approach allows for the continuous augmentation of existing data with newly available information to enhance our understanding and reduce the number of high likelihood configurations. This effectively creates a tool capable of dynamically finding models of underground geological systems that are consistent with all available data. The stochastic engine approach will dramatically increase our understanding of large-scale complex systems and the accuracy of predicting their future behavior under natural or man-made conditions.

  13. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  15. The Paul Trap Simulator Experiment (PTSX) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Paul Trap Simulator Experiment (PTSX) The Paul Trap Simulator Experiment (PTSX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory doesn't trap people named...

  16. Sandia Energy - Upper Rio Grande Simulation Model (URGSiM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper Rio Grande Simulation Model (URGSiM) Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Systems Modeling Upper Rio Grande Simulation...

  17. Simulator procurement guidelines for fossil power plants: Final report

    SciTech Connect (OSTI)

    Lewis-Clapper, R.C.; Colby, F.J.; Gaddy, C.D.; Stone, H.P. II

    1994-12-01

    EPRI compact simulators are more effective, more flexible, and less expensive than conventional simulators. As a result, these simulators can benefit utilities in many ways, ranging from improving heat rate and decreasing O and M costs to reducing control system retrofit costs. Similarly, simulator applications range from operator training to engineering analyses and new product testing. These guidelines help utilities efficiently develop simulator specifications and procure these simulators. The guidelines cover the three phases of the procurement process: (1) pre-specification, (2) specification development, and (3) post-specification. For each phase, the guidelines include specific steps to take and use examples to point out how to avoid problems. Guideline appendices include a generic simulator specification. To help transfer the information in the guidelines to the industry, EPRI has also developed a simulator procurement workshop and a six-hour videotape series based on the workshop.

  18. Large Eddy Simulations of Combustor Liner Flows | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zone and turbine, current simulations will use wall-modeled large-eddy simulations (LES) to analyze flow in single and multi-cup combustors. An in-depth study of the detailed...

  19. Los Alamos computer simulation improves offshore drill rig safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 1, 2015 A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs. A simulation of vortex induced motion shows how ocean currents affect offshore ...

  20. Transient Simulation of a 2007 Prototype Heavy-Duty Engine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation of a 2007 Prototype Heavy-Duty Engine Transient Simulation of a 2007 Prototype Heavy-Duty Engine 2004 Diesel Engine Emissions Reduction (DEER) Conference PresentationL ...