Sample records for activity injectivity test

  1. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07T23:59:59.000Z

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

  2. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  3. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  4. Activated Carbon Injection

    SciTech Connect (OSTI)

    None

    2014-07-16T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  5. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

  6. Resistivity measurements before and after injection Test 5 at...

    Open Energy Info (EERE)

    measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Resistivity...

  7. Category:Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp ispage?Injectivity

  8. Activated carbon injection - a mercury control success story

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  9. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27T23:59:59.000Z

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  10. Scaleup tests and supporting research for the development of duct injection technology

    SciTech Connect (OSTI)

    Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1989-05-01T23:59:59.000Z

    Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE's Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

  11. Source Injection Distribution Functions for Alarm Algorithm Testing

    SciTech Connect (OSTI)

    Robinson, Sean M.; Siciliano, Edward R.; Schweppe, John E.

    2008-05-15T23:59:59.000Z

    The development and testing of improved alarm algorithms is an ongoing priority of the Radiation Portal Monitor Project (RPMP) at Pacific Northwest National Laboratory (PNNL). Improved algorithms have the potential to reduce the impediments that radiation screening presents to the flow of commerce, without affecting the detection sensitivity to sources of interest. However, assessing alarm-algorithm performance involves careful calculation of detection probabilities and nuisance/false alarm rates for any algorithm that may be used in the field. To establish statistical confidence, such a task requires a large amount of data from drive-through (or “dynamic”) scenarios both with, and without, radioactive sources of interest present; but obtaining actual field data to meet this need is not feasible. Instead, an “injection-study” procedure is being used to approximate how the profiles of actual drive-through commercial data would change with the presence of sources of interest. This procedure adds net-counts from a pre-defined set of simulated sources to raw, gross-count drive-through data randomly selected from archived cargo data collected from deployed radiation portal monitors (RPMs). (PIET-43741-TM-480)

  12. Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

  13. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael; Henderson, Ann

    2012-04-01T23:59:59.000Z

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

  14. 2D-Modelling of pellet injection in the poloidal plane: results of numerical tests

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2D-Modelling of pellet injection in the poloidal plane: results of numerical tests P. Lalousis developed for computing the expansion of pellet-produced clouds in the poloidal plane. The expansion

  15. Results of the Flowmeter-Injection Test in the Long Valley Exploratory...

    Open Energy Info (EERE)

    Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  16. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  17. Results of injection and tracer tests in Olkaria East Geothermal Field

    SciTech Connect (OSTI)

    Ambusso, Willis J.

    1994-01-20T23:59:59.000Z

    This paper presents results of a six month Injection and Tracer test done in Olkaria East Geothermal Field The Injection tests show that commencement of injection prior to onset of large drawdown in the reservoir leads to greater sustenance of well production and can reduce well cycling which is a common feature of wells in Olkaria East Field. For cases where injection is started after some drawdown has occurred in the reservoir, injection while leading to improvement of well output can also lead to increase in well cycling which is a non desirable side effect. Tracer tests reveal slow rate of fluid migration (< 5 m/hr). However estimates of the cumulative tracer returns over the period of injection is at least 31% which is large and reveals the danger of late time thermal drawdown and possible loss of production. It is shown in the discussion that the two sets of results are consistent with a reservoir where high permeability occurs along contact surfaces which act as horizontal "fractures" while the formations between the "fractures" have low permeability. This type of fracture system will lead to channeled flow of injected fluid and therefore greater thermal depletion along the fractures while formations further from the fracture would still be at higher temperature. In an attempt to try and achieve a more uniform thermal depletion in the reservoir, it is proposed that continuous injection be done for short periods (~2 years) and this be followed by recovery periods of the nearly the same length of time before resumption of injection again.

  18. Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 1, Literature review

    SciTech Connect (OSTI)

    Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1989-05-01T23:59:59.000Z

    Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE`s Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

  19. Summary of Construction Equipment Tests and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Equipment Tests and Activities Bruce Glagola - Sept 2013 Construction Equipment Tests A series of tests were conducted by the APS Construction Vibration...

  20. Internal Technical Report, Hydrothermal Injection Program - East Mesa 1983-84 Test Data

    SciTech Connect (OSTI)

    Freiburger, R.M.

    1984-09-01T23:59:59.000Z

    This report presents a test data index and a data plots for a series of 12 drawdown and tracer injection-withdrawal tests in porous-media aquifers at the East Mesa Geothermal Field located in the Imperial Valley near El Centro, California. Test and instrumentation summaries are also provided. The first 10 of these tests were completed during July and August 1983. The remaining 2 tests were completed in February 1984, after a 6-month quiescent period, in which tracers were left in the reservoir. The test wells used were 56-30 and 56-19, with 38-30 supplying water for the injection phase and 52-29 used as a disposal well during the backflowing of the test wells. Six other wells in the surrounding area were measured periodically for possible hydrologic effects during testing. It is not the intent of this report to supply analyzed data, but to list the uninterpreted computer stored data available for analysis. The data have been examined only to the extent to ensure that they are reasonable and internally consistent. This data is stored on permanent files at the Idaho National Engineering Laboratory (INEL) Cyber Computer Complex. The main processors for this complex are located at the Computer Science Center (CSC) in Idaho Falls, Idaho. The Hydrothermal Injection Test program, funded by the Department of Energy, was a joint effort between EG and G Idaho, Inc., the University of Utah Research Institute (UURI) and Republic Geothermal, Inc. (RGI) of Santa Fe Springs, California.

  1. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

  2. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  3. activated carbon injection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blackhawk Road, APG, MD USA 21010 ABSTRACT The impregnated active carbon in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS Giurgiutiu, Victor...

  4. Structured hypothesis tests based diagnosis : application to a common rail diesel injection system

    E-Print Network [OSTI]

    Boyer, Edmond

    Structured hypothesis tests based diagnosis : application to a common rail diesel injection system Zahi SABEH, José RAGOT, Frédéric KRATZ Delphi Diesel Systems, Centre Technique de Blois 9 boulevard de to increase diesel engine performances and to reduce noise, emission and fuel consumption. Such goals

  5. Results of injection and tracer tests in Olkaria north east field in Kenya

    SciTech Connect (OSTI)

    Karingithi, C.W. [Kenya Power Company Ltd., Naivasha (Kenya)

    1995-12-31T23:59:59.000Z

    Tracer and injection tests were performed in the Olkaria North East Field with the objective to reduce uncertainty in the engineering design and to determine the suitability of well OW-704 as a re-injection well for the waste brine from the steam field during production. An organic dye (sodium fluorescein) was injected into well OW-704 as a slug. The tracer returns were observed in well OW-M2 which is 580 m deep, 620 m from well OW-704 and well OW-716 which is 900 m from well OW-704. The other wells on discharge, OW-714, and OW-725 did not show any tracer returns. However, other chemical constituents suggested., that well OW-716 experienced a chemical breakthrough earlier than OW-M2. Tracer return velocities of 0.31 m/hr and 1.3 m/hr were observed. Results of the tracer and injection tests indicate that OW-704 may be used as a re-injection well provided a close monitoring program is put in place.

  6. Analysis of Injection-Backflow Tracer Tests in Fractured Geothermal Reservoirs

    SciTech Connect (OSTI)

    Kocabas, I.; Horne, R.N.

    1987-01-20T23:59:59.000Z

    Tracer tests have been an important technique for determining the flow and reservoir characteristics in various rock matrix systems. While the interwell tracer tests are aimed at the characterization of the regions between the wells, single-well injection-backflow tracer tests may be useful tools of preliminary evaluation, before implementing long term interwell tracer tests. This work is concerned with the quantitative evaluation of the tracer return profiles obtained from single well injection-backflow tracer tests. First, two mathematical models of tracer transport through fractures, have been reviewed. These two models are based on two different principles: Taylor Dispersion along the fracture and simultaneous diffusion in and out of the adjacent matrix. Then the governing equations for the transport during the injection-backflow tests have been solved. Finally the results were applied to field data obtained from Raft River and East Mesa geothermal fields. In order to determine the values of the parameters of the models that define the transport mechanisms through fractures a non-linear optimization technique was employed. 26 refs., 10 figs.

  7. Scaleup tests and supporting research for the development of duct injection technology

    SciTech Connect (OSTI)

    Felix, L.G.; Dismukes, E.B.; Gooch, J.P. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Demian, A.G. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1992-04-20T23:59:59.000Z

    This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

  8. Boron-10 ABUNCL Active Testing

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09T23:59:59.000Z

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  9. HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...

    Broader source: Energy.gov (indexed) [DOE]

    Testing Advanced Vehicle Testing Activity Maintenance Sheet for 2010 Ford Fusion VIN 3FADP0L32AR194699 Date Mileage Description Cost 1012009 5915 Changed oil and filter 28.77...

  10. Fleet Testing Advanced Vehicle Testing Activities - 2010 Honda...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Testing Activity Maintenance Sheet for 2010 Honda Insight LX VIN JHMZE2H59AS011748 HEV Fleet Testing Date Mileage Description Cost 842009 5,752 Changed oil and filter...

  11. Stability analysis and testing of a train of centrifugal compressors for high pressure gas injection

    SciTech Connect (OSTI)

    Memmott, E.A. [Dresser-Rand Co., Olean, NY (United States)

    1999-07-01T23:59:59.000Z

    This paper describes the rotor dynamic stability analysis and the PTC-10 Class 1 test of a three body centrifugal compressor train for high pressure natural gas injection services. This train had a full load full pressure string test on hydrocarbon gases to a final discharge pressure of 500 BAR (7250 PSIA). Each compressor is of the back to back configuration, and is equipped with tilting pad seals, damper bearings, and a honeycomb labyrinth at the division wall with shunt holes. The driver is a gas turbine.

  12. Continuous active-source seismic monitoring of CO2 injection in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

    2008-01-01T23:59:59.000Z

    INTERPRETATION The injection of CO 2 causes a decrease in seismicseismic monitoring during injection. Although quantitative interpretation

  13. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    SciTech Connect (OSTI)

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01T23:59:59.000Z

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.

  14. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect (OSTI)

    Pruess, K.; Doughty, C.

    2010-01-15T23:59:59.000Z

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  15. 100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2009-12-16T23:59:59.000Z

    100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization INTERIM LETTER REPORT

  16. 1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O'Daniel Pilot Area

    E-Print Network [OSTI]

    Schechter, David S.

    - 1- 1. RESERVOIR PERFORMANCE ANALYSIS 1.1 Analysis of Step Rate Injection Tests in the O the reservoir rock. This pressure is referred as to formation parting pressure. Determination of formation demonstrates stress-sensitive behavior, one of the phenomena that influences the performance of waterflooding

  17. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31T23:59:59.000Z

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  18. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique...

  19. Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 2, Task 3.1: Evaluation of system performance, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    SciTech Connect (OSTI)

    Felix, L.G.; Dismukes, E.B.; Gooch, J.P. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Demian, A.G. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1992-04-20T23:59:59.000Z

    This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

  20. NEUTRON ACTIVATION COOLDOWN OF THE TOKAMAK FUSION TEST REACTOR

    E-Print Network [OSTI]

    involved the safe handling and processing about 100g of tritium. This resulted in manageable long concrete Test Cell showing the relative locations of the vessel, neutral beam injection systems, the vacuum. INTRODUCTION The Tokamak Fusion Test Reactor (TFTR) began high power deuterium­tritium (D­T) fueled operations

  1. 3D simulations of an injection test done into an unsaturated porous and fractured limestone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ]; · sr the water residual saturation [-]; ineris-00973682,version1-4Apr2014 Manuscrit auteur, publié dans dissipation of the water pressures and stress variations induced by the water injection. Back analysis lead us are the water and air density [kg/m3 ]; · µw and µnw are the water and air dynamic viscosity [Pa.s]; · k

  2. DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone

    Broader source: Energy.gov [DOE]

    The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest.

  3. Experimental test of the feasibility of heating tokamaks by gun injection This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    Experimental test of the feasibility of heating tokamaks by gun injection This article has been to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience #12;[3] FURTH, H OF THE FEASIBILITY OF HEATING TOKAMAKS BY GUN INJECTION E.J. STRAIT, J.C. SPROTT (Department of Physics, University

  4. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    SciTech Connect (OSTI)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The results of this project also filled a data gap for plants firing PRB coal and configured with an SCR, SDA, and FF, as many new plants are being designed today. Another goal of the project was to evaluate, on a short-term basis, the mercury removal associated with coal additives and coal blending with western bituminous coal. The additive test showed that, at this site, the coal additive known as KNX was affective at increasing mercury removal while decreasing sorbent usage. Coal blending was conducted with two different western bituminous coals, and West Elk coal increased native capture from nominally 10% to 50%. Two additional co-benefits were discovered at this site. First, it was found that native capture increased from nominally 10% at full load to 50% at low load. The effect is believed to be due to an increase in mercury oxidation across the SCR caused by a corresponding decrease in ammonia injection when the plant reduces load. Less ammonia means more active oxidation sites in the SCR for the mercury. The second co-benefit was the finding that high ammonia concentrations can have a negative impact on mercury removal by powdered activated carbon. For a period of time, the plant operated with a high excess of ammonia injection necessitated by the plugging of one-third of the SCR. Under these conditions and at high load, the mercury control system could not maintain 90% removal even at the maximum feed rate of 3.5 lb/MMacf (pounds of mercury per million actual cubic feet). The plant was able to demonstrate that mercury removal was directly related to the ammonia injection rate in a series of tests where the ammonia rate was decreased, causing a corresponding increase in mercury removal. Also, after the SCR was refurbished and ammonia injection levels returned to normal, the mercury removal performance also returned to normal. Another goal of the project was to install a commercial-grade activated carbon injection (ACI) system and integrate it with new-generation continuous emissions monitors for mercury (Hg-CEMs) to allow automatic feedback control on outlet me

  5. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  6. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01T23:59:59.000Z

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  7. Analytical modeling of a fracture-injection/falloff sequence and the development of a refracture-candidate diagnostic test

    E-Print Network [OSTI]

    Craig, David Paul

    2006-08-16T23:59:59.000Z

    -injection/falloff sequence Cartesian after-closure analysis graph. ......................... 152 5.11 Fracture-injection/falloff sequence variable-storage type-curve match. ............................... 153 5.12 GM 543-33 Mesaverde formation fracture...-injection/falloff sequence. ................................ 159 5.13 GM 543-33 Mesaverde formation fracture-injection/falloff sequence G-function derivative analysis...

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 546: Injection Well and Surface Releases Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-12-01T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 546, Injection Well and Surface Releases, at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 546 is comprised of two corrective action sites (CASs): • 06-23-02, U-6a/Russet Testing Area • 09-20-01, Injection Well The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 546. To achieve this, corrective action investigation (CAI) activities were performed from May 5 through May 28, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada (NNSA/NSO, 2008). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether a contaminant of concern is present at a given CAS. • Determine whether sufficient information is available to evaluate potential corrective action alternatives at each CAS. The CAU 546 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Because DQO data needs were met, and corrective actions have been implemented, it has been determined that no further corrective action (based on risk to human receptors) is necessary for the CAU 546 CASs. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • No further corrective actions are needed for CAU 546 CASs. • No Corrective Action Plan is required. • A Notice of Completion to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 546. • Corrective Action Unit 546 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. Analytes detected during the CAI were evaluated against final action levels established in this document. No analytes were detected at concentrations exceeding final action levels. However, contaminants of concern were presumed to be present in the subsurface soil at CAS 09-20-01. Therefore, the corrective action of close in place was selected as the preferred alternative for this CAS. Potential source material was removed from CAS 06-23-02; therefore, the corrective action of clean closure was selected as the preferred alternative at this CAS.

  9. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

    1988-04-01T23:59:59.000Z

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  10. Diagnostic utilisant les tests d'hypothses structurs : application un systme d'injection diesel rampe commune

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'injection diesel à rampe commune Zahi SABEH, José RAGOT, Frédéric KRATZ Delphi Diesel Systems, Centre Technique de a été développé pour obtenir, sur un moteur diesel, une augmentation des performances ainsi qu la pression d'un système d'injection diesel à rampe commune. Mots clés : système d'injection à rampe

  11. Large optical cavity AlGaAs injection lasers with multiple active regions

    SciTech Connect (OSTI)

    Katz, J.; Bar-Chaim, N.; Margalit, S.; Yariv, A.

    1980-08-01T23:59:59.000Z

    A new type of AlGaAs injection laser is described. The structure consists of alternating p- and n-type layers of GaAs and Al/sub x/ Ga/sub 1-x/As . The electrical mode of operation of the device is that of a Shockley diode (SCR). Optically the device operates as a large optical cavity. Single transverse mode operation was observed with optical cavities larger than 4 ..mu..m.

  12. activation test locations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation test locations First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Active Testing CERN Preprints...

  13. activities field test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities field test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Active Testing CERN Preprints...

  14. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  15. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-03-01T23:59:59.000Z

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: •06-23-02, U-6a/Russet Testing Area •09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546.

  16. Active Waste Materials Corrosion and Decontamination Tests

    SciTech Connect (OSTI)

    MJ Danielson; MR Elmore; SG Pitman

    2000-08-15T23:59:59.000Z

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 {und M} HNO{sub 3} could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test.

  17. Proof of concept testing of an integrated dry injection system for SO{sub 2}/NO{sub x} control. Final report

    SciTech Connect (OSTI)

    Helfritch, D.J.; Bortz, S.J. [Research-Cottrell, Inc., Somerville, NJ (United States); Beittel, R. [Riley Stoker Corp., Worcester, MA (United States)

    1994-03-01T23:59:59.000Z

    The integrated Dry Injection Process (IDIP) consists of combustion modification using low NO{sub x} burners to reduce NO{sub x} emissions, dry injection of hydrated line at economizer temperatures for primary capture of SO{sub 2}, dry injection of a commercial grade sodium bicarbonate at the air heater exit for additional SO{sub 2} and NO{sub x} removal, and humidification for precipitator conditioning. IDIP offers the potential for simultaneously achieving 90% SO{sub 2} removal, and 65% NO{sub x} removal from a high sulfur flue gas. The process is well suited for new or retrofit applications since it can be incorporated within existing economizer and downstream ductwork. Subscale tests were performed in order to identify the best calcium and sodium sorbents. These tests involved the injection of calcium hydroxide and sodium sorbents at various points of the flue gas system downstream of a 0.25 MM BTU/hr. coal fired combustor, and the gas residence times, cooling rates and temperatures were comparable to those found for full-scale utility boilers. These tests verified that a high surface area hydrated lime provides maximum sorbent utilization and identified an alcohol-water hydrated lime as yielding the highest surface area and the best SO{sub 2} removal capability. The tests also identified sodium bicarbonate to be somewhat more effective than sodium sesquicarbonate for SO{sub 2} removal. The proof of concept demonstration was conducted on the large combustor at the Riley Stoker Research Facility in Worcester, MA. When economically compared to conventional limestone slurry scrubbing on a 300 MW plant, the dry injection process shows lower capital cost but higher operating cost. Hydrated lime injection can be less costly than limestone scrubbing when two or more of the following conditions exist: plant is small (less than 100MW); yearly operating hours are small (less than 3000); and the remaining plant lifetime is small (less than 10 years).

  18. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Company of Colorado, Denver, CO (United States)

    1994-12-01T23:59:59.000Z

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  19. CURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY , E S Spooner2

    E-Print Network [OSTI]

    , AUSTRALIA 2 University of New South Wales, Kensington, NSW, AUSTRALIA 3 Australian CRC for Renewable Energy) on the Murdoch University campus in Perth, Western Australia. The facility provides independent testing of RECURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY T L Pryor1 , E

  20. Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...

    Energy Savers [EERE]

    Non-PHEV Evaluations and Data Collection Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection Presentation from the U.S. DOE Office of Vehicle...

  1. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect (OSTI)

    Parker, G.B.

    1991-01-01T23:59:59.000Z

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  2. Technical note Insertion loss testing of active noise reduction

    E-Print Network [OSTI]

    Wong, Willy

    Technical note Insertion loss testing of active noise reduction headsets using acoustic fixture Jie. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON measured insertion losses of four types of commercially avail- able ANR headsets using an Acoustic Test

  3. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  4. Corrective Action Investigation Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    DOE/NV

    2000-12-01T23:59:59.000Z

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 consists of three Corrective Action Sites (CASs). The CAU is located in the Well 3 Yard in Area 6 at the Nevada Test Site. Historical records indicate that the Drain Pit (CAS 06-23-03) received effluent from truck-washing; the Drums/Oil Waste/Spill (CAS 06-20-01) consisted of four 55-gallon drums containing material removed from the Cased Hole; and the Cased Hole (CAS 06-20-02) was used for disposal of used motor oil, wastewater, and debris. These drums were transported to the Area 5 Hazardous Waste Accumulation Site in July 1991; therefore, they are no longer on site and further investigation or remediation efforts are not required. Consequently, CAS 06-20-01 will be closed with no further action and details of this decision will be described in the Closure Report for this CAU. Any spills that may have been associated with this CAS will be investigated and addressed under CAS 06-20-02. Field investigation efforts will be focused on the two remaining CASs. The scope of the investigation will center around identifying any contaminants of potential concern (COPCs) and, if present, determining the vertical and lateral extent of contamination. The COPCs for the Drain Pit include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (gasoline-and diesel-range organics), ethylene glycol monobutyl ether, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, and radionuclides. The COPCs for the Cased Hole include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (diesel-range organics only), and total Resource Conservation an d Recovery Act metals. Both biased surface and subsurface soil sampling will be conducted, augmented by visual inspection, video surveys, and electromagnetic surveys. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  5. Proof of concept testing of an integrated dry injection system for SO sub x /NO sub x control

    SciTech Connect (OSTI)

    Helfritch, D.J.; Bortz, S.J. (Research-Cottrell, Inc., Somerville, NJ (United States). Environmental Services and Technologies Div.); Beittel, R. (Riley Stoker Corp., Worcester, MA (United States))

    1990-01-01T23:59:59.000Z

    The objective of the subscale test program were designed to provide sorbent and additive selection guidance, and, in so doing, supply answers to the questions posed in the preceding section. The objectives are: Identify the best commercial hydrate sorbent and the best enhanced hydrate sorbent from a list of nine types, based upon S0{sub 2} removal at Ca/S=2. Determine the relative effectiveness of sodium sesquicarbonate versus sodium bicarbonate for S0{sub 2} and NO{sub x} control over the temperature range of 200{degrees}F--400{degrees}F. Identify the best NO{sub 2} suppressing additive among the group of ammonia, urea, and activated carbon.

  6. Proof of concept testing of an integrated dry injection system for SO sub x /NO sub x control

    SciTech Connect (OSTI)

    Helfritch, D.J.; Bortz, S.J. (Research-Cottrell, Inc., Somerville, NJ (United States). Environmental Services and Technologies Div.); Beittel, R. (Riley Stoker Corp., Worcester, MA (United States))

    1989-01-01T23:59:59.000Z

    The objectives of the subscale test program were designed to provide sorbent and additive selection guidance, and, in so doing, supply answers to the questions posed in the preceding section. The objectives are: Identify the best commercial hydrate sorbent and the best enhanced hydrate sorbent from a list of nine types, based upon S0{sub 2} removal at Ca/S=2. Determine the relative effectiveness of sodium sesquicarbonate versus sodium bicarbonate for S0{sub 2} and NO{sub x} control over the temperature range of 200{degrees}F--400{degrees}F. Identify the best NO{sub 2} suppressing additive among the group of ammonia, urea, and activated carbon.

  7. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    SciTech Connect (OSTI)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States)] [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)] [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01T23:59:59.000Z

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  8. Lance water injection tests adjacent to the 281-3H retention basin at the Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Freifeld, B.; Myer, L.; Moridis, G.; Cook, P.; James, A.; Pellerin, L.; Pruess, K.

    1996-09-01T23:59:59.000Z

    A pilot-scale field demonstration of waste isolation using viscous- liquid containment barriers has been planned for the 281-3H retention basin at the Savannah River Site, Aiken, SC. The 281-3H basin is a shallow retention/seepage basin contaminated mainly by radionuclides. The viscous-liquid containment barrier utilizes the permeation of liquid grout to either entomb the contaminants within a monolithic grout structure or to isolate the waste by drastically reducing the permeability, of the soils around the plume. A clear understanding of the hydrogeologic setting of the retention basin is necessary for proper design of the viscous liquid barrier. To aid in the understanding of the hydrogeology of the 281-3H retention basin, and to obtain critical parameters necessary for grout injection design, a series of tests were undertaken in a region immediately adjacent to the basin. The objectives of the LWIT were: 1. To evaluate the general performance of the Lance Injection Technique for grout emplacement at the site, including the range and upper limits of injection pressures, the flow rates applicable for site conditions, as well as the mechanical forces needed for lance penetration. 2. To obtain detailed information on the injectability of the soils immediately adjacent to the H-area retention basin. 3. To identify any high permeability zones suitable for injection and evaluate their spatial distribution. 4. To perform ground penetrating radar (GPR) to gain information on the structure of the soil column and to compare the results with LWIT data. This report will focus on results pertinent to these objectives.

  9. NEUTRON ACTIVATION COOL-DOWN OF THE TOKAMAK FUSION TEST REACTOR

    E-Print Network [OSTI]

    involved the safe handling and processing about 100g of tritium. This resulted in manageable long concrete Test Cell showing the relative locations of the vessel, neutral beam injection systems, the vacuum. INTRODUCTION The Tokamak Fusion Test Reactor (TFTR) began high power deuterium-tritium (D-T) fueled operations

  10. Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    E-Print Network [OSTI]

    Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brügmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterji; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mroué; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Röver; Lucía Santamaría; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Viceré; John T. Whelan; Yosef Zlochower

    2009-07-09T23:59:59.000Z

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  11. Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect (OSTI)

    Williams, Mark D.; Fritz, Brad G.; Mendoza, Donaldo P.; Rockhold, Mark L.; Thorne, Paul D.; Xie, YuLong; Bjornstad, Bruce N.; Mackley, Rob D.; Newcomer, Darrell R.; Szecsody, James E.; Vermeul, Vincent R.

    2008-07-11T23:59:59.000Z

    Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-forming chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.

  12. Boron-10 ABUNCL Prototype Models And Initial Active Testing

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-04-23T23:59:59.000Z

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.

  13. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26T23:59:59.000Z

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 ?g/g for the two Tusaar materials.

  14. Fuel injection

    SciTech Connect (OSTI)

    Iiyoshi, A.; Vogoshi, S.

    1983-12-01T23:59:59.000Z

    The Plasma Physics Laboratory and the Dept. of Electrical Engineering report on three types of pellet injectors which have different applications: injection of a pellet into a magnetic bottle for magnetic confinement; injection of a pellet into a vacuum chamber for an inertial confinement experiment; and injection of a pellet into a magnetic bottle where the pellet is ionized by high-power laser irradiation for target plasma production. The requirements of pellet injectors are summarized in a table. Theoretical studies on pellet ablation in hot plasma and ablated particle diffusion are underway.

  15. Activation of building air in a Tokamak Engineering Test Facility

    SciTech Connect (OSTI)

    Leonard, B.R. Jr.; Perry, R.T.

    1980-09-01T23:59:59.000Z

    The production of radionuclides by neutron reactions in the building air of a conceptual Tokamak Engineering Test Facility has been calculated. The short-lived radionuclides /sup 13/N, /sup 16/N and /sup 41/Ar are all found to greatly exceed their maximum permissable concentration values. Longer-lived radionuclides /sup 3/H, /sup 14/C and /sup 39/Ar are also found to be produced in significant concentrations. The present results are compared with values calculated for three other fusion devices; TFTR, INS, and FMIT. These comparisons show that the ETF can be a prolific producer of activated air.

  16. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 ºC, 27 ºC, and 32 ºC there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

  17. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David A. Strand

    2005-01-01T23:59:59.000Z

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  18. SQLUnitGen: SQL Injection Testing Using Static and Dynamic Analysis Yonghee Shin Laurie Williams Tao Xie

    E-Print Network [OSTI]

    Xie, Tao

    Tao Xie Department of Computer Science, North Carolina State University, Raleigh, NC 27695 yonghee be constructed from user input in a way such that the user input can change the intended function of a SQL to ensure that the filters are properly implemented. However, manual test case generation takes time

  19. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01T23:59:59.000Z

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  20. Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the Z accelerator

    SciTech Connect (OSTI)

    Krishnan, Mahadevan; Elliott, Kristi Wilson; Madden, Robert E. [Alameda Applied Sciences Corporation, San Leandro, California 94577 (United States); Coleman, P. L. [Evergreen Hill Sciences, Philomath, Oregon 97370 (United States); Thompson, John R. [812 Temple Street, San Diego, California 92106 (United States); Bixler, Alex [Space Sciences Laboratory, University of California, Berkeley, Berkeley, California 94720 (United States); Lamppa, D. C.; McKenney, J. L.; Strizic, T.; Johnson, D.; Johns, O.; Vigil, M. P.; Jones, B.; Ampleford, D. J.; Savage, M. E.; Cuneo, M. E.; Jones, M. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2013-06-15T23:59:59.000Z

    Tests are ongoing to conduct {approx}20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D{sub 2} gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the {approx}2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system.

  1. Advanced Vehicle Testing Activity (AVTA) Data and Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing...

  2. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    SciTech Connect (OSTI)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03T23:59:59.000Z

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

  3. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins: Part 1: Evaluation of Phase 2 CO{sub 2} Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2: Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    SciTech Connect (OSTI)

    Richard Bowersox; John Hickman; Hannes Leetaru

    2012-12-01T23:59:59.000Z

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO{sub 2} in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO{sub 2} storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO{sub 2} were present in the deep subsurface. Injection testing with brine and CO{sub 2} was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole � including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite � at 1152�2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO{sub 2} was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter. Operations in the Phase 2 testing program commenced with retrieval of the bridge plug and long-term pressure gauges, followed by mechanical isolation of the Gunter by plugging the wellbore with cement below the injection zone at 1605.7 m, then cementing a section of a 14-cm casing at 1470.4�1535.6. The resultant 70.1-m test interval at 1535.6�1605.7 m included nearly all of the Gunter sandstone facies. During the Phase 2 injection, 333 tonnes of CO{sub 2} were injected into the thick, lower sand section in the sandy member of the Gunter. Following the completion of testing, the injection zone below casing at 1116 m in the Marvin Blan No. 1 well, and wellbore below 305 m was permanently abandoned with cement plugs and the wellsite reclaimed. The range of most-likely storage capacities found in the Knox in the Marvin Blan No. 1 is 1000 tonnes per surface hectare in the Phase 2 Gunter interval to 8685 tonnes per surface hectare if the entire Knox section were available including the fractured interval near the base of the Copper Ridge. By itself the Gunter lacks sufficient reservoir volume to be considered for CO{sub 2} storage, although it may provide up to 18% of the reservoir volume available in the Knox. Regional extrapolation of CO{sub 2} storage potential based on the results of a single well test can be problematic, although indirect evidence of porosity and permeability can be demonstrated in the form of active saltwater-disposal wells injecting into the Knox. The western Kentucky region suitable for CO{sub 2} storage in the Knox is limited updip, to the east and south, by the depth at which the base of the Maquoketa shale lies above the depth required to ensure storage of CO{sub 2} in its supercritical state and the deepest a commercial well might be drilled for CO{sub 2} storage. The resulting prospective region has an area of approximately 15,600 km{sup 2}, beyond which it is unlikely that suitable Knox reservoirs may be developed. Faults in the subsurface, which serve as conduits for CO{sub 2} migration and compromise sealing strata, may mitigate the area with Knox reservoirs suitable for CO{sub 2} storage. The results of the injection tes

  4. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Program Authorized Injection Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground...

  5. Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003)Energy

  6. Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    previously completed EoL battery testing on two Gen I Prius, two Gen I Civic, and two Honda Insight HEVs - Collected fuel economy, maintenance, depreciation, operations...

  7. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24,...

  8. Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique, originally presented on March 12, 2013.

  9. Advanced Vehicle Testing Activity Benchmark Testing of the Chevrolet Volt Onboard Charger

    SciTech Connect (OSTI)

    Richard Carlson

    2012-04-01T23:59:59.000Z

    This is a report for public consumption, for the AVTA website, detailing the testing and analysis of the benchmark testing conducted on the Chevrolet Volt on-board charger.

  10. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect (OSTI)

    BYRNES ME

    2010-09-08T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will load heavily onto activated carbon and should be removed from groundwater upstream of the activated carbon pre-treatment system. Unless removed upstream, the adsorbed loadings of these organic constituents could exceed the land disposal criteria for carbon.

  11. Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for Pumping System Efficiency TestMarkTechnique |

  12. Alkaline flooding injection strategy

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1992-03-01T23:59:59.000Z

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  13. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01T23:59:59.000Z

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  14. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect (OSTI)

    James O'Brien

    2012-09-01T23:59:59.000Z

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during January–August 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  15. Determination of Importance Evaluation for Exploratory Studies Facility (ESF) Subsurface Testing Activities

    SciTech Connect (OSTI)

    C.J. Byrne

    2001-02-20T23:59:59.000Z

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), and ancillary test and operation support areas including the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. This evaluation applies specifically to site characterization testing activities ongoing and planned in the Subsurface ESF. ESF site characterization activities are being performed to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. A more detailed description of these testing activities is provided in Section 6 of this DIE. Generally, the construction and operation of excavations associated with these testing activities are evaluated in the DIE for the Subsurface ESF (CRWMS M&O 1999a) and the DIE for the ESF ECRB Cross Drift (CRWMS M&O 2000a). The scope of this DIE also entails the proposed Unsaturated Zone (UZ) Transport Test at Busted Butte. Although, not a part of the TS Loop or ECRB Cross Drift, the associated testing activities are Subsurface testing activities. Busted Butte is located to the south south-east of the TS Loop and is outside the Conceptual Controlled Area Boundary (CCAB). These activities provide access to the Calico Hills (CH) geologic structure. In the case of Busted Butte, construction and operation of excavations are evaluated herein (since this activity was not previously evaluated in CRWMS M&O 1999a). The objectives of this DIE are to determine whether Subsurface ESF testing, and associated activities, could potentially impact site characterization testing and/or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified in Section 13. The validity and veracity of the individual tests, including data collection, are the responsibility of the assigned Principal Investigator(s) (PIS) and are not evaluated in this DIE. This DIE focuses on integrating and compiling the evaluations of previous DIES which were prepared for various ESF subsurface testing activities, including the use of temporary items currently located or being developed for these testing activities, and to provide a bounding evaluation for potential future ESF subsurface testing activities that are sufficiently similar to the generic testing activities addressed herein. Subsurface testing activities items/facilities evaluated herein include: ongoing and planned testing in the TS Loop, alcoves, and niches, planned testing in the ECRB Starter Tunnel, borehole drilling and workover, and tracers, fluids, and materials (TFM) usage. Detailed identification of individual testing items/facilities and generic descriptions for subsurface-testing-related activities are provided in Section 6. The conclusions and requirements of this DIE conservatively bound the conclusions and requirements of previously approved DIES for the ESF subsurface testing activities addressed herein, based on conservative engineering judgment and on concurrence with this DIE (via a formal review process) by the originating and reviewing organizations of the previously approved evaluations. Hence, this DIE supersedes the following DIES listed in Table 1.1.

  16. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    SciTech Connect (OSTI)

    Peeler, D.

    1999-06-22T23:59:59.000Z

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  17. Proof of concept testing of an integrated dry injection system for SO{sub x}/NO{sub x} control. Quarterly technical progress report, July--September 1990

    SciTech Connect (OSTI)

    Helfritch, D.J.; Bortz, S.J. [Research-Cottrell, Inc., Somerville, NJ (United States). Environmental Services and Technologies Div.; Beittel, R. [Riley Stoker Corp., Worcester, MA (United States)

    1990-12-31T23:59:59.000Z

    The objective of the subscale test program were designed to provide sorbent and additive selection guidance, and, in so doing, supply answers to the questions posed in the preceding section. The objectives are: Identify the best commercial hydrate sorbent and the best enhanced hydrate sorbent from a list of nine types, based upon S0{sub 2} removal at Ca/S=2. Determine the relative effectiveness of sodium sesquicarbonate versus sodium bicarbonate for S0{sub 2} and NO{sub x} control over the temperature range of 200{degrees}F--400{degrees}F. Identify the best NO{sub 2} suppressing additive among the group of ammonia, urea, and activated carbon.

  18. Proof of concept testing of an integrated dry injection system for SO{sub x}/NO{sub x} control. Quarterly technical progress report, April--June, 1989

    SciTech Connect (OSTI)

    Helfritch, D.J.; Bortz, S.J. [Research-Cottrell, Inc., Somerville, NJ (United States). Environmental Services and Technologies Div.; Beittel, R. [Riley Stoker Corp., Worcester, MA (United States)

    1989-12-31T23:59:59.000Z

    The objectives of the subscale test program were designed to provide sorbent and additive selection guidance, and, in so doing, supply answers to the questions posed in the preceding section. The objectives are: Identify the best commercial hydrate sorbent and the best enhanced hydrate sorbent from a list of nine types, based upon S0{sub 2} removal at Ca/S=2. Determine the relative effectiveness of sodium sesquicarbonate versus sodium bicarbonate for S0{sub 2} and NO{sub x} control over the temperature range of 200{degrees}F--400{degrees}F. Identify the best NO{sub 2} suppressing additive among the group of ammonia, urea, and activated carbon.

  19. Results of Active Test of Uranium-Plutonium Co-denitration Facility at Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Numao, Teruhiko; Nakayashiki, Hiroshi; Arai, Nobuyuki; Miura, Susumu; Takahashi, Yoshiharu [Denitration Section, Plant Operation Dept., Reprocessing Plant, Reprocessing Business Division, Japan Nuclear Fuel Limited Rokkasho-mura, Kamikita-gun, Aomori-ken (Japan); Nakamura, Hironobu; Tanaka, Izumi [Technical Support Dept., Reprocessing Plant, Reprocessing Business Division, Japan Nuclear Fuel Limited Rokkasho-mura, Kamikita-gun, Aomori-ken (Japan)

    2007-07-01T23:59:59.000Z

    In the U-Pu co-denitration facility at Rokkasho Reprocessing Plant (RRP), Active Test which composes of 5 steps was performed by using uranium-plutonium nitrate solution that was extracted from spent fuels. During Active Test, two kinds of tests were performed in parallel. One was denitration performance test in denitration ovens, and expected results were successfully obtained. The other was validation and calibration of non-destructive assay (NDA) systems, and expected performances were obtained and their effectiveness as material accountancy and safeguards system was validated. (authors)

  20. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    Liberzon, Daniel

    Abstract--We propose a framework to study the impact of stochastic active/reactive power injections. In this framework the active/reactive power injections evolve according to a continuous-time Markov chain (CTMC) model. The DAE model is linearized around a nominal set of active/reactive power injections

  1. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  2. Design of test bench apparatus and preliminary weight reduction strategy for an active knee prosthesis

    E-Print Network [OSTI]

    Lau, Jacky H. (Jacky Homing)

    2011-01-01T23:59:59.000Z

    This thesis presents the design and structural analyses of an experimental test bench for the characterization of an active biomimetic knee prosthesis currently being developed by the Biomechatronics research group at MIT ...

  3. Current Activities at the ACRELab Renewable Energy Systems Test T.L. Pryor1

    E-Print Network [OSTI]

    of the Australian CRC for Renewable Energy (ACRE) on the Murdoch University campus in Perth, Western Australia is a testing laboratory for Renewable Energy (RE) Systems based at the ACRE headquarters in Perth, AustraliaCurrent Activities at the ACRELab Renewable Energy Systems Test Facility T.L. Pryor1 , E.S. Spooner

  4. High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

    E-Print Network [OSTI]

    High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

  5. Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel 

    E-Print Network [OSTI]

    Okeke, Tobenna

    2012-07-16T23:59:59.000Z

    permeability, swept zones. This research was initiated to evaluate the potential effectiveness of the latter method, known as deep diverting gels (DDG) to plug thief zones deep within the reservoir and far from the injection well. To evaluate the performance...

  6. Round-robin testing of a reference glass for low-activity waste forms

    SciTech Connect (OSTI)

    Ebert, W. L.; Wolf, S. F.

    1999-12-06T23:59:59.000Z

    A round robin test program was conducted with a glass that was developed for use as a standard test material for acceptance testing of low-activity waste glasses made with Hanford tank wastes. The glass is referred to as the low-activity test reference material (LRM). The program was conducted to measure the interlaboratory reproducibility of composition analysis and durability test results. Participants were allowed to select the methods used to analyze the glass composition. The durability tests closely followed the Product Consistency Test (PCT) Method A, except that tests were conducted at both 40 and 90 C and that parallel tests with a reference glass were not required. Samples of LRM glass that had been crushed, sieved, and washed to remove fines were provided to participants for tests and analyses. The reproducibility of both the composition and PCT results compare favorably with the results of interlaboratory studies conducted with other glasses. From the perspective of reproducibility of analysis results, this glass is acceptable for use as a composition standard for nonradioactive components of low-activity waste forms present at >0.1 elemental mass % and as a test standard for PCTS at 40 and 90 C. For PCT with LRM glass, the expected test results at the 95% confidence level are as follows: (1) at 40 C: pH = 9.86 {+-} 0.96; [B] = 2.30 {+-} 1.25 mg/L; [Na] = 19.7 {+-} 7.3 mg/L; [Si] = 13.7 {+-} 4.2 mg/L; and (2) at 90 C: pH = 10.92 {+-} 0.43; [B] = 26.7 {+-} 7.2 mg/L; [Na] = 160 {+-} 13 mg/L; [Si] = 82.0 {+-} 12.7 mg/L. These ranges can be used to evaluate the accuracy of PCTS conducted at other laboratories.

  7. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    SciTech Connect (OSTI)

    NONE

    2005-01-01T23:59:59.000Z

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good.

  8. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect (OSTI)

    Klix, A.; Fischer, U. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gehre, D. [Technical University of Dresden, IKTP, Zellescher Weg 19, 01062 Dresden (Germany); Kleizer, G. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Raj, P. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Université Paris-Sud, 15 rue Georges Clemenceau, F-91405 Paris (France); Rovni, I. [Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Ruecker, Tom [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and University of Applied Sciences Zittau-Goerlitz, Theodor-Körner-Allee 16, D-02754 Zittau (Germany)

    2014-08-21T23:59:59.000Z

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  9. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30T23:59:59.000Z

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  10. Intradermal needle-free powdered drug injection

    E-Print Network [OSTI]

    Liu, John (John Hsiao-Yung)

    2012-01-01T23:59:59.000Z

    This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

  11. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16T23:59:59.000Z

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  12. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  13. Addendum to the Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada, Revison 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01T23:59:59.000Z

    This document constitutes an addendum to the June 2003, Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 06-20-02, 20-inch Cased Hole • CAS 06-23-03, Drain Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

  14. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03T23:59:59.000Z

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  15. Underground Injection Control (Louisiana)

    Broader source: Energy.gov [DOE]

    The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

  16. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2006-04-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

  17. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  18. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2010-09-01T23:59:59.000Z

    Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River at a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.

  19. Supported-sorbent injection. Final report

    SciTech Connect (OSTI)

    Nelson, S. Jr.

    1997-07-01T23:59:59.000Z

    A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

  20. A study of steam injection in fractured media

    SciTech Connect (OSTI)

    Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

    1996-02-01T23:59:59.000Z

    Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

  1. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect (OSTI)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01T23:59:59.000Z

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  2. Premixed direct injection disk

    DOE Patents [OSTI]

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23T23:59:59.000Z

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  3. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

  4. Preliminary Glass Development and Testing for In-Container Vitrification of Hanford Low-Activity Waste

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Schweiger, Michael J.; Hrma, Pavel R.; Matyas, Josef; Crum, Jarrod V.; Smith, Donald E.

    2004-01-01T23:59:59.000Z

    Roughly 50 million gallons of high-level waste (HLW) are stored at the Hanford site. This waste will be separated into HLW and low-activity waste (LAW) fractions and each fraction will be immobilized for final storage/disposal. The US Department of Energy (DOE) Office of River Protection (ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) which will be capable of separating the waste, vitrifying the entire HLW fraction of the waste and vitrifying roughly 50% the LAW fraction. The remaining fraction of LAW will be immobilized by one of a number of possible technologies. ORP is currently evaluating options for LAW immobilization. One possible option is In-Container Vitrification (ICV) of the LAW. ICV is a technology developed by AMEC, GeoMelt Division, for treatment of hazardous, radioactive, and mixed wastes. The ICV process, as applied to Hanford LAW, includes the blending of liquid waste with additives (primarily composed of local soil) and drying to a granular state. The dried material is loaded into a refractory lined steel box and melted by passing a current through the material between two graphite electrodes. The box containing the molten waste/additive mixture is cooled, backfilled, and disposed of. The purpose of the study was to develop a glass composition suitable for the demonstration of ICV on Hanford LAW at full scale. Testing included crucible-scale tests with simulants and actual Hanford LAW. Following the crucible-scale tests, engineering-scale and large-scale melts were performed with LAW simulants. This paper discusses the formulation and testing of glass compositions for ICV of Hanford LAW at crucible scale. The results from process scale-up test are reported elsewhere.

  5. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  6. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-06-30T23:59:59.000Z

    ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

  7. Analysis of Injection-Backflow Tracer Tests

    E-Print Network [OSTI]

    Stanford University

    and by the Department of Petrole Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research

  8. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Jim Butz; Terry Hunt

    2005-11-01T23:59:59.000Z

    Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

  9. Direct tuyere injection of oxygen for enhanced coal combustion

    SciTech Connect (OSTI)

    Riley, M.F. [Praxair, Inc., Tarrytown, NY (United States)

    1996-12-31T23:59:59.000Z

    Injecting oxygen directly into the tuyere blowpipe can enhance the ignition and combustion of injected pulverized coal, allowing the efficient use of higher coal rates at high furnace production levels. The effects of direct oxygen injection have been estimated from an analysis of the factors controlling the dispersion, heating, ignition, and combustion of injected coal. Injecting ambient temperature oxygen offers mechanical improvements in the dispersion of coal but provides little thermochemical benefit over increased blast enrichment. Injecting hot oxygen through a novel, patented thermal nozzle lance offers both mechanical and thermochemical benefits over increased enrichment or ambient oxygen injection. Plans for pilot-scale and commercial-scale testing of this new lance are described.

  10. Optimization of Injection Scheduling in

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-I12 Optimization of Injection Scheduling in Geothermal Fields James Lovekin May 1987&injection optimization problem is broke$ into two subpmbkm:(1) choosing a configuration of injectorsfrom an existing set is defined as the fieldwide break- through lindex, B. Injection is optimized by choosing injection wells

  11. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

  12. Pellet injection technology

    SciTech Connect (OSTI)

    Combs, S.K. (Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8071 (United States))

    1993-07-01T23:59:59.000Z

    During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures ([congruent]10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of [congruent]1--2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1--40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice.

  13. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect (OSTI)

    Jester, Sebastian; /Fermilab

    2005-02-01T23:59:59.000Z

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  14. Energy-efficiency testing activities of the Mobile Energy Laboratory - Semiannual Report: April 1, 1990, Through September 30, 1990

    SciTech Connect (OSTI)

    Parker, G.B.; Currie, J.W.

    1991-03-01T23:59:59.000Z

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1990. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. MELs are equipped for the on-site evaluation of energy use efficiency. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. This report describes the testing, test results, and suggested courses of action.

  15. Design and Test of an Event Detector for the ReflectoActive Seals System

    SciTech Connect (OSTI)

    Stinson, Brad J [ORNL

    2006-05-01T23:59:59.000Z

    The purpose of this thesis was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphical user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.

  16. Design and Test of an Event Detector and Locator for the ReflectoActive Seals System

    SciTech Connect (OSTI)

    Stinson, Brad J [ORNL

    2006-06-01T23:59:59.000Z

    The purpose of this work was to research, design, develop and test a novel instrument for detecting fiber optic loop continuity and spatially locating fiber optic breaches. The work is for an active seal system called ReflectoActive{trademark} Seals whose purpose is to provide real time container tamper indication. A Field Programmable Gate Array was used to implement a loop continuity detector and a spatial breach locator based on a high acquisition speed single photon counting optical time domain reflectometer. Communication and other control features were added in order to create a usable instrument that met defined requirements. A host graphical user interface was developed to illustrate system use and performance. The resulting device meets performance specifications by exhibiting a dynamic range of 27dB and a spatial resolution of 1.5 ft. The communication scheme used expands installation options and allows the device to communicate to a central host via existing Local Area Networks and/or the Internet.

  17. A data base and a standard material for use in acceptance testing of low-activity waste products

    SciTech Connect (OSTI)

    Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

    1998-04-01T23:59:59.000Z

    The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material.

  18. RMOTC - Testing - Carbon Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    several years of site characterization and baseline studies necessary to advance CO2 injection tests that could yield important EOR and storage findings. Numerous...

  19. A study on Raman Injection Laser

    E-Print Network [OSTI]

    Liu, Debin

    2005-11-01T23:59:59.000Z

    The Raman Injection Laser is a new type of laser which is based on triply resonant stimulated Raman scattering between quantum confined states within the active region of a Quantum Cascade Laser that serves as an internal optical pump. The Raman...

  20. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, J.J.

    1995-07-18T23:59:59.000Z

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  1. Wind Tunnel and Flight Testing of Active Flow Control on a UAV

    E-Print Network [OSTI]

    Babbar, Yogesh

    2011-08-08T23:59:59.000Z

    Active flow control has been extensively explored in wind tunnel studies but successful in-flight implementation of an active flow control technology still remains a challenge. This thesis presents implementation of active flow control technology...

  2. Iodine Adsorption on Ion-Exchange Resins and Activated Carbons– Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30T23:59:59.000Z

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows: • The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. • The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. • The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. • In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine sorption.

  3. Testing a model of variability of X-ray reprocessing features in Active Galactic Nuclei

    E-Print Network [OSTI]

    P. T. Zycki; A. Rozanska

    2001-02-13T23:59:59.000Z

    A number of recent results from X-ray observations of Active Galactic Nuclei involving the Fe K alpha line (reduction of line variability compared to the X-ray continuum variability, the X-ray ``Baldwin effect'') were attributed to a presence of a hot, ionized skin of an accretion disc, suppressing emission of the line. The ionized skin appears as a result of the thermal instability of X-ray irradiated plasma. We test this hypothesis by computing the Thomson thickness of the hot skin on top of the 'alpha P_tot' Shakura-Sunyaev disc, by simultaneously solving the vertical structure of both the hot skin and the disc. We then compute a number of relations between observable quantities, e.g. the hard X-ray flux, amplitude of the observed reprocessed component, relativistic smearing of the K alpha line, the r.m.s. variability of the hard X-rays. These relations can be compared to present and future observations. We point out that this mechanism is unlikely to explain the behaviour of the X-ray source in MCG-6-30-15, where there is a number of arguments against the existence of a thick hot skin, but it can work for some other Seyfert 1 galaxies.

  4. A review of two recent occurrences at the Advanced Test Reactor involving subcontractor activities

    SciTech Connect (OSTI)

    Dahlke, H.J.; Jensen, N.C.; Vail, J.A.

    1997-11-01T23:59:59.000Z

    This report documents the results of a brief, unofficial investigation into two incidents at the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR) facility, reported on October 25 and 31, 1997. The first event was an unanticipated breach of confinement. The second involved reactor operation with an inoperable seismic scram subsystem, violating the reactor`s Technical Specifications. These two incidents have been found to be unrelated. A third event that occurred on December 16, 1996, is also discussed because of its similarities to the first event listed above. Both of these incidents were unanticipated breaches of confinement, and both involved the work of construction subcontractor personnel. The cause for the subcontractor related occurrences is a work control process that fails to effectively interface with LMITCO management. ATR Construction Project managers work sufficient close with construction subcontractor personnel to understand planned day-to-day activities. They also have sufficient training and understanding of reactor operations to ensure adherence to applicable administrative requirements. However, they may not be sufficiently involved in the work authorization and control process to bridge an apparent communications gap between subcontractor employees and Facility Operations/functional support personnel for work inside the reactor facility. The cause for the inoperable seismic scram switch (resulting from a disconnected lead) is still under investigation. It does not appear to be subcontractor related.

  5. Underground Injection Control (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by...

  6. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15T23:59:59.000Z

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  7. Development of an injection augmentation program at the Dixie...

    Open Energy Info (EERE)

    and constructing a polyethylene pipeline to a dedicated injector.During the first two years of this program four different injectors have been utilized and tested.An injection...

  8. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

  9. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30T23:59:59.000Z

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.

  10. CTI in NSTX, Proposal for Compact Toroid Injection in NSTX

    SciTech Connect (OSTI)

    R. Raman

    2008-11-04T23:59:59.000Z

    This is the final Report summarizing the activities of the proposal to invetigate the potential of deep fueling a spherical torus or tokamak using high velocity injection of compact toroids.

  11. The reduction of supersonic jet noise using pulsed microjet injection

    E-Print Network [OSTI]

    Ragaller, Paul Aaron

    2007-01-01T23:59:59.000Z

    This thesis is concerned with the active control of supersonic jet noise using pulsed microjet injection at the nozzle exit. Experimental investigations were carried out using this control method on an ideally expanded ...

  12. Reactor Room Experimental SF6 Tests to Determine Probable Stack Activity Response to Radioactive Releases

    SciTech Connect (OSTI)

    Cooper, R.E.

    2002-08-19T23:59:59.000Z

    This study was performed to obtain information that could be useful for obtaining an early estimate of the probable total stack activity monitor response in the event of an accidental release of radioactive activity in the process room.

  13. Injection Laser System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor manyInhibiting IndividualInjection

  14. Pressure modulated injection and its effect on combustion and emissions of a HD diesel engine

    SciTech Connect (OSTI)

    Erlach, H.; Chmela, F.; Cartellieri, W.; Herzog, P.

    1995-12-31T23:59:59.000Z

    The paper describes the concept selection, design and performance of a fuel injection equipment (FIE) which provides high flexibility in shaping the injection rate. With this injection system standard and boot shaped injection rates as well as pilot injections and post injections can be achieved throughout the hole speed and load range. Special emphasis was drawn to realize boot rate shaping by pressure modulation rather than by throttling the fuel flow (i.e.: the system is operated with fully opened needle during the whole injection period and no throttling device limits the fuel flow in front of the nozzle to reduce the injection rate). Initial engine tests on a single cylinder research engine with 2 liter displacement were carried out at one operating point (1,000 rpm, 200 mm{sup 3}/str = 75% of full load fueling). Boot and pilot (split) injection rate shaping strategies are compared to a standard injection without rate shaping. At constant smoke and BSFC the boot injection shows a considerable improvement potential in NOx emissions of up to {minus}14%, or NOx and BSFC can be reduced simultaneously by {minus}9% and {minus}7%, respectively. The results with pilot injection are less promising than the results with boot injection. Furthermore, they are sensitive to pilot timing and to injection pressure as well as fueling during pilot injection.

  15. Heat transfer and film cooling with steam injection

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    . The cooling medium was injected through the side of the test section into the blade. The apparatus and test section are shown in Figure 3. Great care was taken in the design of the wind tunnel which was designed to be subsonic with uniform flow and a low... 48 inch overall length. The blade was positioned 24 inches from the leading edge of the test section. D. Test Material The aluminum blade was a straight airfoil with a cir- cular leading edge and three staggered rows of injection holes. Using...

  16. Premixed direct injection nozzle

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC); Johnson, Thomas Edward (Greer, SC); Lacy, Benjamin Paul (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC)

    2011-02-15T23:59:59.000Z

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  17. Underground Injection Control Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

  18. Underground Injection Control Rule (Vermont)

    Broader source: Energy.gov [DOE]

    This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

  19. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01T23:59:59.000Z

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  20. Common Rail Injection System Development

    SciTech Connect (OSTI)

    Electro-Motive,

    2005-12-30T23:59:59.000Z

    The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

  1. INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Tests in a Naturally Fractured Reservoir--A Field Case Studyin Vertically Fractured Reservoirs," J. Pet. Tech. (Oct. ,Injection Test in a Fractured Reservoir-History Match Using

  2. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

    2003-01-01T23:59:59.000Z

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  3. Activity testing of fine-particle size, iron catalysts for coal liquefaction

    SciTech Connect (OSTI)

    Stohl, F.V.; Diegert, K.V.; Gugliotta, T.P.

    1993-10-01T23:59:59.000Z

    The use of fine-particle size (< 40 nm) unsupported catalysts in direct coal liquefaction may result in improved economics due to possible enhanced yields of desired products, the potential for decreasing reaction severity, and the possibility of using less catalyst. Sandia has developed a standard testing procedure for evaluating and comparing the fine-particle catalysts. The test procedure uses phenanthrene as the reaction solvent, the DECS-17 Blind Canyon Coal, and a statistical experimental design to enable evaluation of the catalysts over ranges of temperature (350 to 400{degrees}C), time (20 to 60 minutes), and catalyst loading (0 to 1 wt % on a dmmf coal basis). Product analyses include tetrahydrofuran (THF) conversion, heptane conversion, solvent recovery, and gas analyses. Phenanthrene as the solvent in the testing procedure yielded significant differences between thermal and catalytic reactions, whereas using a good hydrogen donor such as 9,10-dihydrophenanthrene (DHP) showed no catalytic effects.

  4. USING A DIFFERENTIAL EMISSION MEASURE AND DENSITY MEASUREMENTS IN AN ACTIVE REGION CORE TO TEST A STEADY HEATING MODEL

    SciTech Connect (OSTI)

    Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Schmelz, Joan T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Saar, Steve H.; Kashyap, Vinay L., E-mail: amy.r.winebarger@nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2011-10-10T23:59:59.000Z

    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high-temperature active region loops close to equilibrium. In this paper, we couple observations of active region (AR) 10955 made with the X-Ray Telescope and the EUV Imaging Spectrometer on board Hinode to test a simple steady heating model. First we calculate the differential emission measure (DEM) of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3 MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 < log T < 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.

  5. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26T23:59:59.000Z

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  6. Loch Linnhe `94: Test operations description and on-site analysis, US activities

    SciTech Connect (OSTI)

    Mantrom, D.D.

    1994-11-01T23:59:59.000Z

    A field experiment named Loch Linnhe `94 (LL94) is described. This experiment was conducted in upper Loch Linnhe, Scotland, in September 1994, as an exercise involving UK and US investigators, under the Joint UK/US Radar Ocean Imaging Program. This experiment involved a dual-frequency, dual-polarization hillside real aperture radar operated by the UK, Lawrence Livermore National Laboratory`s (LLNL) current meter array (CMA), in-water hydrodynamic sensors, and meteorological measurements. The primary measurements involved imaging ship-generated and ambient internal waves by the radar and the CMA. This report documents test operations from a US perspective and presents on-site analysis results derived by US investigators. The rationale underlying complementary radar and CMA measurements is described. Descriptions of the test site, platforms, and major US instrument systems are given. A summary of test operations and examples of radar, CMA, water column profile, and meteorological data are provided. A description of the rather extensive analysis of these data performed at the LL94 test site is presented. The products of this analysis are presented and some implications for further analysis and future experiments are discussed. All experimental objectives were either fully or partially met. Powerful on-site analysis capabilities generated many useful products and helped improve subsequent data collection. Significant further data analysis is planned.

  7. Development and results of experimental testing of electromembrane process for liquid active waste purification

    SciTech Connect (OSTI)

    Martinov, B.V.; Smirnov, V.V.; Tugolukov, B.B.; Belyakov, Y.A. [A.A. Bochvar All Russian Scientific Research, Moscow (Russian Federation). Inst. of Inorganic Materials

    1993-12-31T23:59:59.000Z

    This paper discusses the results of studies on electromembrane purification. The concentration of salts in active wastes arising from decontamination is more than 3--5 g/l. For these investigations a solution was chosen that had arisen from the decontamination of metallic items by a two-bath method using permanganate-alkali in the first stage and nitrogen oxalic acid in the second stage. The total salt content of mixed acid and alkaline solutions was 3.0 g/l, with a pH of 8.5 and total beta-activity of 6 {times} 10{sup {minus}8} Ci/l.

  8. Review of the CRIP (Controlled Retracting Injection Point) process

    SciTech Connect (OSTI)

    Hill, R.W.

    1986-07-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory has been working in the field of underground coal gasification since 1976. We have had a balanced program of modeling, laboratory experiments and field experiments. We have developed several cavity growth and gas composition models. These are designed to be as simple and modular as possible because of the lack of detailed input information and the need to keep computing time low. Our laboratory program is designed to complement and support the modeling effort and the field program. We conducted three field tests at Hoe Creek, Wyoming; each one using a different linking method. We did a series of five small field tests at Centralia, Washington, to study burn cavity development as a function of injection parameters. These were followed a year later by a larger test of the Controlled Retracting Injection Point, or CRIP, process. This concept is used in the design of the Belgian-German test and in the coming Rocky Mountain-1 test. It utilizes injection through a horizontal drilled hole to hold the injection point on the bottom of the seam and a controlled destruction of the injection pipe to move the burn zone when the product gas quality deteriorates. 16 refs., 12 figs.

  9. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOE Patents [OSTI]

    Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

    2012-01-03T23:59:59.000Z

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  10. INL Active Interrogation Testing In Support of the GNEP Safeguards Campaign

    SciTech Connect (OSTI)

    David L. Chichester

    2008-04-01T23:59:59.000Z

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. Work at Idaho National Laboratory (INL) in the area of active interrogation, using neutron and photon sources, has been under way for many years to develop methods for detecting and quantifying nuclear material for national and homeland security research areas. This research knowledge base is now being extended to address nuclear safeguards and process monitoring issues related to the Global Nuclear Energy Partnership (GNEP). As a first step in this area preliminary scoping studies have been performed to investigate the usefulness of using active neutron interrogation, with a low-power electronic neutron generator, to assay Department of Transportation 6M shipping drums containing uranium oxide fuel rodlets from INL’s zero power physics reactor. Using the paired-counting technique during the die-away time period of interrogation, a lower detection limit of approximately 4.2 grams of enriched uranium (40% 235U) was calculated for a 40 minute measurement using a field portable 2.5 MeV neutron source and an array of 16 moderated helium-3 neutron tubes. Future work in this area, including the use of a more powerful neutron source and a better tailored detector array, would likely improve this limit to a much lower level. Further development work at INL will explore the applicability of active interrogation in association with the nuclear safeguards and process monitoring needs of the advanced GNEP facilities under consideration. This work, which will include both analyses and field demonstrations, will be performed in collaboration with colleagues at INL and elsewhere that have expertise in nuclear fuel reprocessing as well as active interrogation and its use for nuclear material analyses.

  11. Injection nozzle for a turbomachine

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11T23:59:59.000Z

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  12. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S. (Wilsonville, AL)

    1985-01-01T23:59:59.000Z

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  13. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    SciTech Connect (OSTI)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01T23:59:59.000Z

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  14. Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site SwedenEnergy

  15. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site2009 DOE Hydrogen Program

  16. NEUTRAL-BEAM INJECTION

    SciTech Connect (OSTI)

    Kunkel, W.B.

    1980-06-01T23:59:59.000Z

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

  17. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    SciTech Connect (OSTI)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01T23:59:59.000Z

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  18. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

    2008-12-16T23:59:59.000Z

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  19. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  20. A bulk-flow model of angled injection Lomakin bearings

    E-Print Network [OSTI]

    Soulas, Thomas Antoine Theo

    2001-01-01T23:59:59.000Z

    of cross-coupled stiffness coefficients and null or even negative whirl frequency ratios. K i m and Lee [24] present rotordynamic coefficients and leakage test results for annular seals which use an anti-swirl self- injection concept to yield significant... of cross-coupled stiffness coefficients and null or even negative whirl frequency ratios. K i m and Lee [24] present rotordynamic coefficients and leakage test results for annular seals which use an anti-swirl self- injection concept to yield significant...

  1. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  2. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    SciTech Connect (OSTI)

    Rothschmitt, Stefan; Graf, Anja [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)] [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany); Bauer, Stefan; Klute, Stefan; Koselowski, Eiko [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany)] [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Hendrich, Klaus [Ingenieurbuero Hendrich, Moerikeweg 14, 75015 Bretten (Germany)] [Ingenieurbuero Hendrich, Moerikeweg 14, 75015 Bretten (Germany)

    2013-07-01T23:59:59.000Z

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  3. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01T23:59:59.000Z

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  4. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  5. Control of water coning in gas reservoirs by injecting gas into the aquifer

    E-Print Network [OSTI]

    Haugen, Sigurd Arild

    1980-01-01T23:59:59.000Z

    implicit model. The model is thoroughly tested for both coning and other problems, including both gas and oil. It was very stable, allowing a maximum saturation change per timestep as high as 10 per cent. The condition simulated was a well in the center... of 10. The Behavior of the Injected Gas Gas was injected at different depths below the initial gas/water contact. The perforation interval for injection was 20 feet for all tests, and the r ate of injection varied, depending on the investigation. 24...

  6. Resonantly pumped optical pumping injection cavity lasers

    E-Print Network [OSTI]

    Santilli, Michael Robert; McAlpine, T. C.; Greene, K. R.; Olafsen, L. J.; Bewley, W. W.; Felix, C. L.; Vurgaftman, I.; Meyer, J. R.; Lee, H.; Martinelli, R. U.

    2004-11-01T23:59:59.000Z

    , the optically pumped devices have thus far produced much higher powers than their diode counterparts. 4–8 To en- sure the efficient injection of carriers, these optically pumped lasers have employed two main approaches to maximize the absorption of pump photons... of active QWs. The first OPIC lasers to be investigated 12,13 were de- signed for pumping by a Q-switched Ho:YAG laser emitting at 2100 nm. Whereas the cavity resonance wavelength sl cav d for normal incidence, as determined from the transmittance spectrum...

  7. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  8. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  9. Groundwater Chemistry Changes as a Result of CO2 Injection at the ZERT Field Site in Bozeman, Montana

    E-Print Network [OSTI]

    Apps, J.A.

    2010-01-01T23:59:59.000Z

    Groundwater Chemistry Changes as a Result of CO 2 Injection9 Test Configuration and Groundwater1994) Geochemistry, groundwater and pollution. A.A.Balkema,

  10. Injection system for small betatron

    SciTech Connect (OSTI)

    Zuorygin, V.P.; Chakhlov, V.L.; Pushin, U.S.

    1985-07-01T23:59:59.000Z

    In order to reduce the head loads on the injector electrodes and to raise the efficiency of electron capture during acceleration, small betatrons are provided with an injection system with a controlled three-electrode injector in which injection current pulse with steep leading and trailing edges is formed by the application of a voltage pulse to the control electrode from a separate circuit through a pulse transformer. In a betatron injection system described, elements of the controlled injector of the accelerating chamber are used to correct the shape of the current pulse. The circuit for correcting the current-pulse shape can increase the accelerated charge by the average of 75% per betatron cycle and decrease the heat loads on the electrodes of the injector without the use of a generator of controlling voltage pulses.

  11. Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery -- Mattoon Oil Field, Illinois. First quarterly technical progress report, 1993

    SciTech Connect (OSTI)

    Baroni, M.R.

    1993-05-24T23:59:59.000Z

    For work during the first quarter of 1993, American Oil Recovery, Inc. targeted completion of the following specific objectives: Convene meetings of Mattoon Project subcontractors in order to plan and coordinate Project activities. Confirm organizational arrangements and plans for implementation of Mattoon Project. Complete most work on detailed analysis of reservoir geology of productive leases in the Mattoon Project. Identify first Facies Defined Subunit for initial injectivity testing to be commenced near the beginning of the second quarter. Identify additional Facies Defined Subunits for injectivity testing and characterization during the second and third quarters. Award subcontract to the Illinois State Geological Survey and commence work on preparation of a geostatistical model (STRATAMODEL) of more than 100 wells on 1,000 acres within the Mattoon Project Area. Obtain oil samples from wells in the identified Facies Subunit for reservoir rock, fluid, and CO{sub 2} compatibility testing by the Illinois State Geological Survey. Design CO{sub 2} injection pumps and injection monitoring equipment configuration. Obtain bids for required pumps and diesel motor. Accomplishments for this quarter are reported.

  12. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01T23:59:59.000Z

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  13. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15T23:59:59.000Z

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  14. Test Plan for Field Experiments to Support the Immobilized Low-Activity Waste Disposal Performance Assessment at the Hanford Site

    SciTech Connect (OSTI)

    Meyer, Philip D.; McGrail, B. Peter; Bacon, Diana H.

    2001-09-01T23:59:59.000Z

    Much of the data collected to support the Immobilized Low-Activity Waste Performance Assessment (ILAW PA) simulations have been obtained in the laboratory on a relatively small scale (less than 10 cm). In addition, the PA simulations themselves are currently the only means available to integrate the chemical and hydrologic processes involved in the transport of contaminants from the disposal facility into the environment. This report describes the test plan for field experiments to provide data on the hydraulic, transport, and geochemical characteristics of the near-field materials on a more representative (i.e., larger) scale than the laboratory data currently available. The experiments will also provide results that encompass a variety of transport processes likely to occur within the actual disposal facility. These experiments will thus provide the first integrated data on the ILAW facility performance and will provide a crucial dataset to evaluate the simulation-based estimates of overall facility performance used in the PA.

  15. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17T23:59:59.000Z

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  16. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    Investigator: Roland N. Home September 1985 First Annual Report Department of Energy Contract Number, and the forecasting of field behavior with time. Injection I I Tec hnology is a research area receiving special on geothermal energy. The Program publishes technical reports on all of its research projects. Research findings

  17. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  18. Sequential injection gas guns for accelerating projectiles

    DOE Patents [OSTI]

    Lacy, Jeffrey M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID)

    2011-11-15T23:59:59.000Z

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  19. Spermiation of paddlefish (Polyodon spathula, Acipenseriformes) stimulated with injection of LHRH analogue and carp pituitary powder

    E-Print Network [OSTI]

    Villefranche sur mer

    Note Spermiation of paddlefish (Polyodon spathula, Acipenseriformes) stimulated with injection Center, Kentucky State University, Frankfort, KY 40601, USA c Zoology Department, University of Oklahoma spathula) was tested. Single injections of the LH-RH analogue at 0.2, 0.1, or 0.05 mg·kg­1 increased

  20. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    SciTech Connect (OSTI)

    Peters, E.M.; Masso, J.D. [AOtec, Southbridge, MA (United States)

    1995-10-01T23:59:59.000Z

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  1. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  2. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect (OSTI)

    Riuttanen, L., E-mail: lauri.riuttanen@aalto.fi; Nykänen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M. [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Kivisaari, P.; Oksanen, J.; Tulkki, J. [Department of Biomedical Engineering and Computational Science, Aalto University, P.O. Box 12200, FI-00076 Aalto (Finland)

    2014-02-24T23:59:59.000Z

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  3. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

  4. Identification and Control of Nonlinear Harmonic Coupling for Pulsed Jet Injection

    E-Print Network [OSTI]

    M'Closkey, Robert T.

    The control of a jet injected into quiescent surroundings or into a crossflow is a fundamental problem], [2]. In turbine engines, for example, active control of the jet in crossflow has been shown to improve the spread and penetration of the jet into the crossflow for dilution jet injection [3

  5. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07T23:59:59.000Z

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  6. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  7. An environmental analysis of injection molding

    E-Print Network [OSTI]

    Thiriez, Alexandre

    2006-01-01T23:59:59.000Z

    This thesis investigates injection molding from an environmental standpoint, yielding a system-level environmental analysis of the process. There are three main objectives: analyze the energy consumption trends in injection ...

  8. Underground Injection Control Permits and Registrations (Texas)

    Broader source: Energy.gov [DOE]

    Chapter 27 of the Texas Water Code (the Injection Well Act) defines an “injection well” as “an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or...

  9. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04T23:59:59.000Z

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  10. Experimental study of curved guide tubes for pellet injection

    SciTech Connect (OSTI)

    Combs, S.K.; Baylor, L.R.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Milora, S.L.

    1997-12-01T23:59:59.000Z

    The use of curved guide tubes for transporting frozen hydrogen pellets offers great flexibility for pellet injection into plasma devices. While this technique has been previously employed, an increased interest in its applicability has been generated with the recent ASDEX Upgrade experimental data for magnetic high-field side (HFS) pellet injection. In these innovative experiments, the pellet penetration appeared to be significantly deeper than for the standard magnetic low-field side injection scheme, along with corresponding greater fueling efficiencies. Thus, some of the major experimental fusion devices are planning experiments with HFS pellet injection. Because of the complex geometries of experimental fusion devices, installations with multiple curved guide tube sections will be required for HFS pellet injection. To more thoroughly understand and document the capability of curved guide tubes, an experimental study is under way at the Oak Ridge National Laboratory (ORNL). In particular, configurations and pellet parameters applicable for the DIII-D tokamak and the International Thermonuclear Experimental Reactor (ITER) were simulated in laboratory experiments. Initial test results with nominal 2.7- and 10-mm-diam deuterium pellets are presented and discussed.

  11. Registration of Hanford Site Class V underground injection wells. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Streams (DOE 1994) requires that all existing Class V injection wells be registered under WAC 173--218. (Washington Underground Injection Control Program). The purpose of this document is to fulfill this requirement by registering all active Class V underground injection control wells, on the Hanford Site, under WAC 173--218. This registration will revise the registration previously submitted in 1988 (DOE 1988). In support of this registration, an extensive effort has been made to identify all injection wells on the Hanford Site. New injection wells will not be constructed on the Hanford Site except to receive uncontaminated stormwater or groundwater heatpump return flow. All changes to Miscellaneous Streams will be tracked through the Hanford Site Miscellaneous Streams Inventory Database. Table 5--2 of this injection well registration may be updated annually at the same time as the Miscellaneous Streams Inventory, if necessary.

  12. Continuous injection method controls downhole corrosion - 2

    SciTech Connect (OSTI)

    Bradburn, J.B.; Todd, R.B.

    1981-08-01T23:59:59.000Z

    In designing a continuous downhole corrosion inhibitor injection system, many interrelated factors must be considered: bottomhole pressure, inhibitor viscosity, injection rate, friction loss, hole geometry, cost, delivery time, annulus environment, elastomers, and corrosivity of well fluids. In view of the many variables associated with the design of a downhole injection system, the following design outline is presented. 8 refs.

  13. Numerical Simulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

  14. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect (OSTI)

    Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

    2004-05-15T23:59:59.000Z

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  17. New extruder-based deuterium feed system for centrifuge pellet injection

    SciTech Connect (OSTI)

    Combs, S.K.; Foust, C.R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)] [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    1997-12-01T23:59:59.000Z

    The pellet injection systems for the next-generation fusion devices (such as the International Thermonuclear Experimental Reactor) and future fusion reactors will have to provide deuterium-tritium fueling for much longer pulse lengths (up to {approx}1000s) than present applications (typically limited to less than several seconds). Thus, a prototype pellet feed system for centrifuge pellet injection has been developed and used in long-pulse ({gt}100s) tests at the Oak Ridge National Laboratory (ORNL). The new apparatus has two key components: (1) a cryogenic deuterium extruder and (2) an electromagnetic pellet punch mechanism. For maximum testing flexibility, the prototype is equipped with several other active components that allow remote adjustments, including precise positioning of the punch and the capability to index through eight different pellet lengths. The new feed system was designed to mate with an existing centrifuge accelerator facility at ORNL, and experiments in the facility were carried out to document the performance and reliability of the new feed system. With 2.3-mm-diam deuterium pellets and a catenary-shaped accelerator ({approx}1.2mdiam), the prototype feed system was found to be capable of placing up to {approx}90{percent} of the punched pellets in the proper time/space window for pickup and acceleration by the high-speed rotating ({approx}50Hz) arbor. For these operating parameters, the pellet nominal speed was {approx}430m/s, and maximum pellet feed rates of 10 pellets/s and greater were tested. In this article the equipment is briefly described, and the experimental test results are summarized. Also, issues affecting overall pellet delivery efficiency are discussed. {copyright} {ital 1997 American Institute of Physics.}

  18. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  19. Method for preventing bitumen backflow in injection wells when steam injection is interrupted

    SciTech Connect (OSTI)

    Freeman, D.C.; Djabbarah, N.F.

    1990-04-24T23:59:59.000Z

    This patent describes a method for preventing viscous hydrocarbonaceous fluids from backflowing into a well upon interruption of a steamflood. It comprises: detecting a substantial reduction in steam injection pressure in at least one injection well via a pressure sensing device; and causing automatically a pressurized fluid to be injected into the injection well in response to the reduction in pressure which prevents viscous hydrocarbonaceous fluids from backflowing into the injection well.

  20. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, L.W.

    1983-12-21T23:59:59.000Z

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  1. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30T23:59:59.000Z

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  2. YUCCA Mountain Project - Argonne National Laboratory, Annual Progress Report, FY 1997 for activity WP 1221 unsaturated drip condition testing of spent fuel and unsaturated dissolution tests of glass.

    SciTech Connect (OSTI)

    Bates, J. K.; Buck, E. C.; Emery, J. W.; Finch, R. J.; Finn, P. A.; Fortner, J.; Hoh, J. C.; Mertz, C.; Neimark, L. A.; Wolf, S. F.; Wronkiewicz, D. J.

    1998-09-18T23:59:59.000Z

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division of Argonne National Laboratory in the period of October 1996 through September 1997. Studies have been performed to evaluate the behavior of nuclear waste glass and spent fuel samples under the unsaturated conditions (low-volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with actinide-doped waste glasses, in progress for over 11 years, indicate that the transuranic element release is dominated by colloids that continuously form and span from the glass surface. The nature of the colloids that form in the glass and spent fuel testing programs is being investigated by dynamic light scattering to determine the size distribution, by autoradiography to determine the chemistry, and by zeta potential to measure the electrical properties of the colloids. Tests with UO{sub 2} have been ongoing for 12 years. They show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases forming on the sample surface is similar to that observed for uranium found in natural oxidizing environments. The reaction of spent fuel samples in conditions similar to those used with UO{sub 2} have been in progress for over six years, and the results suggest that spent fuel forms many of the same alteration products as UO{sub 2}. With spent fuel, the bulk of the reaction occurs via a through-grain reaction process, although grain boundary attack is sufficient to have reacted all of the grain boundary regions in the samples. New test methods are under development to evaluate the behavior of spent fuel samples with intact cladding: the rate at which alteration and radionuclide release occurs when water penetrates fuel sections and whether the reaction causes the cladding to split. Alteration phases have been formed on fine grains of UO{sub 2} in contact with small volumes of water within a several month period when the radiolysis product H{sub 2}O{sub 2} is added to the groundwater solution. The test setup has been mocked up for operation with spent fuel in the hot-cell.

  3. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

  4. In Situ Field Testing of Processes

    SciTech Connect (OSTI)

    J. Wang

    2001-12-14T23:59:59.000Z

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  5. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  6. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28T23:59:59.000Z

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  7. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  8. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  9. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge | DepartmentofGeologic

  10. Injectivity Test At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:InerjyIngham

  11. Interpretation of self-potential measurements during injection tests at

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformationwellsRaft

  12. Single Well Injection Withdrawl Tracer Tests for Proppant Detection -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan McCorkleSingin' in the Rain NewsSingleEnergy

  13. RRC - Injection/Disposal Well Permitting, Testing, and Monitoring manual |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC SolarRFMD

  14. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in theLoraDepartment ofThe data

  15. The Resonating Arm Exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance

    E-Print Network [OSTI]

    Zondervan, Daniel K; Palafox, Lorena; Hernandez, Jorge; Reinkensmeyer, David J

    2013-01-01T23:59:59.000Z

    device that mimics robotic active assistance Daniel K1,3 Abstract Background: Robotic arm therapy devices thatin the development of robotic and computer-based devices for

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01T23:59:59.000Z

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  17. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27T23:59:59.000Z

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  18. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  19. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  20. Acceleration Rates and Injection Efficiencies in Oblique Shocks

    E-Print Network [OSTI]

    D. C. Ellison; M. G. Baring; F. C. Jones

    1995-06-12T23:59:59.000Z

    The rate at which particles are accelerated by the first-order Fermi mechanism in shocks depends on the angle, \\teq{\\Tbone}, that the upstream magnetic field makes with the shock normal. The greater the obliquity the greater the rate, and in quasi-perpendicular shocks rates can be hundreds of times higher than those seen in parallel shocks. In many circumstances pertaining to evolving shocks (\\eg, supernova blast waves and interplanetary traveling shocks), high acceleration rates imply high maximum particle energies and obliquity effects may have important astrophysical consequences. However, as is demonstrated here, the efficiency for injecting thermal particles into the acceleration mechanism also depends strongly on obliquity and, in general, varies inversely with \\teq{\\Tbone}. The degree of turbulence and the resulting cross-field diffusion strongly influences both injection efficiency and acceleration rates. The test particle \\mc simulation of shock acceleration used here assumes large-angle scattering, computes particle orbits exactly in shocked, laminar, non-relativistic flows, and calculates the injection efficiency as a function of obliquity, Mach number, and degree of turbulence. We find that turbulence must be quite strong for high Mach number, highly oblique shocks to inject significant numbers of thermal particles and that only modest gains in acceleration rates can be expected for strong oblique shocks over parallel ones if the only source of seed particles is the thermal background.

  1. New Pellet Injection Schemes on DIII-D

    SciTech Connect (OSTI)

    Anderson, P.M.; Baylor, L.R.; Combs, S.K.; Foust, C.R.; Jernigan, T.C.; Robinson, J.I.

    1999-11-13T23:59:59.000Z

    The pellet fueling system on DIII-D has been modified for injection of deuterium pellets from two vertical ports and two inner wall locations on the magnetic high-field side (HFS) of the tokamak. The HFS pellet injection technique was first employed on ASDEX-Upgrade with significant improvements reported in both pellet penetration and fueling efficiency. The new pellet injection schemes on DIII-D required the installation of new guide tubes. These lines are {approx_equal}12.5 m in total length and are made up of complex bends and turns (''roller coaster'' like) to route pellets from the injector to the plasma, including sections inside the torus. The pellet speed at which intact pellets can survive through the curved guide tubes is limited ({approx_equal}200-300 m/s for HFS injection schemes). Thus, one of the three gas guns on the injector was modified to provide pellets in a lower speed regime than the original guns (normal speed range {approx_equal}500 to 1000 m/s). The guide tube installations and gun modifications are described along with the injector operating parameters, and the latest test results are highlighted.

  2. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    SciTech Connect (OSTI)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18T23:59:59.000Z

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  3. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  4. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  5. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  6. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  7. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  8. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  9. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  10. Experimental Investigation of Effect of Injection Parameters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experimental Investigation of Effect of Injection Parameters, Compression Ratio and Ultra-cooled EGR on CI Engine Performance and Emissions Low temperature combustion,...

  11. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  12. Overview of Recent Developments in Pellet Injection for ITER

    SciTech Connect (OSTI)

    Combs, Stephen Kirk [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Caughman, John B [ORNL; Rasmussen, David A [ORNL; Maruyama, So [ITER Organization, Cadarache, France

    2012-01-01T23:59:59.000Z

    Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outerwall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate ofeach injector is to be up to 120 Pa-m3/s, which will require the formation of solid D-T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectorsduring the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities will be presented, highlighting recent progress.

  13. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  14. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30T23:59:59.000Z

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  15. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01T23:59:59.000Z

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  16. Defect Prevention and Detection in Software for Automated Test Equipment

    SciTech Connect (OSTI)

    E. Bean

    2006-11-30T23:59:59.000Z

    Software for automated test equipment can be tedious and monotonous making it just as error-prone as other software. Active defect prevention and detection are also important for test applications. Incomplete or unclear requirements, a cryptic syntax used for some test applications—especially script-based test sets, variability in syntax or structure, and changing requirements are among the problems encountered in one tester. Such problems are common to all software but can be particularly problematic in test equipment software intended to test another product. Each of these issues increases the probability of error injection during test application development. This report describes a test application development tool designed to address these issues and others for a particular piece of test equipment. By addressing these problems in the development environment, the tool has powerful built-in defect prevention and detection capabilities. Regular expressions are widely used in the development tool as a means of formally defining test equipment requirements for the test application and verifying conformance to those requirements. A novel means of using regular expressions to perform range checking was developed. A reduction in rework and increased productivity are the results. These capabilities are described along with lessons learned and their applicability to other test equipment software. The test application development tool, or “application builder”, is known as the PT3800 AM Creation, Revision and Archiving Tool (PACRAT).

  17. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    models as com- pletely as possible prior to making the gas injection simulations. One validation test involved simulating a horizontal gas drive ex- cluding gravity effects by using the same densities for gas and oil. Shown in Figure 6 is the GOR...THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  18. 100-D Area In Situ Redox Treatability Test for Chromate-Contaminated Groundwater

    SciTech Connect (OSTI)

    Williams, Mark D.; Vermeul, Vincent R.; Szecsody, James E.; Fruchter, Jonathan S.

    2000-10-12T23:59:59.000Z

    A treatability test was conducted for the In Situ Redox Manipulation (ISRM) technology at the 100 D Area of the U. S. Department of Energy's Hanford Site. The target contaminant was dissolved chromate in groundwater. The ISRM technology creates a permeable subsurface treatment zone to reduce mobile chromate in groundwater to an insoluble form. The ISRM permeable treatment zone is created by reducing ferric iron to ferrous iron within the aquifer sediments, which is accomplished by injecting aqueous sodium dithionite into the aquifer and then withdrawing the reaction products. The goal of the treatability test was to create a linear ISRM barrier by injecting sodium dithionite into five wells. Well installation and site characterization activities began in spring 1997; the first dithionite injection took place in September 1997. The results of this first injection were monitored through the spring of 1998. The remaining four dithionite injections were carried out in May through July of 1998.These five injections created a reduced zone in the Hanford unconfined aquifer approximately 150 feet in length (perpendicular to groundwater flow) and 50 feet wide. The reduced zone extended over the thickness of the unconfined zone. Analysis of post-emplacement groundwater samples showed concentrations of chromate, in the reduced zone decreased from approximately 1.0 mg/L before the tests to below analytical detection limits (<0.007 mg/L). Chromate concentrations also declined in downgradient monitoring wells to as low as 0.020 mg/L. These data, in addition to results from pre-test reducible iron characterization, indicate the barrier should be effective for 20 to 25 years. The 100-D Area ISRM barrier is being expanded to a length of up to 2,300 ft to capture a larger portion of the chromate plume.

  19. Magnetohydrodynamic effects on pellet injection in tokamaks

    SciTech Connect (OSTI)

    Strauss, H.R. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States)] [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States); Park, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    1998-07-01T23:59:59.000Z

    The location at which pellets are injected into a plasma can have a significant effect on what fraction of the pellet mass remains in the plasma for refueling purposes. Magnetohydrodynamic (MHD) simulations presented here, confirm the results of pellet injection experiments: toroidal curvature makes it favorable to inject pellets from the inboard side or from the top or bottom, rather than from the outboard side. Sufficiently large pellets injected at the inboard edge can reach the plasma center, and in the process drive magnetic reconnection to produce negative central shear. Injection at the top (or bottom) of the tokamak causes relatively little displacement of the pellet. A scaling law is obtained for pellet displacement which agrees well with the simulations. The MHD simulations were carried out with a new unstructured mesh finite element version of the MH3D full MHD code. {copyright} {ital 1998 American Institute of Physics.}

  20. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    SciTech Connect (OSTI)

    Deli, Martin, E-mail: martin.deli@web.de [University of Witten/Herdecke, Department of Radiology and Microtherapy, Groenemeyer Institute for Microtherapy (GIMT) (Germany); Fritz, Jan, E-mail: jfritz9@jhmi.edu [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science (United States); Mateiescu, Serban, E-mail: mateiescu@microtherapy.de; Busch, Martin, E-mail: busch@microtherapy.de [University of Witten/Herdecke, Department of Radiology and Microtherapy, Groenemeyer Institute for Microtherapy (GIMT) (Germany); Carrino, John A., E-mail: jcarrin2@jhmi.edu [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science (United States); Becker, Jan, E-mail: j.becker@microtherapy.de; Garmer, Marietta, E-mail: garmer@microtherapy.de; Groenemeyer, Dietrich, E-mail: dg@microtherapy.de [University of Witten/Herdecke, Department of Radiology and Microtherapy, Groenemeyer Institute for Microtherapy (GIMT) (Germany)

    2013-06-15T23:59:59.000Z

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  1. Calculation of Neutral Beam Injection into SSPX

    SciTech Connect (OSTI)

    Pearlstein, L D; Casper, T A; Hill, D N; LoDestro, L L; McLean, H S

    2006-06-13T23:59:59.000Z

    The SSPX spheromak experiment has achieved electron temperatures of 350eV and confinement consistent with closed magnetic surfaces. In addition, there is evidence that the experiment may be up against an operational beta limit for Ohmic heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam (NB) sources to the experiment. A question is whether the limit is due to instability. Since the deposited Ohmic power in the core is relatively small the additional power from the beams is sufficient to significantly increase the electron temperature. Here we present results of computations that will support this contention. We have developed a new NB module to calculate the orbits of the injected fast fast-ions. The previous computation made heavy use of tokamak ordering which fails for a tight-aspect-ratio device, where B{sub tor} {approx} B{sub pol}. The model calculates the deposition from the NFREYA package [1]. The neutral from the CX deposition is assumed to be ionized in place, a high-density approximation. The fast ions are then assumed to fill a constant angular momentum orbit. And finally, the fast ions immediately assume the form of a dragged down distribution. Transfer rates are then calculated from this distribution function [2]. The differential times are computed from the orbit times and the particle weights in each flux zone (the sampling bin) are proportional to the time spent in the zone. From this information the flux-surface-averaged profiles are obtained and fed into the appropriate transport equation. This procedure is clearly approximate, but accurate enough to help guide experiments. A major advantage is speed: 5000 particles can be processed in under 4s on our fastest LINUX box. This speed adds flexibility by enabling a ''large'' number of predictive studies. Similar approximations, without the accurate orbit calculation presented here, had some success comparing with experiment and TRANSP [3]. Since our procedure does not have multiple CX and relies on disparate time scales, more detailed understanding requires a ''complete'' NB package such as the NUBEAM [4] module, which follows injected fast ions along with their generations until they enter the main thermal distribution.

  2. The effect of injection hole orientation on flat-plate film cooling and heat transfer using a transient liquid crystal technique

    E-Print Network [OSTI]

    Zapata, Dyrk Oliver

    1994-01-01T23:59:59.000Z

    . . . . . . . . . . . . 61 63 64 65 NOMENCLATURE Cv specific heat of test surface injection hole diameter convective heat transfer coefficient (W/m -K) convective heat transfer coefficient for no film injection momentum ratio, prUt2/p U 2 N Rea test surface... thermal conductivity length of injection hole blowing ratio, prUi/p U number of step changes Reynolds number, p U d/lt TOW time of color change adiabatic wall temperature Tm TU initial temperature film temperature mainstream temperature...

  3. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01T23:59:59.000Z

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  4. 3. FIELD DEMONSTRATION STATUS We are currently in the final stages of preparation in the pilot area prior to CO2 injection.

    E-Print Network [OSTI]

    Schechter, David S.

    of these tests to characterize further the reservoir and develop proper reservoir management strategy has been-well interference test. Stable water injection was initiated in October of 1999 in order to increase the reservoir of a waterflood baseline decline so that all produced oil as a result of CO2 injection can be quantified

  5. Summary of Construction Activities and Results from Six Initial Accelerated Pavement Tests Conducted on Asphalt Concrete Pavement Section for Modified-Binder Overlay

    E-Print Network [OSTI]

    Bejarano, Manuel O.; Morton, Bruce S.; Scheffy, Clark

    2005-01-01T23:59:59.000Z

    Testing on the Asphalt Concrete FWD testing was conducted onin asphalt concrete modulus after HVS testing for Sectionsconcrete pavements under accelerated pavement testing. This

  6. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  7. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  8. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2003-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  9. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2002-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  10. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2005-03-17T23:59:59.000Z

    Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

  11. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01T23:59:59.000Z

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  12. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect (OSTI)

    Wills, R.A.; Coles, P.

    1991-11-01T23:59:59.000Z

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H{sub 2}O{sub 2}, and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H{sub 2}O{sub 2} injection as an oxygenation technique.

  13. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect (OSTI)

    Wills, R.A.; Coles, P.

    1991-11-01T23:59:59.000Z

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H[sub 2]O[sub 2], and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H[sub 2]O[sub 2] injection as an oxygenation technique.

  14. Practical Experiences from the USE of a Method for Active Functional Tests and Optimization of Coil Energy Recovery Loop Systems in AHUs

    E-Print Network [OSTI]

    Eriksson, J.

    2004-01-01T23:59:59.000Z

    PRACTICAL EXPERIENCES FROM THE USE OF A METHOD FOR ACTIVE FUNCTIONAL TESTS AND OPTIMIZATION OF COIL ENERGY RECOVERY LOOP SYSTEMS IN AHUS. J?rgen Eriksson* * ?F-Installation AB, Box 1551 SE 401 51 G?teborg, Sweden. Summary A method...-commissioning, ventilation, energy, efficiency, EES INTRODUCTION The reason to study coil energy recovery loop systems is that they are very common in Sweden and mainly used in cases with high air flow rates such as in hospitals and pharmaceutical industries. The heat...

  15. Simple method of impurity injection into tokamak plasmas

    SciTech Connect (OSTI)

    Hildebrandt, D.; Bakos, J.S.; Petravich, G.; Badalec, H.; Jakubka, K.

    1989-04-01T23:59:59.000Z

    Injection of test impurities into the edge plasma of tokamak discharges by erosion probes containing these impurities is described. By applying a short bias pulse to the probe inserted into the sol-plasma, the plasma density and temperature at the probe location can be deduced and the time of injection during the discharge can be controlled. By locating the probe at an appropriate position it is possible to release defined quantities of the material and to influence the fraction which penetrates into the core plasma. The injection of Li into hydrogen discharges of the small-sized tokamaks Castor and MT-1 is demonstrated. The nature of the main erosion process (ion sputtering or arcing) has been found to depend on the radial position of the probe and the probe potential. The lithium amount released by sputtering is determined, while in the case of arcing only an estimate can be given. The temporal evolution and the radial penetration of the Li influx into the plasma have been observed by monitoring the neutral emission line using a grating spectrometer and a CCD camera. In addition, Li transported through the plasma was collected on solid samples. An estimate is given on the fraction of the impurity efflux from the core plasma which is collected on the samples.

  16. Underground Injection Control Fee Schedule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit fees for state under?ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is...

  17. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  18. A case study of seawater injection incompatibility

    SciTech Connect (OSTI)

    Lindlof, J.C.; Stoffer, K.G.

    1983-07-01T23:59:59.000Z

    One of the primary concerns in the implementation of an effective waterflood is the compatibility between the formation water and the water to be injected. The Arabian American Oil Co. (ARAMCO) and the Saudi Arabian Ministry of Petroleum and Mineral Resources Technical Branch recognized a potential incompatibility problem and embarked on a comprehensive program to evaluate possible strontium sulfate and calcium sulfate scaling associated with the injection of seawater into the Arab-D reservoir in the northern areas of Ghawar field.

  19. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01T23:59:59.000Z

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  20. A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska

    SciTech Connect (OSTI)

    Fambrough, J.D.; Lane, R.H.; Braden, J.C.

    1995-11-01T23:59:59.000Z

    The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

  1. Characteristics of Microseismicity in the DV11 Injection Area, Southeast Geysers, California

    SciTech Connect (OSTI)

    Kirkpatrick, Ann; Peterson Jr., John E.; Majer, Ernest L.; Nadeau, Robe rt

    1998-11-01T23:59:59.000Z

    Microearthquake (MEQ) occurrence surrounding the injection well DV11 in Unit 18 of the Southeast (SE) Geysers is investigated. Seismicity rates are compared to the injection rate, and to flow rates in nearby steam extraction wells, which were monitored during the Unit 18 Cooperative Injection Test in 1994 and 1995. The seismicity rate is seen to mirror both injection and production rates, although a time lag sometimes occurs. Waveform cross-correlation is performed for the MEQs in the DV11 area, and the events grouped into clusters based on waveform similarity. Relative location techniques applied to the events in two of these clusters show 7 events grouped into a volume of about 25 m in diameter, at an elevation of about -0.65 km msl and 5 events grouped into a vertically-oriented linear feature about 100 m in length, at about -1.8 km msl.

  2. High Resolution RANS NLH Study of Stage 67 Tip Injection Physics

    SciTech Connect (OSTI)

    Matheson, Michael A [ORNL

    2014-01-01T23:59:59.000Z

    Numerical prediction of the Stage 67 transonic fan stage employing wall jet tip injection flow control and study of the physical mechanisms leading to stall suppression and stability enhancement afforded by endwall recirculation/injection is the focus of this paper. Reynolds averaged Navier-Stokes computations were used to perform detailed analysis of the Stage 67 configuration experimentally tested at NASA s Glenn Research Center in 2004. Time varying prediction of the stage plus recirculation and injection flowpath were performed utilizing the Nonlinear Harmonic approach. Significantly higher grid resolution per passage was achieved than what has been generally employed in prior reported numerical studies of spike stall phenomena in transonic compressors. This paper focuses on characterizing the physics of spike stall embryonic stage phenomena and the impact of tip injection, resulting in experimentally and numerically demonstrated stall suppression

  3. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15T23:59:59.000Z

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  4. albumin ions injected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 Hunt, Galen 3 Characterizing Oligosaccharides Using Injected-Ion MobilityMass Spectrometry Chemistry Websites Summary: Characterizing Oligosaccharides Using Injected-Ion...

  5. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  6. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  7. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel...

  8. automated flow injection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the great majority the feasibility of our attack. The friend injection attack enables a stealth infiltra- tion of social networks Boyer, Edmond 7 Preventing injection attacks...

  9. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

  10. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI...

  11. New downhole steam generator tested

    SciTech Connect (OSTI)

    Bleakley, W.B.

    1981-07-01T23:59:59.000Z

    Completion of 2 field tests of a new-model down-hole steam generator paves the way for further evaluation and development of a system destined to increase California's heavy oil production. Current air pollution restrictions there prevent installation of conventional steam generators in several areas of interest to oil operators. The current series of tests, conducted by Chemical Oil Recovery Co. (CORCO) of Bakersfield, California, follows an earlier prototype operation conducted by Sandia National Laboratories in conjunction with the US Department of Energy. The CORCO tests were conducted on the surface with the generator's output going into Tenneco Oil Exploration and Production Co.'s overland-Riokern Well No. 80, located in the Kern River field 4 miles north of Bakersfield. The first test was concluded with just under 1000 bbl of steam injected, less than planned due to a higher-than-expected injection pressure. The unit operated at less than 25% capacity because of the air compressor limitation. Compressor output was only 285 psi, not enough to inject the desired volumes into the reservoir. Test data shows that injection amounted to 150 bpd of 90 to 95% quality steam at 225-psi wellhead pressure. After injection, the well was shut in for 3 days to allow soaking, then put on production. Initial production was 40 bopd at 175 F.

  12. High Energy Gas Fracturing Test

    SciTech Connect (OSTI)

    Schulte, R.

    2001-02-27T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  13. Optimization of Trona/Limestone Injection for SO2 Control in Coal-Fired Boilers

    SciTech Connect (OSTI)

    None

    2005-09-01T23:59:59.000Z

    Mobotec USA develops and markets air pollution control systems for utility boilers and other combustion systems. They have a particular interest in technologies that can reduce NOx, SOx, and mercury emissions from coal-fired boilers, and have been investigating the injection of sorbents such as limestone and trona into a boiler to reduce SOx and Hg emissions. WRI proposed to use the Combustion Test Facility (CTF) to enable Mobotec to conduct a thorough evaluation of limestone and trona injection for SO{sub 2} control. The overall goal of the project was to characterize the SO{sub 2} reductions resulting from the injection of limestone and trona into the CTF when fired with a high-sulfur eastern bituminous coal used in one of Mobotec's Midwest installations. Results revealed that when limestone was injected at Ca:S molar ratios of 1.5 to 3.0, the resulting SO{sub 2} reductions were 35-55%. It is believed that further reductions can be attained with improved mixing of the sorbent with the combustion gases. When limestone was added to the coal, at Ca:S molar ratios of 0.5 to 1.5, the SO{sub 2} reductions were 13-21%. The lower reductions were attributed to dead-burning of the sorbent in the high temperature flame zone. In cases where limestone was both injected into the furnace and added to the coal, the total SO{sub 2} reductions for a given Ca:S molar ratio were similar to the reductions for furnace injection only. The injection of trona into the mid-furnace zone, for Na:S molar ratios of 1.4 to 2.4, resulted in SO{sub 2} reductions of 29-43%. Limestone injection did not produce any slag deposits on an ash deposition probe while trona injection resulted in noticeable slag deposition.

  14. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1995-12-01T23:59:59.000Z

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  15. System Study: High-Pressure Coolant Injection 1998-2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01T23:59:59.000Z

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  16. System Study: High-Pressure Safety Injection 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01T23:59:59.000Z

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  17. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    SciTech Connect (OSTI)

    Fischer, J

    2005-12-21T23:59:59.000Z

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system being investigated was actually less expensive to install than other less-efficient options, most of which were unable to deliver the required ventilation while maintaining the desired space humidity levels.

  18. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17T23:59:59.000Z

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  19. Microfabricated injectable drug delivery system

    DOE Patents [OSTI]

    Krulevitch, Peter A. (Pleasanton, CA); Wang, Amy W. (Oakland, CA)

    2002-01-01T23:59:59.000Z

    A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

  20. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01T23:59:59.000Z

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  1. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01T23:59:59.000Z

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  2. Meren field water injection project offshore Nigeria

    SciTech Connect (OSTI)

    Adetoba, L.A.

    1984-04-01T23:59:59.000Z

    The Meren Water Injection Project, which is one of the largest in West Africa in terms of injection volume, secondary reserves to be recovered and cost, is located in the Meren field offshore Nigeria. This study presents an updated comprehensive plan to deplete 7 reservoir units in sands that have been producing under solution gas drive and gravity segregation with minimal water influx. The reservoir units contain ca 80% of the original oil-in-place in Meren field. Detailed studies have been undertaken to evaluate the performances of the 7 reservoirs with a view to developing a secondary recovery plan which has been brought into reality. Injection was to start in mid-1982 but was delayed until mid-1983. The effect of the delay and the changing of injector locations on recovery and cost is discussed.

  3. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect (OSTI)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01T23:59:59.000Z

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

  4. Permeability Estimation from Fracture Calibration Test Analysis in Shale and Tight Gas

    E-Print Network [OSTI]

    Xue, Han 1988-

    2012-12-13T23:59:59.000Z

    to these two tests, a step-rate test is sometimes conducted before a mini-fracture test to determine fracture extension pressure. (Figure 2. 1) In tight gas or shale gas formation the short and low rate injection-fall off test using slick water as injection...

  5. Global evaluation of mass transfer effects: In-duct injection flue gas desulfurization

    SciTech Connect (OSTI)

    Cole, J.A.; Newton, G.H.; Kramlich, J.C.; Payne, R.

    1990-09-30T23:59:59.000Z

    Sorbent injection is a low capital cost, low operating cost approach to SO{sub 2} control targeted primarily at older boilers for which conventional fuel gas desulfurization is not economically viable. Duct injection is one variation of this concept in which the sorbent, either a dry powder or a slurry, is injected into the cooler regions of the boiler, generally downstream of the air heaters. The attractiveness of duct injection is tied to the fact that it avoids much of the boiler heat transfer equipment and thus has minimal impact of boiler performance. Both capital and operating cost are low. This program has as its objectives three performance related issues to address: (1) experimentally identify limits on sorbent performance. (2) identify and test sorbent performance enhancement strategies. (3) develop a compute model of the duct injection process. Two major tasks are described: a laboratory-scale global experiment and development of process model. Both are aimed at understanding and quantifying the rate-limiting processes which control SO{sub 2} capture by lime slurry during boiler duct injection. 29 refs., 35 figs., 4 tabs.

  6. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Huang, Xiaobiao; /SLAC; Safranek, James; /SLAC; Westerman, Stuart; /SLAC; Cheng, Weixing; /Brookhaven; Mok, Walter; /Unlisted

    2012-06-21T23:59:59.000Z

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  7. Passive injection control for microfluidic systems

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21T23:59:59.000Z

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  8. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01T23:59:59.000Z

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  9. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  10. Design and Operation of a Fast Electromagnetic Inductive Massive Gas Injection Valve for NSTX-Ua)

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response based on valve opening times and orifice size, in these studies the vessel pressure increase following injects the required amount of gas (200 Torr.L, at an operating pressure of just 7000 Torr) in less than 3

  11. False Data Injection Attacks against State Estimation in Electric Power Grids

    E-Print Network [OSTI]

    Ning, Peng

    False Data Injection Attacks against State Estimation in Electric Power Grids Yao Liu, Peng Ning@cs.unc.edu ABSTRACT A power grid is a complex system connecting electric power generators to consumers through power using IEEE test systems. Our results indicate that security protection of the electric power grid must

  12. Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO2

    E-Print Network [OSTI]

    Wilson, Thomas H.

    on the analysis of 3D seismic from the area. 3D seismic interpretation reveals that the Late Cretaceous FruitlandSeismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO Basin pilot test include acquisition of geophysical logs, time lapse VSP and analysis of 3D seismic data

  13. Accounting for Remaining Injected Fracturing Fluid 

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  14. Accounting for Remaining Injected Fracturing Fluid

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  15. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01T23:59:59.000Z

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  16. RMOTC - Testing - Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oilfield activities and facilities offers opportunities for testing new technologies for environmental protection and restoration in a real-world environment. Examples include pit...

  17. A parametric study of factors affecting oil recovery efficiency from carbon dioxide injection using a compositional reservoir model

    E-Print Network [OSTI]

    Barnes, Gregory Allen.

    1991-01-01T23:59:59.000Z

    Factors Affecting Oil Recovery Estimating Oil Recovery From Carbon Dioxide Flooding 15 33 CHAPTER III ? FIELD CASE ANALYSIS 38 3. 1 3. 2 3. 3 3. 4 Background Laboratory Analysis Reservoir Analysis Estimates of Injection Recovery and Project... to estimate the recovery of oil from continuous injection of carbon dioxide. Finally, the results of the sensitivity analysis were compared to published laboratory and theoretical models and documented field results to test the correlation model. CHAPTER...

  18. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  19. Research and development of RHIC injection kicker upgrade with nano second FID pulse generator

    SciTech Connect (OSTI)

    Zhang W.; Sandberg, J.; Hahn, H.; Fischer, W.; Liaw, C.J.; Pai, C.; Tuozzolo, J.

    2012-05-20T23:59:59.000Z

    Our recent effort to test a 50 kV, 1 kA, 50 ns pulse width, 10 ns pulse rise time FID pulse generator with a 250 ft transmission cable, resistive load, and existing RHIC injection kicker magnet has produced unparalleled results. This is the very first attempt to drive a high strength fast kicker magnet with a nano second high pulsed power (50 MVA) generator for large accelerator and colliders. The technology is impressive. We report here the result and future plan of RHIC Injection kicker upgrade.

  20. Determination of desorption efficiency utilizing direct injection: a dynamic calibration system and phase equilibrium

    E-Print Network [OSTI]

    Williams, Ronald H

    1979-01-01T23:59:59.000Z

    of the material pro- ducing the pore structure. The chemical process adds a de- hydrating agent (usually phosphoric acid, zinc chloride or sulphur ic acid) to the heated raw material (200 ? 650 C) . 6, 9 The dehydrating agent is later leached out and concen... for performing desorption eff'iciency studies, there are several methods of loading activated charcoal with a compound. For many organic solvents a sta? 1 tic method, direct injection, is r ecommended. It is gen- erally believed that direct injection does...

  1. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Yu, Y. B. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: hyf@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-12-10T23:59:59.000Z

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ?t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  2. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25T23:59:59.000Z

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  3. Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone

    SciTech Connect (OSTI)

    Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)

    2010-04-15T23:59:59.000Z

    The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

  4. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  5. Terahertz graphene lasers: Injection versus optical pumping

    SciTech Connect (OSTI)

    Ryzhii, Victor; Otsuji, Taiichi [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, Maxim [Computational Nanoelectronics Laboratory, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, Vladimir [Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 14260-1920 (United States)

    2013-12-04T23:59:59.000Z

    We analyze the formation of nonequilibrium states in optically pumped graphene layers and in forward-biased graphene structures with lateral p-i-n junctions and consider the conditions of population inversion and lasing. The model used accounts for intraband and interband relaxation processes as well as deviation of the optical phonon system from equilibrium. As shown, optical pumping suffers from a significant heating of both the electron-hole plasma and the optical phonon system, which can suppress the formation of population inversion. In the graphene structures with p-i-n junction, the injected electrons and holes have relatively low energies, so that the effect of cooling can be rather pronounced, providing a significant advantage of the injection pumping in realization of graphene terahertz lasers.

  6. Waterflooding injectate design systems and methods

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2014-08-19T23:59:59.000Z

    A method of designing an injectate to be used in a waterflooding operation is disclosed. One aspect includes specifying data representative of chemical characteristics of a liquid hydrocarbon, a connate, and a reservoir rock, of a subterranean reservoir. Charged species at an interface of the liquid hydrocarbon are determined based on the specified data by evaluating at least one chemical reaction. Charged species at an interface of the reservoir rock are determined based on the specified data by evaluating at least one chemical reaction. An extent of surface complexation between the charged species at the interfaces of the liquid hydrocarbon and the reservoir rock is determined by evaluating at least one surface complexation reaction. The injectate is designed and is operable to decrease the extent of surface complexation between the charged species at interfaces of the liquid hydrocarbon and the reservoir rock. Other methods, apparatus, and systems are disclosed.

  7. Proper Injection Techniques in Dairy Cattle 

    E-Print Network [OSTI]

    Villarino, Mario A.

    2009-05-04T23:59:59.000Z

    ? them in an insulated cooler with ice packs during the summer. In cold weather, use the same container to keep vaccines from freezing. Freezing makes some vaccines ineffective. If vaccines do not require ? refrigeration, store them out of direct... needle or a transfer needle. Use a clean needle for ? each animal to prevent the transmission of disease. for protecting meat quality. Always use this method if it is an option given on the label. Intramuscularly (IM). ? This injection goes...

  8. Bandpass calibration of a wideband spectrometer using pulse injection

    E-Print Network [OSTI]

    Patra, Nipanjana; Ekers, Ron; Roberts, Paul

    2015-01-01T23:59:59.000Z

    We present a novel time domain concept for determining the bandpass response of a system by injecting a nanosecond pulse and capturing the system voltage output. A pulse of sub-nanosecond duration contains all frequency components with constant amplitude up to 1~GHz. Hence, this method can accurately determine the system bandpass response to a broadband signal. A train of pulses are coherently accumulated providing very high signal-to-noise calibration. The basic concept is demonstrated using a pulse generator-accumulator setup realised in a Bedlam board which is a high speed digital signal processing unit. The same system was used at the Parkes Radio Telescope between 2--13 October 2013 and we demonstrate its powerful diagnostic capability. We also present some initial test data from this experiment.

  9. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  10. Evaluation of Profile Injection Attacks In Collaborative Recommender Systems

    E-Print Network [OSTI]

    Schaefer, Marcus

    Evaluation of Profile Injection Attacks In Collaborative Recommender Systems Chad Williams, Runa recommender systems. The open nature of collaborative filtering allows attackers to inject biased profile data identified attack profiles. Second, we analyze the effectiveness of a supervised classification approach

  11. Beam shaping element for compact fiber injection systems

    SciTech Connect (OSTI)

    Weichman, L.S.; Dickey, F.M.; Shagam, R.N.

    2000-01-05T23:59:59.000Z

    Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.

  12. STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm

    E-Print Network [OSTI]

    STIPE STeam Injected Piston Engine Troels Hørding Pedersen Björn Kjellström Thomas Koch Erik Balck stempelmotor med dampindsprøjtning". English title: "Steam injected piston engine, a feasibility study...........................................................................................................................10 Gas turbine technology

  13. PEP-II injection timing and controls

    SciTech Connect (OSTI)

    Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Ronan, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01T23:59:59.000Z

    Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings.

  14. SNS Laser Stripping for H- Injection

    SciTech Connect (OSTI)

    V.V. Danilov, Y. Liu, K.B. Beard, V.G. Dudnikov, R.P. Johnson, Michelle D. Shinn

    2009-05-01T23:59:59.000Z

    The ORNL spallation neutron source (SNS) user facility requires a reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron has the potential to provide the needed beam currents, but it will be limited by intrinsic limitations of carbon and diamond stripping foils. A laser in combination with magnetic stripping has been used to demonstrate a new technique for high intensity proton injection, but several problems need to be solved before a practical system can be realized. Technology developed for use in Free Electron Lasers is being used to address the remaining challenges to practical implementation of laser controlled H- charge exchange injection for the SNS. These technical challenges include (1) operation in vacuum, (2) the control of the UV laser beam to synchronize with the H- beam and to shape the proton beam, (3) the control and stabilization of the Fabry-Perot resonator, and (4) protection of the mirrors from radiation.

  15. Stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01T23:59:59.000Z

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  16. DOE Underground-Coal-Conversion-Program field-test activities for 1979 and 1980. [Pricetown 1, Hoe Creek 3, Hanna IV, and SDB 1

    SciTech Connect (OSTI)

    Bartke, T.C.

    1983-08-01T23:59:59.000Z

    Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1, primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.

  17. The selenium-75-homocholic acid taurine test reevaluated: combined measurement of fecal selenium-75 activity and 3 alpha-hydroxy bile acids in 211 patients

    SciTech Connect (OSTI)

    van Tilburg, A.J.; de Rooij, F.W.; van den Berg, J.W.; Kooij, P.P.; van Blankenstein, M. (Department of Internal Medicine II, University Hospital Dijkzigt, Rotterdam (Netherlands))

    1991-06-01T23:59:59.000Z

    The recommended reference values for the selenium-75-homocholic acid taurine (75SeHCAT) test, used in the analysis of chronic diarrhea, were evaluated in 211 patients by comparing simultaneous measurements of 3 alpha-hydroxy bile acids and 75Se activity in daily collected stools. An initial evaluation in 11 patients showed that the fecal collection method, which allows inspection and additional analysis of stools, was equivalent to the abdominal retention method. Selenium-75-HCAT whole-body retention half-life (WBR50) was greater than 2.8 days in less than 10% of the patients with bile acid malabsorption and less than 1.7 days in less than 10% of the normals. We recommend that a 75SeHCAT WBR50 less than 1.7 days is abnormal, a WBR50 greater than 2.8 days is normal, and a WBR50 in the range 1.7-2.8 days is equivocal, which was the case in 48% (94/195) of the patients in this study.

  18. Active flow control in an advanced serpentine jet engine inlet duct

    E-Print Network [OSTI]

    Kirk, Aaron Michael

    2009-05-15T23:59:59.000Z

    control devices were installed to deliver varying degrees of boundary layer suction, suction and steady fluid injection, and suction and oscillatory injection. Testing showed that suction alone could delay flow separation and improve the pressure recovery...

  19. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    SciTech Connect (OSTI)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this technique at Colstrip is not seen. All the additives injected resulted in some reduction in mercury emissions. However, the target reduction of 55% was not achieved. The primary reason for the lower removal rates is because of the lower levels of mercury in the flue gas stream and the lower capture level of fine particles by the scrubbers (relative to that for larger particles). The reaction and interaction of the SEA materials is with the finer fraction of the fly ash, because the SEA materials are vaporized during the combustion or reaction process and condense on the surfaces of entrained particles or form very small particles. Mercury will have a tendency to react and interact with the finer fraction of entrained ash and sorbent as a result of the higher surface areas of the finer particles. The ability to capture the finer fraction of fly ash is the key to controlling mercury. Cost estimates for mercury removal based on the performance of each sorbent during this project are projected to be extremely high. When viewed on a dollar-per-pound-of-mercury removed basis activated carbon was projected to cost nearly $1.2 million per pound of mercury removed. This value is roughly six times the cost of other sorbent-enhancing agents, which were projected to be closer to $200,000 per pound of mercury removed.

  20. INJECTION STRAIGHT PULSED MAGNET ERROR TOLERANCE STUDY FOR TOP-OFF INJECTION

    SciTech Connect (OSTI)

    Wang, G.M.; Shaftan; T.: Fliller; R.; Parker; B.; Heese; R.; Kowalski; S.; Willeke; F.

    2011-03-28T23:59:59.000Z

    NSLS II is designed to work in top-off injection mode. The injection straight includes a septum and four fast kicker magnets. The pulsed magnet errors will excite a betatron oscillation. This paper gives the formulas of each error contribution to the oscillation amplitude at various source points in the ring. These are compared with simulation results. Based on the simple formulas, we can specify the error tolerances on the pulsed magnets with the goal to minimize the injection transient and scale it to similar machines. The NSLS-II is a 3 GeV third generation synchrotron light source under construction at Brookhaven National Laboratory. Due to its short lifetime, NSLS-II storage ring requires the top-off injection (once per minute) during which the stored beam orbit is highly desired as transparent. But the errors, from the SR pulsed magnets at the injection straight - kickers (non-closed injection bump) and pulsed septum (time-dependent stray field), excite a stored beam betatron oscillation. The magnitude of the perturbation can be large disturning some of the user experiments. In 2010 injection straight review, based on the experts experiences in ALS, DIAMOND, SLS and SPEAR, we came to the conclusion that the acceptable oscillation amplitude at the long straight is set as 100 {micro}m (i.e. 0.7 {sigma}x) in horizontal plane and 12 {micro}m, 2.5 {sigma}y, in vertical plane for NSLS II. This paper gives the analysis estimate of the different error source tolerance from the pulse magnets and scales it to our requirements. The result is compared with simulation.

  1. 100-D Area In Situ Redox Treatability Test for Chromate-Contaminated Groundwater: FY 1998 Year-End Report

    SciTech Connect (OSTI)

    Williams, M.D.; Vermeul, V.R.; Szecsody, J.E.; Fruchter, J.S.; Cole, C.R.

    1999-04-15T23:59:59.000Z

    A treatability test was conducted for the In Situ Redox Manipulation (ISRM) technology at the US Department of Energy's Hanford, Washington 100D Area. The target contaminant was dissolved chromate [Cr(VI)] in groundwater. The ISRM technology involves creating a permeable subsurface treatment zone to reduce mobile chromate in groundwater to an insoluble form. The ISRM permeable treatment zone is created by reducing ferric iron [Fe(III)] to ferrous iron [Fe(II)] within the aquifer sediments. This is accomplished by injecting aqueous sodium dithionite into the aquifer and withdrawing the reaction products. The goal of the treatability test was to create a linear ISRM barrier by injecting sodium dithionite into five wells. Well installation and site characterization activities began in the spring of 1997. The first dithionite injection took place in September 1997. The results of this first injection were monitored through the spring of 1998; the remaining four dithionite injections were carried out in May through July of 1998. These five injections created a reduced zone in the Hanford unconfined aquifer 150 feet in length (perpendicular to groundwater flow) by 50 feet wide. The reduced zone extended over the thickness of the unconfined zone, which is approximately 15 feet. Analysis of recent groundwater sampling events shows that the concentrations of chromate [Cr(VI)] in groundwater in the reduced zone have been decreased from starting concentrations of approximately 900 ppb to below analytical detection limits (<7 ppb). Chromate concentrations are also declining in some downgradient monitoring wells. Laboratory analysis of iron in the soil indicates that the barrier should remain in place for approximately 20 to 25 years. These measurements will be confirmed by analysis of sediment cores in FY 1999.

  2. NumericalS imulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    NumericalS imulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen words:fi nite volume method,fi lm cooling, cooling gas injection, multiscale techniques, grid adaptation#ciency is investigated. Keywords: Finite Volum Method,Film cooling, Cooling gas injection, Multiscale techniques, Grid

  3. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01T23:59:59.000Z

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  4. Injection and acceleration of H at Earth's bow shock

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Injection and acceleration of H and He2 at Earth's bow shock M. Scholer1 , H. Kucharek1 , K the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter

  5. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

    1996-12-31T23:59:59.000Z

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  6. Current generation by phased injection of pellets

    SciTech Connect (OSTI)

    Fisch, N.J.

    1983-08-01T23:59:59.000Z

    By phasing the injection of frozen pellets into a tokamak plasma, it is possible to generate current. The current occurs when the electron flux to individual members of an array of pellets is asymmetric with respect to the magnetic field. The utility of this method for tokamak reactors, however, is unclear; the current, even though free in a pellet-fueled reactor, may not be large enough to be worth the trouble. Uncertainty as to the utility of this method is, in part, due to uncertainty as to proper modeling of the one-pellet problem.

  7. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOE Patents [OSTI]

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27T23:59:59.000Z

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  8. JET multi-pellet injection experiments

    SciTech Connect (OSTI)

    Kupschus, P.; Bartlett, D.V.; Behringer, K.; Campbell, D.J.; Cheetham, A.; Cordey, J.G.; Corti, S.; Gadeberg, M.; Gondhalekar, A.; Gottardi, N.A.; Jarvis, O.N.; Morgan, P.; O'Rourke, J.; Sadler, G.; Snipes, J.; Stubberfield, D.; Taroni, A.; Tubbing, B.; Von Hellermann, M. (JET Joint Undertaking, Abingdon (UK)); Baylor, L.R.; Houlberg, W.A.; Jernigan, T.C.; Milora, S.L. (Oak Ridge National Lab., TN (USA)); Galvao, R.

    1988-01-01T23:59:59.000Z

    The multiple injection of deuterium pellets into JET plasmas under various scenarios for limiter and X-point discharges with currents up to 5 MA with pure ohmic, neutral beam and RF heating has been undertaken in a collaborative effort between JET and an USDOE team under the umbrella of the EURATOM-USDOE (US Department of Energy) Fusion Agreement on Pellet Injection using an ORNL built 3-barrel, repetitive multi-pellet launcher. The best plasma performance with pellet injection and additional heating so far has been obtained by injecting early into 3 MA, 3.1 T pulses while centrally depositing the pellet mass, with N{sub eo} initially well in excess of 10{sup 20} m{sup {minus}3}. Subsequent central heating of this dense and clean core by ion cyclotron resonance heating (ICRH) with H and {sup 3}He minorities in the 10 MW range yields T{sub eo} up to 12 keV and T{sub io} up to more than 10 keV, while n{sub eo} is decreasing (within up to 1.5s) decaying to 0.6 {times} 10{sup 20} m{sup {minus}3}, suggesting an enhanced central energy confinement in limiter discharges with only modestly improved global L-mode confinement. In this plasma core electron pressures of more than 1 bar with gradients in the order of 4 bar*m{sup {minus}1} have been reached with the total pressure approaching ballooning stability limits. The resulting total neutron rate from D-D reactions of up to 4.5*10{sup 15} s{sup {minus}1} so far increases strongly with RF power and can exceed that of similar non-enhanced shots by factors of 3 to 5. n{sub D}(O)*T{sub i}(O)*{tau}{sub E}(a) products in the range of 1 to 2*10{sup 20} m{sup {minus}3} keVs are obtained but combined power with neutral beams (up to 28 MW total), generally degrades the performance though leading to higher neutron rates of up to 7*10{sup 15} s{sup {minus}1}. 10 refs., 8 figs.

  9. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  10. Optimizing injected solvent fraction in stratified reservoirs 

    E-Print Network [OSTI]

    Moon, Gary Michael

    1993-01-01T23:59:59.000Z

    , . . . 22 4. 2 Water-Oil and Water-Solvent Fractional Flow Curves . . 4. 3 Mobility of Water-Oil-Solvent Mixtures. . . . . . . . 25 5. 1 Injected Solvent Displacing Formation Oil at 0. 5 PVI . . . . 31 5. 2 Comparison of Simulator Results and Buckley...-Levcrctt Analytic Solution at 0. 3 PVI . 5. 3 Comparison of Simulator Results and Walsh-Lake Analytic Solution for Secondary Flood (S, =- S;?= 0. 2) at "Equal Velocity" f?& (f, & ? 0. 35) and 0. 3 PVI?. . . . . . . . . . . . . . . . . 5. 4 Saturation Plot...

  11. Proper Injection Techniques in Dairy Cattle

    E-Print Network [OSTI]

    Villarino, Mario A.

    2009-05-04T23:59:59.000Z

    labeled for use in dairy ? cattle. Refer to the vaccine label for this information. Using a vaccine in an animal species for which it is not labeled is illegal. Give the proper dosage as indicated on the label. ? Always give an injection in the body... for consumption is called the withdrawal time. The withdrawal times for meat and milk may be different. It is illegal to sell meat or milk that contains medicine residue and sellers are subject to large fines. If there is a withdrawal time ? on the label...

  12. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics

    SciTech Connect (OSTI)

    Unknown

    1999-10-01T23:59:59.000Z

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

  13. Well injection valve with retractable choke

    SciTech Connect (OSTI)

    Pringle, R.E.

    1986-07-22T23:59:59.000Z

    An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

  14. Ejector device for direct injection fuel jet

    DOE Patents [OSTI]

    Upatnieks, Ansis (Livermore, CA)

    2006-05-30T23:59:59.000Z

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  15. Impurity pellet injection experiments at TFTR

    SciTech Connect (OSTI)

    Marmar, E.S.

    1992-01-01T23:59:59.000Z

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ( lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li[sup +] line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li[sup +] emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from [approximately]0.3 to [approximately]7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper.

  16. Duct injection technology prototype development: Nozzle development Subtask 4. 1, Atomizer specifications for duct injection technology

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    Babcock Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  17. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01T23:59:59.000Z

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  18. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect (OSTI)

    Petzoldt, R.W.

    1995-03-07T23:59:59.000Z

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  19. Active dc filter for HVDC system--A test installation in the Konti-Skan DC link at Lindome converter station

    SciTech Connect (OSTI)

    Zhang, Wenyan; Asplund, G. (ABB Power Systems, Ludvika (Sweden). HVDC Division); Aberg, A. (ABB Corporate Research, Lund (Sweden). Dept. of Man-Machine Communication); Jonsson, U. (Svenska Kraftnaet, Vaellingby (Sweden)); Loeoef, O. (Vattenfall AB, Trollhaettan (Sweden). Region Vaestsverige)

    1993-07-01T23:59:59.000Z

    The purpose of introducing active dc filters is to meet the more and more stringent requirement from power utilities on limiting telephone interference caused by harmonic currents from HVdc transmission lines, without unnecessarily increasing the cost of HVdc stations. An active dc filter installed in the Konti-Skan HVdc link is described. The active dc filter is connected at the bottom of an existing passive dc filter at the Lindome station. The active dc filter includes optic harmonic current measuring unit, control system, protection and supervision system, PWM power amplifier, high-frequency transformer, surge arrester, and coupling apparatuses. The active dc filter has small physical size and occupies small ground area. The performance of the active dc filter for eliminating the disturbing harmonics is excellent. To achieve comparable results by passive filters would require something like ten times more high voltage equipment.

  20. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect (OSTI)

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-01-29T23:59:59.000Z

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  1. Replenishing data descriptors in a DMA injection FIFO buffer

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Cernohous, Bob R. (Rochester, MN); Heidelberger, Philip (Cortlandt Manor, NY); Kumar, Sameer (White Plains, NY); Parker, Jeffrey J. (Rochester, MN)

    2011-10-11T23:59:59.000Z

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  2. Secondary air injection system and method

    DOE Patents [OSTI]

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19T23:59:59.000Z

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  3. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01T23:59:59.000Z

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  4. Histopathological Alterations after Single Epidural Injection of Ropivacaine, Methylprednizolone Acetate, or Contrast Material in Swine

    SciTech Connect (OSTI)

    Kitsou, Maria-Chrysanthi; Kostopanagiotou, Georgia; Kalimeris, Konstantinos [University of Athens, 2nd Department of Anesthesiology-Pain Unit, School of Medicine, Attikon University Hospital (Greece); Vlachodimitropoulos, Demetrios [University of Athens, Department of Forensic Medicine, School of Medicine (Greece); Soultanis, Konstantinos [University of Athens, 1st Department of Orthopaedics, School of Medicine, Attikon University Hospital (Greece); Batistaki, Chrysanthi [University of Athens, 2nd Department of Anesthesiology-Pain Unit, School of Medicine, Attikon University Hospital (Greece); Kelekis, Alexis, E-mail: akelekis@med.uoa.gr [University of Athens, 2nd Radiology Department, Attikon University Hospital (Greece)

    2011-12-15T23:59:59.000Z

    Purpose: The consequences from the injection of different types of drugs in the epidural space remains unknown. Increasing evidence suggests that localized inflammation, fibrosis, and arachnoiditis can complicate sequential epidural blockades, or even epidural contrast injection. We investigate the in vivo effect of epidural injections in the epidural space in an animal model. Materials and Methods: A group of ten male adult pigs, five punctures to each at distinct vertebral interspaces under general anesthesia, were examined, testing different drugs, used regularly in the epidural space (iopamidol, methylprednisolone acetate, ropivacaine). Each site was marked with a percutaneous hook wire marker. Histological analysis of the epidural space, the meninges, and the underlying spinal cord of the punctured sites along with staining for caspase-3 followed 20 days later. Results: The epidural space did not manifest adhesions or any other pathology, and the outer surface of the dura was not impaired in any specimen. The group that had the contrast media injection showed a higher inflammation response compared to the other groups (P = 0.001). Positive staining for caspase-3 was limited to <5% of neurons with all substances used. Conclusion: No proof of arachnoiditis and/or fibrosis was noted in the epidural space with the use of the above-described drugs. A higher inflammation rate was noted with the use of contrast media.

  5. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30T23:59:59.000Z

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  6. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  7. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  8. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry (Columbia, MO)

    1982-01-01T23:59:59.000Z

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  9. V-170: Apache Subversion Hook Scripts Arbitrary Command Injection...

    Broader source: Energy.gov (indexed) [DOE]

    script while processing filenames and can be exploited to inject and execute arbitrary shell commands via a specially crafted request. Successful exploitation requires that...

  10. assembly injection moulding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management of moulds and dies : a contribution to improved design and manufacture of tooling for injection moulding. Open Access Theses and Dissertations Summary: ??Thesis (PhD...

  11. SLOW DEGRADATION AND ELECTRON INJECTION IN SODIUM-B ALUMINAS

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2013-01-01T23:59:59.000Z

    transfer of 703 XBB 804 4126 Degradation of sulfur side ofsilver staining. The degradation layer becomes more uniformMaterials Science SLOW DEGRADATION AND ELECTRON INJECTION IN

  12. Advanced Diesel Common Rail Injection System for Future Emission...

    Broader source: Energy.gov (indexed) [DOE]

    all rights of disposal such as copying and passing on to third parties. 1 Advanced Diesel Common Rail Injection System for Future Emission Legislation Roger Busch Common Rail...

  13. Microseismic Study with LBNL - Monitoring the Effect of Injection...

    Broader source: Energy.gov (indexed) [DOE]

    Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California, Geothermal Field; 2010...

  14. Investigation of injection-induced seismicity using a coupled fluid ...

    E-Print Network [OSTI]

    2012-01-23T23:59:59.000Z

    injection of fluid for the extraction of geothermal heat: Journal of Geo- physical ... earthquakes: Disposal of waste fluids into a deep well has triggered earth-.

  15. Duct injection technology prototype development: Evaluation of engineering data

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

  16. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Broader source: Energy.gov (indexed) [DOE]

    100 bar injection pressure Simulated turbocharging based on hydrogen PFI turbo results Operation limited due to peak cylinder pressure Only early DI possible...

  17. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    * Motivation and background * Adaptive Injection Strategy (AIS) * Simulation and optimization - Two-Stage Combustion (TSC -- HCCI + Diffusion combustion) optimization using AIS...

  18. Advanced Modeling of Direct-Injection Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    High EGR level and multiple- injection Application to DI Diesel Combustion Optimization Marc ZELLAT, Driss ABOURI, Thierry CONTE CD-adapco Group The development of CFD...

  19. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)] [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

    2013-01-28T23:59:59.000Z

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  20. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01T23:59:59.000Z

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  1. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    None

    1981-09-01T23:59:59.000Z

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  2. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01T23:59:59.000Z

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  3. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30T23:59:59.000Z

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  4. A study on Raman Injection Laser 

    E-Print Network [OSTI]

    Liu, Debin

    2005-11-01T23:59:59.000Z

    depopulate this state via phonon e to the injector section d next active st ke radiative or nonradiative transition to the lower las mission and tunneling out of the active region ownstream. This section serves a age [2]. 4 1 FIG. 2. 4...

  5. Alternative Techniques for Injecting Massive Quantities of Gas for Plasma Disruption Mitigation

    SciTech Connect (OSTI)

    Combs, Stephen Kirk [ORNL; Meitner, Steven J [ORNL; Caughman, John B [ORNL; Commaux, Nicolas JC [ORNL; Fehling, Dan T [ORNL; Foust, Charles R [ORNL; Jernigan, Thomas C [ORNL; McGill, James M [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

    2010-01-01T23:59:59.000Z

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing closecoupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D, with preliminary experiments already carried out. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  6. Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - Activity 1.13 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael

    2011-09-01T23:59:59.000Z

    Modifications were made to the inlet of the existing Energy & Environmental Research Center (EERC) thermal oxidizer to accommodate side-by-side coupon holders for exposure testing. Two 5-day tests with over 200 hours of total exposure time were completed. The first week of testing was conducted in enriched air-blown mode, with coupon temperatures ranging from 128° to 272°F. Carbonyl sampling was conducted, but it was discovered after the fact that the methodology used was producing very low recoveries of iron and nickel carbonyl. Therefore, the data generated during this week of testing were not considered accurate. The second week of testing was conducted in oxygen-blown mode, with coupon temperatures ranging from 220° to 265°F. Two improved methods were used to measure carbonyl concentration during this week of testing. These methods produced results closer to equilibrium calculations. Since both weeks of testing mostly produced a product gas with approximately 15%–18% carbon monoxide, it was felt that actual carbonyl concentrations for Week 1 should be very similar to those measured during Week 2. The revised carbonyl sampling methodology used during the second week of testing greatly improved the recovery of iron and nickel carbonyl in the sample. Even though the sampling results obtained from the first week were inaccurate, the results from the second week can be used as an estimate for the periods during which the gasifier was operating under similar conditions and producing similar product gas compositions. Specifically, Test Periods 2 and 3 from the first week were similar to the conditions run during the second week. For a product gas containing roughly 15%–18% CO and a coupon temperature of approximately 220°–270°F, the nickel carbonyl concentration should be about 0.05–0.1 ppm and the iron carbonyl concentration should be about 0.1–0.4 ppm. After each week of testing the coupons were recovered from the coupon holder, weighed, and shipped back to Siemens for analysis.

  7. Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

  8. Interim Letter Report - Verification Survey Results for Activities Performed in March 2009 for the Vitrification Test Facility Warehouse at the West Valley Demonstration Project, Ashford, New York

    SciTech Connect (OSTI)

    B.D. Estes

    2009-04-24T23:59:59.000Z

    The objective of the verification activities was to provide independent radiological surveys and data for use by the Department of Energy (DOE) to ensure that the building satisfies the requirements for release without radiological controls.

  9. Excavation of the Partial Seam CRIP underground coal gasification test site

    SciTech Connect (OSTI)

    Cena, R.J.; Britten, J.A.; Thorsness, C.B.

    1987-08-14T23:59:59.000Z

    In the fall of 1983, Lawrence Livermore National Laboratory conducted the Partial Seam CRIP (PSC) underground coal gasification (UCG) field experiment at the Washington Irrigation and Development Company mine near Centralia, Washington. The test, in the subbituminous Big Dirty coal seam, lasted 30 days during which time 1400 cubic meters of coal were consumed from two injection/production well combinations. In the spring of 1986, normal mining activity in the vicinity of the PSC test allowed the opportunity to carefully excavate the experiment and examine the post-burn cavities. The mining operation dug out the front and back half of the test area and most of the overburden above the UCG cavities, leaving approximately 23,000 cubic meters of earth containing the main portion of the test area undisturbed. Under direction of the Wyoming Research Institute (WRI), this remaining earth was carefully excavated, in slices perpendicular to the original injection/production line, using small earthmoving equipment to uncover and sample the final burn cavities. Preliminary results of the excavation were presented by WRI at the 12th Underground Coal Conversion Symposium. We present additional results and conclusions based on all of the information obtained. Topics covered include: comparison to material balance and thermal instrumentation data, analysis and composition of samples taken from the cavity and general cavity shape and characteristics in comparison with mechanistic models of cavity growth. 10 refs., 10 figs., 1 tab.

  10. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  11. Numerical simulation of cooling gas injection using adaptive multiscale techniques

    E-Print Network [OSTI]

    Numerical simulation of cooling gas injection using adaptive multiscale techniques Wolfgang Dahmen is investigated. Keywords: Finite Volume Method, Film cooling, Cooling gas injection, Multiscale techniques, Grid Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen Abstract The interaction of a jet of cooling gas

  12. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control G. R. Plateau, , C. G. R acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy

  13. Assessing the Impact of Cache Injection on Parallel Application Performance

    E-Print Network [OSTI]

    Maccabe, Barney

    ´on University of New Mexico leon@cs.unm.edu 1 Introduction The memory wall [13], the continuing disparity by the NIC (producer). This producer-initiated model makes cache injection prone to cache pollution to inject into the cache to minimize pollution. In Section 4, I character- ize application sensitivity

  14. The Human Plutonium Injection Experiments William Moss and Roger Eckhardt

    E-Print Network [OSTI]

    Massey, Thomas N.

    177 The Human Plutonium Injection Experiments William Moss and Roger Eckhardt T he human plutonium that was pertinent to those and LouisHempelmann #12;similar radiation experi- ments with humans. This article injection experiments carried out during and after the Manhattan Project have received tremendous noto

  15. Experimental investigation of caustic steam injection for heavy oils 

    E-Print Network [OSTI]

    Madhavan, Rajiv

    2010-01-16T23:59:59.000Z

    An experimental study has been conducted to compare the effect of steam injection and caustic steam injection in improving the recovery of San Ardo and Duri heavy oils. A 67 cm long x 7.4 cm O.D (outer diameter), steel ...

  16. Development of a Tritium Extruder for ITER Pellet Injection

    SciTech Connect (OSTI)

    M.J. Gouge; P.W. Fisher

    1998-09-01T23:59:59.000Z

    As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular cylinders. Tritium and D-T pellets have been produced in experiments at the Los Alamos National Laboratory Tritium Systems Test Assembly. About 38 g of tritium have been utilized in the experiment. The tritium was received in eight batches, six from product containers and two from the Isotope Separation System. Two types of runs were made: those in which the material was only extruded and those in which pellets were produced and fired with deuterium propellant. A total of 36 TZ runs and 28 D-T runs have been made. A total of 36 pure tritium runs and 28 D-T mixture runs were made. Extrusion experiments indicate that both T2 and D-T will require higher extrusion forces than D2 by about a factor of two.

  17. AVTA: Transit Vehicle Specifications and Test Procedures

    Broader source: Energy.gov [DOE]

    All Advanced Vehicle Testing Activity transit projects follow a rigorous data collection and analysis protocol. Refer to "General Evaluation Plan: Fleet Test and Evaluation Projects" for...

  18. Percutaneous Radiofrequency Lung Ablation Combined with Transbronchial Saline Injection: An Experimental Study in Swine

    SciTech Connect (OSTI)

    Kawai, T., E-mail: t-kawai@hosp.yoka.hyogo.jp; Kaminou, T., E-mail: kaminout@grape.med.tottori-u.ac.jp; Sugiura, K.; Hashimoto, M.; Ohuchi, Y.; Adachi, A. [Tottori University, Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine (Japan); Fujioka, S.; Ito, H. [Tottori University, Division of Organ Pathology, Department of Microbiology and Pathology, Faculty of Medicine (Japan); Nakamura, K. [Hakuai Hospital, Department of Radiology (Japan); Ihaya, T. [Sanin Rosai Hospital, Department of Radiology (Japan); Ogawa, T. [Tottori University, Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine (Japan)

    2010-02-15T23:59:59.000Z

    To evaluate the efficacy of radiofrequency lung ablation with transbronchial saline injection. The bilateral lungs of eight living swine were used. A 13-gauge bone biopsy needle was inserted percutaneously into the lung, and 1 ml of muscle paste was injected to create a tumor mimic. In total, 21 nodules were ablated. In the saline injection group (group A), radiofrequency ablation (RFA) was performed for 11 nodules after transbronchial saline injection under balloon occlusion with a 2-cm active single internally cooled electrode. In the control group (group B), conventional RFA was performed for 10 nodules as a control. The infused saline liquid showed a wedge-shaped and homogeneous distribution surrounding a tumor mimic. All 21 RFAs were successfully completed. The total ablation time was significantly longer (13.4 {+-} 2.8 min vs. 8.9 {+-} 3.5 min; P = 0.0061) and the tissue impedance was significantly lower in group A compared with group B (73.1 {+-} 8.8 {Omega} vs. 100.6 {+-} 16.6 {Omega}; P = 0.0002). The temperature of the ablated area was not significantly different (69.4 {+-} 9.1{sup o}C vs. 66.0 {+-} 7.9{sup o}C; P = 0.4038). There was no significant difference of tumor mimic volume (769 {+-} 343 mm{sup 3} vs. 625 {+-} 191 mm{sup 3}; P = 0.2783). The volume of the coagulated area was significantly larger in group A than in group B (3886 {+-} 1247 mm{sup 3} vs. 2375 {+-} 1395 mm{sup 3}; P = 0.0221). Percutaneous radiofrequency lung ablation combined with transbronchial saline injection can create an extended area of ablation.

  19. How the world's largest seawater injection system was designed

    SciTech Connect (OSTI)

    Morrison, J.B.; Jorque, M.A.

    1981-07-01T23:59:59.000Z

    The world's largest seawater injection system went on stream in Saudi Arabia in June 1978 to furnish 4.2 million bpd of water for pressure maintenance in the Uthmaniyah sector of the giant Ghawar Field. The operator, Aramco, first began water injection along the flanks in this field in 1966 using gravity injection wells. This gravity system gave way to a pressurized system under a program started in 1973. During this period, the primary source for injection was saline water from the Wasia Aquifer in the Uthmaniyah area. In 1974 it was determined that this aquifer could not supply the design requirement of 4.2 million bpd of saline water. Therefore, it was decided to convert the injection system to seawater obtained from the Arabian Gulf. This required the design and construction of a seawater treating plant and installation of pipelines and intermediate pump stations to transport the water from the treating plant to the existing Uthmaniyah Water Supply Station.

  20. Economics of dry FGD by sorbent injection

    SciTech Connect (OSTI)

    Naulty, D.J.; Hooper, R.G.; McDowell, D.A.; Scheck, R.W.

    1983-06-01T23:59:59.000Z

    The body of information in this paper is directed to engineers involved in desulfurization of boiler flue gas. The problems of wet scrubbing SO/sub 2/ from power plant flue gases have been well documented. The utility industry has been interested in developing new processes that would overcome problems associated with wet slurry systems. While spray dryer technology for FGD may alleviate many of these problems, this concept has problems as well. Dry injection FGD takes the development process one step further to a totally dry system, thus eliminating the difficulties of wet slurry handling. The concept of using the fabric filter as a chemical contactor for the SO/sub 2/ absorption was proposed in the late 1960s by Chaffee and Hill. In the early 1970s, Superior Oil Company, Wheelabrator Frye, Carborundum, and others investigated the use of nahcolite for SO/sub 2/ removal. Nahcolite is a natural occurring sodium bicarbonate found in great quantities in the oil shale regions of Colorado. In general, these developments were found viable in certain circumstances, but commercialization was hampered by the lack of nahcolite suppliers.

  1. Dynamic Feed Control For Injection Molding

    DOE Patents [OSTI]

    Kazmer, David O. (San Francisco, CA)

    1996-09-17T23:59:59.000Z

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  2. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  3. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  4. Productivity and Injectivity of Horizontal Wells

    SciTech Connect (OSTI)

    Arababi, Sepehr; Aziz, Khalid; Hayashida, Yasuyuki; Hewett, Thomas

    1999-11-08T23:59:59.000Z

    This quarterly report is based on the last activity above. It gives a brief account of the work and the complete study will be included in the next Annual Report of the project.

  5. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil 

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  6. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  7. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect (OSTI)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30T23:59:59.000Z

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  8. Suppression of Tritium Retention in Remote Areas of ITER by Nonperturbative Reactive Gas Injection

    SciTech Connect (OSTI)

    Tabares, F. L.; Ferreira, J. A.; Ramos, A. [As Euratom-Ciemat, Av Complutense 22, 28040 Madrid (Spain); Rooij, G. van; Westerhout, J.; Al, R.; Rapp, J. [FOM Instituut voor Plasmafysica Rijnhuizen, EURATOM Association, TEC, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Drenik, A.; Mozetic, M. [As Euratom-MHEST, Institut Jozef Stefan, Jamova cesta 39, 1000 Ljubljana (Slovenia)

    2010-10-22T23:59:59.000Z

    A technique based on reactive gas injection in the afterglow region of the divertor plasma is proposed for the suppression of tritium-carbon codeposits in remote areas of ITER when operated with carbon-based divertor targets. Experiments in a divertor simulator plasma device indicate that a 4 nm/min deposition can be suppressed by addition of 1 Pa{center_dot}m{sup 3} s{sup -1} ammonia flow at 10 cm from the plasma. These results bolster the concept of nonperturbative scavenger injection for tritium inventory control in carbon-based fusion plasma devices, thus paving the way for ITER operation in the active phase under a carbon-dominated, plasma facing component background.

  9. E-Print Network 3.0 - actively inflamed liver Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diverse Roles of Invariant Natural Killer T Cells in Liver Injury and Fibrosis Induced by Carbon Tetrachloride Summary: injection of iNKT activator -galactosylceramide ( -GalCer)...

  10. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect (OSTI)

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01T23:59:59.000Z

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  11. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect (OSTI)

    Michael F. Riley

    2002-10-21T23:59:59.000Z

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

  12. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    SciTech Connect (OSTI)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01T23:59:59.000Z

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  13. AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volkswagon Golf Diesel Start-Stop Testing Results AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

  14. RMOTC - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sale of Equipment and Materials DOE to Sell NPR-3 Testing Tomorrow's Technology Today RMOTC - Testing - From Lab to Industry, Moving Your Ideas Forward RMOTC provides a neutral,...

  15. EPA's (Environmental Protection Agency's) program for evaluation and demonstration of low-cost retrofit LIMB (Limestone Injection Multistage Burner) technology

    SciTech Connect (OSTI)

    Stern, R.D.

    1987-09-01T23:59:59.000Z

    This paper discusses program objectives, approaches, current status and results, future activities, and schedules for EPA's program for research and development, field evaluation, and demonstration of Limestone Injection Multistage Burner (LIMB) technology. Primary emphasis is on: (1) the full-scale demonstration being conducted on Ohio Edison's 104-MW wall-fired Edgewater Station Unit 4; (2) evaluation on a 50 million Btu/hr tangentially fired prototype nearing completion; (3) on-going field evaluation on Richmond Power and Light's 61-MW tangentially fired Whitewater Valley Generating Station Unit 2. The new program for demonstration on Virginia Electric Power's 180-MW tangentially fired Yorktown II Plant is also described. The LIMB process is based on injecting dry sorbents into the boiler for direct capture of SO/sub 2/ from the combustion gases. LIMB combines sorbent injection for SO/sub 2/ control with the use of low-NOx burners, in which staged combustion is utilized for NOx control.

  16. Compendium of Regulatory Requirements Governing Underground Injection of Drilling Wastes

    SciTech Connect (OSTI)

    Puder, Markus G.; Bryson, Bill; Veil, John A.

    2003-03-03T23:59:59.000Z

    This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies.

  17. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, Ray A. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  18. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29T23:59:59.000Z

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  19. Thermal Particle Injection in Nonlinear Diffusive Shock Acceleration

    E-Print Network [OSTI]

    Donald C. Ellison; Pasquale Blasi; Stefano Gabici

    2005-07-05T23:59:59.000Z

    Particle acceleration in collisionless astrophysical shocks, i.e., diffusive shock acceleration (DSA), is the most likely mechanism for producing cosmic rays, at least below 10^{15} eV. Despite the success of this theory, several key elements, including the injection of thermal particles, remains poorly understood. We investigate injection in strongly nonlinear shocks by comparing a semi-analytic model of DSA with a Monte Carlo model. These two models treat injection quite differently and we show, for a particular set of parameters, how these differences influence the overall acceleration efficiency and the shape of the broad-band distribution function.

  20. Activity report

    SciTech Connect (OSTI)

    Yu, S W

    2008-08-11T23:59:59.000Z

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  1. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect (OSTI)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01T23:59:59.000Z

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

  2. Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes

    E-Print Network [OSTI]

    Sandoval Rodriguez, Angelica Patricia

    2002-01-01T23:59:59.000Z

    condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

  3. Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands

    E-Print Network [OSTI]

    Mazzini, Adriano

    Abstract Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands fluids escape from hydrocarbon reservoirs through permeable networks of fractures, injected sands. Within fractures and injected sands, oxidation of chained hydrocarbons supplies bicarbonate to the co

  4. Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

  5. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    None

    1998-06-01T23:59:59.000Z

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

  6. Techniques For Injection Of Pre-Charaterized Dust Into The Scrape Off Layer Of Fusion Plasma

    SciTech Connect (OSTI)

    Roquemore, A. L.; John, B.; Friesen, F.; Hartzfeld, K.; Mansfield, D. K.

    2011-07-21T23:59:59.000Z

    Introduction of micron-sized dust into the scrape-off layer (SOL) of a plasma has recently found many applications aimed primarily at determining dust behavior in future fusion reactors. The dust particles are typically composed of materials intrinsic to a fusion reactor. On DIII-D and TEXTOR carbon dust has been introduced into the SOL using a probe inserted from below into the divertor region. On NSTX, both Li and tungsten dust have been dropped from the top of the machine into the SOL throughout the duration of a discharge, by utilizing a vibrating piezoelectric based particle dropper. The original particle dropper was developed to inject passivated Li powder {approx} 40 {mu}m in diameter into the SOL to enhance plasma performance. A simplified version of the dropper was developed to introduce trace amounts of tungsten powder for only a few discharges, thus not requiring a large powder reservoir. The particles emit visible light from plasma interactions and can be tracked by either spectroscopic means or by fast frame rate visible cameras. This data can then be compared with dust transport codes such as DUSTT to make predictions of dust behavior in next-step devices such as ITER. For complete modeling results, it is desired to be able to inject pre-characterized dust particles in the SOL at various known poloidal locations, including near the vessel midplane. Purely mechanical methods of injecting particles are presently being studied using a modified piezoelectric-based powder dropper as a particle source and one of several piezo-based transducers to deflect the particles into the SOL. Vibrating piezo fans operating at 60 Hz with a deflection of {+-}2.5 cm can impart a significant horizontal boost in velocity. The highest injection velocities are expected from rotating paddle wheels capable of injecting particles at 10's of meters per second depending primarily on the rotation velocity and diameter of the wheel. Several injection concepts have been tested and will be discussed below.

  7. Effects of Water Injection into Fractured Geothermal Reservoirs: A Summary of Experience Worldwide

    SciTech Connect (OSTI)

    Horne, Roland N.

    1982-06-01T23:59:59.000Z

    Reinjection of water into fractured geothermal reservoirs holds potential both for improvement and degradation of total energy recovery. The replacement of reservoir fluid can mean support of placement of reservoir pressures and also more efficient thermal energy recovery, but at the same time the premature invasion of reinjected water back into production wells through high permeability fractures can reduce discharge enthalpy and hence deliverability and useful energy output. Increases in reservoir pressure and maintenance of field output have been observed in operating fields, but unfortunately so too have premature thermal breakthroughs. The design of reinjection schemes, therefore, requires careful investigation into the likely effects, using field experimentation. This paper summarizes field experience with reinjection around the world, with the intention of elucidating characteristics of possible problems. The results summarized in this paper fall into three categories of interest: permeability changes dye to injection (both increases and decreases); the path followed by injected water (as indicated by tracer tests); and the thermal and hydraulic influences of injection on the reinjection well itself and on surrounding producers. [DJE-2005

  8. A wide variety of injection molding technologies is now applicable to small series and mass production

    SciTech Connect (OSTI)

    Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Löser, C., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Michaelis, J., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de [Kunststoff-Zentrum in Leipzig gGmbH (KuZ), Leipzig (Germany)

    2014-05-15T23:59:59.000Z

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  9. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

  10. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01T23:59:59.000Z

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  11. Premixed direct injection nozzle for highly reactive fuels

    DOE Patents [OSTI]

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24T23:59:59.000Z

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  12. Power dependence of pure spin current injection by quantum interference

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Zhao, Hui

    2009-04-01T23:59:59.000Z

    We investigate the power dependence of pure spin current injection in GaAs bulk and quantumwell samples by a quantum interference and control technique. Spin separation is measured as a function of the relative strength of the two transition...

  13. The feasibility of deep well injection for brine disposal

    E-Print Network [OSTI]

    Spongberg, Martin Edward

    1994-01-01T23:59:59.000Z

    feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software...

  14. Collagen scaffolds and injectable biopolymer gels for cardiac tissue engineering

    E-Print Network [OSTI]

    Ng, Karen Kailin

    2012-01-01T23:59:59.000Z

    Three-dimensional biomaterial scaffolds have begun to shown promise for cell delivery for cardiac tissue engineering. Although various polymers and material forms have been explored, there is a need for: injectable gels ...

  15. The design, manufacturing and use of economically friendly injection molds

    E-Print Network [OSTI]

    Buchok, Aaron (Aaron J.)

    2008-01-01T23:59:59.000Z

    Much of the polymer manufacturing done today involves the process of injection molding. It can be difficult to gain experience in the art of designing and building tooling for this process outside of industry. The goal of ...

  16. Lithium pellet injection into high pressure magnetically confined plasmas

    E-Print Network [OSTI]

    Böse, Brock (Brock Darrel)

    2010-01-01T23:59:59.000Z

    The ablation of solid pellets injected into high temperature magnetically confined plasmas is characterized by rapid oscillations in the ablation rate, and the formation of field aligned filaments in the ablatant. High ...

  17. Enhanced Heavy Oil Recovery by Emulsification With Injected Nanoparticles

    E-Print Network [OSTI]

    Martinez Cedillo, Arturo Rey

    2013-11-26T23:59:59.000Z

    In-situ oil-in-water emulsion generation, using modified silica hydrophilic nanoparticles as emulsifier, has been proposed as an enhanced oil recovery process. The nanoparticles are injected as an aqueous dispersion; its hydrophilic character allows...

  18. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    injection into a fractured reservoir system. A reservoirIn the case of fractured reservoirs, Equations (25) and (26)c ww q a >> For fractured reservoirs, the former expression

  19. Microseismic Study with LBNL - Monitoring the Effect of Injection...

    Broader source: Energy.gov (indexed) [DOE]

    9 4.5.3 Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California, Geothermal Field...

  20. Transport of Injected Isobutane by Thermal Groundwater in Long...

    Open Energy Info (EERE)

    Injected Isobutane by Thermal Groundwater in Long Valley Caldera, California, USA, In- Water-Rock Interaction-11 Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. Injectivity and stability for a generic class of generalized Radon ...

    E-Print Network [OSTI]

    2014-12-15T23:59:59.000Z

    then show injectivity and stability for an open, dense subset of smooth generalized Radon ..... ei(s??(y,?))s w(y, ?)J(y, ?)f(y) dVol(y) ds. = ?. M1. KRw (s

  2. Underground Injection Control Program Rules and Regulations (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to preserve the quality of the groundwater of the State and thereby protect groundwater contamination from contamination by discharge from injection wells and...

  3. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ace009wallner2010o.pdf More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2...

  4. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1988-01-01T23:59:59.000Z

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  5. The Armco/B and W coal injection technology

    SciTech Connect (OSTI)

    Sexton, J.R. [AK Steel Corp., Ashland, KY (United States)

    1994-12-31T23:59:59.000Z

    A general presentation is given of the development of pulverized coal injection at the Ashland Works from the initial installation in 1963 to the present. An explanation of the flow sheets for pulverization and injection along with safety and explosion prevention will be discussed. The unique parameters of the Armco/B and W system will be explained and the operations at various steel plants presented.

  6. Heat transfer and film cooling with steam injection 

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major... Subject: Mechanical Engineering HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Approved as to style and content by: (Chairm of Committee) (Member) (Memb e r) (Me r (Head Departme ) May 1982 ABSTRACT Heat...

  7. Dynamic model and control of the injection molding process

    E-Print Network [OSTI]

    Gardner, Anthony Nickolas

    1970-01-01T23:59:59.000Z

    HOLDING PROCESS I. INTRODUCTION One widely used technique for forming raw polymer materials into finished parts, is the injection molding process, In a normal operation sequence the equipment intakes a small volume of plastic pellets and heats them... volume of plastic pellets, heat them till they form a viscous liquid mass, and then ram them into the mold under high pressures. Nest modern injection molding machines employ a screw-ram device enclosed in a barrel for the injector mechanism. In a...

  8. An investigation of thermal spray structural reaction injection molded composites

    E-Print Network [OSTI]

    Hill, Bryan William

    1996-01-01T23:59:59.000Z

    AN INVESTIGATION OF THERMAL SPRAY STRUCTURAL REACTION INJECTION MOLDED COMPOSITES A Thesis BRYAN WILLIAM HILL, IH Submitted to the Office of Graduate Studies of Texas AJtM University in partial fulfilhnent of the requirements for the degree... of MASTER OF SCIENCE December 1996 Major Subject: Mechanical Engineering AN INVESTIGATION OF THERMAL SPRAY STRUCTURAL REACTION INJECTION MOLDED COMPOSITES A Thesis by BRYAN WILLIAM HILL, III Submitted to Texas A&M University in partial fulfillment...

  9. Effects of Biodiesel and Engine Load on Some Emission Characteristics of a Direct Injection Diesel Engine

    E-Print Network [OSTI]

    Alireza Shirneshan; Morteza Almassi; Barat Ghobadian; Ali Mohammad Borghei; Gholam Hassan Najafi

    2012-01-01T23:59:59.000Z

    In this research, experiments were conducted on a 4-cylinder direct-injection diesel engine using biodiesel as an alternative fuel and their blends to investigate the emission characteristics of the engine under four engine loads (25%, 40%, 65 % and 80%) at an engine speed of 1800 rev/min. A test was applied in which an engine was fueled with diesel and four different blends of diesel/ biodiesel (B20, B40, B60 and B80) made from waste frying oil and the results were analyzed. The use of biodiesel resulted in lower emissions of hydrocarbon (HC) and CO and increased emissions

  10. Low cost power augmentation by water injection on dual fuel gas turbines

    SciTech Connect (OSTI)

    Statler, W.O.; McReynolds, B.

    1995-12-31T23:59:59.000Z

    It is {open_quotes}common knowledge{close_quotes} that the power output of a combustion turbine (gas turbine) can be increased by as much as ten percent above the {open_quotes}dry{close_quotes} output by injecting water into the combustion zone. This enhancement is particularly useful during periods of high inlet air temperature when the turbine output is lowered due to the reduced air flow of the lower density hot air. The additional mass flow of water will partially offset the reduction of air mass flow. The specific heat of the water vapor (roughly twice that of air) allows increased fuel (and output) at approximately twice the rate of that which would result if the air mass flow were increased by a lower inlet air temperature. It is often a big step from {open_quotes}common knowledge{close_quotes} to actual practice and that step is the subject of this paper. In the summer of 1994 the Lincoln Electric System (L.E.S.), a public utility serving Lincoln, Nebraska ran operational tests on their 1974 G.E. MS-7001B gas turbine with water injection on natural gas fuel. The results proved the {open_quotes}common knowledge{close_quotes} in that the {open_quotes}wet{close_quotes} power was increased by approximately 9% above the {open_quotes}dry{close_quotes} power when the water/fuel mass flow ratio was held to a fairly conservative 1.2/1.0. Further testing, in August of 1995, confirmed these results. Test set for October, 1995, will check the injection system while operating on oil fuel. In this case, the water injection is intended as a NOx reduction measure only with the water/fuel ratio being held to a maximum of 0.5/1.0. The {open_quotes}wet{close_quotes} power is expected to increase by 4%. The utility is also planning tests on a similar system being installed on a Westinghouse model 251 gas turbine.

  11. Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT Field Site, Bozeman, Montana

    SciTech Connect (OSTI)

    Kharaka, Y.K.; Thordsen, T.T.; Kakouros, E.; Ambats, G.; Herkelrath, W.N.; Birkholzer, J.T.; Apps, J.A.; Spycher, N.F.; Zheng, L.; Trautz, R.C.; Rauch, H.W.; Gullickson, K.; Beers, S.R.

    2009-09-01T23:59:59.000Z

    Approximately 300 kg/day of food-grade CO2 was injected through a perforated pipe placed horizontally 2-2.3 m deep during July 9-August 7, 2008 at the MSU-ZERT field test to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the subsurface storage and potential leakage of CO2. As part of this multidisciplinary research project, 80 samples of water were collected from 10 shallow monitoring wells (1.5 or 3.0 m deep) installed 1-6 m from the injection pipe, at the southwestern end of the slotted section (zone VI), and from two distant monitoring wells. The samples were collected before, during and following CO2 injection. The main objective of study was to investigate changes in the concentrations of major, minor and trace inorganic and organic compounds during and following CO2 injection.

  12. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect (OSTI)

    None

    1998-11-17T23:59:59.000Z

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  13. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are...

  14. Injection efficiency in a cyclic induction accelerator with constant driving field

    SciTech Connect (OSTI)

    Simukhin, N.; Chakhlov, V.

    1981-10-01T23:59:59.000Z

    The injection efficeincy as a function of the accelerating voltage for injection currents of varying duration and amplitudes for the cyclic induction electron accelerator has been determined. (AIP)

  15. Evaluation of the effects of contaminant injection location and injection method on the determination of overall relative room ventilation efficiency

    E-Print Network [OSTI]

    Pierce, Stephen Dale

    1994-01-01T23:59:59.000Z

    The purpose of this research is to evaluate an emerging concept called ventilation effectiveness at several points in a real room. Ventilation effectiveness was calculated using the pulse and step-up injection methods which were performed in four...

  16. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Keller, A.E. [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-09-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test`s ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  17. Materials for High-Pressure Fuel Injection Systems

    SciTech Connect (OSTI)

    Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N. (Caterpillar, Inc. Technical Center) [Caterpillar, Inc. Technical Center; Pollard, M. (Caterpillar, Inc. Technical Center) [Caterpillar, Inc. Technical Center

    2011-09-30T23:59:59.000Z

    The high-level goal of this multi-year effort was to facilitate the Advanced Combustion Engine goal of 20% improvement (compared to 2009 baseline) of commercial engine efficiency by 2015. A sub-goal is to increase the reliability of diesel fuel injectors by investigating modelbased scenarios that cannot be achieved by empirical, trial and error methodologies alone. During this three-year project, ORNL developed the methodology to evaluate origins and to record the initiation and propagation of fatigue cracks emanating from holes that were electrodischarge machined (EDM), the method used to form spray holes in fuel injector tips. Both x-ray and neutron-based methods for measuring residual stress at four different research facilities were evaluated to determine which, if any, was most applicable to the fuel injector tip geometry. Owing to the shape and small volumes of material involved in the sack area, residual stress data could only be obtained in the walls of the nozzle a few millimeters back from the tip, and there was a hint of only a small compressive stress. This result was consistent with prior studies by Caterpillar. Residual stress studies were suspended after the second year, reserving the possibility of pursuing this in the future, if and when methodology suitable for injector sacks becomes available. The smooth specimen fatigue behavior of current fuel injector steel materials was evaluated and displayed a dual mode initiation behavior. At high stresses, cracks started at machining flaws in the surface; however, below a critical threshold stress of approximately 800 MPa, cracks initiated in the bulk microstructure, below the surface. This suggests that for the next generation for high-pressure fuel injector nozzles, it becomes increasingly important to control the machining and finishing processes, especially if the stress in the tip approaches or exceeds that threshold level. Fatigue tests were also conducted using EDM notches in the gage sections. Compared to the smooth specimens, EDM notching led to a severe reduction in total fatigue life. A reduction in fatigue life of nearly four orders of magnitude can occur at an EDM notch the approximate size of fuel injector spray holes. Consequently, the initiation and propagation behavior of cracks from small spray holes is relevant for generation of design quality data for the next generation diesel fuel injection devices. This is especially true since the current design methodologies usually rely on the less conservative smooth specimen fatigue testing results, and since different materials can have varying levels of notch fatigue resistance.

  18. Hanford 100N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100N Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; Burns, Carolyn A.; Moore, Robert C.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.; Girvin, Donald C.; McKinley, James P.; Truex, Michael J.; Phillips, Jerry L.

    2007-10-01T23:59:59.000Z

    This report summarizes laboratory scale studies investigating the remediation of Sr-90 by Ca-citrate-PO4 solution injection/infiltration to support field injection activities in the Hanford 100N area. This study is focused on experimentally testing whether this remediation technology can be effective under field scale conditions to mitigate Sr-90 migration 100N area sediments into the Columbia River. Sr-90 is found primarily adsorbed to sediments by ion exchange (99% adsorbed, < 1% in groundwater) in the upper portion of the unconfined aquifer and lower vadose zone. Although primarily adsorbed, Sr-90 is still considered a high mobility risk as it is mobilized by seasonal river stage increases and by plumes of higher ionic strength relative to groundwater. This remediation technology relies upon the Ca-citrate-PO4 solution forming apatite precipitate [Ca6(PO4)10(OH)2], which incorporates some Sr-90 during initial precipitation and additionally slowly incorporates Sr-90 by solid phase substitution for Ca. Sr substitution occurs because Sr-apatite is thermodynamically more stable than Ca-apatite. Once the Sr-90 is in the apatite structure, Sr-90 will decay to Y-90 (29.1 y half-life) then Zr-90 (64.1 h half-life) without the potential for migration into the Columbia River. For this technology to be effective, sufficient apatite needs to be emplaced in sediments to incorporate Sr and Sr-90 for 300 years (~10 half-lives of Sr-90), and the rate of incorporation needs to exceed the natural groundwater flux rate of Sr in the 100N area. A primary objective of this study is to supply an injection sequence to deliver sufficient apatite into subsurface sediments that minimizes initial mobility of Sr-90, which occurs because the injection solution has a higher ionic strength compared to groundwater. This can be accomplished by sequential injections of low, then high concentration injection of Ca-citrate-PO4 solutions. Assessment of low concentration Ca-citrate-PO4, citrate-PO4, and PO4 solutions show greater Sr and Sr-90 incorporation during initial precipitation and less initial mobilization with solutions with low Ca2+ concentration. While all solutions showed nearly the same Sr uptake into apatite (14 to 17% by 2 weeks, 21% to 30% by 5 weeks), the incorporation efficiency (i.e., mM Sr incorporated per mM PO4 injected) was higher for solutions containing citrate. The Sr incorporation rate into apatite during initial precipitation (by 1 month) averaged 4.64 ± 1.9 x 10-4 h-1 (half-life 1500 ± 430 h, 8.85 x 10-7 mg Sr/day/mg apatite). The injection solution used in field injections #3 to #18 (10 mM PO4, 1 mM Ca, 2.5 mM citrate), which is deficient in Ca (a total of 16.7 mM needed to form apatite with 10 mM of PO4), resulted in the initial Sr and Ca peak (24 h) at 4.7x groundwater. By 30 days, the aqueous Sr concentration was 0.28x groundwater and Ca 0.43x groundwater, as both Sr and Ca are used to form initial apatite precipitates. Reactive transport simulation of the complex ion exchange, biodegradation, and precipitation processes showed that the initial Sr groundwater increase mobilized only 1.5% of the Sr mass in sediments. Citrate biodegradation, a necessary step in Ca-citrate-PO4 solutions forming apatite, had an average half-life of 50 h (at aquifer sediment/water ratio and temperature), and decreased an order of magnitude with sediment depth as the microbial biomass decreased five orders of magnitude. The rate of citrate biodegradation was relatively invariant with biomass and water saturation (50% to 100%, for vadose zone infiltration) possibly due to significant microbial injection using river water and subsurface microbial mobilization.

  19. Test quality

    SciTech Connect (OSTI)

    Hartley, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Keller, A.E. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    This document discusses inservice testing of safety-related components at nuclear power plants which is performed under the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (the Code). Subsections IWP and IWV of Section XI of the Code state test method and frequency requirements for pumps and valves respectively. Tests vary greatly in quality and frequency. This paper explores the concept of test quality and its relationship with operational readiness and preventive maintenance. This paper also considers the frequencies of component testing. Test quality is related to a test's ability to detect degradation that can cause component failure. The quality of the test depends on several factors, including specific parameters measured, system or component conditions, and instrument accuracy. The quality of some currently required tests for check valves, motor-operated valves, and pumps is also discussed. Suggestions are made to improve test quality by measuring different parameters, testing valves under load, and testing positive displacement pumps at high pressure and centrifugal pumps at high flow rate conditions. These suggestions can help to improve the level of assurance of component operational readiness gained from testing.

  20. Overview of Recent Japanese Activities in Fusion Technology

    SciTech Connect (OSTI)

    Seki, Masahiro [Japan Atomic Energy Research Institute (Japan); Yamamoto, I. [Nagoya University (Japan); Sagara, A. [NIFS (Japan)

    2005-04-15T23:59:59.000Z

    After the ITER/EDA study, Japanese activities in fusion technology have been mainly devoted to DEMO reactors. The paper intends to overview these activities.With respect to the test blanket modules, solid breeder blankets with ferritic steel structure cooled by helium and water are being developed by JAERI in cooperation with universities and NIFS. Advanced blankets are being developed by universities and NIFS. In the area of tritium processing technology, R and D has been focused on the blanket tritium recovery technology. In terms of the superconducting magnet, JAERI has performed basic research for the Fusion Power Demonstration Plant, aiming at realization of toroidal filed higher than 13 T using innovative superconductors, such as Nb{sub 3}Al and High Temperature Superconductors (HTS). In the R and D of negative ion based NBI technologies, a H{sup -} beam of 110 mA has been stably accelerated up to 0.9 MeV, which corresponds to the current density of 80 A/m{sup 2}. A beam power of 13.1 MW at 180 keV has been injected from three injectors in the LHD N-NBI. With respect to the radio-frequency heating technology, development of 170GHz ITER gyrotron has been progressed to achieve a 500kW for 100 sec operation in JAERI. Long pulse injection for 766 sec with 72 kW at 84 GHz was achieved in a LHD ECH experiment.

  1. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  2. Productivity and Injectivity of Horizontal Wells

    SciTech Connect (OSTI)

    Aziz, Khalid; Hewett, Thomas A.; Arbabi, Sepehr; Smith, Marilyn

    1999-11-16T23:59:59.000Z

    The generation of suitable simulation grids for heterogeneous media and specific discretization issues that arise. Streamlines and equipotentials are used to define our base grids. Since streamlines are concentrated in high velocity regions they provide a natural means of clustering fine grid cells in crucial flow regions. For complex configurations and particularly for strongly heterogeneous regions the resulting grid cells can become very distorted due to extremely high curvatures. Two types of cell centered formulation are examined together with a cell vertex-point distributed scheme. Important distinctions are found for highly distorted cells. The new grids are tested for accuracy in terms of critical breakthrough parameters and it is shown that a much higher level of grid resolution is required by conventional simulators in order to achieve results that are comparable with those computed on relatively coarse streamline-potential grids.

  3. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19T23:59:59.000Z

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  4. Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production

    SciTech Connect (OSTI)

    Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Pablo Gentil; Nazli Demiroren

    2005-05-31T23:59:59.000Z

    This report details progress on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project is to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Jensen et al. (2005) and Yousef et al. (2005), and herein referred to as the ''capacitance model'', produces two quantities, {lambda} and {tau}, for each injector-producer well pair. We have focused on the following items: (1) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (2) Optimization of waterflood injection rates using the capacitance model and a power law relationship for watercut to maximize economic return. Initial tests using simulated data and a range of oil prices show the approach is working. (3) Spectral analysis of injection and production data to estimate interwell connectivity and to assess the effects of near-wellbore gas on the results. Development of methods and analysis are ongoing. (4) Investigation of methods to increase the robustness of the capacitance method. These methods include revising the solution method to simultaneously estimate {lambda} and {tau} for each well pair. This approach allows for further constraints to be imposed during the computation, such as limiting {tau} to a range of values defined by the sampling interval and duration of the field data. This work is proceeding. Further work on this project includes the following: (1) Refinement and testing of the waterflood optimization process, including optimization on more complex situations e.g., time effects on revenue and water injection and disposal costs. (2) Completion of the spectral-based analysis and determination of the effects of near-wellbore gas on the results. (3) Revision of the capacitance model procedures to provide more robust results which are insensitive to the initial estimates of {tau} needed in the nonlinear regression.

  5. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect (OSTI)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01T23:59:59.000Z

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  6. Novel In Situ-Gelling, Alginate-based Composites for Injectable Delivery: Tuning Mechanical and Functional Characteristics

    E-Print Network [OSTI]

    Roberts, Jason Richard

    2014-07-24T23:59:59.000Z

    NOVEL IN SITU-GELLING, ALGINATE-BASED COMPOSITES FOR INJECTABLE DELIVERY: TUNING MECHANICAL AND FUNCTIONAL CHARACTERISTICS A Dissertation by JASON RICHARD ROBERTS Submitted to the Office of Graduate and Professional Studies of Texas...). ........................................................... 31 Figure 11: Molding of MPAC gels utilizing Teflon spacers. Precursor solution is deposited in the molds and allowed to completely gel (left). Gelled MPAC slabs (right) can then be removed from the mold and samples can be tested for mechanical...

  7. Fueling efficiency of pellet injection on DIII-D

    SciTech Connect (OSTI)

    Baylor, L.R.; Jernigan, T.C.; Maingi, R. [Oak Ridge National Lab., TN (United States); Lasnier, C.J. [Lawrence Livermore National Lab., CA (United States); Ali Mahdavi, M. [General Atomics, San Diego, CA (United States)

    1998-05-01T23:59:59.000Z

    Pellet injection has been used on the DIII-D tokamak to study density limits and particle transport in H-mode and inner wall limited L-mode plasmas. These experiments have provided a variety of conditions in which to examine the fueling efficiency of pellets injected into DIII-D plasmas. The fueling efficiency defined as the total increase in number of plasma electrons divided by the number of pellet fuel atoms, is determined by measurements of density profiles before and just after pellet injection. The authors have found that there is a decrease in the pellet fueling efficiency with increased neutral beam injection power. The pellet penetration depth also decreases with increased neutral beam injection power so that, in general, fueling efficiency increases with penetration depth. The fueling efficiency is generally 25% lower in ELMing H-mode discharges than in L-mode due to an expulsion of particles with a pellet triggered ELM. A comparison with fueling efficiency data from other tokamaks shows similar behavior.

  8. Airbus Toulouse Flight test data centre. Diagnosis and treatment of noisy vibration flight test data.

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    Airbus Toulouse ­ Flight test data centre. Diagnosis and treatment of noisy vibration flight test data. The trainee will work within flight test vibration analysis team.The main missions and activities on flight test vibration data; - Implement and test in LMS Test.Lab (vibration data processing software

  9. Simultaneous combustion of waste plastics with coal for pulverized coal injection application

    SciTech Connect (OSTI)

    Sushil Gupta; Veena Sahajwalla; Jacob Wood [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, School of Materials Science and Engineering

    2006-12-15T23:59:59.000Z

    A bench-scale study was conducted to investigate the effect of simultaneous cofiring of waste plastic with coal on the combustion behavior of coals for PCI (pulverized coal injection) application in a blast furnace. Two Australian coals, premixed with low- and high-density polyethylene, were combusted in a drop tube furnace at 1473 K under a range of combustion conditions. In all the tested conditions, most of the coal blends including up to 30% plastic indicated similar or marginally higher combustion efficiency compared to those of the constituent coals even though plastics were not completely combusted. In a size range up to 600 {mu}m, the combustion efficiency of coal and polyethylene blends was found be independent of the particle size of plastic used. Both linear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE) are shown to display similar influence on the combustion efficiency of coal blends. The effect of plastic appeared to display greater improvement on the combustion efficiency of low volatile coal compared to that of a high volatile coal blend. The study further suggested that the effect of oxygen levels of the injected air in improving the combustion efficiency of a coal-plastic blend could be more effective under fuel rich conditions. The study demonstrates that waste plastic can be successfully coinjected with PCI without having any adverse effect on the combustion efficiency particularly under the tested conditions. 22 refs., 12 figs., 2 tabs.

  10. Demonstration of Rapid Shutdown Using Large Shattered Deuterium Pellet Injection in DIII-D

    SciTech Connect (OSTI)

    Commaux, Nicolas JC [ORNL; Baylor, Larry R [ORNL; Jernigan, Thomas C [ORNL; Hollmann, E. M. [University of California, San Diego; Parks, P. B. [General Atomics; Humphrey, D. A. [General Atomics, San Diego; Wesley, J. C. [General Atomics; Yu, J.H. [University of California, San Diego

    2010-01-01T23:59:59.000Z

    A severe consequence of a disruption on large tokamaks such as ITER could be the generation of multi-megaelectronvolt electron beams that could damage the vacuum vessel and the structures of the machine if they hit the wall unmitigated. The mitigation of runaway electron beams is thus a key requirement for reliable operation of ITER. In order to achieve reliable disruption mitigation, a new fast shutdown technique has been developed: the injection of a large shattered cryogenic pellet in the plasma, which is expected to increase the electron density up to levels where the beam generation processes are mitigated by collisional losses. This technique has been implemented and tested for the first time ever on DIII-D. The first tests show evidence of an almost instantaneous deposition of more than 260 Pa m3 of deuterium deep in the core. Record local densities during the thermal quench were observed for each injection with a very high reliability. Pellet mass and plasma energy content scans show an improvement of the assimilation of the particles for higher plasma energy and larger pellet mass.

  11. Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D

    SciTech Connect (OSTI)

    Commaux, Nicolas JC [ORNL; Baylor, Larry R [ORNL; Jernigan, Thomas C [ORNL; Hollmann, E. M. [University of California, San Diego; Parks, P. B. [General Atomics; Humphreys, D A [General Atomics, San Diego; Wesley, J. C. [General Atomics; Yu, J.H. [University of California, San Diego

    2010-11-01T23:59:59.000Z

    A severe consequence of a disruption on large tokamaks such as ITER could be the generation of multi-megaelectronvolt electron beams that could damage the vacuum vessel and the structures of the machine if they hit the wall unmitigated. The mitigation of runaway electron beams is thus a key requirement for reliable operation of ITER. In order to achieve reliable disruption mitigation, a new fast shutdown technique has been developed: the injection of a large shattered cryogenic pellet in the plasma, which is expected to increase the electron density up to levels where the beam generation processes are mitigated by collisional losses. This technique has been implemented and tested for the first time ever on DIII-D. The first tests show evidence of an almost instantaneous deposition of more than 260 Pa m(3) of deuterium deep in the core. Record local densities during the thermal quench were observed for each injection with a very high reliability. Pellet mass and plasma energy content scans show an improvement of the assimilation of the particles for higher plasma energy and larger pellet mass.

  12. Productivity and Injectivity of Horizontal Wells

    SciTech Connect (OSTI)

    Khalid Aziz; Sepehr Arababi; Thomas A. Hewett

    1997-04-29T23:59:59.000Z

    A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.

  13. Persistent Density Perturbations at Rational q Surfaces Following Pellet Injection in the Joint European Torus

    E-Print Network [OSTI]

    Persistent Density Perturbations at Rational q Surfaces Following Pellet Injection in the Joint European Torus

  14. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  15. Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

    E-Print Network [OSTI]

    Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

  16. NON-ISOTHERMAL INJECTION MOULDING WITH RESIN CURE AND PREFORM DEFORMABILITY

    E-Print Network [OSTI]

    Preziosi, Luigi

    Transfer Molding), SRIM (Structural Resin Injection Molding), SCRIMP (Seeman Com- posite Resin Infusion

  17. Interaction between Injection Points during Hydraulic Fracturing Kjetil M. D. Hals1,

    E-Print Network [OSTI]

    Santos, Juan

    fluid to create fracture networks in rock layers with low permeabilities. A fracking fluid is injected

  18. The application of high frequency seismic monitoring methods for the mapping of fluid injections

    SciTech Connect (OSTI)

    Majer, E.L.

    1987-04-01T23:59:59.000Z

    This paper describes experimental work using seismic methods for monitoring the path of fluid injections. The most obvious application is the high pressure fluid injections for the purpose of hydrofracturing. Other applications are the injection of grout into shallow subsurface structures and the disposal of fluids in the geothermal and toxic waste industries. In this paper hydrofracture monitoring and grout injections will be discussed.

  19. Measurement of the Fractional Thermonuclear Neutron Yield during Deuterium Neutral-Beam Injection into Deuterium Plasmas

    E-Print Network [OSTI]

    Measurement of the Fractional Thermonuclear Neutron Yield during Deuterium Neutral-Beam Injection into Deuterium Plasmas

  20. TESTING THE UNIFICATION MODEL FOR ACTIVE GALACTIC NUCLEI IN THE INFRARED: ARE THE OBSCURING TORI OF TYPE 1 AND 2 SEYFERTS DIFFERENT?

    SciTech Connect (OSTI)

    Ramos Almeida, C. [Department of Physics and Astronomy, University of Sheffield, S3 7RH (United Kingdom); Levenson, N. A.; Radomski, J. T. [Gemini Observatory, Casilla 603, La Serena (Chile); Alonso-Herrero, A. [Centro de Astrobiologia, INTA-CSIC, E-28850 Madrid (Spain); Asensio Ramos, A.; Rodriguez Espinosa, J. M.; Perez Garcia, A. M. [Instituto de Astrofisica de Canarias (IAC), C/VIa Lactea, s/n, E-38205 La Laguna, Tenerife (Spain); Packham, C. [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611-2055 (United States); Mason, R. [Gemini Observatory, Northern Operations Center, 670 North Aohoku Place, Hilo, HI 96720 (United States); DIaz-Santos, T., E-mail: C.Ramos@sheffield.ac.es [Department of Physics, University of Crete, GR-71003 Heraklion (Greece)

    2011-04-20T23:59:59.000Z

    We present new mid-infrared imaging data for three Type-1 Seyfert galaxies obtained with T-ReCS on the Gemini-South Telescope at subarcsecond resolution. Our aim is to enlarge the sample studied in a previous work to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear spectral energy distributions. Thus, the sample considered here comprises 7 Type-1, 11 Type-2, and 3 intermediate-type Seyferts. The unresolved IR emission of the Seyfert 1 galaxies can be reproduced by a combination of dust heated by the central engine and direct active galactic nucleus (AGN) emission, while for the Seyfert 2 nuclei only dust emission is considered. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having a direct view of the AGN, and vice versa. In our sample, Seyfert 2 tori have larger covering factors (C{sub T} = 0.95 {+-} 0.02) and smaller escape probabilities (P{sub esc} = 0.05% {+-} {sup 0.08}{sub 0.03}%) than those of Seyfert 1 (C{sub T} = 0.5 {+-} 0.1; P{sub esc} = 18% {+-} 3%). All the previous differences are significant according to the Kullback-Leibler divergence. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination toward us, in contradiction with the simplest unification model.

  1. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field 

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01T23:59:59.000Z

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  2. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01T23:59:59.000Z

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  3. Injection and acceleration of Au31+ in the BNL AGS.

    SciTech Connect (OSTI)

    Fischer,W.; Ahrens, L.; Brown, K.; Gardner, C.; Glenn, W.; Huang, H.; Mapes, M.; Smart, L.; Thieberger, P.; Tsoupas, N.; Zhang, S.Y.; Zeno, K.; Omet, C.; Spiller, P.

    2008-06-23T23:59:59.000Z

    Injection and acceleration of ions in a lower charge state reduces space charge effects, and, if further elcctron stripping is needed, may allow elimination of a stripping stage and the associated beam losses. The former is of interest to the accelerators in the GSI FAIR complex, the latter for BNL RHIC collider operation at energies lower than the current injection energy. Lower charge state ions, however, have a higher likelihood of electron stripping which can lead to dynamic pressures rises and subsequent beam losses. We report on experiments in the AGS where Au{sup 31+} ions were injected and accelerated instead of the normally used Au{sup 77+} ions. Beam intensities and the average pressure in the AGS ring are recorded, and compared with calculations for dynamic pressures and beam losses. The experimental results will be used to benchmark the StrahlSim dynamic vacuum code and will be incorporated in the GSI FAIR SIS100 design.

  4. Plasma and Ion Beam Injection into an FRC

    SciTech Connect (OSTI)

    Anderson, M.; Bystritskii, V.; Garate, E.; Rostoker, N.; Song, Y.; Drie, A. van [Department of Physics and Astronomy, University of California at Irvine, CA, 92697 (United States); Binderbauer, M. [Tri Alpha Energy Inc., Foothill Ranch, CA, 92610 (United States); Isakov, I. [Institute of High Voltage Technology, Tomsk, 634050 (Russian Federation)

    2005-10-15T23:59:59.000Z

    Experiments on the transverse injection of intense (5-20 A/cm{sup 2}), wide cross-section (10-cm), neutralized, {approx}100-eV H{sup +} plasma and 100-keV H{sup +} ion beams into a preformed B-field reversed configuration (FRC) are described. The FRC background plasma temperature was {approx}5 eV with densities of {approx}10{sup 13} cm{sup -3}. In contrast to earlier experiments, the background plasma was generated by separate plasma gun arrays. For the startup of the FRC, a betatron-type 'slow' coaxial source was used. Injection of the plasma beam into the preformed FRC resulted in a 30-40% increase of the FRC lifetime and the amplitude of the reversed magnetic field. As for the ion beam injection experiment into the preformed FRC, there was evidence of beam capture within the configuration.

  5. Injection Related Background due to the Transverse Feedback

    SciTech Connect (OSTI)

    Decker, F.J.; Akre, R.; Fisher, A.; Iverson, R.; Weaver, M.; /SLAC

    2008-03-18T23:59:59.000Z

    The background in the BaBar detector is especially high during injection, when most components are actually having reduced voltages. The situation is worse for the beam in High Energy Ring (HER) when the LER beam is present. It was found that the transverse feedback system plays an important role when stacking more charge on top of existing bunches. Lowering the feedback gain helped and it was realized later that the best scenario would be to gate off the feedback for only the one bunch, which got additional charge injected into it. The explanation is that the blown-up, but centered, original HER bunch plus the small injected off-axis bunch (each with half the charge) would stay in the ring if not touched, but the feedback system sees half the offset and wants to correct it, therefore disturbing and scraping the blown-up part.

  6. Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.

    SciTech Connect (OSTI)

    Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O'Hern, Timothy John

    2004-05-01T23:59:59.000Z

    An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.

  7. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect (OSTI)

    Wang Zhehui; Wurden, Glen A. [Los Alamos National Laboratory (United States); Mansfield, Dennis K.; Roquemore, Lane A. [Princeton Plasma Physics Laboratory (United States); Ticos, Catalin M. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania)

    2008-09-07T23:59:59.000Z

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  8. Design and performance of a punch mechanism based pellet injector for alternative injection in the large helical device

    SciTech Connect (OSTI)

    Mishra, J. S. [Graduate University for Advanced Studies, SOKENDAI Toki, 509-5292 (Japan); Sakamoto, R.; Motojima, G.; Matsuyama, A.; Yamada, H. [National Institute for Fusion Science, Toki, 509-5292 (Japan)

    2011-02-15T23:59:59.000Z

    A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii R{sub c}= 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.

  9. Emitter tests in an open thermionic converter with vapor injection through the collector

    SciTech Connect (OSTI)

    Wriedt, S.; Moeller, K.; Holmlid, L.

    1986-12-15T23:59:59.000Z

    Mo and Pt emitters and a Ni collector with 400 laser-bored holes were used in an ''open'' thermionic converter. The alkali vapor was introduced into the converter through the array of holes in the collector from an adjacent alkali metal reservoir with separately controlled temperature. The overall results from the open thermionic converter are comparable to results from enclosed converters. The results found with a Cs plasma are encouraging, with barrier indices down to below 1.8 eV, at emitter temperatures around 1500 K in the case of a Mo emitter. The output power density was around 3.5 W cm/sup -2/. In the case of a Pt emitter, both Cs and K plasmas were used, with power densities up to 5.7 and 1.8 W cm/sup -2/, respectively close to 1800 K. The structure of the laser-bored collector may have contributed to these results, as well as the efficient removal of impurities in the ''open'' converter.

  10. Uranium Sequestration via Phosphate Infiltration/Injection Test History Supporting the Preferred Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. Uranium purchased by ownersAbout

  11. Injectivity Test At Reese River Area (Henkle & Ronne, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:InerjyInghamInformation Henkle

  12. Injectivity Test At Vale Hot Springs Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:InerjyInghamInformation

  13. Injectivity Test At Chena Geothermal Area (Holdmann, Et Al., 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information Holdmann,

  14. Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information

  15. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003) | Open

  16. Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003) |

  17. Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003)

  18. Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open EnergyHydrogenEnergy Information2003)Energy

  19. Resistivity measurements before and after injection Test 5 at Raft River

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal FieldKGRA, Idaho. Final report

  20. Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal FieldKGRA, Idaho.Reston,|