Sample records for activity modeling-computer simulations

  1. Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Exploration Activity...

  2. Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell, 2004) Exploration Activity...

  3. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  4. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  5. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)...

  6. Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity...

  7. Modeling-Computer Simulations At Chocolate Mountains Area (Alm...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity...

  8. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

  9. Modeling-Computer Simulations At Nevada Test And Training Range...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location...

  10. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W....

  11. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

  12. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding...

  13. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  14. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

  15. Modeling-Computer Simulations At San Juan Volcanic Field Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Exploration...

  16. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region...

  17. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Modeling-Computer Simulations Activity Date - 2003 Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera....

  18. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration...

  19. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

  20. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  1. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Sulphur Springs Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1987 - 1995 Usefulness useful DOE-funding Unknown Notes A modification of the...

  2. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1995 - 2000 Usefulness not indicated DOE-funding Unknown...

  3. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W. Pritchett...

  4. Modeling-Computer Simulations At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Geothermal Area (Rudman & Epp, 1983) Exploration...

  5. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration...

  6. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Geothermal Area (Wilt & Haar, 1986)...

  7. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  8. Modeling-Computer Simulations At U.S. West Region (Williams ...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details Location U.S. West Region Exploration Technique Modeling-Computer...

  9. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Modeling-Computer Simulations Activity Date 1987 - 1995 Usefulness useful DOE-funding Unknown Notes A modification of the Aki-Lamer method was used to model the amplitude data....

  10. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

  11. Modeling-Computer Simulations (Ozkocak, 1985) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations Activity Date

  12. Modeling-Computer Simulations (Ranalli & Rybach, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations Activity

  13. Modeling-Computer Simulations (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of Energy DemandModeling-Computer

  14. Modeling-Computer Simulations (Walker, Et Al., 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations

  15. Modeling-Computer Simulations At Central Nevada Seismic Zone Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010) |

  16. Modeling-Computer Simulations At Central Nevada Seismic Zone Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)

  17. Modeling-Computer Simulations At Dixie Valley Geothermal Area (Blackwell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)EtEt Al.,

  18. Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)EtEtEt Al.,

  19. Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010) | Open

  20. Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)Et Al.,

  1. Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)Et Al.,2010)

  2. Modeling-Computer Simulations At Coso Geothermal Area (1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)Et

  3. Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)EtEt

  4. Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of EnergySimulations2010)EtEtEt

  5. Activation Energies from Transition Path Sampling Simulations

    E-Print Network [OSTI]

    Dellago, Christoph

    unavailable for processes occurring in complex systems. Since in this method activation energies diatomic immersed in a bath of repulsive soft particles. Keywords: Activation energy; Computer simulation on the transition path sampling methodology, our approach to determine activation energies does not require full

  6. Modeling-Computer Simulations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts,(Laney,| Jump

  7. Numerical simulation of micro-fluidic passive and active mixers

    E-Print Network [OSTI]

    Kumar, Saurabh

    2002-01-01T23:59:59.000Z

    Numerical simulations of mixing using passive and active techniques are performed. For passive mixing, numerical modeling of a micro-fluidic device, build by Holden and Cremer, was performed. The micro-fluidic device consists of a Y...

  8. HANDLING UNCERTAINTY IN PRODUCTION ACTIVITY CONTROL USING PROACTIVE SIMULATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HANDLING UNCERTAINTY IN PRODUCTION ACTIVITY CONTROL USING PROACTIVE SIMULATION Olivier CARDIN, Production Control, Manufacturing Systems, Proactive, Real-time. 1. INTRODUCTION In today's complex of a product. Real-word planning and scheduling problems are generally complex, constrained and multi

  9. Active control for turbulent premixed flame simulations

    SciTech Connect (OSTI)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-03-26T23:59:59.000Z

    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  10. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20T23:59:59.000Z

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  11. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect (OSTI)

    Cheung, M. C. M.; Title, A. M. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Rempel, M. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Schuessler, M. [Max Planck Institute for Solar System Research, Katlenburg-Lindau, 37191 (Germany)

    2010-09-01T23:59:59.000Z

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  12. Development and Validation of an Active Magnetic Regenerator Refrigeration Cycle Simulation

    E-Print Network [OSTI]

    Victoria, University of

    Development and Validation of an Active Magnetic Regenerator Refrigeration Cycle Simulation by John of an Active Magnetic Regenerator Refrigeration Cycle Simulation by John Dikeos B.Sc., Queen's University, 2003 for refrigeration and gas liquefaction is active magnetic regenerator (AMR) refrigeration. This technology relies

  13. Adaptive Detached Eddy Simulation of a High Lift Wing with Active...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and slat support). Adaptive Detached Eddy Simulation of a High Lift Wing with Active Flow Control PI Name: Kenneth Jansen PI Email: jansenke@colorado.edu Institution:...

  14. Modeling-Computer Simulations At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two...

  15. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  16. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  17. Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  18. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    vein structure associated with ore deposits. References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  19. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    springs, and fumaroles. These samples were analyzed for noble gas abundances and their helium isotropic compositions. It was found that the geothermal fluids range from 0.70 to...

  20. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    of the Fenton Hill HDR Reservoir Donald W. Brown (1994) How to Achieve a Four-Fold Productivity Increase at Fenton Hill Additional References Retrieved from "http:en.openei.org...

  1. Modeling-Computer Simulations (Gritto & Majer) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana Geothermal AreaImpactsGritto

  2. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana

  3. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011) | Open

  4. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011)Reiter,(Wilt

  5. Modeling-Computer Simulations (Combs, Et Al., 1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of Energy Demand

  6. Modeling-Computer Simulations (Lewicki & Oldenburg, 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of Energy

  7. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) | Open(Battaglia, Et

  8. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) | Open(Battaglia,

  9. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |

  10. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts, Et Al.,

  11. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts, Et

  12. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts, EtGeothermal

  13. Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts,(Laney,|

  14. PREDICTIVE SIMULATION OF PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 PREDICTIVE SIMULATION OF PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING: structural health monitoring (SHM), piezoelectric wafer active sensors (PWAS), nondestructive evaluation (NDE sensors (PWAS) are lightweight and inexpensive enablers for structural health monitoring (SHM). After

  15. Comparing Student Learning in Mechanics Using Simulations and Hands-on Activities

    E-Print Network [OSTI]

    Zollman, Dean

    Comparing Student Learning in Mechanics Using Simulations and Hands-on Activities Adrian Carmichael Educational Sciences, University of Wisconsin, Madison, WI 53706-1796 Abstract. Often computer simulation. Keywords: pulleys, simulations, hands-on, concept maps, hypertext, student understanding, physics education

  16. activity waste simulants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KEYWORDS Active Database, Active Rules of Database Management Systems (DBMS) is concerned with an augmentation of DBMS by rules. Passive rules Franek, Frantisek 75...

  17. activity waste simulant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KEYWORDS Active Database, Active Rules of Database Management Systems (DBMS) is concerned with an augmentation of DBMS by rules. Passive rules Franek, Frantisek 75...

  18. MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283

    SciTech Connect (OSTI)

    Jiang Chaowei; Feng Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, S. T.; Hu Qiang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-07-10T23:59:59.000Z

    Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.

  19. Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-Filed

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring) is emerging as an effective and powerful technique in structural health monitoring (SHM). Modeling to analytical calculation and experimental data. Key words: Structural Health Monitoring, PWAS, finite element

  20. Towards Real Earth Models --Computational Geophysics on Unstructured Tetrahedral Meshes?

    E-Print Network [OSTI]

    Farquharson, Colin G.

    Towards Real Earth Models -- Computational Geophysics on Unstructured Tetrahedral Meshes? Colin tetrahedral meshes. EM geophysics on unstructured tetrahedral meshes. Disadvantages, difficulties, challenges. Conclusions. #12;Outline: Geological models! Advantages of unstructured tetrahedral meshes. EM geophysics

  1. Predictive Simulations to Assess Potential Effect of Mining Activities on Groundwater

    E-Print Network [OSTI]

    Netoff, Theoden

    Predictive Simulations to Assess Potential Effect of Mining Activities on Groundwater Resource Effect of Mining Activities on Groundwater April 23, 2010 Table of Contents 1.0 Introduction ............................................................................................................................................1 2.0 Effect of Mining Operations on the Groundwater Flow System

  2. Contribution of simulation in the product-driven systems production activity control

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    control consists in improving existing manufacturing production planning and control systems. We graduallyContribution of simulation in the product-driven systems production activity control Olivier CARDIN the emergence of product driven production activity control concept, the development of RFID technologies had

  3. Multiagent-Based Simulation of Temporal-Spatial Characteristics of Activity-Travel Patterns Using Interactive Reinforcement Learning

    E-Print Network [OSTI]

    Yang, Min

    We propose a multiagent-based reinforcement learning algorithm, in which the interactions between travelers and the environment are considered to simulate temporal-spatial characteristics of activity-travel patterns in a ...

  4. Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases

    E-Print Network [OSTI]

    M. E. Cates; O. Henrich; D. Marenduzzo; K. Stratford

    2010-09-06T23:59:59.000Z

    Lattice Boltzmann simulations have become a method of choice to solve the hydrodynamic equations of motion of a number of complex fluids. Here we review some recent applications of lattice Boltzmann to study the hydrodynamics of liquid crystalline materials. In particular, we focus on the study of (a) the exotic blue phases of cholesteric liquid crystals, and (b) active gels - a model system for actin plus myosin solutions or bacterial suspensions. In both cases lattice Boltzmann studies have proved useful to provide new insights into these complex materials.

  5. Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: Simulation and experiment

    SciTech Connect (OSTI)

    Heuchel, M.; Davies, G.M.; Buss, E.; Seaton, N.A.

    1999-12-07T23:59:59.000Z

    The aim of this work is to predict the adsorption of pure-component and binary mixtures of methane and carbon dioxide in a specific activated carbon, A35/4, using grand canonical Monte Carlo (GCMC) simulation. Methane is modeled as one-center Lennard-Jones (LJ) fluid and carbon dioxide as a two-center LJ plus point quadrupole fluids. Experimental adsorption data for the system have been obtained with a new flow desorption apparatus. The pore size distribution (PSD) for the carbon was determined from both of the experimental CH{sub 4} and CO{sub 2} isotherms at 293 K. To extract numerically the PSD, GCMC-simulated isotherms for both pure components in slit-shaped pores ranging from 5.7 to 72.2 {angstrom} were used. Using only pure experimental CO{sub 2} isotherm data, it was not possible to determine a PSD that allowed a reasonable prediction of the pure methane adsorption. However, with both experimental data sets for the pure components, it was possible to derive a PSD that allowed both experimental pure-component isotherms to be fitted. With this PSD and the simulated adsorption densities in single pores, it was possible to predict in good agreement with experiment (1) the adsorption of binary mixtures of CO{sub 2} and CH{sub 4} and (2) the adsorption of both pure components at higher temperatures. However, the model was unable to reproduce precisely the experimental pressure dependence of the CO{sub 2} selectivity.

  6. Combining Semi-analytic Models with Simulations of Galaxy Clusters: the Need for Heating from Active Galactic Nuclei

    E-Print Network [OSTI]

    C. J. Short; P. A. Thomas

    2009-09-16T23:59:59.000Z

    We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al., who arrived at the same conclusion on the basis of purely semi-analytic reasoning.

  7. Weapons Activities/ Advanced Simulation and Computing Campaign FY 2011 Congressional Budget

    E-Print Network [OSTI]

    of the entire weapons lifecycle, from design to safe processes for dismantlement. The ASC simulations play

  8. Adjoint Monte Carlo Simulation of Fusion Product Activation Probe Experiment in ASDEX Upgrade tokamak

    E-Print Network [OSTI]

    Äkäslompolo, Simppa; Tardini, Giovanni; Kurki-Suonio, Taina

    2015-01-01T23:59:59.000Z

    The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material makig it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte-Carlo calculations of the fusion products. The analysis facilitated, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within 40%, which can be considered remarkable considering the fact that all features of the plasma cannot be accounted in the simulations. Also an alternative probe orientation was studied. The results suggest that a better optimized...

  9. SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES

    SciTech Connect (OSTI)

    Hanke, Florian; Mueller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas, E-mail: fhanke@mpa-garching.mpg.de, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: annop@mpa-garching.mpg.de, E-mail: amarek@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2013-06-10T23:59:59.000Z

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M{sub Sun} progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, {+-}1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M{sub Sun} progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

  10. WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008

    SciTech Connect (OSTI)

    Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

    2009-03-20T23:59:59.000Z

    The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.

  11. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

  12. Modeling-Computer Simulations At Coso Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana Geothermal

  13. Modeling-Computer Simulations At Coso Geothermal Area (2000) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana GeothermalInformation 0

  14. Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana GeothermalInformation 0Open

  15. Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana GeothermalInformation

  16. Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana GeothermalInformationEnergy

  17. Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011) |

  18. Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011) |Energy

  19. Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011)

  20. Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel, Et Al., 2011)Reiter,

  1. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Brown &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of

  2. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) | Open Energy

  3. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) | Open Energy2008) |

  4. Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) | Open Energy2008)

  5. Modeling-Computer Simulations At Kilauea East Rift Geothermal Area (Rudman

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) | Open

  6. Modeling-Computer Simulations At Nevada Test And Training Range Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin, Et Al.,

  7. Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin, Et Al.,Al.,

  8. Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin, Et

  9. Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin, Et2004) |

  10. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin, Et2004)

  11. Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin, Et2004)Al.,

  12. Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,

  13. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,| Open Energy

  14. Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,| Open

  15. Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,| OpenEnergy

  16. Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,| OpenEnergy|

  17. Modeling-Computer Simulations At The Needles Area (Bell & Ramelli, 2009) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,|

  18. Modeling-Computer Simulations At U.S. West Region (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,|Energy

  19. Modeling-Computer Simulations At U.S. West Region (Sabin, Et Al., 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983) |(Sabin,|EnergyOpen

  20. Modeling-Computer Simulations At U.S. West Region (Williams & Deangelo,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)

  1. Modeling-Computer Simulations At Walker-Lane Transitional Zone Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts,

  2. Modeling-Computer Simulations At Walker-Lane Transitional Zone Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts,(Laney, 2005)

  3. Modeling-Computer Simulations At Walker-Lane Transitional Zone Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts,(Laney,

  4. Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis ofDecker, 1983)(Roberts,(Laney,| Open

  5. Activity-based costing simulation as a tool for construction process optimization

    E-Print Network [OSTI]

    Son, Junghye

    1999-01-01T23:59:59.000Z

    to develop the scope of time-cost optimization in this research. Optimization tools, such as neural networks, genetic algorithms, and simulation methods were analyzed to determine an effective tool for the optimization based on the planning and execution...

  6. Structural health monitoring with piezoelectric wafer active sensors predictive modeling and simulation

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Structural health monitoring with piezoelectric wafer active sensors ­ predictive modeling of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with conclusions and suggestions for further work Key Words: structural health monitoring, SHM, nondestructive

  7. Building ventilation : a pressure airflow model computer generation and elements of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building ventilation : a pressure airflow model computer generation and elements of validation H when heating a residential building, approximately 30% of the energy loss is due to air renewal[1. Thus in tropical climates, natural ventilation affects essentially the inside comfort by favouring

  8. A Unified RANS-LES Model: Computational Development, Accuracy and Cost1 Harish Gopalana

    E-Print Network [OSTI]

    Heinz, Stefan

    -Stokes (RANS) methods, applies modeling assumptions to all the scales of motion. The17 use of LES methodsA Unified RANS-LES Model: Computational Development, Accuracy and Cost1 Harish Gopalana , Stefan Heinzb, , Michael K. Stöllingera 2 aMechanical Engineering Department, University of Wyoming, 1000 E

  9. INTERNATIONAL JOURNAL OF c 2011 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing and Information

    E-Print Network [OSTI]

    Bürger, Raimund

    -dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model accepted spatially one-dimensional sedimentation model [35] gives rise to one scalar, nonlinear hyperbolicINTERNATIONAL JOURNAL OF c 2011 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing

  10. INTERNATIONAL JOURNAL OF c 2012 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing and Information

    E-Print Network [OSTI]

    Bürger, Raimund

    -dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model accepted spatially one-dimensional sedimentation model [35] gives rise to one scalar, nonlinear hyperbolicINTERNATIONAL JOURNAL OF c 2012 Institute for Scientific NUMERICAL ANALYSIS AND MODELING Computing

  11. Maximization of waste loading for a vitrified Hanford high-activity simulated waste

    SciTech Connect (OSTI)

    Fini, P.T. [State Univ. of New York, Alfred, NY (United States). Coll. of Ceramics; Hrma, P. [Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01T23:59:59.000Z

    Simulated high-level nuclear waste glasses incorporating up to 70 wt % Neutralized Current Acid Waste (NCAW) were prepared. For the waste loading (W) range of 40 to 55 wt %, alkaliborosilicate glasses were formulated with a melting temperature of 1,150 C; for W > 55 wt %, only silica was added to the waste and the melting temperature was 1,150 C. Properties measured included durability and crystallinity of slowly cooled glasses and glasses heat treated for 24 hours at 1,050 C. Acceptable durability (by the Environmental Assessment glass standard) was retained up to W = 70 wt %, which is the maximum NCAW waste loading if no limit on crystallinity is imposed. If < 1 vol% of spinel is acceptable in the melt at 1,050 C, a waste loading of approximately 50 wt % is possible. If no crystallinity is permissible at 1,050 C, W = 34 wt % is the estimated maximum.

  12. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT

    SciTech Connect (OSTI)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2007-08-08T23:59:59.000Z

    The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

  13. Solar ALMA: Observation-Based Simulations of the mm and sub-mm Emissions from Active Regions

    E-Print Network [OSTI]

    Fleishman, Gregory; Nita, Gelu

    2015-01-01T23:59:59.000Z

    We developed an efficient algorithm integrated in our 3D modeling tool, GX Simulator (Nita et al. 2015), allowing quick computation of the synthetic intensity and polarization maps of solar active regions (AR) in the ALMA spectral range. The algorithm analyzes the photospheric input (white light and magnetogram) to classify a given photospheric pixel to belong to a given photospheric structure. Then, a 1D chromospheric model (Fontenla et al. 2009) is added on top of each pixel, which forms a chromospheric model of the AR. Next step is computation of the mm and sub-mm emission produced from this chromosphere model. A huge advantage of this approach is that emission from any given AR can be synthesized very fast, on the order of a few minutes after the AR selection. Using the GX Simulator tool it is also possible to produce synthetic maps of the microwave (gyroresonance) and EUV emission from the same AR model and compare them with the ALMA synthetic maps and with the corresponding observed microwave and/or EUV...

  14. Uncertainty and error in computational simulations

    SciTech Connect (OSTI)

    Oberkampf, W.L.; Diegert, K.V.; Alvin, K.F.; Rutherford, B.M.

    1997-10-01T23:59:59.000Z

    The present paper addresses the question: ``What are the general classes of uncertainty and error sources in complex, computational simulations?`` This is the first step of a two step process to develop a general methodology for quantitatively estimating the global modeling and simulation uncertainty in computational modeling and simulation. The second step is to develop a general mathematical procedure for representing, combining and propagating all of the individual sources through the simulation. The authors develop a comprehensive view of the general phases of modeling and simulation. The phases proposed are: conceptual modeling of the physical system, mathematical modeling of the system, discretization of the mathematical model, computer programming of the discrete model, numerical solution of the model, and interpretation of the results. This new view is built upon combining phases recognized in the disciplines of operations research and numerical solution methods for partial differential equations. The characteristics and activities of each of these phases is discussed in general, but examples are given for the fields of computational fluid dynamics and heat transfer. They argue that a clear distinction should be made between uncertainty and error that can arise in each of these phases. The present definitions for uncertainty and error are inadequate and. therefore, they propose comprehensive definitions for these terms. Specific classes of uncertainty and error sources are then defined that can occur in each phase of modeling and simulation. The numerical sources of error considered apply regardless of whether the discretization procedure is based on finite elements, finite volumes, or finite differences. To better explain the broad types of sources of uncertainty and error, and the utility of their categorization, they discuss a coupled-physics example simulation.

  15. Simulations of Solar Active

    E-Print Network [OSTI]

    sunspot fine structure as consequence of magneto- convective energy transport in umbra and penumbra. Large

  16. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

  17. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    SciTech Connect (OSTI)

    Kaper, Tasso J., E-mail: tasso@bu.edu; Kramer, Mark A., E-mail: mak@bu.edu [Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215 (United States); Rotstein, Horacio G., E-mail: horacio@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15T23:59:59.000Z

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  18. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

  19. Building ventilation: A pressure airflow model computer generation and elements of validation

    E-Print Network [OSTI]

    Boyer, H; Adelard, L; Mara, T A

    2012-01-01T23:59:59.000Z

    The calculation of airflows is of great importance for detailed building thermal simulation computer codes, these airflows most frequently constituting an important thermal coupling between the building and the outside on one hand, and the different thermal zones on the other. The driving effects of air movement, which are the wind and the thermal buoyancy, are briefly outlined and we look closely at their coupling in the case of buildings, by exploring the difficulties associated with large openings. Some numerical problems tied to the resolving of the non-linear system established are also covered. Part of a detailled simulation software (CODYRUN), the numerical implementation of this airflow model is explained, insisting on data organization and processing allowing the calculation of the airflows. Comparisons are then made between the model results and in one hand analytical expressions and in another and experimental measurements in case of a collective dwelling.

  20. Water at an electrochemical interface - a simulation study

    E-Print Network [OSTI]

    Willard, Adam

    2009-01-01T23:59:59.000Z

    simulations of redox active molten salts [18]. We begin withthe ?ndings in the molten salt simulations [16]. Thefor a redox-active molten salt system [18], where the

  1. Simulations Data Simulation Type

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    to request different simulations data. The flow chart above demonstrates the different steps and options@ornl.gov) Autotune Drupal 7 CMS Current building energy models (BEMs), using EnergyPlus or other simulations, are unreliable because they have to constantly be calibrated to match actual energy usage data. Currently

  2. Accuracy and Sensitivity of Detection of Activation Foci in the Brain via Statistical Parametric Mapping: A Study Using a PET Simulator

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Mapping: A Study Using a PET Simulator Christos Davatzikos,* Henry H. Li,* Edward Herskovits,* and Susan M a realistic simulator of PET image formation, which accounted for the main physical processes in- volved in PET, including attenuation, scatter, ran- doms, Poisson noise, and limited detector resolution

  3. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    None

    2002-01-03T23:59:59.000Z

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  4. Body Wave Tomography For Regional Scale Assessment Of Geothermal...

    Open Energy Info (EERE)

    . () : GRC; p. () Related Geothermal Exploration Activities Activities (8) Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009)...

  5. Deformation of the Long Valley Caldera, California: Inferences...

    Open Energy Info (EERE)

    Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

  6. Relations Between Seismicity and Deformation During Unrest in...

    Open Energy Info (EERE)

    Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

  7. Temperatures at the Base of the Seismogenic Crust Beneath Long...

    Open Energy Info (EERE)

    Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

  8. activity potential novo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations of spiral galaxies with an active potential: molecular cloud formation and gas dynamics Astrophysics (arXiv) Summary: We describe simulations of the response of a...

  9. Modelling and Control of Activated Sludge Processes

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Modelling and Control of Activated Sludge Processes Michela Mulas Dottorato di Ricerca of Activated Sludge Processes Michela Mulas Supervisors: Prof. Roberto Baratti Ing. Stefania Tronci Dottorato . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 ASP Models and Simulations 7 2.1 The Activated Sludge Process

  10. Structured Communication: Teaching Delivery of Difficult News with Simulated Resuscitations in an Emergency Medicine Clerkship

    E-Print Network [OSTI]

    Lamba, Sangeeta; Nagurka, Roxanne; Offin, Michael; Scott, Sandra R.

    2015-01-01T23:59:59.000Z

    of the simulation and communication role-play learninglearning theories also support the use of simulation inSimulation is increasingly used to teach critical skills, including communication, since it provides a safe and realistic environment for active learning

  11. Self-Organized Criticality as a Method of Procedural Modeling Computer Graphics Lab, David R. Cheriton School of Computer Science, University of Waterloo

    E-Print Network [OSTI]

    Waterloo, University of

    simulate the melting of the polar ice cap in a plausible way. I have used the following parameters in 1982. Simulation of ice cap melting. Polar ice cap in 2008. [1] H. Ahlenius. Arctic Sea Ice Minimum on the sampling density of the graph). POLAR ICE CAP The extended SOC-based procedural modeling method can

  12. A restructurable logic simulator

    E-Print Network [OSTI]

    Ledford, Gordon Lee

    1985-01-01T23:59:59.000Z

    , notably logic simulators. This paper reviews the event-driven simulation algorithm used by most software- based simulators and a handful of the existing special-purpose hardware-based logic simulation accelerators. A new hardware-based accelerator... architecture is then presented, that of the restructurab)e logic simulator. This accelerator is based on a, memory-like module. referred to as the restructurable logic simulation accelerator, that essentially "stores" a portion of the network to be simulated...

  13. Educational systems need appropriate animations and simulations Ruddy LELOUCHE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -mail: LELOUCHE@IFT.ULAVAL.CA Abstract Animations and simulations are often presented as tools for learning in a simulation-based system to help practising and learning algorithmics. Finally, the paper proposes a guideline, learning activity, knowledge type. Résumé Les animations et les simulations sont souvent présentées comme

  14. Plasma Simulation Program

    SciTech Connect (OSTI)

    Greenwald, Martin

    2011-10-04T23:59:59.000Z

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

  15. Vehicle Modeling and Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Modeling and Simulation Vehicle Modeling and Simulation Matthew Thornton National Renewable Energy Laboratory matthewthornton@nrel.gov phone: 303.275.4273 Principal...

  16. Web Interface Call Simulator

    E-Print Network [OSTI]

    Ernst, Damien

    Web Interface Call Simulator Stage Description Web Interface for VoIP Call Simulator Net) Version 1.0 ­ 3/09/2012 Page 1 of 6 #12;Web Interface Call Simulator Version 1.0 ­ 3/09/2012 Page 2 of 6 #12;Web Interface Call Simulator Document Control Version Date Notes 1.0 25/8/2012 Reviewed

  17. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01T23:59:59.000Z

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  18. Building a motor simulation de novo: Observation of dance by dancers

    E-Print Network [OSTI]

    Hamilton, Antonia

    Building a motor simulation de novo: Observation of dance by dancers Emily S. Cross, Antonia F. de simulation identifies brain areas that are active while imagining or performing simple overlearned actions. We hypothesized that activity in premotor areas would increase as participants observed and simulated

  19. Multidisciplinary multi-physics simulation and

    E-Print Network [OSTI]

    Extraction Plasma Enabler & Control Measurement Science Modeling , Computation & Validation Plasma Material Nuclear Instrumentation H&CD Fueling Pumping Control Systems Burning Plasma Neutron Transport Material, materials responses Other systems Fusion externals, remote handling, site power, waste management, safety

  20. Simulation Server Project 25

    E-Print Network [OSTI]

    1 Simulation Server for Project 25: Inter-RF Subsystem Interface (ISSI) September 30, 2011 Simulation Server v1.0.0 #12;2 1. Executive Overview..................................................................................................................... 5 3.1. Starting the Server

  1. Software interoperability for energy simulation

    E-Print Network [OSTI]

    Hitchcock, Robert J.

    2002-01-01T23:59:59.000Z

    Tools,” in Building Energy Simulation User News, Vol. 22,Interoperability for Energy Simulation Robert J. Hitchcock,Interoperability for Energy Simulation Robert J. Hitchcock,

  2. Morphology of Gas Release in Physical Simulants

    SciTech Connect (OSTI)

    Daniel, Richard C.; Burns, Carolyn A.; Crawford, Amanda D.; Hylden, Laura R.; Bryan, Samuel A.; MacFarlan, Paul J.; Gauglitz, Phillip A.

    2014-07-03T23:59:59.000Z

    This report documents testing activities conducted as part of the Deep Sludge Gas Release Event Project (DSGREP). The testing described in this report focused on evaluating the potential retention and release mechanisms of hydrogen bubbles in underground radioactive waste storage tanks at Hanford. The goal of the testing was to evaluate the rate, extent, and morphology of gas release events in simulant materials. Previous, undocumented scoping tests have evidenced dramatically different gas release behavior from simulants with similar physical properties. Specifically, previous gas release tests have evaluated the extent of release of 30 Pa kaolin and 30 Pa bentonite clay slurries. While both materials are clays and both have equivalent material shear strength using a shear vane, it was found that upon stirring, gas was released immediately and completely from bentonite clay slurry while little if any gas was released from the kaolin slurry. The motivation for the current work is to replicate these tests in a controlled quality test environment and to evaluate the release behavior for another simulant used in DSGREP testing. Three simulant materials were evaluated: 1) a 30 Pa kaolin clay slurry, 2) a 30 Pa bentonite clay slurry, and 3) Rayleigh-Taylor (RT) Simulant (a simulant designed to support DSGREP RT instability testing. Entrained gas was generated in these simulant materials using two methods: 1) application of vacuum over about a 1-minute period to nucleate dissolved gas within the simulant and 2) addition of hydrogen peroxide to generate gas by peroxide decomposition in the simulants over about a 16-hour period. Bubble release was effected by vibrating the test material using an external vibrating table. When testing with hydrogen peroxide, gas release was also accomplished by stirring of the simulant.

  3. active sensor configuration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recurrence satisfied by the Stirling numbers of the second kind. Abrams, Aaron; Hower, Valerie 2010-01-01 346 Measurements and simulations of MAPS (Monolithic Active Pixel...

  4. Parallel Simulation of Electron Cooling Physics and Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all electron cooling simulation activities of the accelerator SciDAC-2 project "ComPASS" that has been extended into 2013. The electron cooling team includes personnel from...

  5. Simulating a storage-production system with three oilseed crops

    E-Print Network [OSTI]

    Figer, Luiz

    2012-01-01T23:59:59.000Z

    This work developed a simulation model that is intended to be used for strategic investment decisions by a company that operates in a wide range of activities in the agriculture business in Brazil. Mostly, it is a tool ...

  6. CORRELATIONINDUCTION TECHNIQUES FOR ESTIMATING QUANTILES IN SIMULATION EXPERIMENTS

    E-Print Network [OSTI]

    all­inclusive sam­ ple. The single­sample estimator based on Latin hypercube sampling is shown of the completion time of a stochastic activity network. Subject classifications: Simulation, efficiency: variance quantiles of the response Y of a finite­horizon stochastic simulation experiment based on the variance

  7. Simulating Fluids Exhibiting Microstructure

    E-Print Network [OSTI]

    Title: Simulating Fluids Exhibiting Microstructure Speaker: Noel J. Walkington, ... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial ...

  8. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  9. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09T23:59:59.000Z

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  10. Lagrangian Simulation of Combustion

    SciTech Connect (OSTI)

    Ahmed F. Ghoniem

    2008-05-01T23:59:59.000Z

    A Lagrangian approach for the simulation of reactive flows has been developed during the course of this project, and has been applied to a number of significant and challenging problems including the transverse jet simulations. An efficient strategy for parallel domain decomposition has also been developed to enable the implementation of the approach on massively parallel architecture. Since 2005, we focused our efforts on the development of a semi-Lagrangian treatment of diffusion, and fast and accurate Lagrangian simulation tools for multiphysics problems including combustion.

  11. Overview of Simulation Strategies for

    E-Print Network [OSTI]

    Rudnyi, Evgenii B.

    topography simulations; Multi-scale simulation (atomistic-continuum); fast coupling of equipment-topography-electrical-reliability modeling Front-end process modeling Integrated modeling of equipment and materials Lithography simulation

  12. Simulating the Quantum Magnet

    E-Print Network [OSTI]

    Friedenauer, Axel; Glückert, Jan Tibor; Porras, Diego; Schätz, Tobias

    2008-01-01T23:59:59.000Z

    To gain deeper insight into the dynamics of complex quantum systems we need a quantum leap in computer simulations. We can not translate quantum behaviour arising with superposition states or entanglement efficiently into the classical language of conventional computers. The final solution to this problem is a universal quantum computer [1], suggested in 1982 and envisioned to become functional within the next decade(s); a shortcut was proposed via simulating the quantum behaviour of interest in a different quantum system, where all parameters and interactions can be controlled and the outcome detected sufficiently well. Here we study the feasibility of a quantum simulator based on trapped ions [2]. We experimentally simulate the adiabatic evolution of the smallest non-trivial spin system from the paramagnetic into the (anti-)ferromagnetic order with a quantum magnetisation for two spins of 98%, controlling and manipulating all relevant parameters of the Hamiltonian independently via electromagnetic fields. W...

  13. Theory Modeling and Simulation

    SciTech Connect (OSTI)

    Shlachter, Jack [Los Alamos National Laboratory

    2012-08-23T23:59:59.000Z

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  14. Scalable, efficient epidemiological simulation

    SciTech Connect (OSTI)

    Eubank, S. G. (Stephen G.)

    2001-01-01T23:59:59.000Z

    We describe the design and implementation of a system for simulating the spread of disease among individuals in a large urban population over the course of several weeks, In contrast to traditional approaches, we do not assume uniform mixing among large sub-populations or split the population into spatial or demographic subpopulations determined a priori. Instead, we rely on empirical estimates of the social network, or contact patterns, that are produced by TRANSIMS, a large-scale simulation of transportation systems.

  15. Xyce parallel electronic simulator.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01T23:59:59.000Z

    This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

  16. SERI DOE-2 solar simulator study

    SciTech Connect (OSTI)

    Eden, A.; Simms, D.A.

    1980-01-01T23:59:59.000Z

    The Solar Energy Research Institute's (SERI) analysis of the solar energy simulator section of DOE-2, a public domain computer program that allows users to explore the energy-use patterns of proposed and existing buildings and their heating, ventilating, and air conditioning (HVAC) systems is discussed. This computer program contains a solar energy simulation portion called Component-Based Simulator (CBS) incorporated into the HVAC Plant (large equipment) section. SERI is investigating the adequacy and sensitivity of DOE-2's solar portion when various active solar energy systems and combinations of solar components are interfaced with standard space conditioning systems or used in a stand-alone mode. The components have been assembled into typical configurations and parametric test runs have been performed examining the problems associated with the program and the characteristics of the output for eventual comparison with other energy analysis computer programs.

  17. Sandia National Laboratories: combustion simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion simulation Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy,...

  18. Sampled simulation for multithreaded processors

    E-Print Network [OSTI]

    Van Biesbrouck, Michael

    2007-01-01T23:59:59.000Z

    1. Starting O? set E?ects in SMT Simulation 2. Evaluatingdual hardware context SMT Processor. . . . . . . . . . . . .results of co-phase matrix simulation. SMT processor con?

  19. Benchmarking ICRF simulations for ITER

    SciTech Connect (OSTI)

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28T23:59:59.000Z

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  20. High performance distributed simulation for interactive simulated vascular reconstruction

    E-Print Network [OSTI]

    Amsterdam, Universiteit van

    performance. 1 Introduction Interactive simulation environments are dynamic systems that combine simula- tion.1 Performance of interactive simulation environments The most important factor in the performance of a dynamic dynamic simulation environment. 1 1 2 2 3 visualization rendering simulation time rendering delay

  1. Simulating the Quantum Magnet

    E-Print Network [OSTI]

    Axel Friedenauer; Hector Schmitz; Jan Tibor Glückert; Diego Porras; Tobias Schätz

    2008-02-27T23:59:59.000Z

    To gain deeper insight into the dynamics of complex quantum systems we need a quantum leap in computer simulations. We can not translate quantum behaviour arising with superposition states or entanglement efficiently into the classical language of conventional computers. The final solution to this problem is a universal quantum computer [1], suggested in 1982 and envisioned to become functional within the next decade(s); a shortcut was proposed via simulating the quantum behaviour of interest in a different quantum system, where all parameters and interactions can be controlled and the outcome detected sufficiently well. Here we study the feasibility of a quantum simulator based on trapped ions [2]. We experimentally simulate the adiabatic evolution of the smallest non-trivial spin system from the paramagnetic into the (anti-)ferromagnetic order with a quantum magnetisation for two spins of 98%, controlling and manipulating all relevant parameters of the Hamiltonian independently via electromagnetic fields. We prove that the observed transition is not driven by thermal fluctuations, but of quantum mechanical origin, the source of quantum fluctuations in quantum phase transitions [3]. We observe a final superposition state of the two degenerate spin configurations for the ferromagnetic and the antiferromagnetic order, respectively. These correspond to deterministically entangled states achieved with a fidelity up to 88%. Our work demonstrates a building block for simulating quantum spin-Hamiltonians with trapped ions. The method has potential for scaling to a higher number of coupled spins [2].

  2. Simulating neural systems with Xyce.

    SciTech Connect (OSTI)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M. [University of Illinois, Urbana-Champaign

    2012-12-01T23:59:59.000Z

    Sandia's parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  3. Snowmass Energy Frontier Simulations

    E-Print Network [OSTI]

    Jacob Anderson; Aram Avetisyan; Raymond Brock; Sergei Chekanov; Timothy Cohen; Nitish Dhingra; James Dolen; James Hirschauer; Kiel Howe; Ashutosh Kotwal; Tom LeCompte; Sudhir Malik; Patricia Mcbride; Kalanand Mishra; Meenakshi Narain; Jim Olsen; Sanjay Padhi; Michael E. Peskin; John Stupak III; Jay G. Wacker

    2013-09-01T23:59:59.000Z

    This document describes the simulation framework used in the Snowmass Energy Frontier studies for future Hadron Colliders. An overview of event generation with {\\sc Madgraph}5 along with parton shower and hadronization with {\\sc Pythia}6 is followed by a detailed description of pile-up and detector simulation with {\\sc Delphes}3. Details of event generation are included in a companion paper cited within this paper. The input parametrization is chosen to reflect the best object performance expected from the future ATLAS and CMS experiments; this is referred to as the "Combined Snowmass Detector". We perform simulations of $pp$ interactions at center-of-mass energies $\\sqrt{s}=$ 14, 33, and 100 TeV with 0, 50, and 140 additional $pp$ pile-up interactions. The object performance with multi-TeV $pp$ collisions are studied for the first time using large pile-up interactions.

  4. Liquid filtration simulation

    SciTech Connect (OSTI)

    Corey, I.; Bergman, W.

    1996-06-01T23:59:59.000Z

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  5. A development of MOS linear active load schemes

    E-Print Network [OSTI]

    Mallett, Robert Alan

    1985-01-01T23:59:59.000Z

    resistor. A solution to this problem is to use a single or multiply interconnected MOS transistors to simulate resistors. These simulated resistors are termed "active loads". The advantages of using MOSFETs over passive monolithic resistors are the high...'s inverted parallel load . General description of the fully linear active block Fully linear active block Three transistor fully linear block Cktl Ckt2 Ckt3 Ckt4 Complex single transistor loads IPL DEPR FLAB I ? V measuring system THD measuring...

  6. Building Galaxies with Simulations

    E-Print Network [OSTI]

    Romeel Davé; Kristian Finlator; Lars Hernquist; Neal Katz; Dušan Kereš; Casey Papovich; David H. Weinberg

    2005-10-20T23:59:59.000Z

    We present an overview of some of the issues surrounding current models of galaxy formation, highlighting recent insights obtained from cosmological hydrodynamic simulations. Detailed examination of gas accretion processes show a hot mode of gas cooling from near the halo's virial temperature, and a previously underappreciated cold mode where gas flows in along filaments on dynamical timescales, emitting its energy in line radiation. Cold mode dominates in systems with halo masses slightly smaller than the Milky Way and below, and hence dominates the global accretion during the heydey of galaxy formation. This rapid accretion path enables prompt assembly of massive galaxies in the early universe, and results in $z\\sim 4$ galaxy properties in broad agreement with observations, with the most massive galaxies being the most rapid star formers. Massive galaxies today are forming stars at a much reduced rate, a trend called downsizing. The trend of downsizing is naturally reproduced in simulations, owing to a transition from cold mode accretion in the early growth phase to slower hot mode accretion once their halos grow large. However, massive galaxies at the present epoch are still observed to have considerably redder colors than simulations suggest, suggesting that star formation is not sufficiently truncated in models by the transition to hot mode, and that another process not included in current simulations is required to suppress star formation.

  7. The gem5 simulator

    E-Print Network [OSTI]

    Nathan Binkert; Bradford Beckmann; Gabriel Black; Steven K. Reinhardt; Ali Saidi; Arkaprava Basu; Joel Hestness; Derek R. Hower; Tushar Krishna; Somayeh Sardashti; Rathijit Sen; Korey Sewell; Muhammad Shoaib; Nilay Vaish; Mark D. Hill; David A. Wood

    2011-01-01T23:59:59.000Z

    The gem5 simulation infrastructure is the merger of the best aspects of the M5 [4] and GEMS [9] simulators. M5 provides a highly configurable simulation framework, multiple ISAs, and diverse CPU models. GEMS complements these features with a detailed and flexible memory system, including support for multiple cache coherence protocols and interconnect models. Currently, gem5 supports most commercial ISAs (ARM, ALPHA, MIPS, Power, SPARC, and x86), including booting Linux on three of them (ARM, ALPHA, and x86). The project is the result of the combined efforts of many academic and industrial institutions, including AMD, ARM, HP, MIPS, Princeton, MIT, and the Universities of Michigan, Texas, and Wisconsin. Over the past ten years, M5 and GEMS have been used in hundreds of publications and have been downloaded tens of thousands of times. The high level of collaboration on the gem5 project, combined with the previous success of the component parts and a liberal BSD-like license, make gem5 a valuable full-system simulation tool. 1

  8. Simulation of geothermal subsidence

    SciTech Connect (OSTI)

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01T23:59:59.000Z

    The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

  9. Simulating Inhomogeneous Reionization

    E-Print Network [OSTI]

    Michael L. Norman; Paschalis Paschos; Tom Abel

    1998-07-28T23:59:59.000Z

    We describe an approach for incorporating radiative transfer into 3D hydrodynamic cosmological simulations. The method, while approximate, allows for a self-consistent treatment of self-shielding and shadowing, diffuse and point sources of radiation, and frequency dependent transfer. Applications include photodissociation, photoheating, and photoionization of the IGM.

  10. Enabling immersive simulation.

    SciTech Connect (OSTI)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01T23:59:59.000Z

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  11. SIMULATING EVOLUTION OF TECHNOLOGY

    E-Print Network [OSTI]

    that simulates turnover of equipment stock as a function of detailed data on equipment costs and stock in (1) technology stocks, (2) products or services, or (3) the mix of fuels used. This thesis involves ability to pick out the right road to take (in most ca

  12. TROPICAL STORMS SUPER SIMULATIONS

    E-Print Network [OSTI]

    Fukai, Tomoki

    physical sciences 15 A new flavor of superconductor Computer simulations show how fundamental particles behave like electrons in a superconductor 16 Higgs versus the Big Bang The Higgs boson could help explain The magnetic interactions in beryllium-11 could explain its unusual shape 19 A solitary superconductor emerges

  13. Active vibration isolation of a simulated engine response

    E-Print Network [OSTI]

    Wong, Steven Matthew

    1997-01-01T23:59:59.000Z

    of NASA Lewis for designing the actuator. I would also like to thank Robert Schisler of Goodyear (Akron) for supplying the passive mounts, machining services and support for designing the feedforward controller. In addition, I would also like...

  14. Modeling - Scale-Bridging Simulations Active Materials in Li...

    Broader source: Energy.gov (indexed) [DOE]

    Design Using Coupled Kinetic, Thermal and Mechanical Modeling Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Electrochemistry Diagnostics...

  15. Simulating Lunar Habitats and Activities to Derive System Requirements

    E-Print Network [OSTI]

    Kortenkamp, David

    crops), water recovery, air revitalization, food processing, solid waste recycling and energy production Johnson Space Center/Metrica Inc., Houston, Texas, 77058, USA Scott Bell NASA Johnson Space Center/SKT Inc., Houston, Texas, 77058, USA Luis Rodriguez NASA Johnson Space Center/USRA, Houston, Texas, 77058, USA

  16. Modeling - Scale-Bridging Simulations Active Materials in Li...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Society, v. 154 (10), pp. A978-A986. 3. Wang, C.-W. and Sastry, A.M., 2007, "Mesoscale Modeling of a Li-Ion Poly Cell," Journal of the Electrochemical Society, v. 154...

  17. TECHNICAL PAPER Time dependent simulation of active flying height control

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    of the heater were estimated by measuring the transient response of the TFC slider to a step function. Figure 2 (TFC) slider as a function of the power input to the heater element. The Reynolds equation is used and flying height of the slider. The power input signal to the heater element is optimized using convex

  18. Statistical Model Computation with UDFs Carlos Ordonez

    E-Print Network [OSTI]

    Ordonez, Carlos

    , USA Abstract--Statistical models are generally computed outside a DBMS due to their mathematical complexity. We introduce techniques to efficiently compute fundamental statistical models inside a DBMS of primitive scalar UDFs to score data sets. Experiments compare UDFs and SQL queries (running inside the DBMS

  19. Modeling Computations in a Semantic Network

    E-Print Network [OSTI]

    Marko A. Rodriguez; Johan Bollen

    2007-05-31T23:59:59.000Z

    Semantic network research has seen a resurgence from its early history in the cognitive sciences with the inception of the Semantic Web initiative. The Semantic Web effort has brought forth an array of technologies that support the encoding, storage, and querying of the semantic network data structure at the world stage. Currently, the popular conception of the Semantic Web is that of a data modeling medium where real and conceptual entities are related in semantically meaningful ways. However, new models have emerged that explicitly encode procedural information within the semantic network substrate. With these new technologies, the Semantic Web has evolved from a data modeling medium to a computational medium. This article provides a classification of existing computational modeling efforts and the requirements of supporting technologies that will aid in the further growth of this burgeoning domain.

  20. Countable Models, Computability, and Enumerations, Valentina Harizanov

    E-Print Network [OSTI]

    Harizanov, Valentina S.

    . · A Scott family for A is a set of formulas, with a fixed finite tuple of parameters c in A, such that each diagram of A, D(A). A is computable (recursive) if its Turing degree is 0. · D(A) may be of much lower Turing degree than Th(A). N, the standard model of arithmetic, is computable. True Arithmetic, TA = Th

  1. BEAM SIMULATIONS USING VIRTUAL DIAGNOSTICS FOR THE DRIVER LINAC

    SciTech Connect (OSTI)

    R. C. York; X. Wu; Q. Zhao

    2011-12-21T23:59:59.000Z

    End-to-end beam simulations for the driver linac have shown that the design meets the necessary performance requirements including having adequate transverse and longitudinal acceptances. However, to achieve reliable operational performance, the development of appropriate beam diagnostic systems and control room procedures are crucial. With limited R&D funding, beam simulations provide a cost effective tool to evaluate candidate beam diagnostic systems and to provide a critical basis for developing early commissioning and later operational activities. We propose to perform beam dynamic studies and engineering analyses to define the requisite diagnostic systems of the driver linac and through simulation to develop and test commissioning and operational procedures.

  2. Identifying Activity

    E-Print Network [OSTI]

    Lewis, Adrian S

    2009-01-01T23:59:59.000Z

    Identification of active constraints in constrained optimization is of interest from both practical and theoretical viewpoints, as it holds the promise of reducing an inequality-constrained problem to an equality-constrained problem, in a neighborhood of a solution. We study this issue in the more general setting of composite nonsmooth minimization, in which the objective is a composition of a smooth vector function c with a lower semicontinuous function h, typically nonsmooth but structured. In this setting, the graph of the generalized gradient of h can often be decomposed into a union (nondisjoint) of simpler subsets. "Identification" amounts to deciding which subsets of the graph are "active" in the criticality conditions at a given solution. We give conditions under which any convergent sequence of approximate critical points finitely identifies the activity. Prominent among these properties is a condition akin to the Mangasarian-Fromovitz constraint qualification, which ensures boundedness of the set of...

  3. A. Weitzenfeld: NSL Neural Simulation Language 1 Neural Simulation Language

    E-Print Network [OSTI]

    Weitzenfeld, Alfredo

    : +52-55-56284060 Fax: +52-55-56162211 email: alfredo@itam.mx #12;A. Weitzenfeld: NSL Neural Simulation

  4. PEBBLES Mechanics Simulation Speedup

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01T23:59:59.000Z

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. These simulations involve hundreds of thousands of pebbles and involve determining the entire core motion as pebbles are recirculated. Single processor algorithms for this are insufficient since they would take decades to centuries of wall-clock time. This paper describes the process of parallelizing and speeding up the PEBBLES pebble mechanics simulation code. Both shared memory programming with the Open Multi-Processing API and distributed memory programming with the Message Passing Interface API are used in simultaneously in this process. A new shared memory lock-less linear time collision detection algorithm is described. This method allows faster detection of pebbles in contact than generic methods. These combine to make full recirculations on AVR sized reactors possible in months of wall clock time.

  5. The Umbra Simulation Framework

    SciTech Connect (OSTI)

    GOTTLIEB,ERIC; HARRIGAN,RAYMOND W.; MCDONALD,MICHAEL J.; OPPEL III,FRED J.; XAVIER,PATRICK G.

    2001-06-01T23:59:59.000Z

    Umbra is a new Sandia-developed modeling and simulation framework. The Umbra framework allows users to quickly build models and simulations for intelligent system development, analysis, experimentation, and control and supports tradeoff analyses of complex robotic systems, device, and component concepts. Umbra links together heterogeneous collections of modeling tools. The models in Umbra include 3D geometry and physics models of robots, devices and their environments. Model components can be built with varying levels of fidelity and readily switched to allow models built with low fidelity for conceptual analysis to be gradually converted to high fidelity models for later phase detailed analysis. Within control environments, the models can be readily replaced with actual control elements. This paper describes Umbra at a functional level and describes issues that Sandia uses Umbra to address.

  6. Simulating Concordant Computations

    E-Print Network [OSTI]

    Bryan Eastin

    2010-06-23T23:59:59.000Z

    A quantum state is called concordant if it has zero quantum discord with respect to any part. By extension, a concordant computation is one such that the state of the computer, at each time step, is concordant. In this paper, I describe a classical algorithm that, given a product state as input, permits the efficient simulation of any concordant quantum computation having a conventional form and composed of gates acting on two or fewer qubits. This shows that such a quantum computation must generate quantum discord if it is to efficiently solve a problem that requires super-polynomial time classically. While I employ the restriction to two-qubit gates sparingly, a crucial component of the simulation algorithm appears not to be extensible to gates acting on higher-dimensional systems.

  7. Design of mechanical arterial simulator

    E-Print Network [OSTI]

    Chai, Lauren (Lauren Amy)

    2012-01-01T23:59:59.000Z

    A force controlled ultrasound probe is being explored as a new method of measuring blood pressure. An arterial simulator was designed and built for experiments. For this simulator, the vessels and bulk material were designed ...

  8. Simulation des Frsens mit Industrierobotern

    E-Print Network [OSTI]

    Stryk, Oskar von

    Parameteridentifikation Simulation of milling with industrial robots: trajectory planning and experimental parameter experimentelle Parameteridentifikation Simulation of milling with industrial robots: trajectory planning Bauteile erweitert. Abstract Recently, industrial robots are increasingly used for cutting soft material

  9. Activity report

    SciTech Connect (OSTI)

    Yu, S W

    2008-08-11T23:59:59.000Z

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  10. Simulation of Sextet Diquark Production

    E-Print Network [OSTI]

    Peter Richardson; David Winn

    2011-11-22T23:59:59.000Z

    We present a method for simulating the production and decay of particles in the sextet representation of $SU(3)_C$ including the simulation of QCD radiation. First results from the Monte Carlo simulation of sextet diquark production at the LHC including both resonant and pair production are presented. We include limits on resonant diquark production from recent ATLAS results and perform the first simulation studies of the less model dependent pair production mechanism.

  11. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald

    2014-09-16T23:59:59.000Z

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  12. Bio-threat microparticle simulants

    DOE Patents [OSTI]

    Farquar, George Roy; Leif, Roald N

    2012-10-23T23:59:59.000Z

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  13. Computer Simulations of Protein Folding

    E-Print Network [OSTI]

    Sorin, Eric J.

    CHAPTER 8 Computer Simulations of Protein Folding VIJAY S. PANDE , ERIC J. SORIN , CHRISTOPHER D, CA 94305, USA 8.1 Introduction: Goals and Challenges of Simulating Protein Folding Computer as well as recent applications of this methodology. 8.1.1 Simulating Protein Folding Proteins play

  14. G54SIM Lab 02 Tutorial: Laptop Simulation Build a simulation model of a laptop operation. When the laptop is on and the user is working, i.e. is pressing the keyboard keys and moving the mouse, the laptop

    E-Print Network [OSTI]

    Aickelin, Uwe

    the battery usage. To wake the laptop up you need to press the power button. In any of the three states On {EnergyConsumption} [EnergyConsumption=: Laptop.isStateActive(On)?5 : Laptop.isStateActive(ScreenOff)?31 G54SIM Lab 02 Tutorial: Laptop Simulation Task Build a simulation model of a laptop operation

  15. Fusion Simulation Program

    SciTech Connect (OSTI)

    Project Staff (V.S. Chan)

    2012-02-29T23:59:59.000Z

    Under this project, General Atomics (GA) was tasked to develop the experimental validation plans for two high priority ISAs, Boundary and Pedestal and Whole Device Modeling in collaboration with the theory, simulation and experimental communities. The following sections have been incorporated into the final FSP Program Plan (www.pppl.gov/fsp), which was delivered to the US Department of Energy (DOE). Additional deliverables by GA include guidance for validation, development of metrics to evaluate success and procedures for collaboration with experiments. These are also part of the final report.

  16. Simulation-Based Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook for Gulf ofMailingSimulation-Based

  17. Modeling & Simulation publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William Hirst HirstModeling & Simulation »

  18. active space implementationwith: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the secondary, HST has a scattered light level that prevents it from detecting extra-solar planets. Our simulations show that by using an active mirror (400-1000 actuators) in...

  19. active optical sorting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the secondary, HST has a scattered light level that prevents it from detecting extra-solar planets. Our simulations show that by using an active mirror (400-1000 actuators) in...

  20. active space multiconfiguration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the secondary, HST has a scattered light level that prevents it from detecting extra-solar planets. Our simulations show that by using an active mirror (400-1000 actuators) in...

  1. alert telescope active: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the secondary, HST has a scattered light level that prevents it from detecting extra-solar planets. Our simulations show that by using an active mirror (400-1000 actuators) in...

  2. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04T23:59:59.000Z

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  3. FPGA Acceleration of Discrete Molecular Dynamics Simulation

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA Acceleration of Discrete Molecular Dynamics Simulation Joshua Model Thesis submitted UNIVERSITY COLLEGE OF ENGINEERING Thesis FPGA Acceleration of Discrete Molecular Dynamics Simulation Acceleration of Discrete Molecular Dynamics Simulation Joshua Model ABSTRACT Molecular dynamics simulation

  4. Numerical simulation of tropical cumulus congestus during TOGA COARE

    E-Print Network [OSTI]

    Mechem, David B.

    2013-09-17T23:59:59.000Z

    and active phases of the intraseasonal oscillation (ISO), with a unique signature consistent with cloudy-air detrainment near the 0°C isotherm. Congestus clouds in the simulation contribute 34% of the total precipitation during a 10 day transition period from...

  5. Services inside the Smart Home A Simulation and Visualization tool

    E-Print Network [OSTI]

    Aiello, Marco

    Services inside the Smart Home A Simulation and Visualization tool Elena Lazovik, Piet den Dulk in developing middleware for smart homes is that this kind of systems are extremely difficult to test and verify on smart homes, that is, homes that contain interactive and pro-active devices, that adapt their behavior

  6. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect (OSTI)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30T23:59:59.000Z

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  7. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural...

  8. Activity-induced phase separation and self-assembly in mixtures of active and passive particles

    E-Print Network [OSTI]

    Joakim Stenhammar; Raphael Wittkowski; Davide Marenduzzo; Michael E. Cates

    2015-01-07T23:59:59.000Z

    We investigate the phase behavior and kinetics of a monodisperse mixture of active (\\textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase we further find active-passive segregation, with "rafts" of passive particles in a "sea" of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15 percent of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active "corona" which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.

  9. Origins of Analysis Methods in Energy Simulation Programs Used for High Performance Commercial Buildings 

    E-Print Network [OSTI]

    Oh, Sukjoon

    2013-08-19T23:59:59.000Z

    , special features such as active and passive solar systems, photovoltaic systems, and lighting and daylighting systems. Unfortunately, many high performance buildings today do not perform the way they were simulated. One potential reason...

  10. Biophysically Accurate Brain Modeling and Simulation using Hybrid MPI/OpenMP Parallel Processing

    E-Print Network [OSTI]

    Hu, Jingzhen

    2012-07-16T23:59:59.000Z

    In order to better understand the behavior of the human brain, it is very important to perform large scale neural network simulation which may reveal the relationship between the whole network activity and the biophysical dynamics of individual...

  11. On-the-fly Doppler broadening using multipole representation for Monte Carlo simulations on heterogeneous clusters

    E-Print Network [OSTI]

    Xu, Sheng, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    In order to use Monte Carlo methods for reactor simulations beyond benchmark activities, the traditional way of preparing and using nuclear cross sections needs to be changed, since large datasets of cross sections at many ...

  12. Supergranulation Scale Connection Simulations

    E-Print Network [OSTI]

    R. F. Stein; A. Nordlund; D. Georgobiani; D. Benson; W. Schaffenberger

    2008-11-04T23:59:59.000Z

    Results of realistic simulations of solar surface convection on the scale of supergranules (96 Mm wide by 20 Mm deep) are presented. The simulations cover only 10% of the geometric depth of the solar convection zone, but half its pressure scale heights. They include the hydrogen, first and most of the second helium ionization zones. The horizontal velocity spectrum is a power law and the horizontal size of the dominant convective cells increases with increasing depth. Convection is driven by buoyancy work which is largest close to the surface, but significant over the entire domain. Close to the surface buoyancy driving is balanced by the divergence of the kinetic energy flux, but deeper down it is balanced by dissipation. The damping length of the turbulent kinetic energy is 4 pressure scale heights. The mass mixing length is 1.8 scale heights. Two thirds of the area is upflowing fluid except very close to the surface. The internal (ionization) energy flux is the largest contributor to the convective flux for temperatures less than 40,000 K and the thermal energy flux is the largest contributor at higher temperatures. This data set is useful for validating local helioseismic inversion methods. Sixteen hours of data are available as four hour averages, with two hour cadence, at steinr.msu.edu/~bob/96averages, as idl save files. The variables stored are the density, temperature, sound speed, and three velocity components. In addition, the three velocity components at 200 km above mean continuum optical depth unity are available at 30 sec. cadence.

  13. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  14. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  15. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  16. Occupancy Simulation Schedule Appendix C -Occupancy Simulation Schedule

    E-Print Network [OSTI]

    Figure C.1 and Figure C.2 present the load simulation and occupancy schedules for the lab homes highly adults. The per-person sensible heat generation and occupancy profiles were mapped from previous studies lamp to simulate human occupancy; occupancy and lighting loads in other areas of the home were

  17. Agent-based Simulation Platforms Agent-based Simulation Platforms

    E-Print Network [OSTI]

    Boone, Randall B.

    Agent-based Simulation Platforms Agent-based Simulation Platforms: Review and Development 1081 Fritz Ave. McKinleyville, CA 95519, USA Five software platforms for scientific agent-based models (ABMs) were reviewed by implementing example models in each. NetLogo is the highest-level platform

  18. The Dynamics of Sinking Satellites Around Disk Galaxies: A Poor Man's Alternative to High-Resolution Numerical Simulations

    E-Print Network [OSTI]

    J. E. Taylor; Arif Babul

    2000-12-14T23:59:59.000Z

    We have developed a simple yet surprisingly accurate analytic scheme for tracking the dynamical evolution of substructure within larger dark halos. The scheme incorporates the effects of dynamical friction, tidal mass loss and tidal heating via physically motivated approximations. Using our scheme, we can predict the orbital evolution and mass-loss history of individual subhalos in detail. We are also able to determine the impact and importance of the different physical processes on the dynamical evolution of the subhalos. To test and calibrate this model, we compare it with a set of recent high-resolution numerical simulations of mergers between galaxies and small companions. We find that we can reproduce the orbits and mass-loss rates seen in all of these simulations with considerable accuracy, using a single set of values for the three free parameters in our model. Computationally, our scheme is more than 1000 times faster than the simplest of the high-resolution numerical simulations. This means that we can carry out detailed and statistically meaningful investigations into the characteristics of the subhalo population in different cosmologies, the stripping and disruption of the subhalos, and the interactions of the subhalos with other dynamical structures such as a thin disk. This last point is of particular interest given the ubiquity of minor mergers in hierarchical models. In this regard, our method's simplicity and speed makes it particularly attractive for incorporation into semi-analytic models of galaxy formation.

  19. NPP training simulators in Hungary experience in development and utilization

    SciTech Connect (OSTI)

    Janosy, J.S. [Atomic Energy Research Institute, Budapest (Hungary)

    1996-11-01T23:59:59.000Z

    The construction of the only NPP in Hungary - the Paks NPP - started in 1975. The four units of VVER-440/213 were connected to the grid in 1982, 1984, 1986 and 1987. During the construction no simulator has been delivered with the power plant. Moreover, there were no state-of-art simulators in Central and Eastern Europe and in the former Soviet Union; not for the given type, not for civil use. The only simulator for the VVER-440 existing that time was made for the Loviisa NPP in Finland. This plant is not very similar to the Paks NPP; moreover, the pressure suppression system in the hermetical part of the primary circuit, the instrumentation and control systems, the main control room and the secondary circuit are completely different. Anyway, the training of Paks operators on this simulator was out of question - regardless the similarity problems. The design of the Paks NPP was made in the Soviet Union, therefore not too much design information was available in Hungary. During the creation of simulation models the authors had to rely mostly on common theory and measured performance. Besides the efforts to create a basic principle, full-scope replica and compact simulators there was a great need to use verified codes with more detailed models for better understanding the behavior and for evaluation of the safety. Thanks to these great efforts, the simulators were expanded to evaluate the performance of the trainees, for simulation of SBLOCA and LBLOCA events; the authors are checking and validating the operational procedures; soon they start the design of the functions of a new reactor protection system and they participate in international efforts to deliver training simulators to other VVER-440 power plants. The paper gives an overview of all these activities, referring to some key publications for each of them.

  20. Thyristor converter simulation and analysis

    SciTech Connect (OSTI)

    Zhang, S.Y.

    1991-01-01T23:59:59.000Z

    In this paper we present a simulation on thyristor converters. The simulation features nonlinearity, non-uniform firing, and the commutations. Several applications such as a current regulation, a converter frequency characteristics analysis, and a power line disturbance analysis will be presented. 4 refs., 4 figs.

  1. CONSTRUCTING VIRTUAL HUMAN LIFE SIMULATIONS

    E-Print Network [OSTI]

    Kallmann, Marcelo

    , Virtual Environments, Behavioral Animation, Object Interaction, Python. 1. INTRODUCTION Virtual humanCONSTRUCTING VIRTUAL HUMAN LIFE SIMULATIONS Marcelo Kallmann, Etienne de Sevin and Daniel Thalmann human life simulations. Our main goal is to have virtual human actors living and working autonomously

  2. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  3. Simulation of open quantum systems

    E-Print Network [OSTI]

    Florian Mintert; Eric J. Heller

    2008-03-27T23:59:59.000Z

    We present an approach for the semiclassical treatment of open quantum systems. An expansion into localized states allows restriction of a simulation to a fraction of the environment that is located within a predefined vicinity of the system. Adding and dropping environmental particles during the simulation yields an effective reduction of the size of the system that is being treated.

  4. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect (OSTI)

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore CA 94551 (United States)

    2009-12-28T23:59:59.000Z

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  5. Simulation of a plant minicomputer in reactor control room simulator

    SciTech Connect (OSTI)

    Forrester, A.; Anderson, J.L.

    1984-12-07T23:59:59.000Z

    A control room simulator for the N-Reactor at Hanford is being developed. An important aspect of reactor operation is provided by the plant minicomputer. This paper discusses the simulation of the plant minicomputer. The original commitments in developing the model are set out, as well as the actual requirements at the start of implementation of the model. Original estimates of costs and times for the simulation are presented; actual costs and times were lower by large factors, and the reasons for better performance are examined.

  6. Drive torque actuation in active surge control of centrifugal compressors

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Drive torque actuation in active surge control of centrifugal compressors Jan Tommy Gravdahl , Olav to active surge control is presented for a centrifugal compressor driven by an electrical motor. The main is considered to be the control input. The proposed method is simulated on a compressor model using

  7. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  8. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Chris Holland

    2010-01-08T23:59:59.000Z

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  9. Towards a 'Thermodynamics' of Active Matter

    E-Print Network [OSTI]

    Sho C. Takatori; John F. Brady

    2014-11-21T23:59:59.000Z

    Self-propulsion allows living systems to display unusual collective behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises however as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  10. Calibration of Moving Puncture Simulations

    E-Print Network [OSTI]

    Bernd Bruegmann; Jose A. Gonzalez; Mark Hannam; Sascha Husa; Ulrich Sperhake; Wolfgang Tichy

    2006-10-26T23:59:59.000Z

    We present single and binary black hole simulations that follow the moving puncture paradigm of simulating black-hole spacetimes without excision, and use moving boxes mesh refinement. Focussing on binary black hole configurations where the simulations cover roughly two orbits, we address five major issues determining the quality of our results: numerical discretization error, finite extraction radius of the radiation signal, physical appropriateness of initial data, gauge choice and computational performance. We also compare results we have obtained with the BAM code described here with the independent LEAN code.

  11. The Xygra gun simulation tool.

    SciTech Connect (OSTI)

    Garasi, Christopher Joseph; Lamppa, Derek C.; Aubuchon, Matthew S.; Shirley, David Noyes; Robinson, Allen Conrad; Russo, Thomas V.

    2008-12-01T23:59:59.000Z

    Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

  12. Numerical wind speed simulation model

    SciTech Connect (OSTI)

    Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

    1981-09-01T23:59:59.000Z

    A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

  13. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31T23:59:59.000Z

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  14. Finding Hidden Geothermal Resources In The Basin And Range Using...

    Open Energy Info (EERE)

    Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004) Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Modeling-Computer...

  15. FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS YONGFENG GU Dissertation submitted;BOSTON UNIVERSITY COLLEGE OF ENGINEERING Dissertation FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS DYNAMICS SIMULATIONS (Order No. ) YONGFENG GU Boston University, College of Engineering, 2008 Major

  16. Simulating EGFR-ERK Signaling Control by Scaffold Proteins KSR and MP1 Reveals Differential Ligand-

    E-Print Network [OSTI]

    Li, Baowen

    Simulating EGFR-ERK Signaling Control by Scaffold Proteins KSR and MP1 Reveals Differential Ligand of Singapore, Singapore, Singapore Abstract ERK activation is enhanced by the scaffolding proteins KSR and MP1 activation of EGFR-ERK signaling under a conventional pathway without scaffolds, a KSR-scaffolded pathway

  17. Adaptive Sampling in Hierarchical Simulation

    SciTech Connect (OSTI)

    Knap, J; Barton, N R; Hornung, R D; Arsenlis, A; Becker, R; Jefferson, D R

    2007-07-09T23:59:59.000Z

    We propose an adaptive sampling methodology for hierarchical multi-scale simulation. The method utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a finer-scale crystal plasticity based constitutive law.

  18. Cowgame: animal breeding simulation software

    E-Print Network [OSTI]

    Kleibrink, Kevin Michael

    1997-01-01T23:59:59.000Z

    ) to calculate Expected Progeny Differences (EPDS) and accuracies so that the analysis is completely independent of simulation. Output of phenotypes, EPDS, accuracies, and progeny averages are available for each animal in the population and are reported to each...

  19. Reservoir management using streamline simulation

    E-Print Network [OSTI]

    Choudhary, Manoj Kumar

    2000-01-01T23:59:59.000Z

    of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions...

  20. DYNAMIC SIMULATION OF PERFORMANCE DEVELOPMENT

    E-Print Network [OSTI]

    Perl, Jürgen

    for scheduling optimal training planes. (a) offline analysis (b) online prediction load profile original) online prediction load profile original performance profile simulated performance profile predicted performance profile Figure 1: Offline load-performance-analysis (a) compared to online performance

  1. Computer simulation of submarine motion

    E-Print Network [OSTI]

    Zurflueh, Jeffery Alan

    1991-01-01T23:59:59.000Z

    Subject: Mechanical Engineering COMPUTER SIMULATION OF SUBMARINE MOTION A Thesis by JEFFERY ALAN ZURFLUEH Approved as to style and content by: Make McDermott, Jr. ( Chair of Committee ) Glen Williams ( Member ) Lo 4verett ( Member ) gu r Walter...COMPUTER SIMULATION OF SUBMARINE MOTION A Thesis by JEFFERY ALAN ZURFLUEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1991 Major...

  2. Physically based simulation of explosions

    E-Print Network [OSTI]

    Roach, Matthew Douglas

    2005-08-29T23:59:59.000Z

    PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2005 Major Subject: Visualization Sciences PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  3. Terascale Simulation Tools and Technologies

    SciTech Connect (OSTI)

    Li, Xiaolin

    2007-03-09T23:59:59.000Z

    We report the development of front tracking method as a simulation tool and technology for the computation on several important SciDAC and SciDAC associated applications. The progress includes the extraction of an independent software library from the front tracking code, conservative front tracking, applications of front tracking to the simulation of fusion pellet injection in a magnetically confined plasma, the study of a fuel injection jet, and the study of fluid chaotic mixing, among other problems.

  4. Monte Carlo Simulation Tool Installation and Operation Guide

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.

    2013-09-02T23:59:59.000Z

    This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.

  5. Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

    SciTech Connect (OSTI)

    Vashishta, Priya

    2014-12-01T23:59:59.000Z

    Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products is inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.

  6. Sandia National Laboratories: modeling and simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and simulation Sandian Mark Boslough Featured on NOVA Episode about Chelyabinsk Meteor On November 20, 2013, in Computational Modeling & Simulation, Modeling, Modeling, Modeling &...

  7. House Simulation Protocols (Building America Benchmark) - Building...

    Energy Savers [EERE]

    House Simulation Protocols. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that utilize House Simulation...

  8. Sandia National Laboratories: CINT Computer Simulation Guide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyRenewable EnergyBiofuelsCINT Computer Simulation Guide for Designing Polymeric Nanoparticles Published CINT Computer Simulation Guide for Designing Polymeric...

  9. Sandia Energy - Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of wind-turbine wakes within a turbulent atmospheric boundary layer using a large eddy simulation (LES) method. Current and ongoing work aims to leverage the simulation...

  10. Sandia National Laboratories: Predictive Simulation of Internal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Internal Combustion Engines Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF,...

  11. Improved Solvers for Advanced Engine Combustion Simulation |...

    Broader source: Energy.gov (indexed) [DOE]

    Improved Solvers for Advanced Engine Combustion Simulation Improved Solvers for Advanced Engine Combustion Simulation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  12. Clot Busting Simulations Test Potential Stroke Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clot Busting Simulations Test Potential Stroke Treatment Clot Busting Simulations Test Potential Stroke Treatment September 24, 2013 | Tags: Biological and Environmental Research...

  13. MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUS

    E-Print Network [OSTI]

    Basarkar, Mangesh

    2013-01-01T23:59:59.000Z

    LBNL-XXXXX MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUSof California. MAPPING HVAC SYSTEMS FOR SIMULATION INpresent a conventional view of HVAC systems to the user, and

  14. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

  15. Nuclear Systems Modeling & Simulation | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Modeling and Simulation SHARE Nuclear Systems Modeling and Simulation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion model for the...

  16. Nuclear Systems Modeling, Simulation & Validation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Modeling and Simulation SHARE Nuclear Systems Modeling, Simulation and Validation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion...

  17. AGN feedback using AMR cosmological simulations

    E-Print Network [OSTI]

    Dubois, Yohan; Slyz, Adrianne; Teyssier, Romain

    2011-01-01T23:59:59.000Z

    Feedback processes are thought to solve some of the long-standing issues of the numerical modelling of galaxy formation: over-cooling, low angular momentum, massive blue galaxies, extra-galactic enrichment, etc. The accretion of gas onto super-massive black holes in the centre of massive galaxies can release tremendous amounts of energy to the surrounding medium. We show, with cosmological Adaptive Mesh Refinement simulations, how the growth of black holes is regulated by the feedback from Active Galactic Nuclei using a new dual jet/heating mechanism. We discuss how this large amount of feedback is able to modify the cold baryon content of galaxies, and perturb the properties of the hot plasma in their vicinity.

  18. Secondary Energy Infobook Activities (19 Activities)'

    Broader source: Energy.gov (indexed) [DOE]

    Infobook Activities (19 Activities) Grades: 9-12 Topics: Energy Basics Owner: NEED This educational material is brought to you by the U.S. Department of Energy's Office of Energy...

  19. Activated Boron Nitride Derived from Activated Carbon

    E-Print Network [OSTI]

    Zettl, Alex

    combination of chemical, thermal, and electrical properties. The utility of activated carbon suggests is characterized by scanning electron microscopy, high-resolution transmission electron microscopy, electron energy loss spectroscopy, and surface area analysis. The activated BN microstructure is similar

  20. Synchronization Algorithms for Co-Simulation of Power Grid and Communication Networks

    SciTech Connect (OSTI)

    Ciraci, Selim; Daily, Jeffrey A.; Agarwal, Khushbu; Fuller, Jason C.; Marinovici, Laurentiu D.; Fisher, Andrew R.

    2014-09-11T23:59:59.000Z

    The ongoing modernization of power grids consists of integrating them with communication networks in order to achieve robust and resilient control of grid operations. To understand the operation of the new smart grid, one approach is to use simulation software. Unfortunately, current power grid simulators at best utilize inadequate approximations to simulate communication networks, if at all. Cooperative simulation of specialized power grid and communication network simulators promises to more accurately reproduce the interactions of real smart grid deployments. However, co-simulation is a challenging problem. A co-simulation must manage the exchange of informa- tion, including the synchronization of simulator clocks, between all simulators while maintaining adequate computational perfor- mance. This paper describes two new conservative algorithms for reducing the overhead of time synchronization, namely Active Set Conservative and Reactive Conservative. We provide a detailed analysis of their performance characteristics with respect to the current state of the art including both conservative and optimistic synchronization algorithms. In addition, we provide guidelines for selecting the appropriate synchronization algorithm based on the requirements of the co-simulation. The newly proposed algorithms are shown to achieve as much as 14% and 63% im- provement, respectively, over the existing conservative algorithm.

  1. The effect of urban canopy parameterizations on mesoscale meteorological model simulations in the Paso del Norte area

    SciTech Connect (OSTI)

    Brown, M.J.; Williams, M.D.

    1997-04-01T23:59:59.000Z

    Since mesoscale numerical models do not have the spatial resolution to directly simulate the fluid dynamics and thermodynamics in and around urban structures, urban canopy parameterizations are sometimes used to approximate the drag, heating, and enhanced turbulent kinetic energy (tke) produced by the sub-grid scale urban elements. In this paper, we investigate the effect of the urban canopy parameterizations used in the HOTMAC mesoscale meteorological model by turning the parameterizations on and off. The model simulations were performed in the Paso del Norte region, which includes the cities of El Paso and Ciudad Juarez, the Franklin and Sierra Juarez mountains, and the Rio Grande. The metropolitan area is surrounded by relatively barren scrubland and is intersected by strips of vegetation along the Rio Grande. Results indicate that the urban canopy parameterizations do affect the mesoscale flow field, reducing the magnitude of wind speed and changing the magnitude of the sensible heat flux and tke in the metropolitan area. A nighttime heat island and a daytime cool island exist when urban canopy parameters are turned on, but associated recirculation flows are not readily apparent. Model-computed solar, net, and longwave radiation values look reasonable, agreeing for the most part with published measurements.

  2. LFSC - Linac Feedback Simulation Code

    SciTech Connect (OSTI)

    Ivanov, Valentin; /Fermilab

    2008-05-01T23:59:59.000Z

    The computer program LFSC (Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  3. Mesoscale Simulations of Power Compaction

    SciTech Connect (OSTI)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06T23:59:59.000Z

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  4. Radiation in molecular dynamic simulations

    SciTech Connect (OSTI)

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13T23:59:59.000Z

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  5. Infrastructure for distributed enterprise simulation

    SciTech Connect (OSTI)

    Johnson, M.M.; Yoshimura, A.S.; Goldsby, M.E. [and others

    1998-01-01T23:59:59.000Z

    Traditional discrete-event simulations employ an inherently sequential algorithm and are run on a single computer. However, the demands of many real-world problems exceed the capabilities of sequential simulation systems. Often the capacity of a computer`s primary memory limits the size of the models that can be handled, and in some cases parallel execution on multiple processors could significantly reduce the simulation time. This paper describes the development of an Infrastructure for Distributed Enterprise Simulation (IDES) - a large-scale portable parallel simulation framework developed to support Sandia National Laboratories` mission in stockpile stewardship. IDES is based on the Breathing-Time-Buckets synchronization protocol, and maps a message-based model of distributed computing onto an object-oriented programming model. IDES is portable across heterogeneous computing architectures, including single-processor systems, networks of workstations and multi-processor computers with shared or distributed memory. The system provides a simple and sufficient application programming interface that can be used by scientists to quickly model large-scale, complex enterprise systems. In the background and without involving the user, IDES is capable of making dynamic use of idle processing power available throughout the enterprise network. 16 refs., 14 figs.

  6. ATLAS Fast Tracker Simulation Challenges

    E-Print Network [OSTI]

    Adelman, Jahred; The ATLAS collaboration; Borodin, Mikhail; Chakraborty, Dhiman; García Navarro, José Enrique; Golubkov, Dmitry; Kama, Sami; Panitkin, Sergey; Smirnov, Yuri; Stewart, Graeme; Tompkins, Lauren; Vaniachine, Alexandre; Volpi, Guido

    2015-01-01T23:59:59.000Z

    To deal with Big Data flood from the ATLAS detector most events have to be rejected in the trigger system. the trigger rejection is complicated by the presence of a large number of minimum-bias events – the pileup. To limit pileup effects in the high luminosity environment of the LHC Run-2, ATLAS relies on full tracking provided by the Fast TracKer (FTK) implemented with custom electronics. The FTK data processing pipeline has to be simulated in preparation for LHC upgrades to support electronics design and develop trigger strategies at high luminosity. The simulation of the FTK - a highly parallelized system - has inherent performance bottlenecks on general-purpose CPUs. To take advantage of the Grid Computing power, the FTK simulation is integrated with Monte Carlo simulations at the Production System level above the ATLAS workload management system PanDA. We report on ATLAS experience with FTK simulations on the Grid and next steps for accommodating the growing requirements for resources during the LHC R...

  7. REAL : A Network Simulator Srinivasan Keshav

    E-Print Network [OSTI]

    Keshav, Srinivasan

    simulations using REAL, and Section 7 presents a performance evaluation of the simulator. Section 8 describes a design for extending REAL to parallel distributed simulation. Section 9 is an evaluation of this work, and Section 10 describes future work. 2. Outline of the Simulator This section describes a user's view

  8. MOOSE: Multiphysics Object-Oriented Simulation Environment

    ScienceCinema (OSTI)

    Gaston, Derek

    2014-05-30T23:59:59.000Z

    An overview of Idaho National Laboratory's MOOSE: Multiphysics Object-Oriented Simulation Environment

  9. Real-time network simulation support for

    E-Print Network [OSTI]

    Liu, Xiaowen "Jason"

    Real-time network simulation support for scalable routing experiments Yue Li*, Jason Liu, and Raju-time network simulation with the realism of open- source routing protocol implementations. The infrastructure experiments on light-weight virtual machines. Keywords: network simulation; real-time simulation; network

  10. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  11. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

    2011-09-01T23:59:59.000Z

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal.

  12. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

    2011-09-01T23:59:59.000Z

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore »does work well for another theory expected to be infrared conformal.« less

  13. Simulating Reionization in Numerical Cosmology

    E-Print Network [OSTI]

    Aaron Sokasian; Tom Abel; Lars E. Hernquist

    2001-05-10T23:59:59.000Z

    The incorporation of radiative transfer effects into cosmological hydrodynamical simulations is essential for understanding how the intergalactic medium (IGM) makes the transition from a neutral medium to one that is almost fully ionized. Here, we present an approximate numerical method designed to study in a statistical sense how a cosmological density field is ionized by a set of discrete point sources. A diffuse background radiation field is also computed self-consistently in our procedure. The method requires relatively few time steps and can be employed with simulations having high resolution. We describe the details of the algorithm and provide a description of how the method can be applied to the output from a pre-existing cosmological simulation to study the systematic reionization of a particular ionic species. As a first application, we compute the reionization of He II by quasars in the redshift range 3 to 6.

  14. Simulating chemistry using quantum computers

    E-Print Network [OSTI]

    Ivan Kassal; James D. Whitfield; Alejandro Perdomo-Ortiz; Man-Hong Yung; Alán Aspuru-Guzik

    2010-07-15T23:59:59.000Z

    The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  15. Special nuclear material simulation device

    DOE Patents [OSTI]

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12T23:59:59.000Z

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  16. LANL | Physics | Active Interrogation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Division activities in standoff active-interrogation for detecting terrorist nuclear devices, 2011 Detonation of a terrorist nuclear device in a major city would have...

  17. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

  18. Integrating software architectures for distributed simulations and simulation analysis communities.

    SciTech Connect (OSTI)

    Goldsby, Michael E.; Fellig, Daniel; Linebarger, John Michael; Moore, Patrick Curtis; Sa, Timothy J.; Hawley, Marilyn F.

    2005-10-01T23:59:59.000Z

    The one-year Software Architecture LDRD (No.79819) was a cross-site effort between Sandia California and Sandia New Mexico. The purpose of this research was to further develop and demonstrate integrating software architecture frameworks for distributed simulation and distributed collaboration in the homeland security domain. The integrated frameworks were initially developed through the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC), sited at SNL/CA, and the National Infrastructure Simulation & Analysis Center (NISAC), sited at SNL/NM. The primary deliverable was a demonstration of both a federation of distributed simulations and a federation of distributed collaborative simulation analysis communities in the context of the same integrated scenario, which was the release of smallpox in San Diego, California. To our knowledge this was the first time such a combination of federations under a single scenario has ever been demonstrated. A secondary deliverable was the creation of the standalone GroupMeld{trademark} collaboration client, which uses the GroupMeld{trademark} synchronous collaboration framework. In addition, a small pilot experiment that used both integrating frameworks allowed a greater range of crisis management options to be performed and evaluated than would have been possible without the use of the frameworks.

  19. An Energy-Aware Simulation Model and Transaction Protocol

    E-Print Network [OSTI]

    Pedram, Massoud

    functioning in a real world environment ! We study the effects of redistributing energy on the two network density function ! Host energy model ! Computation energy: power consumption of SP, EPIC, LPIC ! Communication energy: power consumption for SR transmission and reception ! Data transmission energy

  20. Curvature Induced Activation of a Passive Tracer in an Active Bath

    E-Print Network [OSTI]

    S. A. Mallory; C. Valeriani; A. Cacciuto

    2014-09-25T23:59:59.000Z

    We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low density suspension of self-propelled nanoparticles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational and rotational motion in an active environment. We find that even very small amounts of curvature are sufficient for the active bath to impart directed motion to the tracer which results in its effective activation. We propose simple scaling arguments to characterize this induced activity in terms of the curvature of the tracer and the strength of the self-propelling force. Our results suggest new ways of controlling the transport properties of passive tracers in an active medium by carefully tailoring their geometry.

  1. Dynamic simulation of voltage collapses

    SciTech Connect (OSTI)

    Deuse, J.; Stubbe, M. (Tractebel, Brussels (Belgium))

    1993-08-01T23:59:59.000Z

    Most of the time the voltage collapse phenomena are studied by means of computer programs designed for the calculation of steady state conditions. But in the real world, the simultaneous occurrences of losses of synchronism, of AVR dynamics or of transformer tap changes call for a full dynamic simulation of voltage phenomena. The present paper shows some examples of dynamic simulations of voltage phenomena using a new general purpose stability program (EUROSTAG), covering in a continuous way the classical fields of transient, mid-term and long-term stability, and also the quasi steady state conditions of a power system.

  2. Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic Controlled Variable Selection

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic operation conducted on an activated sludge process model based on the test-bed benchmark simulation model no. 1 (BSM1) and the activated sludge model no. 1 (ASM1). The objective is to search for a control

  3. A Robust Aggregation Method for Quasi-blind Robots in an Active Environment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Robust Aggregation Method for Quasi-blind Robots in an Active Environment Nazim Fat is through an active environment (stigmergy) and the only information they can receive is the local detection of the waves produced by other robots. The active environment obeys a cellular automaton rule and is simulated

  4. Simulation in Medical School Education: Review for Emergency Medicine

    E-Print Network [OSTI]

    Chakravarthy, Bharath; ter Haar, Elizabeth; Bhat, Srinidhi Subraya; McCoy, Christopher Erik; Denmark, T. Kent; Lotfipour, Shahram

    2011-01-01T23:59:59.000Z

    study of simulation vs. didactics for teaching medicalof simulation to traditional didactics. Other studies have

  5. File: PoS_Markov_22_MM.doc 100524 Poisson Simulation outperforms Markov Simulation

    E-Print Network [OSTI]

    [10], is a more recent method for model building and simulation that facilitates construction, modelFile: PoS_Markov_22_MM.doc 100524 Poisson Simulation outperforms Markov Simulation Leif Gustafsson.Gustafsson@bt.slu.se Abstract Markov Simulation and the more recent Poisson Simulation are two fully consistent ways

  6. WORKFLOW SIMULATION FOR INTERNATIONAL TRADE

    E-Print Network [OSTI]

    Thomborson, Clark

    WORKFLOW SIMULATION FOR INTERNATIONAL TRADE Qiang Dong Supervised by Professor Clark Thomborson's competitive world. International trade has received some academic attention as an application of Business Process Reengineering. A major issue in international trade is due to problems pertaining to mutual

  7. Simulated Interdiction: Proliferation Security Initiative

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    ………………………………... Technical Capabilities to Support PSI ………………………………… Foreign Policy and External Relations ………………………............... Republic of Bevostan ………………………………………………………….. Geography ……………………………………………………………... iii 1 3 4 5 6 7 8 8 8 8 8 9 9 10... Security, Science and Policy Institute (NSSPI) Texas A&M University May 6, 2009 Simulated Interdiction: The Proliferation Security Initiative (PSI) Acknowledgements The National Nuclear Security Administration (NNSA) of the U.S. Department...

  8. Introduction Simulation of Pathological conditions

    E-Print Network [OSTI]

    Willson, Stephen J.

    Reference Survey of the Modeling Brain Energy Metabolism and Function -- Report of the work by Larisa. V et State University MATH 690P, Dec. 1. 06 Wen Zhou Modeling Brain Energy #12;Outline Introduction Modeling Simulation of Pathological conditions Conclusion and Discussion Reference Introduction Modeling Energy

  9. Simulating Wax Crayons Dave Rudolf

    E-Print Network [OSTI]

    Mould, David

    Simulating Wax Crayons Dave Rudolf dave.rudolf@usask.ca David Mould mould@cs.usask.ca Eric Neufeld a physically-inspired model of wax crayons, which synthesizes drawings from collections of user- specified that evolves as it interacts with the paper. The amount of wax deposition is computed based on the crayon

  10. LUNAR SOIL SIMULATION TRAFFICABILITY PARAMETERS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    LUNAR SOIL SIMULATION and TRAFFICABILITY PARAMETERS by W. David Carrier, III Lunar Geotechnical.0 RECOMMENDED LUNAR SOIL TRAFFICABILITY PARAMETERS Table 9.14 in the Lunar Sourcebook (Carrier et al. 1991, p. 529) lists the current recommended lunar soil trafficability parameters: bc = 0.017 N/cm2 bN = 35° K

  11. Tutorial: Parallel Simulation on Supercomputers

    SciTech Connect (OSTI)

    Perumalla, Kalyan S [ORNL

    2012-01-01T23:59:59.000Z

    This tutorial introduces typical hardware and software characteristics of extant and emerging supercomputing platforms, and presents issues and solutions in executing large-scale parallel discrete event simulation scenarios on such high performance computing systems. Covered topics include synchronization, model organization, example applications, and observed performance from illustrative large-scale runs.

  12. Xyce parallel electronic simulator design.

    SciTech Connect (OSTI)

    Thornquist, Heidi K.; Rankin, Eric Lamont; Mei, Ting; Schiek, Richard Louis; Keiter, Eric Richard; Russo, Thomas V.

    2010-09-01T23:59:59.000Z

    This document is the Xyce Circuit Simulator developer guide. Xyce has been designed from the 'ground up' to be a SPICE-compatible, distributed memory parallel circuit simulator. While it is in many respects a research code, Xyce is intended to be a production simulator. As such, having software quality engineering (SQE) procedures in place to insure a high level of code quality and robustness are essential. Version control, issue tracking customer support, C++ style guildlines and the Xyce release process are all described. The Xyce Parallel Electronic Simulator has been under development at Sandia since 1999. Historically, Xyce has mostly been funded by ASC, the original focus of Xyce development has primarily been related to circuits for nuclear weapons. However, this has not been the only focus and it is expected that the project will diversify. Like many ASC projects, Xyce is a group development effort, which involves a number of researchers, engineers, scientists, mathmaticians and computer scientists. In addition to diversity of background, it is to be expected on long term projects for there to be a certain amount of staff turnover, as people move on to different projects. As a result, it is very important that the project maintain high software quality standards. The point of this document is to formally document a number of the software quality practices followed by the Xyce team in one place. Also, it is hoped that this document will be a good source of information for new developers.

  13. Modeling and Simulation Academic Program

    E-Print Network [OSTI]

    in analysis Refined accident-incident forecast (location, frequency, and severity) Recurrent and incident#12;#12;#12;Modeling and Simulation Academic Program #12;M&S Workforce Development Associate Implementation, Operations Engineer Design, Analysis Scientist Research, Development Partners in Providing World

  14. 5, 79658026, 2005 Simulating aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    composition, number concentration, and size distribution of the global submicrometer aerosol. The present, coagulation, condensation, nucleation of sulfuric acid vapor, aerosol chemistry, cloud processing, and sizeACPD 5, 7965­8026, 2005 Simulating aerosol microphysics with ECHAM/MADE A. Lauer et al. Title Page

  15. 6, 75197562, 2006 Simulating aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , particle number concentration and aerosol size-distribution. The model takes into account sulfate (SO4. This model system enables explicit simulations of the particle number concentration and size-distribution of aerosol dynamical processes (nucleation, condensation, coagulation) is evaluated by comparison

  16. Active Brownian particles: Entropy production and fluctuation-response

    E-Print Network [OSTI]

    Chaudhuri, Debasish

    2014-01-01T23:59:59.000Z

    Within the Rayleigh-Helmholtz model of active Brownian particles activity is due to a non-linear velocity dependent force. In the presence of an external trapping potential or a constant force, the steady state of the system breaks detailed balance producing a net entropy. Using molecular dynamics simulations, we obtain the probability distributions of entropy production in these steady states. The distribution functions obey detailed fluctuation theorem for entropy production. Using simulation results, we further show that the steady state response function obeys a modified fluctuation-dissipation relation.

  17. Non Nuclear NTR Environmental Simulator

    SciTech Connect (OSTI)

    Emrich, William J. Jr. [NASA Marshall Space Flight Center, M.S. XD21, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Current planning calls for such a simulator to be constructed at the Marshall Space Flight Center over the coming year, and it is anticipated that it will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the NTR simulator with regard to reproducing the fuel degradation patterns previously observed during the NERVA testing.

  18. STABLE SR VS 85SR SORPTION FROM SIMULATED WASTE SOLUTIONS BY MST AND MMST

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Hobbs, D.

    2012-04-02T23:59:59.000Z

    A series of tests were performed to examine the sorption of stable Sr versus the sorption of {sup 85}Sr by monosodium titanate (MST) and modified monosodium titanate (mMST) from simulated waste solutions. Earlier testing indicated a discrepancy between the decontamination factors (DFs) obtained by measuring the stable Sr concentrations by inductively coupled plasma - mass spectroscopy (ICP-MS) and the {sup 85}Sr activities by gamma spectroscopy. One hypothesis to explain this discrepancy was that the stable Sr and {sup 85}Sr were in different chemical forms in the simulated solutions. Several simulants were prepared using different methods for adding the Sr and performance tests were carried out using MST and mMST to determine the Sr and {sup 85}Sr DFs with the various simulants. Testing indicated no discrepancy between the Sr and {sup 85}Sr DFs in tests with these simulants.

  19. Final Report for "Community Petascale Project for Accelerator Science and Simulations".

    SciTech Connect (OSTI)

    Cary, J. R.; Bruhwiler, D. L.; Stoltz, P. H.; Cormier-Michel, E.; Cowan, B.; Schwartz, B. T.; Bell, G.; Paul, K.; Veitzer, S.

    2013-04-19T23:59:59.000Z

    This final report describes the work that has been accomplished over the past 5 years under the Community Petascale Project for Accelerator and Simulations (ComPASS) at Tech-X Corporation. Tech-X had been involved in the full range of ComPASS activities with simulation of laser plasma accelerator concepts, mainly in collaboration with LOASIS program at LBNL, simulation of coherent electron cooling in collaboration with BNL, modeling of electron clouds in high intensity accelerators, in collaboration with researchers at Fermilab and accurate modeling of superconducting RF cavity in collaboration with Fermilab, JLab and Cockcroft Institute in the UK.

  20. Westinghouse Waste Simulation and Optimization Software Tool - 13493

    SciTech Connect (OSTI)

    Mennicken, Kim [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01T23:59:59.000Z

    Radioactive waste is produced during NPP operation and NPP D and D. Different kinds of waste with different volumes and properties have to be treated. Finding a technically and commercially optimized waste treatment concept is a difficult and time consuming process. The Westinghouse waste simulation and optimization software tool is an approach to study the total life cycle cost of any waste management facility. The tool enables the user of the simulation and optimization software to plan processes and storage buildings and to identify bottlenecks in the overall waste management design before starting detailed planning activities. Furthermore, application of the software enables the user to optimize the number of treatment systems, to determine the minimum design capacity for onsite storage facilities, to identify bottlenecks in the overall design and to identify the most cost-effective treatment paths by maintaining optimal waste treatment technologies. In combination with proven waste treatment equipment and integrated waste management solutions, the waste simulation and optimization software provides reliable qualitative results that lead to an effective planning and minimization of the total project planning risk of any waste management activity. (authors)

  1. Control and Synchronization of Chaotic Fractional-Order Coullet System via Active Controller

    E-Print Network [OSTI]

    M. Shahiri T.; A. Ranjbar N.; R. Ghaderi; S. H. Hosseinnia; S. Momani

    2012-06-12T23:59:59.000Z

    In this paper, fractional order Coullet system is studied. An active control technique is applied to control this chaotic system. This type of controller is also applied to synchronize chaotic fractional-order systems in master-slave structure. The synchronization procedure is shown via simulation. The boundary of stability is obtained by both of theoretical analysis and simulation result. The numerical simulations show the effectiveness of the proposed controller.

  2. Molecular hydrogen abundances of galaxies in the EAGLE simulations

    E-Print Network [OSTI]

    Lagos, Claudia del P; Schaye, Joop; Furlong, Michelle; Frenk, Carlos S; Bower, Richard G; Schaller, Matthieu; Theuns, Tom; Trayford, James W; Bahe, Yannick M; Vecchia, Claudio Dalla

    2015-01-01T23:59:59.000Z

    We investigate the abundance of galactic molecular hydrogen (H$_2$) in the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) cosmological hydrodynamic simulations. We assign H$_2$ masses to gas particles in the simulations in post-processing using two different prescriptions that depend on the local dust-to-gas ratio and the interstellar radiation field. Both result in H$_2$ galaxy mass functions that agree well with observations in the local and high-redshift Universe. The simulations reproduce the observed scaling relations between the mass of H$_2$ and the stellar mass, star formation rate and stellar surface density. Towards high edshifts, galaxies in the simulations display larger H$_2$ mass fractions, and correspondingly lower H$_2$ depletion timescales, also in good agreement with observations. The comoving mass density of H$_2$ in units of the critical density, $\\Omega_{\\rm H_2}$, peaks at $z\\approx 1.2-1.5$, later than the predicted peak of the cosmic star formation rate activity, a...

  3. NUMERICAL SIMULATIONS OF CHROMOSPHERIC MICROFLARES

    SciTech Connect (OSTI)

    Jiang, R. L.; Fang, C.; Chen, P. F., E-mail: fangc@nju.edu.c [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2010-02-20T23:59:59.000Z

    With gravity, ionization, and radiation being considered, we perform 2.5 dimensional (2.5D) compressible resistive magnetohydrodynamic (MHD) simulations of chromospheric magnetic reconnection using the CIP-MOCCT scheme. The temperature distribution of the quiet-Sun atmospheric model VALC and the helium abundance (10%) are adopted. Our 2.5D MHD simulation reproduces qualitatively the temperature enhancement observed in chromospheric microflares. The temperature enhancement DELTAT is demonstrated to be sensitive to the background magnetic field, whereas the total evolution time DELTAt is sensitive to the magnitude of the anomalous resistivity. Moreover, we found a scaling law, which is described as DELTAT/DELTAt {approx} n{sub H} {sup -1.5} B {sup 2.1}eta{sub 0} {sup 0.88}. Our results also indicate that the velocity of the upward jet is much greater than that of the downward jet, and the X-point may move up or down.

  4. Quantum simulations of physics problems

    SciTech Connect (OSTI)

    Somma, R. D. (Rolando D.); Ortiz, G. (Gerardo); Knill, E. H. (Emanuel H.); Gubernatis, J. E.

    2003-01-01T23:59:59.000Z

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  5. Numerical simulations of quasar absorbers

    E-Print Network [OSTI]

    Tom Theuns

    2005-07-25T23:59:59.000Z

    The physical state of the intergalactic medium can be probed in great detail with the intervening absorption systems seen in quasar spectra. The properties of the Hydrogen absorbers depend on many cosmological parameters, such as the matter-power spectrum, reionisation history, ionising background and the nature of the dark matter. The spectra also contain metal lines, which can be used to constrain the star formation history and the feedback processes acting in large and small galaxies. Simulations have been instrumental in investigating to what extent these parameters can be unambiguously constrained with current and future data. This paper is meant as an introduction to this subject, and reviews techniques and methods for simulating the intergalactic medium.

  6. Proceedings of the Sixth Symposium on BEER, 2013 Dynamics of Computational Islet Simulations: Islets with

    E-Print Network [OSTI]

    Gobbert, Matthias K.

    that beta-cells undergo voltage oscillations during the cours another and transfer various ions and electrical currents; coupling of both voltage and metabolites can model, computational islet, glycolytic oscillations 1 Introduction Diabetes mellitus, commonly known

  7. Numerical simulation of hydraulic fracturing

    E-Print Network [OSTI]

    Warner, Joseph Barnes

    1987-01-01T23:59:59.000Z

    ~ared that the results of such treatments were not always adequately described by the two-dimensional models. With recent advances in hydraulic fracturing and computing technology, attempts have been made to formulate more realistic fracture models. These three...NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...

  8. Bayesian Statistics Stochastic Simulation -Gibbs sampling

    E-Print Network [OSTI]

    Wright, Francis

    Bayesian Statistics Stochastic Simulation - Gibbs sampling Bayesian Statistics - an Introduction Dr Pettit Bayesian Statistics - an Introduction #12;Bayesian Statistics Stochastic Simulation - Gibbs sampling What is Bayesian Statistics? Bayes Theorem The Likelihood Principle Mixtures of conjugate priors

  9. Fluid Catalytic Cracking Power Recovery Computer Simulation

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  10. Computer simulation of neutron capture therapy.

    E-Print Network [OSTI]

    Olson, Arne Peter

    1967-01-01T23:59:59.000Z

    Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

  11. Computer simulation of neutron capture therapy

    E-Print Network [OSTI]

    Olson, Arne Peter

    1967-01-01T23:59:59.000Z

    Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

  12. Bayes, Asymptotics, Simulation and the Bootstrap

    E-Print Network [OSTI]

    Fletcher, David

    Bayes, Asymptotics, Simulation and the Bootstrap David Fletcher Department of Mathematics Bootstrapping and Bayesian Methods #12;Bayesian Methods and Asymptotics Bayesian methods Conceptually simple for lognormal cases Insight: studentized bootstrap better than percentile Simulations useful for checking actual

  13. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Design and Simulation of Lithium Rechargeable Batteries by Christopher Marc Doyle Doctor of Philosophy in Chemical EngineeringDesign and Simulation of Lithium Rechargeable Batteries I C. Marc Doyle Department of Chemical Engineering

  14. More Issues of Building Energy Simulation 

    E-Print Network [OSTI]

    Kang, Z.; Zhao, J.

    2006-01-01T23:59:59.000Z

    The paper investigates the development of building energy simulation software. It is shown that such applications can be used for energy forecasting, system design and operations, and energy evaluation. Several energy simulation methods are analyzed...

  15. Drilling optimization using drilling simulator software

    E-Print Network [OSTI]

    Salas Safe, Jose Gregorio

    2004-09-30T23:59:59.000Z

    the results of using drilling simulator software called Drilling Optimization Simulator (DROPS®) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted...

  16. Fluid Catalytic Cracking Power Recovery Computer Simulation 

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  17. Towards Grid-Wide Modeling and Simulation

    E-Print Network [OSTI]

    Xie, Yong

    Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model ...

  18. Modeling and Simulation for Safeguards

    SciTech Connect (OSTI)

    Swinhoe, Martyn T. [Los Alamos National Laboratory

    2012-07-26T23:59:59.000Z

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  19. Cryogenic moderator simulations : confronting reality.

    SciTech Connect (OSTI)

    Iverson, E. B.

    1999-01-06T23:59:59.000Z

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities.

  20. An interactive teaching device simulating intussusception reduction

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    1764-x TECHNICAL INNOVATION An interactive teaching deviceIRB. We developed an interactive teaching device to simulate

  1. Quantum walks and relativistic quantum simulations

    E-Print Network [OSTI]

    Blatt, Rainer

    in a quantum simulation of the Klein para- dox. The position and momentum of a relativistic Dirac particle

  2. Simulation of the thermodynamic properties of organic extraction solutions

    SciTech Connect (OSTI)

    Kolker, A.R.

    1986-05-01T23:59:59.000Z

    A method is proposed for the simulation of the activity coefficients of the components, the excess volume, the heat of mixing, and other excess thermodynamic functions of organic extraction solutions. The method is based on a search in an assigned region for parameters of the NRTL equations of local composition for which the state of the solution satisfies the requirements of chemical thermodynamics, as well as the assigned recovery criteria. The following binary systems of the solvent-extractant, and solvent-solvate types have been simulated according to the program developed on an ES-1033 computer: C6H/sub 14/-TBP, CHC1/sub 3/-TBP, CC1/sub 4/-TBP, UO/sub 2/(NO/sub 3/)/sub 2/ X 2TBP-TBP, and CC1/sub 4/-UO/sub 2/(NO/sub 3/)/sub 2/ X 2TBP.

  3. Unified views of quantum simulation algorithms for chemistry

    E-Print Network [OSTI]

    Whitfield, James Daniel

    2015-01-01T23:59:59.000Z

    Time evolution of quantum systems is of interest in physics, in chemistry, and, more recently, in computer science. Quantum computers are suggested as one route to propagating quantum systems far more efficiently than ordinary numerical methods. In the past few years, researchers have actively been improving quantum simulation algorithms, especially those in second quantization. This work continues to advance the state-of-the-art by unifying several diverging approaches under a common framework. In particular, it highlights the similarities and differences of the first and second quantized algorithms which are usually presented in a distinct fashion. By combining aspects of the two approaches, this work moves towards an online second quantized algorithm operating within a single-Fock space. This paper also unifies a host of approaches to algorithmic quantum measurement by removing superficial differences. The aim of the effort is not only to give a high-level understanding of quantum simulation, but to move t...

  4. Simulating Zeno physics by quantum quench with superconducting circuits

    E-Print Network [OSTI]

    Qing-Jun Tong; Jun-Hong An; L. C. Kwek; Hong-Gang Luo; C. H. Oh

    2014-06-12T23:59:59.000Z

    Studying out-of-equilibrium physics in quantum systems under quantum quench is of vast experimental and theoretical interests. Using periodic quantum quenches, we present an experimentally accessible scheme to simulate the quantum Zeno and anti-Zeno effects in an open quantum system of a single superconducting qubit interacting with an array of transmission line resonators. The scheme is based on the following two observations: Firstly, compared with conventional systems, the short-time non-exponential decay in our superconducting circuit system is readily observed; and secondly, a quench-off process mimics an ideal projective measurement when its time duration is sufficiently long. Our results show the active role of quantum quench in quantum simulation and control.

  5. Simulating a quantum magnet with trapped ions

    E-Print Network [OSTI]

    Loss, Daniel

    systems we need a quantum leap in computer simulations. We cannot translate quantum behaviour arising from dynamics, we need a `quantum leap' in simulation efficiency. As proposed in ref. 1, a universal quantumLETTERS Simulating a quantum magnet with trapped ions A. FRIEDENAUER*, H. SCHMITZ*, J. T. GLUECKERT

  6. Framework for Simulation Integration Radek Sindelar

    E-Print Network [OSTI]

    of simulation life cycle. The remainder of this work is structured as follows: in the next section on a simulation and integration problem. The section 4 introduces the concept and structure of environment for simulation integration. In the section 5 beside the current status the real project is described. The section

  7. Numerical simulations of the intergalactic medium

    E-Print Network [OSTI]

    Tom Theuns

    2002-09-05T23:59:59.000Z

    The intergalactic medium at redshifts 2--6 can be studied observationally through the absorption features it produces in the spectra of background quasars. Most of the UV-absorption lines arise in mildly overdense regions, which can be simulated reliably with current hydrodynamical simulations. Comparison of observed and simulated spectra allows one to put contraints on the model's parameters.

  8. Towards the Integration of APECS and VE-Suite for Virtual Power Plant Co-Simulation

    SciTech Connect (OSTI)

    Zitney, S.E.; McCorkle, D. (Iowa State University, Ames, IA); Yang, C. (Reaction Engineering International, Salt Lake City, UT); Jordan, T.; Swensen, D. (Reaction Engineering International, Salt Lake City, UT); Bryden, M. (Iowa State University, Ames, IA)

    2007-05-01T23:59:59.000Z

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.

  9. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Steyert, William A. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  10. Monte Carlo Simulations of Cosmic Rays Hadronic Interactions

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.

    2011-04-01T23:59:59.000Z

    This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.

  11. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect (OSTI)

    Koopman, David

    2010-04-28T23:59:59.000Z

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry, and significant mercury was not accounted for in the highest acid run. Coalescence of elemental mercury droplets in the mercury water wash tank (MWWT) appeared to degrade with increasing stoichiometry. Observations were made of mercury scale formation in the SRAT condenser and MWWT. A tacky mercury amalgam with Rh, Pd, and Cu, plus some Ru and Ca formed on the impeller at 159% acid. It contained a significant fraction of the available Pd, Cu, and Rh as well as about 25% of the total mercury charged. Free (elemental) mercury was found in all of the SME products. Ammonia scrubbers were used during the tests to capture off-gas ammonia for material balance purposes. Significant ammonium ion formation was again observed during the SRAT cycle, and ammonia gas entered the off-gas as the pH rose during boiling. Ammonium ion production was lower than in the SB6 Phase II and the qualification simulant testing. Similar ammonium ion formation was seen in the ARP/MCU simulation as in the 120% flowsheet run. A slightly higher pH caused most of the ammonium to vaporize and collect in the ammonia scrubber reflux solution. Two periods of foaminess were noted. Neither required additional antifoam to control the foam growth. A steady foam layer formed during reflux in the 120% acid run. It was about an inch thick, but was 2-3 times more volume of bubbles than is typically seen during reflux. A similar foam layer also was seen during caustic boiling of the simulant during the ARP addition. While frequently seen with the radioactive sludge, foaminess during caustic boiling with simulants has been relatively rare. Two further flowsheet tests were performed and will be documented separately. One test was to evaluate the impact of process conditions that match current DWPF operation (lower rates). The second test was to evaluate the impact of SRAT/SME processing on the rheology of a modified Phase III simulant that had been made five times more viscous using ultrasonication.

  12. Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of the AgClElectrolyte Interfacial Capacity. Molecular Dynamics Simulation of the AgClElectrolyte Interfacial Capacity. Abstract: Molecular dynamics simulation of the...

  13. Simulating a Nationally Representative Housing Sample Using EnergyPlus

    E-Print Network [OSTI]

    Hopkins, Asa S.

    2011-01-01T23:59:59.000Z

    Simulating a Nationally Representative Housing Sample UsingSimulating a Nationally Representative Housing Sample Usingcalibrated, nationally representative set of simulated homes

  14. Learning style impact on knowledge gains in human patient simulation

    E-Print Network [OSTI]

    Shinnick, MA; Woo, MA

    2014-01-01T23:59:59.000Z

    the preference for simulation as a learning style. Singap.of high- ?delity simulation-based learning: a case reportdelity simulation: does it correlate with learning styles?

  15. Learning style impact on knowledge gains in human patient simulation

    E-Print Network [OSTI]

    Shinnick, MA; Woo, MA

    2015-01-01T23:59:59.000Z

    the preference for simulation as a learning style. Singap.of high- ?delity simulation-based learning: a case reportdelity simulation: does it correlate with learning styles?

  16. SIMMODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING ENERGY SIMULATION

    E-Print Network [OSTI]

    O'Donnell, James

    2013-01-01T23:59:59.000Z

    whole building energy simulation program. In: IBPSA BuildingExchange Protocols for Energy Simulation of HVAC&R EquipmentInteroperability for Energy Simulation. buildingSmart (2010)

  17. Strategies for coupling energy simulation and computational fluid dynamics programs

    E-Print Network [OSTI]

    Zhai, Zhiqiang; Chen, Qingyan; Klems, Joseph H.; Haves, Philip

    2001-01-01T23:59:59.000Z

    2000. “EnergyPlus: Energy Simulation Program” . ASHRAEA Coupled Airflow-and-Energy Simulation Program for IndoorSTRATEGIES FOR COUPLING ENERGY SIMULATION AND COMPUTATIONAL

  18. Acquisition of building geometry in the simulation of energy performance

    E-Print Network [OSTI]

    Bazjanac, Vladimir

    2001-01-01T23:59:59.000Z

    New-Generation Building Energy Simulation Program," Energy &Classes,” Building Energy Simulation User News, Vol.21,Clarke, J.A. 1985. Energy Simulation in Building Design,

  19. Software Architecture for Object-Oriented Simulation Modeling and Simulation Environments

    E-Print Network [OSTI]

    the realm of (i) model building & simulation execution in conjunction with (ii) software architectureSoftware Architecture for Object-Oriented Simulation Modeling and Simulation Environments: Case been a steady migration towards object-oriented modeling and simulation environments. There exist many

  20. A Smart Home Simulation Tool The Development of a Simulation Tool for Measuring

    E-Print Network [OSTI]

    A Smart Home Simulation Tool The Development of a Simulation Tool for Measuring the Impact of a Smart Grid on a Private Home Michael Nysteen & Henrik Mynderup Kongens Lyngby 2012 IMM-M.Sc.-2012-117 #12;A Smart Home Simulation Tool The Development of a Simulation Tool for Measuring the Impact

  1. Active surge control of centrifugal compressors using drive torque

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Active surge control of centrifugal compressors using drive torque Jan Tommy Gravdahl , Olav control is presented. A centrifugal compressor driven by an electrical motor is studied, and the drive of the drive as control ensures exponential convergence. The proposed method is simulated on a compressor model

  2. Active Learning for Developing Personalized Treatment Department of Statistics

    E-Print Network [OSTI]

    Pineau, Joelle

    the pretreatment observations to treatments. A major challenge is how best to collect data necessary to learn good clinical scientists. Personalized treatment strategies can be learned using data from clinical trials to this approach. We evaluate our active learning policies using both simulated data, and data modeled after

  3. CERFACS ACTIVITY REPORT 1 2 Jan. 2004 Dec. 2005

    E-Print Network [OSTI]

    of heating, ventilation and air conditioning (HVAC) systems and on the improvement of the N'S3 solution;CERFACS ACTIVITY REPORT 3 22 Heating, Ventilation and Air Conditioning Flow Modeling In the field of airflow modelling, the group has carried out CFD simulations in the domain of heating, ventilation and air

  4. Accelerated dynamics simulations of nanotubes.

    SciTech Connect (OSTI)

    Uberuaga, B. P. (Blas Pedro); Stuart, S. J. (Steve J.); Voter, A. F.

    2002-01-01T23:59:59.000Z

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  5. and solar activity

    E-Print Network [OSTI]

    Memorie Della; K. Georgieva; C. Bianchi; B. Kirov

    Abstract. Solar activity, together with human activity, is considered a possible factor for the global warming observed in the last century. However, in the last decades solar activity has remained more or less constant while surface air temperature has continued to increase, which is interpreted as an evidence that in this period human activity is the main factor for global warming. We show that the index commonly used for quantifying long-term changes in solar activity, the sunspot number, accounts for only one part of solar activity and using this index leads to the underestimation of the role of solar activity in the global warming in the recent decades. A more suitable index is the geomagnetic activity which reflects all solar activity, and it is highly correlated to global temperature variations in the whole period for which we have data. Key words. Solar activity, Global warming 1. Sunspot number and global temperature The most popular index of solar activity is the International sunspot number (R). A reconstruction

  6. Center for Plasma Edge Simulation (CPES) -- Rutgers University Final Report

    SciTech Connect (OSTI)

    Parashar, Manish

    2014-03-06T23:59:59.000Z

    The CPES scientific simulations run at scale on leadership class machines, collaborate at runtime and produce and exchange large data sizes, which present multiple I/O and data management challenges. During the CPES project, the Rutgers team worked with the rest of the CPES team to address these challenges at different levels, and specifically (1) at the data transport and communication level through the DART (Decoupled and Asynchronous Remote Data Transfers) framework, and (2) at the data management and services level through the DataSpaces and ActiveSpaces frameworks. These frameworks and their impact are briefly described.

  7. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    SciTech Connect (OSTI)

    Papadimitroulas, Panagiotis; Efthimiou, Nikos; Nikiforidis, George C.; Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04 (Greece)] [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04 (Greece); Loudos, George [Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos Street, Egaleo GR 122 10, Athens (Greece)] [Department of Biomedical Engineering, Technological Educational Institute of Athens, Ag. Spyridonos Street, Egaleo GR 122 10, Athens (Greece); Le Maitre, Amandine; Hatt, Mathieu; Tixier, Florent; Visvikis, Dimitris [Medical Information Processing Laboratory (LaTIM), National Institute of Health and Medical Research (INSERM), 29609 Brest (France)] [Medical Information Processing Laboratory (LaTIM), National Institute of Health and Medical Research (INSERM), 29609 Brest (France)

    2013-11-15T23:59:59.000Z

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with heterogeneous activity distribution for visual assessment.Results: The accuracy of the simulated database was assessed against the original clinical images. The PVC simulated images matched the clinical ones best. Local, regional, and global features extracted from the PVC simulated images were closest to the clinical measurements, with the exception of the size zone variability and the mean intensity values, where heterogeneous tumors showed better reproducibility. The profiles on PVC simulated tumors after postfiltering seemed to represent the more realistic heterogeneous regions with respect to the clinical reference.Conclusions: In this study, the authors investigated the input activity map heterogeneity in the GATE simulations of tumors with heterogeneous activity distribution. The most realistic heterogeneous tumors were obtained by inserting PVC activity distributions from the clinical image into the activity map of the simulation. Partial volume effect (PVE) can play a crucial role in the quantification of heterogeneity within tumors and have an important impact on applications such as patient follow-up during treatment and assessment of tumor response to therapy. The development of such a database incorporating patient anatomical and functional variability can be used to evaluate new image processing or analysis algorithms, while providing control of the ground truth, which is not available when dealing with clinical datasets. The database includes all images used and generated in this study, as well as the sinograms and the attenuation phantoms for further investigation. It is freely available to the interested reader of the journal at http://www.med.upatras.gr/oncobase/.

  8. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T. (Idaho Falls, ID)

    1993-01-01T23:59:59.000Z

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  9. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06T23:59:59.000Z

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  10. Low Energy Quantum System Simulation

    E-Print Network [OSTI]

    Peter Cho; Karl Berggren

    2003-10-26T23:59:59.000Z

    A numerical method for solving Schrodinger's equation based upon a Baker-Campbell-Hausdorff (BCH) expansion of the time evolution operator is presented herein. The technique manifestly preserves wavefunction norm, and it can be applied to problems in any number of spatial dimensions. We also identify a particular dimensionless ratio of potential to kinetic energies as a key coupling constant. This coupling establishes characteristic length and time scales for a large class of low energy quantum states, and it guides the choice of step sizes in numerical work. Using the BCH method in conjunction with an imaginary time rotation, we compute low energy eigenstates for several quantum systems coupled to non-trivial background potentials. The approach is subsequently applied to the study of 1D propagating wave packets and 2D bound state time development. Failures of classical expectations uncovered by simulations of these simple systems help develop quantum intuition. Finally, we investigate the response of a Superconducting Quantum Interference Device (SQUID) to a time dependent potential. We discuss how to engineer the potential's energy and time scales so that the SQUID acts as a quantum NOT gate. The notional simulation we present for this gate provides useful insight into the design of one candidate building block for a quantum computer.

  11. Multiphysics simulations: challenges and opportunities.

    SciTech Connect (OSTI)

    Keyes, D.; McInnes, L. C.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M. (Mathematics and Computer Science); (KAUST and Columbia Univ.); (Lawrence Livermore National Laboratory); (Univ. of Illinois at Urbana-Champaign); (Univ. of Mich.); (Idaho National Lab.)

    2012-11-29T23:59:59.000Z

    This report is an outcome of the workshop Multiphysics Simulations: Challenges and Opportunities, sponsored by the Institute of Computing in Science (ICiS). Additional information about the workshop, including relevant reading and presentations on multiphysics issues in applications, algorithms, and software, is available via https://sites.google.com/site/icismultiphysics2011/. We consider multiphysics applications from algorithmic and architectural perspectives, where 'algorithmic' includes both mathematical analysis and computational complexity and 'architectural' includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities. We also initiate a modest suite of test problems encompassing features present in many applications.

  12. Stochastic Roadmap Simulation: Efficient Representation and Algorithms for

    E-Print Network [OSTI]

    Brutlag, Doug

    Stochastic Roadmap Simulation: Efficient Representation and Algorithms for the Analysis Roadmap Simulation (SRS) #12;Stochastic Roadmap Simulation (SRS) Multiple paths at once; #12;Stochastic Roadmap Simulation (SRS) Multiple paths at once; No local minimum problem; #12;Stochastic Roadmap

  13. Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water System

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

  14. Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water System 

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

  15. Clinical Reasoning Automata for Simulated Patients Froduald Kabanza1 and Guy Bisson2

    E-Print Network [OSTI]

    Kabanza, Froduald

    Clinical Reasoning Automata for Simulated Patients Froduald Kabanza1 and Guy Bisson2 University.Kabanza@usherbrooke.ca 2 Faculty of Medicine Guy.Bisson@Usherbrooke.ca Abstract. In this paper we introduce clinical a clinical reasoning activity. A state of the automaton represents a particular process in a complex patient

  16. Thermal Simulation of Laser Annealing for 3D Integration B. Rajendran, S. H. Jain1

    E-Print Network [OSTI]

    Pease, R. Fabian W.

    laser annealing is a very promising technology for dopant activation [4]. Ultra-short, high intensityThermal Simulation of Laser Annealing for 3D Integration B. Rajendran, S. H. Jain1 , T. A. Kramer of various interconnect and device layers of an exemplary 3D IC structure during laser annealing for dopant

  17. The Durham ELT adaptive optics simulation platform

    E-Print Network [OSTI]

    Alastair Basden; Timothy Butterley; Richard Myers; Richard Wilson

    2006-11-09T23:59:59.000Z

    Adaptive optics systems are essential on all large telescopes where image quality is important. These are complex systems with many design parameters requiring optimisation before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorise the expected performance. This paper describes an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes (ELTs) as well as current systems. This platform is modular, object oriented and has the benefit of hardware application acceleration which can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelised using parallelisation techniques suited for adaptive optics simulation, whilst still offering the user complete control while the simulation is running. Results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.

  18. atomistic simulation study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine Physics Websites Summary: Simulational nanoengineering: Molecular dynamics...

  19. atomistic simulation studies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine Physics Websites Summary: Simulational nanoengineering: Molecular dynamics...

  20. Theory, experiment and computer simulation of the electrostatic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory, experiment and computer simulation of the electrostatic potential at crystalelectrolyte interfaces . Theory, experiment and computer simulation of the electrostatic...

  1. Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure

    SciTech Connect (OSTI)

    Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

    2009-10-27T23:59:59.000Z

    This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

  2. LANSCE | News & Media | Activity Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    background News Multimedia Events Profiles Highlights Activity Reports The Pulse User Program Headlines News & Media dotline Activity Reports 2012 2011 LANSCE Activity Report 2012...

  3. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25T23:59:59.000Z

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  4. International symposium on fuel rod simulators: development and application

    SciTech Connect (OSTI)

    McCulloch, R.W. (comp.)

    1981-05-01T23:59:59.000Z

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  5. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  6. Energy Conservation Standards Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress August 2014 United States Department of Energy Washington, DC 20585 Energy Conservation Standards Activities Report to Congress | Page i Message from the...

  7. Nonequilibrium equation of state in suspensions of active colloids

    E-Print Network [OSTI]

    Félix Ginot; Isaac Theurkauff; Demian Levis; Christophe Ybert; Lydéric Bocquet; Ludovic Berthier; Cécile Cottin-Bizonne

    2014-11-26T23:59:59.000Z

    Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres, and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  8. Simulating Billion-Task Parallel Programs

    SciTech Connect (OSTI)

    Perumalla, Kalyan S [ORNL] [ORNL; Park, Alfred J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In simulating large parallel systems, bottom-up approaches exercise detailed hardware models with effects from simplified software models or traces, whereas top-down approaches evaluate the timing and functionality of detailed software models over coarse hardware models. Here, we focus on the top-down approach and significantly advance the scale of the simulated parallel programs. Via the direct execution technique combined with parallel discrete event simulation, we stretch the limits of the top-down approach by simulating message passing interface (MPI) programs with millions of tasks. Using a timing-validated benchmark application, a proof-of-concept scaling level is achieved to over 0.22 billion virtual MPI processes on 216,000 cores of a Cray XT5 supercomputer, representing one of the largest direct execution simulations to date, combined with a multiplexing ratio of 1024 simulated tasks per real task.

  9. Model Validation with Hybrid Dynamic Simulation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Kosterev, Dmitry; Guttromson, Ross T.; Nguyen, Tony B.

    2006-06-18T23:59:59.000Z

    Abstract—Model validation has been one of the central topics in power engineering studies for years. As model validation aims at obtaining reasonable models to represent actual behavior of power system components, it has been essential to validate models against actual measurements or known benchmark behavior. System-wide model simulation results can be compared with actual recordings. However, it is difficult to construct a simulation case for a large power system such as the WECC system and to narrow down to problematic models in a large system. Hybrid dynamic simulation with its capability of injecting external signals into dynamic simulation enables rigorous comparison of measurements and simulation in a small subsystem of interest. This paper presents such a model validation methodology with hybrid dynamic simulation. Two application examples on generator and load model validation are presented to show the validity of this model validation methodology. This methodology is further extended for automatic model validation and dichotomous subsystem model validation.

  10. Emulation to simulate low resolution atmospheric data

    SciTech Connect (OSTI)

    Hebbur Venkata Subba Rao, Vishwas [ORNL; Archibald, Richard K [ORNL; Evans, Katherine J [ORNL

    2012-08-01T23:59:59.000Z

    Climate simulations require significant compute power, they are complex and therefore it is time consuming to simulate them. We have developed an emulator to simulate unknown climate datasets. The emulator uses stochastic collocation and multi-dimensional in- terpolation to simulate the datasets. We have used the emulator to determine various physical quantities such as temperature, short and long wave cloud forcing, zonal winds etc. The emulation gives results which are very close to those obtained by simulations. The emulator was tested on 2 degree atmospheric datasets. The work evaluates the pros and cons of evaluating the mean first and inter- polating and vice versa. To determine the physical quantities, we have assumed them to be a function of time, longitude, latitude and a random parameter. We have looked at parameters that govern high stable clouds, low stable clouds, timescale for convection etc. The emulator is especially useful as it requires negligible compute times when compared to the simulation itself.

  11. Intelligent interface for design and simulation

    SciTech Connect (OSTI)

    Draisin, W.; Peter, E.

    1986-01-01T23:59:59.000Z

    We are developing a system composed of intelligent interfaces, expert systems, and databases that uses artificial intelligence techniques to simplify the use of large simulation codes and to help design complicated physical devices. The simulation codes are used in analyzing and designing weapons, and the devices are themselves parts of weapon systems. From a designer's point of view, the simulation process is the same no matter what is being simulated. In the course of developing two intelligent interfaces for the design of nuclear weapons, we have found that data-driven programming is a useful technique for implementing an open-ended user interface to assist the designer. We discuss the simulation process as it is done now and as it could be done with intelligent interfaces. We then discuss the use of data-driven programming in a database environment to support an interface for an arbitrary number of simulation codes. 3 figs.

  12. Simulation Enabled Safeguards Assessment Methodology

    SciTech Connect (OSTI)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01T23:59:59.000Z

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.

  13. Simulation of leveling in electrodeposition

    SciTech Connect (OSTI)

    Dukovic, J.O.; Tobias, C.W. (Materials and Chemical Sciences Div., Lawrence Berkeley Lab. and Dept. of Chemical Engineering, Univ. of California, Berkeley, CA (US))

    1990-12-01T23:59:59.000Z

    This paper reports on a model of current distribution and electrode shape change for electrodeposition in the presence of diffusion-controlled leveling agents that have been developed. The system is treated as a special case of secondary current distribution, with the surface overpotential taken to depend on both the current density and the transport-limited flux of the leveling agent, according to an empirical relation adapted from polarization data measured at different conditions of agitation. The spatial variation of the leveling-agent flux is determined from a concentration field problem based on the assumption of a stagnant diffusion layer. The solution is obtained by the boundary element method, with a flexible moving-boundary algorithm for simulating the advancement of the electrode profile. To illustrate the model's performance, the evolution of a groove profile during deposition of nickel from a Watts-type bath containing coumarin is predicted and compared with measurements reported in the literature.

  14. Explosive simulants for testing explosive detection systems

    DOE Patents [OSTI]

    Kury, John W. (Danville, CA); Anderson, Brian L. (Lodi, CA)

    1999-09-28T23:59:59.000Z

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  15. Uncalibrated Building Energy Simulation Modeling Results 

    E-Print Network [OSTI]

    Ahmad, M.; Culp, C.H.

    2006-01-01T23:59:59.000Z

    VOLUME 12, NUMBER 4 HVAC&R RESEARCH OCTOBER 2006 1141 Uncalibrated Building Energy Simulation Modeling Results Mushtaq Ahmad Charles H. Culp, PhD, PE Associate Member ASHRAE Fellow ASHRAE Received June 23, 2005; accepted April 17, 2006... the uncalibrated simulations were completed. The dis- crepancies between the simulated and measured total yearly building energy use varied over ±30% with one outlier. The results show that discrepancies ranged over ±90% between the sim- ulations and the measured...

  16. GEOMECHANICS IN RESERVOIR SIMULATION: OVERVIEW OF ...

    E-Print Network [OSTI]

    P. LONGUEMARE

    2002-11-12T23:59:59.000Z

    dans le réservoir et de faciliter le calage des historiques de production. Abstract — Geomechanics in Reservoir Simulation: Overview of Coupling Methods and ...

  17. Multidimensional simulation and chemical kinetics development...

    Broader source: Energy.gov (indexed) [DOE]

    Developing chemical kinetic mechanisms and applying them to simulating engine combustion processes. deer09aceves.pdf More Documents & Publications Chemical Kinetic Research on...

  18. First trillion particle cosmological simulation completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trillion particle cosmological simulation completed A team of astrophysicists and computer scientists has created high-resolution cyber images of our cosmos. December 3, 2014...

  19. Simulation and Risk Assessment Archived Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mellon University 412008 Simulation and Risk Assessment for Phase III Pilots Regional Carbon Sequestration Partnerships 1012008 Injection and Reservoir Hazard Management:...

  20. Molecular dynamics simulation studies of electrolytes andelectrolyte...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es40smith.pdf More Documents & Publications Molecular Dynamics Simulation Studies of...

  1. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov (indexed) [DOE]

    Volvo; multi-zone cycle simulation, OpenFOAM model development Bosch; High Performance Computing of HCCISI transition Delphi; direct injection GE Research; new...

  2. Sandia National Laboratories: Offshore Wind Energy Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

  3. Molecular dynamics simulation of threshold displacement energies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental estimates in ceramics. Citation: Moreira PA, R Devanathan, J Yu, and WJ Weber.2009."Molecular dynamics simulation of threshold displacement energies in...

  4. Materials Theory, Modeling and Simulation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Materials Theory and Simulation Quantum Monte Carlo Density Functional Theory Monte Carlo Ab Initio Molecular Dynamics Chemical and Materials Theory...

  5. Simulating Complex Window Systems using BSDF Data

    E-Print Network [OSTI]

    Konstantoglou, Maria

    2011-01-01T23:59:59.000Z

    BSDF simulated values, due to differences in sky luminancesky distribution, modelled interior and exterior conditions, and slight differences in location of view. Still, the luminance

  6. Development and Demonstration of Ultrafiltration Simulants

    SciTech Connect (OSTI)

    Russell, Renee L.; Billing, Justin M.; Peterson, Reid A.; Rinehart, Donald E.; Smith, Harry D.

    2009-02-24T23:59:59.000Z

    According to Bechtel National, Inc. (BNI) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,” simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes for the waste treatment plant (WTP). These simulants will then be used to demonstrate the leaching process and to help refine processing conditions which may impact safety basis considerations (Smith 2006). This report documents the results of the filtration simulant development.

  7. Sandia National Laboratories: Consortium for Advanced Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the modeling simulation tools built during its first phase to include additional nuclear reactor designs, including small, modular reactors. "As President Obama made clear...

  8. Development and Characterization of Boehmite Component Simulant

    SciTech Connect (OSTI)

    Russell, Renee L.; Peterson, Reid A.; Smith, Harry D.; Rinehart, Donald E.; Aker, Pamela M.; Buck, Edgar C.

    2009-03-10T23:59:59.000Z

    According to Bechtel National Inc.’s (BNI’s) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, “Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,” simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes. These simulants will then be used to demonstrate the leaching process and to help refine processing conditions that may impact safety basis considerations (Smith 2006). This report documents the results of the boehmite simulant development.

  9. MOOSE simulating nuclear reactor CRUD buildup

    ScienceCinema (OSTI)

    None

    2014-07-21T23:59:59.000Z

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  10. MOOSE simulating nuclear reactor CRUD buildup

    SciTech Connect (OSTI)

    None

    2014-02-06T23:59:59.000Z

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  11. Sandia National Laboratories: Molecular Simulations Guide Nanowire...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Summit Experimental Smart Outlet Brings Flexibility, Resiliency to Grid Architecture Molecular Simulations Guide Nanowire Research On March 7, 2012, in Capabilities,...

  12. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19T23:59:59.000Z

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  13. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, David R. (New Castle, DE); Velenyi, Louis J. (Lyndhurst, OH); Pepera, Marc A. (Northfield, OH); Dolhyj, Serge R. (Parma, OH)

    1986-01-01T23:59:59.000Z

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. Neutron counter based on beryllium activation

    SciTech Connect (OSTI)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21T23:59:59.000Z

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  15. MHD simulation of RF current drive in MST

    SciTech Connect (OSTI)

    Hendries, E. R.; Anderson, J. K.; Forest, C. B.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R. [University of Wisconsin, Madison WI (United States); Diem, S. [Oak Ridge National Laboratory, Oak Ridge TN (United States); Harvey, R. W. [CompX, Del Mar, CA (United States)

    2014-02-12T23:59:59.000Z

    Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S ? 10{sup 4}) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S ? 3×10{sup 6}) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.

  16. Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation System

    E-Print Network [OSTI]

    Tarboton, David

    Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation Old Main Hill, Logan, UT, 84322-8200, USA Abstract: In this work, we used the Regional Hydro

  17. MIT Device Simulation WebLab : an online simulator for microelectronic devices

    E-Print Network [OSTI]

    Solis, Adrian (Adrian Orbita)

    2005-01-01T23:59:59.000Z

    In the field of microelectronics, a device simulator is an important engineering tool with tremendous educational value. With a device simulator, a student can examine the characteristics of a microelectronic device described ...

  18. Intelligent Simulation Tools for Mining Large Scienti c Data Sets 1 Intelligent Simulation Tools for Mining

    E-Print Network [OSTI]

    Bailey-Kellogg, Chris

    Intelligent Simulation Tools for Mining Large Scienti#12;c Data Sets 1 Intelligent Simulation Tools for Mining Large Scienti#12;c Data Sets Feng ZHAO Xerox Palo Alto Research Center 3333 Coyote Hill Road, Palo. Keywords Intelligent simulation, Scienti#12;c data mining, Qualitative reasoning, Reasoning about physical

  19. The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator 

    E-Print Network [OSTI]

    Dube, Hans Gerhardt

    1990-01-01T23:59:59.000Z

    of Cases Fundamental Difference Between the Reservoir Simulators. Data Sets. . General Process of Verification. . . . . . . . . . . . . . . 22 24 25 25 26 29 32 36 SINGLE LAYER, RADIAL FLOW DRAWDOWN CASES. . 38 viii Page Infinite Cylindrical... Drawdown Problems. . . . . . . . . . . . . 38 41 43 45 49 50 52 MULTIPLE LAYER RESERVOIR, RADIAL FLOW DRAWDOWN CASES. 63 Simulation of Multiple Layer Reservoirs. . . . . . Simulation Parameters. Constant Rate Drawdown Tests in an Infinite...

  20. Numerical Simulation for eHealth: Grid-enabled Medical Simulation Services Siegfried Benknera

    E-Print Network [OSTI]

    Middleton, Stuart E.

    advanced bio-medical simulation applications. Often, however, such applications have a very limited methodology advances. The European GEMSS Project [7] is concerned with the creation of medical Grid service1 Numerical Simulation for eHealth: Grid-enabled Medical Simulation Services Siegfried Benknera

  1. Simulations de Parent / Kinship Simulations Colloque final du projet SimPa

    E-Print Network [OSTI]

    White, Douglas R.

    Simulations de Parenté / Kinship Simulations Colloque final du projet SimPa Final workshop Remarks, Francois Heran (INED) 10h30 From Tip to SimPa. Why Bother with Simulation?, Michael Houseman (University of Ljubjana) 13h00 Lunch 14h30 Machine Learning Applied to Alliance Networks, Telmo Menezes (CAMS

  2. Primitive chain Brownian simulations of entangled rubbers Short title: Simulations of entangled rubbers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Primitive chain Brownian simulations of entangled rubbers Short title: Simulations of entangled rubbers J. Oberdisse1,2 , G. Ianniruberto2 , F. Greco3 , G. Marrucci2 1 Laboratoire Léon Brillouin CEA and entanglements used in several molecular theories of rubber elasticity is confirmed by the simulation results

  3. ACTIVE GALACTIC NUCLEUS FEEDBACK WORKS BOTH WAYS

    SciTech Connect (OSTI)

    Zinn, P.-C.; Middelberg, E.; Dettmar, R.-J. [Astronomical Institute of Ruhr-University Bochum, Universitaetsstrasse 150, D-44801 Bochum (Germany); Norris, R. P. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2013-09-01T23:59:59.000Z

    Simulations of galaxy growth need to invoke strong negative feedback from active galactic nuclei (AGNs) to suppress the formation of stars and thus prevent the over-production of very massive systems. While some observations provide evidence for such negative feedback, other studies find either no feedback or even positive feedback, with increased star formation associated with higher AGN luminosities. Here we report an analysis of several hundred AGNs and their host galaxies in the Chandra Deep Field South using X-ray and radio data for sample selection. Combined with archival far-infrared data as a reliable tracer of star formation activity in the AGN host galaxies, we find that AGNs with pronounced radio jets exhibit a much higher star formation rate (SFR) than the purely X-ray-selected ones, even at the same X-ray luminosities. This difference implies that positive AGN feedback plays an important role, too, and therefore has to be accounted for in all future simulation work. We interpret this to indicate that the enhanced SFR of radio-selected AGNs arises because of jet-induced star formation, as is suggested by the different jet powers among our AGN samples, while the suppressed SFR of X-ray selected AGN is caused by heating and photo-dissociation of molecular gas by the hot AGN accretion disk.

  4. Active optical zoom system

    DOE Patents [OSTI]

    Wick, David V.

    2005-12-20T23:59:59.000Z

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  5. BLIND SPOTS OF QUALITATIVE SIMULATORS Nuri Tasdemir

    E-Print Network [OSTI]

    BLIND SPOTS OF QUALITATIVE SIMULATORS by Nuri Ta¸sdemir BS, in Electrical and Electronics in Computer Engineering Bogazi¸ci University 2007 #12;ii BLIND SPOTS OF QUALITATIVE SIMULATORS APPROVED BY: Prof. A.C. Cem Say . . . . . . . . . . . . . . . . . . . (Thesis Supervisor) Prof. H. Levent Akin

  6. A general-purpose, geochemical reservoir simulator

    SciTech Connect (OSTI)

    Liu, X.; Ortoleva, P.

    1996-12-31T23:59:59.000Z

    A geochemical simulator for the analysis of coupled reaction and transport processes is presented. The simulator is based on the numerical solution of the equations of coupled multi-phase fluid flow, species transport, energy balance and rock/fluid reactions. It also accounts for the effects of grain growth/dissolution and the alteration of porosity and permeability due to mineral reactions. The simulator can be used to analyze core floods, single-well scenarios and multiple production/injection well systems on the reservoir scale. Additionally, the simulator provides two flow options: the Darcy law for fluid flow in porous media and the Brinkman law that subsumes both free and porous medium flows. The simulator was tested using core acidizing data and results were in good agreement with laboratory observations. The simulator was applied to analyze matrix acidizing treatments for a horizontal well. The evolution of the skin factor was predicted and the optimal volume of acid required to remove the near-wellbore damage was determined. Reactive fluid infiltration was shown to lead to reaction-front fingering under certain conditions. Viscosity contrast in multiphase flow could also result in viscous fingering. Examples in this study also address these nonlinear fingering phenomena. A waterflood on the reservoir scale was analyzed and simulation results show that scale formation during waterfloods can occur far beyond injection wells. Two cases of waste disposal by deep well injection were evaluated and our simulation results were consistent with field measured data.

  7. Computer Simulations Reveal Multiple Functions for Aromatic

    E-Print Network [OSTI]

    Computer Simulations Reveal Multiple Functions for Aromatic Residues in Cellulase Enzymes NREL researchers use high-performance computing to demonstrate fundamental roles of aromatic residues in cellulase enzyme tunnels. National Renewable Energy Laboratory (NREL) computer simulations of a key indus- trial

  8. THE BLIND SIMULATION PROBLEM and REGENERATIVE PROCESSES

    E-Print Network [OSTI]

    Bucklew, James Antonio

    Processes 1 #12; 1 Introduction 1.1 Simulation and importance sampling Large and/or nonlinear stochastic on the order of 10 \\Gamma6 are quite common in stochastic systems. It is clear that a direct simulation(Z i ): The ratio p(\\Delta)=q(\\Delta) will be called the weight function of the importance sam

  9. Dynamic simulations of arrays of Josephson junctions

    SciTech Connect (OSTI)

    Eikmans, H.; van Himbergen, J.E. (Institute for Theoretical Physics, University of Utrecht, P.O. Box 80.006, 3508 TA Utrecht, The Netherlands (NL))

    1990-05-01T23:59:59.000Z

    First we introduce a very efficient algorithm for dynamic simulations of a wide class of arrays of Josephson junctions with realistic boundaries. With this algorithm one can also represent current-biased arrays with periodic boundaries. Next we present results of extensive simulations of ladder arrays. We evaluate the resistance as a function of magnetic field and find striking differences between different geometries.

  10. Numerical Simulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

  11. Milestone M4900: Simulant Mixing Analytical Results

    SciTech Connect (OSTI)

    Kaplan, D.I.

    2001-07-26T23:59:59.000Z

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  12. Incorporating Interprofessional Simulations in Dietetics Education

    E-Print Network [OSTI]

    George, Katie Elizabeth

    2014-08-31T23:59:59.000Z

    was not statistically significant. No difference was seen between students with regard to clinical experience. 87.5% of students felt the simulation helped them learn roles of other healthcare professionals, while 93.8% of students felt the simulation enhanced...

  13. Reweighting QCD simulations with dynamical overlap fermions

    E-Print Network [OSTI]

    Thomas DeGrand

    2008-10-03T23:59:59.000Z

    I apply a recently developed algorithm for reweighting simulations of lattice QCD from one quark mass to another to simulations performed with overlap fermions in the epsilon regime. I test it by computing the condensate from distributions of the low lying eigenvalues of the Dirac operator. Results seem favorable.

  14. Simulation of thermoacoustics with discontinuous Galerkin method

    E-Print Network [OSTI]

    Simulation of thermoacoustics with discontinuous Galerkin method Micha¨el Gineste Kongens Lyngby 2006 #12;#12;Summary This project concerns the simulation of thermoacoustical system. The aim of a numerical framework, which can be used as a tool for preliminary analysis of thermoacoustic systems. As such

  15. Short-Duration Simulations from Measurements.

    SciTech Connect (OSTI)

    Mitchell, Dean J.; Enghauser, Michael

    2014-08-01T23:59:59.000Z

    A method is presented that ascribes proper statistical variability to simulations that are derived from longer-duration measurements. This method is applicable to simulations of either real-value or integer-value data. An example is presented that demonstrates the applicability of this technique to the synthesis of gamma-ray spectra.

  16. Event simulation for colliders - A basic overview

    E-Print Network [OSTI]

    Christian Reuschle

    2014-11-26T23:59:59.000Z

    In this article we will discuss the basic calculational concepts to simulate particle physics events at high energy colliders. We will mainly focus on the physics in hadron colliders and particularly on the simulation of the perturbative parts, where we will in turn focus on the next-to-leading order QCD corrections.

  17. Observations and simulations improve space weather models

    E-Print Network [OSTI]

    - 1 - Observations and simulations improve space weather models June 25, 2014 Los Alamos with fast-moving particles and a space weather system that varies in response to incoming energy computer simulations of the space weather that can affect vital technology, communication and navigation

  18. Visualization of Fuel Cell Simulations Niklas Rober

    E-Print Network [OSTI]

    Zhang, Richard "Hao"

    Visualization of Fuel Cell Simulations Niklas R¨ober Otto-von-Guericke-Universit¨at, Magdeburg is used for this is a numerical simulation of a fuel cell. This data set is multiparametric and consist for the display of such data sets are discussed and evaluated on the fuel cell example. v #12;vi vi #12

  19. Atomistic Protein Folding Simulations on the

    E-Print Network [OSTI]

    Snow, Christopher

    Atomistic Protein Folding Simulations on the Submillisecond Time Scale Using Worldwide Distributed Abstract: Atomistic simulations of protein folding have the potential to be a great complement. Biopolymers 68: 91­109, 2003 Keywords: atomistic protein folding; microsecond time scale; computer hardware

  20. JPL S neii space simulator starts its

    E-Print Network [OSTI]

    Greer, Julia R.

    as much as anyone. 25 #12;The Month . . . continued solar panels extended. The space environment simu of the tower contains a solar simulation unit which is designed to simulate the varying intensity of sunlight of its kind in the United States, consists of a 10,000-square-foot building to house offices, a control

  1. SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE

    E-Print Network [OSTI]

    1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

  2. Molecular Simulation of Nanofluids Mark J. Biggs

    E-Print Network [OSTI]

    Adler, Joan

    Molecular Simulation of Nanofluids Mark J. Biggs School of Chemical Engineering, The University of Adelaide, South Australia, Australia, 5005. mark.biggs@adelaide.edu.au Models of nanofluid systems ­ which suited in many cases to those of nanofluid systems. It is for this reason that molecular simulation has

  3. Learning Partially Observable Deterministic Action Models Computer Science Department

    E-Print Network [OSTI]

    Amir, Eyal

    . For example, the overall time for learning STRIPS actions' effects is O(T · n). For other cases the update per- imate the representation with a k-CNF formula, yielding an overall time of O(T · nk ) for the entire, and games. Other applications, such as robotics, human-computer interfaces, and program and

  4. Learning Partially Observable Deterministic Action Models Computer Science Department

    E-Print Network [OSTI]

    Amir, Eyal

    . For example, the overall time for learning STRIPS actions' effects is O(T · n). For other cases the update per approx­ imate the representation with a k­CNF formula, yielding an overall time of O(T · n k, virtual worlds, and games. Other applications, such as robotics, human­computer interfaces, and progr

  5. MOMDIS: a Glauber model computer code for knockout reactions

    E-Print Network [OSTI]

    C. A. Bertulani; A. Gade

    2006-04-12T23:59:59.000Z

    A computer program is described to calculate momentum distributions in stripping and diffraction dissociation reactions. A Glauber model is used with the scattering wavefunctions calculated in the eikonal approximation. The program is appropriate for knockout reactions at intermediate energy collisions (30 MeV $\\leq$ E$_{lab}/$nucleon $\\leq 2000$ MeV). It is particularly useful for reactions involving unstable nuclear beams, or exotic nuclei (e.g. neutron-rich nuclei), and studies of single-particle occupancy probabilities (spectroscopic factors) and other related physical observables. Such studies are an essential part of the scientific program of radioactive beam facilities, as in for instance the proposed RIA (Rare Isotope Accelerator) facility in the US.

  6. IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005 29 Educational Applets for Active Learning in Properties

    E-Print Network [OSTI]

    . INTRODUCTION WITH simulations and online materials, students are able to take a more active role in learning in more steps of the learning process [2]. Visual self-guided simulations are useful Manuscript received Learning in Properties of Electronic Materials Jessica Masters, Tara M. Madhyastha, Member, IEEE, and Ali

  7. Numerical Simulations of Thermobaric Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

    2007-05-04T23:59:59.000Z

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions in five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.

  8. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01T23:59:59.000Z

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  9. Simulations of superhumps and superoutbursts

    E-Print Network [OSTI]

    James Murray

    1997-10-22T23:59:59.000Z

    We numerically study the tidal instability of accretion discs in close binary systems using a two-dimensional SPH code. We find that the precession rate of tidally unstable, eccentric discs does not only depend upon the binary mass ratio q. Although the (prograde) disc precession rate increases with the strength of the tidal potential, it also increases with the shear viscosity. Increasing the disc temperature has a retrograde impact upon the precession rate. We find that motion relative to the binary potential results in superhump-like, periodic luminosity variations in the outer reaches of an eccentric disc. The nature and location of the luminosity modulation is a function of the shear viscosity, nu. Light curves most similar to observations are obtained for nu values appropriate for a dwarf nova in outburst. We investigate the thermal-tidal instability model for superoutburst. A dwarf nova outburst is simulated by instantaneously increasing nu, which causes a rapid radial expansion of the disc. Should the disc encounter the 3:1 eccentric inner Lindblad resonance and become tidally unstable, then tidal torques become much more efficient at removing angular momentum from the disc. The disc then shrinks and mass flux through the disc increases. The resulting increase in disc luminosity is found to be consistent with the excess luminosity of a superoutburst.

  10. A NEW GENERATION CHEMICAL FLOODING SIMULATOR

    SciTech Connect (OSTI)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2005-01-01T23:59:59.000Z

    The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. In this final report, we will detail our progress on Tasks 1 through 3 of the project.

  11. Method for simulating discontinuous physical systems

    DOE Patents [OSTI]

    Baty, Roy S. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.

  12. Combining Semi-Analytic Models of Galaxy Formation with Simulations of Galaxy Clusters: the Need for AGN Heating

    E-Print Network [OSTI]

    Short, C J

    2009-01-01T23:59:59.000Z

    We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al. (2008), who arrived at the same conclusion on the basis of purely semi-analytic reasoning.

  13. Computer simulation of grain boundary self-diffusion in aluminum

    SciTech Connect (OSTI)

    Dragunov, Andrei S., E-mail: andrei.dragunov@aun.edu.ng [American University of Nigeria, Nigeria, Adamawa State, Yola Yola By-Pass 98 Lamido Zubairu Way (Nigeria); Weckman, A. V.; Demyanov, B. F. [Altai State Technical University, Russia, Altai Region, Barnaul (Russian Federation)

    2014-10-06T23:59:59.000Z

    In the work study the process of self-diffusion in symmetric tilt grain boundaries (GB) with the axes misorientation [100], [110] and [111]. The research was carried out by the methods of computer simulation The objects of the research are the three GB of common and special type for each axis misorientation. The angles of misorientation of the common GB is amounted to 10°, 30° and 50°. The simulation was performed by the method of molecular dynamics in the temperature range from 600 to 1000 K, with an interval of 50 K. For research on the direction jumps atoms were built tracks the movement of atoms in the process of self-diffusion. The calculations have shown, that for all of GB is characterized by pronounced anisotropy of the jumps at low temperatures (< 700K). At temperatures near to the melting point directions of the jumps are isotropic only for three GB (?=30°[100], ?=50=[100] and ?5(013)[100]). For other GB such as [100] and [110] remains priority direction of diffusion along the nuclei GB dislocations. Arrenius curves have from one to three linear plots with different tilt. Change the tilt of Arrenius dependences testifies to the change in the mechanism of self-diffusion. The parameters of grainboundary self-diffusion were determined The activation energy of grainboundary diffusion in 4–5 times lower than the energy of activation of a volume self-diffusion of aluminum (about 200 KJ/mol). The minimum value of activation energy has GB 10° with the axis misorientation [100] (10,15 KJ/mol), maximum (104.12 Kj/mol) - a special GB ?11(113)

  14. An Evaluation of the Network Simulators in Large-Scale Distributed Simulations

    SciTech Connect (OSTI)

    Ciraci, Selim; Akyol, Bora A.

    2011-11-13T23:59:59.000Z

    This is a survey paper about the state-of-the-art in large-scale network simulation. Networks for the smart grids are characterized by millions of sensor nodes exchanging information about the status of the grid. This information exchange must be realized reliably and efficiently due to the mission critical nature of the power grid. Hence, the applications and the network protocols developed for the smart grid need go through rigorous testing and analysis before deployment. Developers usually do not have access to such a large-scale network that can be used as a controlled test-bed; therefore, network simulation becomes an essential tool for testing. Network simulation is a well studied problem in the literature and there are various widely used network simulators. These simulators can be adopted for testing applications and protocols of the smart grid. Due to the scale of these networks, parallel/distributed simulations need to be conducted. Even though most network simulators support distributed simulations, generating a large-scale network model to simulate can still be a cumbersome task. In this survey, we describe a selection of commonly used network simulators and evaluate them with respect to the following features that can aid users in distributed simulations of large-scale networks: transparency of setting up distributed simulation, automated topology generation, information hiding, lightweight routing protocols, network error simulation, evaluation of the network model during simulation and trace analysis tools. As a complementary result, we identify two issues with network simulators that can be addressed with runtime steering methods.

  15. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1994-08-01T23:59:59.000Z

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components.

  16. PRESSURE ACTIVATED SEALANT TECHNOLOGY

    SciTech Connect (OSTI)

    Michael A. Romano

    2004-04-01T23:59:59.000Z

    The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

  17. Focused active inference

    E-Print Network [OSTI]

    Levine, Daniel S., Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    In resource-constrained inferential settings, uncertainty can be efficiently minimized with respect to a resource budget by incorporating the most informative subset of observations - a problem known as active inference. ...

  18. Active terahertz metamaterials

    SciTech Connect (OSTI)

    Chen, Hou-tong [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.

  19. Water harvesting using a conducting polymer: A study by molecular dynamics simulation

    SciTech Connect (OSTI)

    Ostwal, Mayur M.; Sahimi, Muhammad; Tsotsis, Theodore T. [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 (United States)

    2009-06-15T23:59:59.000Z

    The results of extensive molecular simulations of adsorption and diffusion of water vapor in polyaniline, made conducting by doping it with HCl or HBr over a broad range of temperatures, are reported. The atomistic model of the polymers was generated using energy minimization, equilibrium molecular dynamics simulations, and two different force fields. The computed sorption isotherms are in excellent agreement with the experimental data. The computed activation energies for the diffusion of water molecules in the polymers also compare well with what has been reported in the literature. The results demonstrate the potential of conducting polyaniline for water harvesting from air.

  20. Low activation ferritic alloys

    DOE Patents [OSTI]

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07T23:59:59.000Z

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  1. Low activation ferritic alloys

    DOE Patents [OSTI]

    Gelles, David S. (West Richland, WA); Ghoniem, Nasr M. (Granada Hills, CA); Powell, Roger W. (Pasco, WA)

    1986-01-01T23:59:59.000Z

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  2. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01T23:59:59.000Z

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  3. Call for Papers ACM Transactions on Modeling and Computer Simulation

    E-Print Network [OSTI]

    L'Ecuyer, Pierre

    simulation, improving the efficiency of simulations for those large systems, building effective and flexibleCall for Papers ACM Transactions on Modeling and Computer Simulation Special Issue on Simulation Pierre L'Ecuyer, University of Montreal In connection with the 2011 INFORMS Simulation Society Research

  4. Course Announcement CIS 786: Simulation and Modeling for

    E-Print Network [OSTI]

    Lin, Xiaodong

    are to learn how to plan, build and use simulation models and to develop an understanding of when simulation and software tools for building simulation models, performing experiments with them, and interpreting the results. To build simulation models, we will make use the software package ARENA, a popular simulation

  5. Evaluating uncertainty in stochastic simulation models

    SciTech Connect (OSTI)

    McKay, M.D.

    1998-02-01T23:59:59.000Z

    This paper discusses fundamental concepts of uncertainty analysis relevant to both stochastic simulation models and deterministic models. A stochastic simulation model, called a simulation model, is a stochastic mathematical model that incorporates random numbers in the calculation of the model prediction. Queuing models are familiar simulation models in which random numbers are used for sampling interarrival and service times. Another example of simulation models is found in probabilistic risk assessments where atmospheric dispersion submodels are used to calculate movement of material. For these models, randomness comes not from the sampling of times but from the sampling of weather conditions, which are described by a frequency distribution of atmospheric variables like wind speed and direction as a function of height above ground. A common characteristic of simulation models is that single predictions, based on one interarrival time or one weather condition, for example, are not nearly as informative as the probability distribution of possible predictions induced by sampling the simulation variables like time and weather condition. The language of model analysis is often general and vague, with terms having mostly intuitive meaning. The definition and motivations for some of the commonly used terms and phrases offered in this paper lead to an analysis procedure based on prediction variance. In the following mathematical abstraction the authors present a setting for model analysis, relate practical objectives to mathematical terms, and show how two reasonable premises lead to a viable analysis strategy.

  6. Assembly flow simulation of a radar

    SciTech Connect (OSTI)

    Rutherford, W.C.; Biggs, P.M.

    1993-10-01T23:59:59.000Z

    A discrete event simulation model has been developed to predict the assembly flow time of a new radar product. The simulation was the key tool employed to identify flow constraints. The radar, production facility, and equipment complement were designed, arranged, and selected to provide the most manufacturable assembly possible. A goal was to reduce the assembly and testing cycle time from twenty-six weeks to six weeks. A computer software simulation package (SLAM II) was utilized as the foundation a for simulating the assembly flow time. FORTRAN subroutines were incorporated into the software to deal with unique flow circumstances that were not accommodated by the software. Detailed information relating to the assembly operations was provided by a team selected from the engineering, manufacturing management, inspection, and production assembly staff. The simulation verified that it would be possible to achieve the cycle time goal of six weeks. Equipment and manpower constraints were identified during the simulation process and adjusted as required to achieve the flow with a given monthly production requirement. The simulation is being maintained as a planning tool to be used to identify constraints in the event that monthly output is increased. ``What-if`` studies have been conducted to identify the cost of reducing constraints caused by increases in output requirement.

  7. Purdue Contribution of Fusion Simulation Program

    SciTech Connect (OSTI)

    Jeffrey Brooks

    2011-09-30T23:59:59.000Z

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall. It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  8. Active System For Monitoring Volcanic Activity- A Case Study...

    Open Energy Info (EERE)

    Central Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Active System For Monitoring Volcanic Activity- A Case Study Of The...

  9. The geometry and topology of turbulence in active nematics

    E-Print Network [OSTI]

    Luca Giomi

    2014-09-04T23:59:59.000Z

    The problem of low Reynolds number turbulence in active nematic fluids is theoretically addressed. Using numerical simulations I demonstrate that an incompressible turbulent flow, in two-dimensional active nematics, consists of an ensemble of vortices whose areas are exponentially distributed within a range of scales. Building on this evidence, I construct a mean-field theory of active turbulence by which several measurable quantities, including the spectral densities and the correlation functions, can be analytically calculated. Due to the profound connection between the flow geometry and the topological properties of the nematic director, the theory sheds light on the mechanisms leading to the proliferation of topological defects in active nematics and provides a number of testable predictions. A hypothesis, inspired by Onsager's statistical hydrodynamics, is finally introduced to account for the equilibrium probability distribution of the vortex sizes.

  10. Irregular activity arises as a natural consequence of synaptic inhibition

    SciTech Connect (OSTI)

    Terman, D., E-mail: terman@math.ohio-state.edu [Department of Mathematics, The Ohio State University, Columbus, Ohio 43210 (United States); Rubin, J. E., E-mail: jonrubin@pitt.edu [Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Diekman, C. O., E-mail: diekman@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15T23:59:59.000Z

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  11. The incorporation of bubbles into a computer graphics fluid simulation

    E-Print Network [OSTI]

    Greenwood, Shannon Thomas

    2005-08-29T23:59:59.000Z

    We present methods for incorporating bubbles into a photorealistc fluid simulation. Previous methods of fluid simulation in computer graphics do not include bubbles. Our system automatically creates bubbles, which are simulated on top of the fluid...

  12. Interactive Simulation of Surgical Needle Insertion and Steering

    E-Print Network [OSTI]

    Chentanez, Nuttapong

    2010-01-01T23:59:59.000Z

    47] Dinesh K. Pai. STRANDS: Interactive simulation of thinand James F. O’Brien. Interactive simulation of surgicalM. Gr´egoire and E. Sch¨omer. Interactive simulation of one-

  13. Revamped Simulation Tool to Power Up Wave Energy Development...

    Energy Savers [EERE]

    Revamped Simulation Tool to Power Up Wave Energy Development Revamped Simulation Tool to Power Up Wave Energy Development May 21, 2015 - 2:40pm Addthis Revamped Simulation Tool to...

  14. Advanced wellbore thermal simulator GEOTEMP2 research report

    SciTech Connect (OSTI)

    Mitchell, R.F.

    1982-02-01T23:59:59.000Z

    The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

  15. Where Simulation meets Reality Arthur Huang, David Levinson

    E-Print Network [OSTI]

    Minnesota, University of

    (Simulation of Network Growth) SAND (Simulation and Analysis of Network Design) CLUSTER (Clustered Locations Signal Control Module #12;ADAM Agent-based model of travel patterns #12;SONG Simulating transportation

  16. Co-simulation of innovative integrated HVAC systems in buildings

    E-Print Network [OSTI]

    Trcka, Marija

    2010-01-01T23:59:59.000Z

    General-Purpose Approach for Co-Simulation with ADAMS. In :and to scale the use of co-simulation to a large communitymore research and development. Co-simulation has been

  17. Fast time domain simulation for large order hybrid systems

    E-Print Network [OSTI]

    Sou, Kin Cheong, 1979-

    2002-01-01T23:59:59.000Z

    Simulation is an important tool for the analysis and design of complex systems. As the models become more and more complex, more powerful simulation methods are desired. As an attempt to address this problem, a simulation ...

  18. Pharmaceutical powders in experiment and simulation : towards a fundamental understanding

    E-Print Network [OSTI]

    Domike, Reuben Dumont, 1979-

    2004-01-01T23:59:59.000Z

    (cont.) The DEM simulation was used to simulate the relative importance of cohesion and friction. For angle of repose simulations, increasing the cohesion increased the final angle in a consistent, linear fashion. Increasing ...

  19. Proton induced activation in mercury: Comparison of measurements and calculations

    SciTech Connect (OSTI)

    Remec, Igor [ORNL; Glasgow, David C [ORNL; Haines, John R [ORNL; Johnson, Jeffrey O [ORNL

    2008-01-01T23:59:59.000Z

    Measurements and simulations of the proton beam interaction with the mercury target were performed to support Spallation Neutron Source design. Due to the abundance of isotopes produced in mercury, the long delay between the irradiation and the measurements, and the self-shielding of the mercury sample, the measurements were difficult to perform and the activities of several isotopes have large uncertainties. Calculations predicted the activities of the most reliably measured isotopes within 20%/40%; however, some large discrepancies were observed for some isotopes for which the measurements were considered less reliable. Predicted dose rates were in very good agreement with the measurements.

  20. Effective temperature and glassy dynamics of active matter

    E-Print Network [OSTI]

    Shenshen Wang; Peter G. Wolynes

    2011-06-10T23:59:59.000Z

    A systematic expansion of the many-body master equation for active matter, in which motors power configurational changes as in the cytoskeleton, is shown to yield a description of the steady state and responses in terms of an effective temperature. The effective temperature depends on the susceptibility of the motors and a Peclet number which measures their strength relative to thermal Brownian diffusion. The analytic prediction is shown to agree with previous numerical simulations and experiments. The mapping also establishes a description of aging in active matter that is also kinetically jammed.

  1. Interactive Simulation of Stylized Human Locomotion

    E-Print Network [OSTI]

    Silva, Marco da

    2008-08-01T23:59:59.000Z

    Animating natural human motion in dynamic environments is difficult because of complex geometric and physical interactions. Simulation provides an automatic solution to parts of this problem, but it needs control systems ...

  2. Compositional changes in heavy oil steamflood simulators

    E-Print Network [OSTI]

    Lolley, Christopher Scott

    1995-01-01T23:59:59.000Z

    including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng...

  3. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    and Simulation of a Smart Water Heater. ” In Workshop inFreezers, Furnaces, Water Heaters, Room and Central AirNovember. ADL. 1982b. Water Heater Computer Model User’s

  4. Computer simulations of polymers and gels 

    E-Print Network [OSTI]

    Wood, Dean

    2013-11-28T23:59:59.000Z

    plethora of simulation techniques have been developed and refined, allowing many aspects of complex systems to be demystified. I have used a range of these to study a variety of systems, utilising the latest technology in high performance computing (HPC...

  5. Large-scale simulations of reionization

    SciTech Connect (OSTI)

    Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01T23:59:59.000Z

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  6. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov (indexed) [DOE]

    53560 Improved Solvers for Advanced Engine Combustion Simulation M. J. McNenly (PI), S. M. Aceves, D. L. Flowers, N. J. Killingsworth, G. M. Oxberry, G. Petitpas and R. A....

  7. Simulation and animation of a slinky

    E-Print Network [OSTI]

    Maxey, Mark Ray

    1994-01-01T23:59:59.000Z

    Animations of complex objects using traditional techniques often lack the dynamic integrity needed to produce realistic natural motion. Recently, dynamic simulation has been used to incorporate not only the spatial information, but the various...

  8. A low cost high flux solar simulator

    E-Print Network [OSTI]

    Codd, Daniel S.

    A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

  9. MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE

    E-Print Network [OSTI]

    MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1

  10. Simulated liquid argon interactions with neutrons

    E-Print Network [OSTI]

    Harrington, Kathleen M

    2012-01-01T23:59:59.000Z

    The GEANT4 physics simulation program is known to have errors in how hadronic interactions are implemented. This has the potential to cause errors in the Monte Carlos used to determine the expected neutron backgrounds in ...

  11. Collaborative Monitoring and Analysis for Simulation Scientist

    SciTech Connect (OSTI)

    Tchoua, Roselyne B [ORNL] [ORNL; Klasky, Scott A [ORNL] [ORNL; Podhorszki, Norbert [ORNL] [ORNL; Khan, Ayla Y [ORNL] [ORNL; Mouallem, P. A. [North Carolina State University] [North Carolina State University; Vouk, Mladen [North Carolina State University] [North Carolina State University

    2010-01-01T23:59:59.000Z

    Collaboratively monitoring and analyzing large scale simulations from petascale computers is an important area of research and development within the scientific community. This paper addresses these issues when teams of colleagues from different research areas work together to help understand the complex data generated from these simulations. In particular, we address the issues when geographically diverse teams of disparate researchers work together to understand the complex science being simulation on high performance computers. Most application scientists want to focus on the sciences and spend a minimum amount of time learning new tools or adopting new techniques to monitor and analyze their simulation data. The challenge eSimMon, of our web-based system is to decrease or eliminate some of the hurdles on the scientists path to scientific discovery, and allow these collaborations to flourish.

  12. COLLOQUIUM: Advanced Simulation for Technology Innovation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Advanced Simulation for Technology Innovation and Science Discovery Dr. Scott Stanton ANSYS, Inc. Colloquium...

  13. Streamline simulation of Surfactant Enhanced Aquifer Remediation

    E-Print Network [OSTI]

    Tunison, Douglas Irvin

    1996-01-01T23:59:59.000Z

    and cumulative production histories. The model is three dimensional and capable of modeling heterogeneity anisotropy. The SEAR simulator models mobilization of residual NAPL through the effects of surfactant on the relative permeability curves. The solubilization...

  14. Transportation Analysis, Modeling, and Simulation (TAMS) Application

    E-Print Network [OSTI]

    Transportation Analysis, Modeling, and Simulation (TAMS) Application Center for Transportation Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Center for Transportation Analysis (CTA) TAMS application is a web-based tool that supports

  15. Interactive simulation of fire, burn and decomposition

    E-Print Network [OSTI]

    Melek, Zeki

    2009-05-15T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . 86 35 Simulation control in action. . . . . . . . . . . . . . . . . . . . . . . . 89 36 Burning a log and a Siggraph logo. . . . . . . . . . . . . . . . . . . . 95 37 Two sets of quadrilateral stacks are used for different camera angles. 97 38...

  16. Interactive simulation of fire, burn and decomposition

    E-Print Network [OSTI]

    Melek, Zeki

    2008-10-10T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . 86 35 Simulation control in action. . . . . . . . . . . . . . . . . . . . . . . . 89 36 Burning a log and a Siggraph logo. . . . . . . . . . . . . . . . . . . . 95 37 Two sets of quadrilateral stacks are used for different camera angles. 97 38...

  17. THERM 5 / WINDOW 5 NFRC simulation manual

    SciTech Connect (OSTI)

    Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

    2003-06-01T23:59:59.000Z

    This document, the ''THERM 5/WINDOW 5 NFRC Simulation Manual', discusses how to use the THERM and WINDOW programs to model products for NFRC certified simulations and assumes that the user is already familiar with those programs. In order to learn how to use these programs, it is necessary to become familiar with the material in both the ''THERM User's Manual'' and the ''WINDOW User's Manual''. In general, this manual references the User's Manuals rather than repeating the information. If there is a conflict between either of the User Manual and this ''THERM 5/''WINDOW 5 NFRC Simulation Manual'', the ''THERM 5/WINDOW 5 NFRC Simulation Manual'' takes precedence. In addition, if this manual is in conflict with any NFRC standards, the standards take precedence. For example, if samples in this manual do not follow the current taping and testing NFRC standards, the standards not the samples in this manual, take precedence.

  18. Modelling and Simulating of Rain Derivatives

    E-Print Network [OSTI]

    Modelling and Simulating of Rain Derivatives Master thesis Cathrin van Emmerich Supervisor, Februar 2005 Cathrin van Emmerich i #12;Table of Contents Table of Contents ii 1 Introduction 1 2

  19. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01T23:59:59.000Z

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  20. Modeling techniques for simulating well behavior

    E-Print Network [OSTI]

    Rattu, Bungen Christina

    2002-01-01T23:59:59.000Z

    This thesis is a catalog of modeling techniques useful in simulating well behavior in certain types of reservoirs that are often encountered in petroleum reservoirs. Emphasis has been placed on techniques that can be used with any conventional...