National Library of Energy BETA

Sample records for activity injectivity test

  1. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

  2. Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area (1979) Raft River Geothermal Area 1979 1979 Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Injectivity Test...

  3. Category:Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    Injectivity Test Jump to: navigation, search Geothermalpower.jpg Looking for the Injectivity Test page? For detailed information on Injectivity Test, click here....

  4. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  5. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  6. Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

  7. Injectivity Test At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  8. Injectivity Test At Chena Geothermal Area (Holdmann, Et Al.,...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Chena Geothermal Area (Holdmann, Et Al., 2006) Exploration Activity Details Location...

  9. Injectivity Test At Reese River Area (Henkle & Ronne, 2008) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese...

  10. Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  11. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

  12. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  13. Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  14. Injectivity Testing for Vapour Dominated Feed Zones

    SciTech Connect (OSTI)

    Clotworthy, A.W.; Hingoyon, C.S.

    1995-01-01

    Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

  15. Injectivity Test At Vale Hot Springs Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Vale Hot Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  16. Strontium Isotopes Test Long-Term Zonal Isolation of Injected...

    Office of Scientific and Technical Information (OSTI)

    Water after Hydraulic Fracturing Citation Details In-Document Search Title: Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after ...

  17. Uranium Sequestration via Phosphate Infiltration/Injection Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Sequestration via Phosphate InfiltrationInjection Test History Supporting the Preferred Alternative 1 300 Area GW Concentrations - Uranium High River Stage - GW...

  18. RRC - Injection/Disposal Well Permitting, Testing, and Monitoring...

    Open Energy Info (EERE)

    InjectionDisposal Well Permitting, Testing, and Monitoring manual Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  19. Resistivity measurements before and after injection Test 5 at...

    Open Energy Info (EERE)

    measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Resistivity...

  20. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic

    Office of Scientific and Technical Information (OSTI)

    Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Fluid-Bed Testing of Greatpoint

  1. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic

    Office of Scientific and Technical Information (OSTI)

    Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Fluid-Bed Testing of Greatpoint

  2. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Citation Details In-Document Search Title: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS You ...

  3. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS (Technical...

    Office of Scientific and Technical Information (OSTI)

    DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Citation Details In-Document Search Title: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Soil vapor extraction ...

  4. Field air injection tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    Field air injection tests to determine the effect of a heat cycle on the permeability of welded tuff Citation Details In-Document Search Title: Field air injection tests to ...

  5. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    Air-injection field tests to determine the effect of a heat cycle on the permeability of welded tuff Citation Details In-Document Search Title: Air-injection field tests to ...

  6. Activated carbon injection - a mercury control success story

    SciTech Connect (OSTI)

    2008-07-01

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  7. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  8. Single Well Injection Withdrawl Tracer Tests for Proppant Detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large question preventing optimal natural gas production from "hydrofracked" shales is how far proppants, injected to keep shale fractures open, move into the gas-bearing shales. ...

  9. Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 23, 2005, Summary Report | Department of Energy Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Docket No. EO-05-01: Trona injection tests were conducted at Mirant's Potomac River Station on Unit 1 between November 12 and December 23, 2005. The purpose of these tests was to determine the capability of dry

  10. Results of the Flowmeter-Injection Test in the Long Valley Exploratory...

    Open Energy Info (EERE)

    the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  11. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    the effect of a heat cycle on the permeability of welded tuff Citation Details In-Document Search Title: Air-injection field tests to determine the effect of a heat cycle on the ...

  12. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  13. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  14. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  15. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  16. Field pilot tests for tertiary recovery using butane and propane injection

    SciTech Connect (OSTI)

    Pacheco, E.F.; Garcia, A.I.

    1981-01-01

    This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

  17. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  18. Boron-10 ABUNCL Active Testing

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  19. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect (OSTI)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  20. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    SciTech Connect (OSTI)

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.

  1. 16th intersociety energy conversion engineering conference. CDIF - activation completion and initial MHD test results

    SciTech Connect (OSTI)

    Staats, G.E.; DeJong, V.J.; Karvinen, R.J.; Carrington, R.A.; Bauman, L.E.

    1981-01-01

    The Component Development and Integration Facility (CDIF) is one of the Department of Energy's (DOE) Magnetohydrodynamics (MHD) experimental test facilities. The scope of this paper is limited to a brief description of the facility activation and results from the initial MHD testing using an oil fired ash injected combustor (AIC) and a supersonic channel. 1 ref.

  2. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO2 in Heterogeneous Geological Formations

    SciTech Connect (OSTI)

    Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif; Mori, Hiroko; Vargas-Johnson, Javier; Gonzalez-Nicolas, Ana; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO2 in supercritical fluid phase (scCO2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanisms in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO2. Laboratory experiments using scCO2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods and research results.

  3. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage

    Broader source: Energy.gov [DOE]

    Carbon dioxide injection -- an important part of carbon capture and storage technology -- is underway as part of a pilot study of CO2 enhanced oil recovery in the Citronelle Field of Mobile County, Alabama.

  4. Single well field injection test of humate to enhance attenuation of uranium and other radionuclides in an acidic plume

    SciTech Connect (OSTI)

    Denham, M.

    2014-09-30

    This report documents the impact of the injected humate on targeted contaminants over a period of 4 months and suggests it is a viable attenuation-based remedy for uranium, potentially for I-129, but not for Sr-90. Future activities will focus on issues pertinent to scaling the technology to full deployment.

  5. 100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2009-12-16

    100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization INTERIM LETTER REPORT

  6. DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone

    Broader source: Energy.gov [DOE]

    The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest.

  7. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique ...

  8. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    SciTech Connect (OSTI)

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute) transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are conducted and the possibility of direct in situ measurement of FWS with SWIW tests is demonstrated.

  9. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  10. Field air injection tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 05 NUCLEAR FUELS; 36 MATERIALS SCIENCE; YUCCA MOUNTAIN; TUFF; PERMEABILITY; THERMAL CYCLING; TESTING; HIGH-LEVEL ...

  11. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    SciTech Connect (OSTI)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Powers (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was metsorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO Hg-LH, Calgon FLUEPAC-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.52.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The results of this project also filled a data gap for plants firing PRB coal and configured with an SCR, SDA, and FF, as many new plants are being designed today. Another goal of the project was to evaluate, on a short-term basis, the mercury removal associated with coal additives and coal blending with western bituminous coal. The additive test showed that, at this site, the coal additive known as KNX was affective at increasing mercury removal while decreasing sorbent usage. Coal blending was conducted with two different western bituminous coals, and West Elk coal increased native capture from nominally 10% to 50%. Two additional co-benefits were discovered at this site. First, it was found that native capture increased from nominally 10% at full load to 50% at low load. The effect is believed to be due to an increase in mercury oxidation across the SCR caused by a corresponding decrease in ammonia injection when the plant reduces load. Less ammonia means more active oxidation sites in the SCR for the mercury. The second co-benefit was the finding that high ammonia concentrations can have a negative impact on mercury removal by powdered activated carbon. For a period of time, the plant operated with a high excess of ammonia injection necessitated by the plugging of one-third of the SCR. Under these conditions and at high load, the mercury control system could not maintain 90% removal even at the maximum feed rate of 3.5 lb/MMacf (pounds of mercury per million actual cubic feet). The plant was able to demonstrate that mercury removal was directly related to the ammonia injection rate in a series of tests where the ammonia rate was decreased, causing a corresponding increase in mercury removal. Also, after the SCR was refurbished and ammonia injection levels returned to normal, the mercury removal performance also returned to normal. Another goal of the project was to install a commercial-grade activated carbon injection (ACI) system and integrate it with new-generation continuous emissions monitors for mercury (Hg-CEMs) to allow automatic feedback control on outlet me

  12. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  13. Webinar: Testing Oxygen Reduction Reaction Activity with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Above is the video recording for the webinar, "Testing Oxygen Reduction Reaction ...

  14. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced technology

  15. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  16. Integrated dry NO{sub x}/SO{sub 2} emissions control systems: Advanced retractable injection lance SNCR test report. NOELL ARIL test period: April 20, 1995--December 21, 1995; DPSC test period: August 16--26, 1996

    SciTech Connect (OSTI)

    Muzio, L.J.; Smith, R.A.; Hunt, T.

    1997-04-01

    The test site is Arapahoe Generating Station Unit 4, a 100 MWe down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emission through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the third phase of SNCR tests, where an additional injection location was installed to increase the low-load NOx removal performance. The new injectors consist of a pair of retractable in-furnace lances which were designed to provide a high degree of load following flexibility through on-line adjustments of the injection angle. With the new lances, NOx removals in excess of 35% are achievable at the same load and HN{sub 3} slip limit. At loads of 43 to 60 MWe, NOx removals with the lances range from 37--52%. At loads greater than 60 MWe, the wall-injection location is more efficient, and at loads of 70 to 100 MWe, NOx removals range from 37--41%. The coal mill-in-service pattern was found to have a large effect on both NOx removal and NH{sub 3} slip for injection at the new lance location. At 60 MWe, the NOx removal at the 10 ppm NH{sub 3} slip limit ranges from 28--52% depending on the mill-in-service pattern. Biasing the coal mills to provide uniform combustion conditions ahead of the injection location was found to be the best option for improving SNCR system performance under these conditions.

  17. Active diffraction gratings: Development and tests

    SciTech Connect (OSTI)

    Bonora, S.; Frassetto, F.; Poletto, L. [Institute of Photonics and Nanotechnologies, National Council for Research of Italy, via Trasea, 7, Padova 35131 (Italy); Zanchetta, E.; Della Giustina, G.; Brusatin, G. [Industrial Engineering Department, University of Padova, Via Marzolo 9, 35131 Padova (Italy)

    2012-12-15

    We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UV lithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

  18. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  19. Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrode Technique | Department of Energy Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Above is the video recording for the webinar, "Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique," originally held on March 12, 2013. In addition to this recording, you can access the presentation slides. A text version of

  20. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Date: Tuesday, March 12, 2013 Innovation for Our Energy Future Shyam S. Kocha: NREL Yannick ...

  1. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-12-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  2. Severe Accident Test Station Activity Report

    SciTech Connect (OSTI)

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000C compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  3. Solar Energy Education. Industrial arts: student activities. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition (Technical Report) | SciTech Connect Industrial arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  4. Solar Energy Education. Home economics: student activities. Field test

    Office of Scientific and Technical Information (OSTI)

    edition (Technical Report) | SciTech Connect Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  5. Active test of separation facility at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Iseki, Tadahiro; Inaba, Makoto; Takahashi, Naoki

    2007-07-01

    During the second and third steps of Active Test at Rokkasho Reprocessing Plant (RRP), the performances of the Separation Facility have been checked; (A) diluent washing efficiency, (B) plutonium stripping efficiency, (C) decontamination factor of fission products and (D) plutonium and uranium leakage into raffinate and spent solvent. Test results were equivalent to or better than expected. (authors)

  6. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  7. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    SciTech Connect (OSTI)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  8. Current status of active tests at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Nago, Toshihide; Ishihara, Noriyuki; Ohtou, Yoshihiro

    2007-07-01

    At Rokkasho Reprocessing Plant (RRP), the first commercial reprocessing plant in Japan, the test operation has been carried out step by step with 'water and steam', 'chemical products', 'depleted uranium' and 'spent fuels' toward the planned start of the commercial operation. Water Test was performed as the final stage of plant construction work and functioning of each equipment was tested with water and steam. In Chemical Test the performance of each equipment and unit was verified with chemical products such as nitric acid. In Uranium Test with depleted uranium, function and performance of equipment such as the sharing machine and the dissolver was verified. All its tests were completed by 22 January 2006. Active Test has been performed with spent fuels for the verification of safety functions and performances of equipment and facilities related to the processing of fission products and of plutonium, which had not been tested previously. Active Test which has been in progress since 31 March 2006 is divided into 5 steps, and Step 1, Step 2 and Step 3 are already completed. (authors)

  9. Recovery Efficiency Test Project Phase 2 activity report, Volume 1

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  10. Active Test of Purification Facility at Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Iseki, Tadahiro; Tsujimura, Akino; Nitta, Takeshi; Matsuda, Takashi

    2007-07-01

    During the second and third steps of Active Test of the Plutonium Purification unit, the extraction and reextraction performances of pulsed columns and mixer-settlers have been checked. Plutonium losses into wastes have been also checked. As a result, it was confirmed that the expected performances had been achieved. (authors)

  11. Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect (OSTI)

    Williams, Mark D.; Fritz, Brad G.; Mendoza, Donaldo P.; Rockhold, Mark L.; Thorne, Paul D.; Xie, YuLong; Bjornstad, Bruce N.; Mackley, Rob D.; Newcomer, Darrell R.; Szecsody, James E.; Vermeul, Vincent R.

    2008-07-11

    Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-forming chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.

  12. Closure Report for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-06-01

    The purpose of this closure report is to document that the closure of CAU 322 complied with the Nevada Department of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 322 Corrective Action Decision Document.

  13. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David A. Strand

    2005-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  14. Boron-10 ABUNCL Prototype Models And Initial Active Testing

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-04-23

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.

  15. Uranium Adsorption on Granular Activated Carbon Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 ?g/g for the two Tusaar materials.

  16. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins: Part 1: Evaluation of Phase 2 CO{sub 2} Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2: Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    SciTech Connect (OSTI)

    Richard Bowersox; John Hickman; Hannes Leetaru

    2012-12-01

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO{sub 2} in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO{sub 2} storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO{sub 2} were present in the deep subsurface. Injection testing with brine and CO{sub 2} was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole â?? including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite â?? at 1152â??2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO{sub 2} was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter. Operations in the Phase 2 testing program commenced with retrieval of the bridge plug and long-term pressure gauges, followed by mechanical isolation of the Gunter by plugging the wellbore with cement below the injection zone at 1605.7 m, then cementing a section of a 14-cm casing at 1470.4â??1535.6. The resultant 70.1-m test interval at 1535.6â??1605.7 m included nearly all of the Gunter sandstone facies. During the Phase 2 injection, 333 tonnes of CO{sub 2} were injected into the thick, lower sand section in the sandy member of the Gunter. Following the completion of testing, the injection zone below casing at 1116 m in the Marvin Blan No. 1 well, and wellbore below 305 m was permanently abandoned with cement plugs and the wellsite reclaimed. The range of most-likely storage capacities found in the Knox in the Marvin Blan No. 1 is 1000 tonnes per surface hectare in the Phase 2 Gunter interval to 8685 tonnes per surface hectare if the entire Knox section were available including the fractured interval near the base of the Copper Ridge. By itself the Gunter lacks sufficient reservoir volume to be considered for CO{sub 2} storage, although it may provide up to 18% of the reservoir volume available in the Knox. Regional extrapolation of CO{sub 2} storage potential based on the results of a single well test can be problematic, although indirect evidence of porosity and permeability can be demonstrated in the form of active saltwater-disposal wells injecting into the Knox. The western Kentucky region suitable for CO{sub 2} storage in the Knox is limited updip, to the east and south, by the depth at which the base of the Maquoketa shale lies above the depth required to ensure storage of CO{sub 2} in its supercritical state and the deepest a commercial well might be drilled for CO{sub 2} storage. The resulting prospective region has an area of approximately 15,600 km{sup 2}, beyond which it is unlikely that suitable Knox reservoirs may be developed. Faults in the subsurface, which serve as conduits for CO{sub 2} migration and compromise sealing strata, may mitigate the area with Knox reservoirs suitable for CO{sub 2} storage. The results of the injection tests in the Marvin Blan No. 1, however, provide a basis for evaluating supercritical CO{sub 2} storage in Cambro-Ordovician carbonate reservoirs throughout the Midcontinent. Reservoir seals were evaluated in the Knox and overlying strata. Within the Knox, permeabilities measured in vertical core plugs from the Beekmantown and Copper Ridge suggest that intraformational seals may problematic. Three stratigraphic intervals overlying the Knox in the Marvin Blan No. 1 well may provide seals for potential CO{sub 2} storage reservoirs in western Kentucky: Dutchtown Limestone, Black River Group, and Maquoketa Shale. The Dutchtown and Black River had permeabilities suggest that these intervals may act as secondary sealing strata. The primary reservoir seal for the Knox, however, is the Maquoketa. Maximum seal capacity calculated from permeabilities measured in vertical core plugs from the Maquoketa exceeded the net reservoir height in the Knox by about two orders of magnitude. Rock strength measured in core plugs from the Maquoketa suggest that it is unlikely that any CO{sub 2} migrating from the Knox would have sufficient pressure to fracture the Maquoketa. Part 2 of this report reviews the results of vertical seismic profiling in the Marvin Blan No. 1 well to model post-injection CO{sub 2} plume migration. Two three-dimensional vertical seismic profiles (3D-VSPâ??s) were acquired at the Kentucky Geological Survey Marvin Blan No. 1 CO{sub 2} sequestration research well, Hancock County, Kentucky. The initial (pre-injection) survey was performed on September 15â??16, 2010. This was followed by the injection of 333 tonnes of supercritical CO{sub 2} and then 584 m3 of 2% KCl water (to displace the remaining CO{sub 2} in the wellbore) on September 22, 2010. After injection, the well was shut in with a downhole pressure of 17.5 MPa at the injected reservoir depth of 1545.3 m. The second 3D-VSP was acquired on September 25â??26, 2010. These two 3D-VSP's were combined to produce a time-lapse 3D-VSP data volume in an attempt to monitor and image the subsurface changes caused by the injection. Less than optimum surface access and ambient subsurface noise from a nearby active petroleum pipeline hampered quality of the data, resulting in the inability to image the CO{sub 2} plume in the subsurface. However, some changes in the seismic response post-injection (both wavelet character and an apparent seismic "pull-down" within the injection zone) are interpreted to be a result of the injection process and imply that the technique could still be valid under different circumstances.

  17. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 g/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 C, 27 C, and 32 C there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

  18. Passive Active Multi-Junction 3, 7 GHZ launcher for Tore-Supra Long Pulse Experiments. Manufacturing Process and Tests

    SciTech Connect (OSTI)

    Guilhem, D.; Achard, J.; Bertrand, B.; Bej, Z.; Bibet, Ph.; Brun, C.; Chantant, M.; Delmas, E.; Delpech, L.; Doceul, Y.; Ekedahl, A.; Goletto, C.; Goniche, M.; Hatchressian, J. C.; Hillairet, J.; Houry, M.; Joubert, P.; Lipa, M.; Madeleine, S.; Martinez, A.

    2009-11-26

    The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and will be installed and commissioned on plasma during the fall of 2009.

  19. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  20. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismic moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.

  1. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  2. Well test report and CO/sub 2/ injection plan for the Little Knife Field CO/sub 2/ minitest Billings County, North Dakota. First annual report, September 1979-August 1980

    SciTech Connect (OSTI)

    Upton, J.E.

    1981-11-01

    Gulf Oil Exploration and Production Company in conjunction with the Department of Energy is conducting a field test of the CO/sub 2/ miscible displacement process. The project is being conducted in the Mission Canyon Formation (lower Mississippian), a dolomitized carbonate reservoir which is currently in the middle stage of primary depletion. Location of the field is in west-central North Dakota at the approximate center of the Williston Basin. Four wells were drilled in an inverted four-spot configuration within the five-acre minitest. The central well is the injection well surrounded by three non-producing observation wells. Oriented cores were obtained from each well for detailed reservoir characterization and laboratory testing. In addition, pulse and injectivity tests were obtained. Results from these tests were used to upgrade two reservoir simulation models. Various parameters within the models were modified to determine the most efficient injection plan. A WAG-type injection sequence involving alternate slugs of water and CO/sub 2/ will be employed. The test is designed to establish the incremental recovery, over waterflooding, by a miscible CO/sub 2/ flood in an oil reservoir.

  3. Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

  4. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Authorized Injection Systems Webpage Author Oregon Department of...

  5. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    SciTech Connect (OSTI)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

  6. Advanced Vehicle Testing Activity Benchmark Testing of the Chevrolet Volt Onboard Charger

    SciTech Connect (OSTI)

    Richard Carlson

    2012-04-01

    This is a report for public consumption, for the AVTA website, detailing the testing and analysis of the benchmark testing conducted on the Chevrolet Volt on-board charger.

  7. Risk-informed inservice test activities at the NRC

    SciTech Connect (OSTI)

    Fischer, D.; Cheok, M.; Hsia, A.

    1996-12-01

    The operational readiness of certain safety-related components is vital to the safe operation of nuclear power plants. Inservice testing (IST) is one of the mechanisms used by licensees to ensure this readiness. In the past, the type and frequency of IST have been based on the collective best judgment of the NRC and industry in an ASME Code consensus process and NRC rulemaking process. Furthermore, IST requirements have not explicitly considered unique component and system designs and contribution to overall plant risk. Because of the general nature of ASME Code test requirements and non-reliance on risk estimates, current IST requirements may not adequately emphasize testing those components that are most important to safety and may overly emphasize testing of less safety significant components. Nuclear power plant licensees are currently interested in optimizing testing by applying resources in more safety significant areas and, where appropriate, reducing measures in less safety-significant areas. They are interested in maintaining system availability and reducing overall maintenance costs in ways that do not adversely affect safety. The NRC has been interested in using probabilistic, as an adjunct to deterministic, techniques to help define the scope, type and frequency of IST. The development of risk-informed IST programs has the potential to optimize the use of NRC and industry resources without adverse affect on safety.

  8. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect (OSTI)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will load heavily onto activated carbon and should be removed from groundwater upstream of the activated carbon pre-treatment system. Unless removed upstream, the adsorbed loadings of these organic constituents could exceed the land disposal criteria for carbon.

  9. Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar, Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique, held March 12, 2013.

  10. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  11. Advanced Vehicle Testing Activity Cold Weather On-road Testing of the Chevrolet Volt

    SciTech Connect (OSTI)

    Smart, John

    2015-03-01

    This report details cold weather on-road testing of a Chevrolet Volt. It quantifies changes in efficiency and electric range as ambient temperature changes. It will be published to INL's AVTA website as an INL technical report and will be accessible to the general public.

  12. Recovery efficiency test project, Phase 2 activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  13. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect (OSTI)

    James O'Brien

    2012-09-01

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during JanuaryAugust 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  14. Results of Active Test of Uranium-Plutonium Co-denitration Facility at Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Numao, Teruhiko; Nakayashiki, Hiroshi; Arai, Nobuyuki; Miura, Susumu; Takahashi, Yoshiharu; Nakamura, Hironobu; Tanaka, Izumi

    2007-07-01

    In the U-Pu co-denitration facility at Rokkasho Reprocessing Plant (RRP), Active Test which composes of 5 steps was performed by using uranium-plutonium nitrate solution that was extracted from spent fuels. During Active Test, two kinds of tests were performed in parallel. One was denitration performance test in denitration ovens, and expected results were successfully obtained. The other was validation and calibration of non-destructive assay (NDA) systems, and expected performances were obtained and their effectiveness as material accountancy and safeguards system was validated. (authors)

  15. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  16. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT

    SciTech Connect (OSTI)

    Xu Hao; Li Hui; Li Shengtai; Collins, David C.; Norman, Michael L. E-mail: hli@lanl.go E-mail: dcollins@physics.ucsd.ed

    2010-12-20

    We present a series of cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus (AGN). Specifically, we investigate the influence of both the epoch of the AGN (z {approx} 3-0.5) and the AGN energy ({approx}3 x 10{sup 57}- 2 x 10{sup 60} erg) on the final magnetic field distribution in a relatively massive cluster (M{sub vir} {approx} 10{sup 15} M{sub sun}). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intracluster medium (ICM) turbulence caused by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach {approx}10{sup 61} erg, with micro Gauss fields distributed over the {approx}Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to {approx}1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small-scale dynamo process and maintain the magnetic field structure in our simulations.

  17. Injection Laser System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injection Laser System For each of NIF's 192 beams: The pulse shape as a function of time ... NIF's injection laser system (ILS) plays a key role in meeting these three requirements. ...

  18. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  19. Experimental Evaluation of DOC Performance Using Secondary Fuel Injection |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_Yetkin.pdf More Documents & Publications Engine Tests of an Active PM Filter Regeneration System Low Temperature Catalyst for Fuel Injection System DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group

  20. CO2 Injection Begins in Illinois

    Broader source: Energy.gov [DOE]

    The Midwest Geological Sequestration Consortium, one of seven regional partnerships created by the U.S. Department of Energy to advance carbon storage technologies nationwide, has begun injecting carbon dioxide for their large-scale CO2 injection test in Decatur, Illinois.

  1. Recovery Efficiency Test Project Phase 2 activity report, Volume 1. Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  2. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. PDF icon p-10gibbs.pdf More ...

  3. Liquid Propane Injection Applications

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart.

  4. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2010-09-01

    Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River at a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.

  5. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  6. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  7. Investigation of Direct Injection Vehicle Particulate Matter Emissions

    Broader source: Energy.gov [DOE]

    This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer.

  8. Active test of head-end facility at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Yamamoto, Yoshiro; Tanaka, Satoshi; Kawabe, Shuji; Kamada, Yoshiaki

    2007-07-01

    During the first step, the second and the third step of Active Test (AT) at Rokkasho Reprocessing Plant (RRP), the performances of the Head-end Facility were checked, mainly for shearing and dissolution: shearing force and shearing time were the values as expected and concentration of U and Pu in dissolution solution were the values as expected. And safety requirement for acidity in dissolution solution was satisfied. (authors)

  9. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. Furthermore, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  10. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. In conclusion, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  11. Premixed direct injection disk

    DOE Patents [OSTI]

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  12. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  13. Direct liquid injection of liquid petroleum gas

    SciTech Connect (OSTI)

    Lewis, D.J.; Phipps, J.R.

    1984-02-14

    A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

  14. Transonic Combustion ’ - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy ...

  15. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.

  16. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-16

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

  17. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  18. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  19. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  20. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  1. Injection Locking Techniques for Spectrum Analysis

    SciTech Connect (OSTI)

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-19

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  2. Active and passive acoustic imaging inside a large-scale polyaxial hydraulic fracture test

    SciTech Connect (OSTI)

    Glaser, S.D.; Dudley, J.W. II; Shlyapobersky, J.

    1999-07-01

    An automated laboratory hydraulic fracture experiment has been assembled to determine what rock and treatment parameters are crucial to improving the efficiency and effectiveness of field hydraulic fractures. To this end a large (460 mm cubic sample) polyaxial cell, with servo-controlled X,Y,Z, pore pressure, crack-mouth-opening-displacement, and bottom hole pressure, was built. Active imaging with embedded seismic diffraction arrays images the geometry of the fracture. Preliminary tests indicate fracture extent can be imaged to within 5%. Unique embeddible high-fidelity particle velocity AE sensors were designed and calibrated to allow determination of fracture source kinematics.

  3. Fuel injection apparatus

    SciTech Connect (OSTI)

    Suzuki, Y.; Kuroda, Y.; Ogata, K.

    1988-07-12

    A fuel injection apparatus is described for injecting fuel responsive to a rotary speed of an engine by utilizing the pressure of compressed air, the apparatus comprising means for regulating the supplying time of the compressed air responsive to at least one of the rotary speed of the engine and the load of the engine, and the regulating means including means for supplying the compressed air for a longer time at least one of low rotary speed and low load of the engine than at least one of high rotary speed and high load of the engine.

  4. Utility flue gas mercury control via sorbent injection

    SciTech Connect (OSTI)

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  5. Direct tuyere injection of oxygen for enhanced coal combustion

    SciTech Connect (OSTI)

    Riley, M.F.

    1996-12-31

    Injecting oxygen directly into the tuyere blowpipe can enhance the ignition and combustion of injected pulverized coal, allowing the efficient use of higher coal rates at high furnace production levels. The effects of direct oxygen injection have been estimated from an analysis of the factors controlling the dispersion, heating, ignition, and combustion of injected coal. Injecting ambient temperature oxygen offers mechanical improvements in the dispersion of coal but provides little thermochemical benefit over increased blast enrichment. Injecting hot oxygen through a novel, patented thermal nozzle lance offers both mechanical and thermochemical benefits over increased enrichment or ambient oxygen injection. Plans for pilot-scale and commercial-scale testing of this new lance are described.

  6. Dual nozzle single pump fuel injection system

    SciTech Connect (OSTI)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is supplied by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.

  7. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  8. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  9. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  10. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the radionuclides that is volatile in the melter and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 (99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentrations in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and 241Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. At this time, these scoping tests did not evaluate the partitioning of the radionuclides to the evaporator condensate, since ample data are available separately from other experience in the DOE complex. Results from the evaporation testing show that the neutral SBS simulant first forms turbidity at ~7.5X concentration, while the alkaline-adjusted simulant became turbid at ~3X concentration. The major solid in both cases was Kogarkoite, Na3FSO4. Sodium and lithium fluorides were also detected. Minimal solids were formed in the evaporator bottoms until a substantial fraction of liquid was removed, indicating that evaporation could minimize storage volume issues. Achievable concentration factors without significant insoluble solids were 17X at alkaline pH, and 23X at neutral pH. In both runs, significant ammonia carried over and was captured in the condenser with the water condensate. Results also indicate that with low insoluble solids formation in the initial testing at neutral pH, the use of Reverse Osmosis is a potential alternate method for concentrating the solution, although an evaluation is needed to identify equipment that can tolerate insoluble solids. Most of the ammonia remains in the evaporator bottoms during the neutral pH evaporation, but partitions to the condensate during alkaline evaporation. Disposition of both streams needs to consider the management of ammonia vapor and its release. Since this is an initial phase of testing, additional tasks related to evaporation methods are expected to be identified for development. These tasks likely include evaluation and testing of composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and evaporator condensate disposition.

  11. Reductant injection and mixing system

    DOE Patents [OSTI]

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  12. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine sorption.

  13. Waterflooding injectate design systems and methods (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Citation Details In-Document Search Title: Waterflooding injectate design systems and methods A method of designing an injectate...

  14. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    SciTech Connect (OSTI)

    Krenzien, Susan; Farnham, Irene

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  15. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    SciTech Connect (OSTI)

    Farnham, Irene; Krenzien, Susan

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  16. Liquid Propane Injection Technology Conductive to Today's North American

    Broader source: Energy.gov (indexed) [DOE]

    Specification | Department of Energy can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil PDF icon deer09_arnold.pdf More Documents & Publications Liquid Propane Injection Applications Liquid Propane Injection Applications Transportation Fuels: The Future is Today (6 Activities)

  17. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  18. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  19. Tracer Recovery and Mixing from Two Geothermal Injection-Backflow...

    Open Energy Info (EERE)

    procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results...

  20. Interpretation of self-potential measurements during injection...

    Open Energy Info (EERE)

    self-potential measurements during injection tests at Raft River, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of...

  1. Illinois CO2 Injection Project Moves Another Step Forward

    Broader source: Energy.gov [DOE]

    The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide injection test site is an important step forward for the carbon capture and storage project's planned early 2011 startup.

  2. Premixed direct injection nozzle

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC); Johnson, Thomas Edward (Greer, SC); Lacy, Benjamin Paul (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC)

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  3. Particle beam injection system

    DOE Patents [OSTI]

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  4. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.

  5. INJECTION PROFILE MODIFICATION IN A HOT, DEEP MINNELUSA WATER INJECTION PROJECT

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2001-09-01

    As oil fields in the United States age, production enhancements and modifications will be needed to increase production from deeper and hotter oil reservoirs. New techniques and products must be tested in these areas before industry will adapt them as common practice. The Minnelusa fields of northeastern Wyoming are relatively small, deep, hot fields that have been developed in the past ten to twenty years. As part of the development, operators have established waterfloods early in the life of the fields to maximize cumulative oil production. However, channeling between injectors and producers does occur and can lead to excessive water production and bypassed oil left in the reservoir. The project evaluated the use of a recently developed, high-temperature polymer to modify the injection profiles in a waterflood project in a high-temperature reservoir. The field is the Hawk Point field in Campbell County, Wyoming. The field was discovered in 1986 and initially consisted of eight producing wells with an average depth of 11,500 feet and a temperature of 260 F (127 C). The polymer system was designed to plug the higher permeable channels and fractures to provide better conformance, i.e. sweep efficiency, for the waterflood. The project used a multi-well system to evaluate the treatment. Injection profile logging was used to evaluate the injection wells both before and after the polymer treatment. The treatment program was conducted in January 2000 with a treatment of the four injection wells. The treatment sizes varied between 500 bbl and 3,918 bbl at a maximum allowable pressure of 1,700 psig. Injection in three of the wells was conducted as planned. However, the injection in the fourth well was limited to 574 bbl instead of the planned 3,750 bbl because of a rapid increase in injection pressure, even at lower than planned injection rates. Following completion of polymer placement, the injection system was not started for approximately one week to permit the gel to set. The system then returned to operation as before the test with no major change in the fieldwide injection. The injection and production rates for the field were monitored for approximately one year to give the production side of the system time to stabilize. The polymer treatment conducted on the injection wells in Hawk Point is believed to be the largest treatment of a hot, deep reservoir to date. These injection well treatments did produce some change in the injection profile of the injection wells. However, it is very disappointing that there was no significant improvement in the performance of the field. There was no noticeable reduction in the water production, the water-oil ratio (WOR), or an increase in oil production. The cosponsor has determined that the field is currently at its economic limit because of the high cost of this deep operation and the continual downhole problems. A restructuring of the injection-production pattern is presently being done to prolong the life of the field.

  6. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  7. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  8. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  9. Injection through fractures

    SciTech Connect (OSTI)

    Johns, R.A.

    1987-05-01

    Tracer tests are conducted in geothermal reservoirs as an aid in forecasting thermal breakthrough of reinjection water. To interpret tracer tests, mathematical models have been developed based on the various transport mechanisms in these highly fractured reservoirs. These tracer flow models have been applied to interpret field tests. The resulting matches between the model and field data were excellent and the model parameters were used to estimate reservoir properties. However, model fitting is an indirect process and the model's ability to estimate reservoir properties cannot be judged solely on the quality of the match between field data and model predictions. The model's accuracy in determining reservoir characteristics must be independently verified in a closely controlled environment. In this study, the closely controlled laboratory environment was chosen to test the validity and accuracy of tracer flow models developed specifically for flow in fractured rocks. The laboratory tracer tests were performed by flowing potassium iodide (KI) through artificially fractured core samples. The tracer test results were then analyzed with several models to determine which best fit the measured data. A Matrix Diffusion model was found to provide the best match of the tracer experiments. The core properties, as estimated by the Matrix Diffusion model parameters generated from the indirect matching process, were then determined. These calculated core parameters were compared to the measured core properties and were found to be in agreement. This verifies the use of the Matrix Diffusion flow model in estimating fracture widths from tracer tests.

  10. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  11. Laterally injected light-emitting diode and laser diode

    SciTech Connect (OSTI)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  12. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2006deerdepetrillo.pdf More Documents & Publications Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles RYPOS Trap ...

  13. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  14. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  15. Low-pressure injection molding

    SciTech Connect (OSTI)

    Mangels, J.A. (Ceradyne Inc., Costa Mesa, CA (United States))

    1994-05-01

    Ceramic injection molding experienced a revival in the 1970s and 1980s with the application of ceramics for gas turbine components. Concurrently, techniques were being developed for the injection molding of powdered metal compositions into complex shaped articles. The impetus for the development of injection molding as a ceramic fabrication process lay in the potential to produce complex-shaped components to near-net shape. In the ceramic injection molding process, ceramic powders are processed to obtain the desired particle size, distribution and morphology and blended to obtain a homogeneous distribution. These powders are then mixed with the organic binders, generally in a heated, highshear mixer at temperatures above the melting point of the organic binders. The injection molding mix is pelletized, cooled and fed into an injection molding machine. The molding mix is reheated to a fluid state and injected under high pressure (7--70 MPa) into a die cavity. The molded part is removed from the tooling after the molding mix has solidified in the die. The organic binders are then removed from the component at temperatures up to 400 C, generally by some combination of wicking and thermal decomposition. Finally, the component is sintered to obtain its final ceramic properties, using conventional ceramic processes.

  16. Injection nozzle for a turbomachine

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  17. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S.

    1985-01-01

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  18. Effect of current injection into thin-film Josephson junctions

    SciTech Connect (OSTI)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  19. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  20. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect (OSTI)

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.

  1. Direct plasma injection scheme with various ion beams

    SciTech Connect (OSTI)

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  2. Engine Tests of an Active PM Filter Regeneration System | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_nickolas.pdf More Documents & Publications Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Development of an Active Regeneration Diesel Particulate Filter System Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions

  3. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    SciTech Connect (OSTI)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  4. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  5. Investigating {sup 13}C+{sup 12}C reaction by the activation method. Sensitivity tests

    SciTech Connect (OSTI)

    Chesneanu, Daniela Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-24

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the “Horia Hulubei” National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the {sup 12}C+{sup 13}C reaction at beam energies E{sub lab}= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of {sup 12}C+{sup 12}C over a wide energy range. A {sup 13}C beam with intensities 0.5–2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with {sup 24}Na from the {sup 12}C({sup 13}C,p) reaction. The 1369 and 2754 keV gamma-rays from {sup 24}Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for E{sub lab} = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1–3 nb. This demonstrates that it is possible to measure {sup 12}C targets irradiated at lower energies for at least 10 times lower cross sections than before β–γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  6. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOE Patents [OSTI]

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  7. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  8. Massachusetts Natural Gas Underground Storage Injections All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  9. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  10. INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL

    SciTech Connect (OSTI)

    Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

    1998-10-01

    This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

  11. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  12. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  13. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  14. Recovery efficiency test project, Phase 2 activity report. Volume 2, Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for ``data frac`` stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  15. Activities to support the liquefied gaseous fuels spill test facility program. Final report

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.; Routh, T.

    1997-03-01

    Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

  16. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  17. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    SciTech Connect (OSTI)

    Rothschmitt, Stefan; Graf, Anja; Bauer, Stefan; Klute, Stefan; Koselowski, Eiko

    2013-07-01

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  18. Blast Furnace Granulated Coal Injection

    SciTech Connect (OSTI)

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  19. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  20. Sequential injection gas guns for accelerating projectiles

    DOE Patents [OSTI]

    Lacy, Jeffrey M.; Chu, Henry S.; Novascone, Stephen R.

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  1. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  2. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  3. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  4. SOLIDIFICATION TESTING FOR A HIGH ACTIVITY WASTESTREAM FROM THE SAVANNAH RIVER SITE USING GROUT AND GAMMA RADIATION SHEILDING MATERIALS - 10017

    SciTech Connect (OSTI)

    Burns, H.

    2009-11-10

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) with evaluating grouts that include gamma radiation shielding materials to solidify surrogates of liquid aqueous radioactive wastes from across the DOE Complex. The Savannah River Site (SRS) identified a High Activity Waste (HAW) that will be treated and solidified at the Waste Solidification Building (WSB) for surrogate grout testing. The HAW, which is produced at the Mixed Oxide Fuel Fabrication Facility (MFFF), is an acidic aqueous wastestream generated by the alkaline treatment process and the aqueous purification process. The HAW surrogate was solidified using Portland cement with and without the inclusion of different gamma radiation shielding materials to determine the shielding material that is the most effective to attenuate gamma radiation for this application.

  5. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  6. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alkaline pH, with a DF of 17.9. As anticipated, ammonium ion probably interfered with the Ionsiv®a IE-95 zeolite uptake of {sup 137}Cs. Although this DF of {sup 137}Cs was moderate, additional testing is expected to identify more effective conditions. Similarly, Monosodium Titanate (MST) was more effective at alkaline pH at removing Sr, Pu, and U, with a DF of 319, 11.6, and 10.5, respectively, within 24 hours. Actually, the Ionsiv® IE-95, which was targeting removal of Cs, was also moderately effective for Sr, and highly effective for Pu and U at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}Tc during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Results of this separation testing indicate that sorption/precipitation was a viable concept and has the potential to decontaminate the stream. All radionuclides were at least partially removed by one or more of the materials tested. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) and sorbent at neutral pH to remove the Tc, followed by pH adjustment and the addition of zeolite (Ionsiv® IE-95) to remove the Cs, Sr, and actinides. Addition of MST to remove Sr and actinides may not be needed. Since this was an initial phase of testing, additional tasks to improve separation methods were expected to be identified. Primarily, further testing is needed to identify the conditions for the decontamination process. Once these conditions are established, follow-on tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated LAW Off-Gas Condensate evaporation and solidification.

  7. Allergy Injection Policy | Department of Energy

    Energy Savers [EERE]

    Allergy Injection Policy Allergy Injection Policy Millions of Americans suffer from perennial and seasonal allergic rhinitis. Allergy immunotherapy is an effective way to reduce or eliminate the symptoms of allergic rhinitis by desensitizing the patient to the allergen(s) by giving escalating doses of an extract via regular injections. Receiving weekly injections at a private physician's office is time consuming, reduces productivity, and can quickly deplete an employee's earned leave. FOH

  8. Gas Injection Apparatus for Vacuum Chamber

    SciTech Connect (OSTI)

    Almabouada, F.; Louhibi, D.; Hamici, M.

    2011-12-26

    We present in this article a gas injection apparatus which comprises the gas injector and its electronic command for vacuum chamber applications. Some of these applications are thin-film deposition by a pulsed laser deposition (PLD) or a cathodic arc deposition (arc-PVD) and the plasma generation. The electronic part has been developed to adjust the flow of the gas inside the vacuum chamber by controlling both of the injector's opening time and the repetition frequency to allow a better gas flow. In this case, the system works either on a pulsed mode or a continuous mode for some applications. In addition, the repetition frequency can be synchronised with a pulsed laser by an external signal coming from the laser, which is considered as an advantage for users. Good results have been obtained using the apparatus and testing with Argon and Nitrogen gases.

  9. Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin

    Broader source: Energy.gov [DOE]

    The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide injection test in Decatur, Illinois.

  10. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, Larry W.

    1986-01-01

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  11. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, L.W.

    1983-12-21

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  12. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents. The sorbents, hydroxyapatite and sodium oxalate, were expected to sorb the precipitated technetium dioxide and facilitate removal. The Phase 1 tests examined a broad range of conditions and used the initial baseline simulant. The Phase 2 tests narrowed the conditions based on Phase 1 results, and used a slightly modified simulant. Test results indicate that excellent removal of {sup 99}Tc was achieved using SnCl{sub 2} as a reductant, and was effective with or without sorption onto hydroxyapatite. This reaction worked even in the presence of air (which could oxidize the stannous ion) and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >199 in one hour with only 1 g/L of SnCl{sub 2}. Prior work had shown that it was much less effective at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}c during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Reduction using FeSO{sub 4} was not effective at removing {sup 99}Tc, but did remove the Cr. Chromium is present due to partial volatility and entrainment in the off-gas, and is highly oxidizing, so would be expected to react with reducing agents more quickly than pertechnetate. Testing showed that sufficient reducing agent must be added to completely reduce the chromium before the technetium is reduced and removed. Other radionuclides are also present in this off-gas condensate stream. To enable sending this stream to the Hanford ETF, and thereby divert it from the recycle where it impacts the LAW glass volume, several of these also need to be removed. Samples from optimized conditions were also measured for actinide removal in order to examine the effect of the Tc-removal process on the actinides. Plutonium was also removed by the SnCl{sub 2} precipitation process. Results of this separation testing indicate that sorption/precipitation is a viable concept and has the potential to decontaminate the {sup 99}Tc from the stream, allowing it to be diverted away from WTP and thus eliminating the impact of the recycled halides and sulfate on the LAW glass volume. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) with or without sorbent at neutral pH to remove the Tc. Although hydroxyapatite was not necessary to effect the {sup 99}Tc removal, it may be beneficial in solid-liquid separations. Other testing will examine removal of the other radionuclides. This testing was the second phase of testing, which aimed at optimizing the process by examining the minimum amount of reductant needed and the minimum reaction time. Although results indicated that SnCl{sub 2} was effective, further work on a pH-adjusted Fe(SO{sub 4}) mixture are needed. Additional tasks are needed to examine removal of the other radionuclides, solid-liquid separation technologies, slurry rheology measurements, composition variability impacts, corrosion and erosion, and slurry storage and immobilization.

  13. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  14. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  15. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  16. Control of Test Conduct

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revision 1 Effective June 2008 Control of Test Conduct Prepared by Electric ......... 4 6.1 Test Activities ......

  17. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect (OSTI)

    Riuttanen, L. Nyknen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  18. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection...

    Office of Scientific and Technical Information (OSTI)

    (such as sulfur, nitrogen, and COsub 2) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. ...

  19. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Potomac River Generating Station in Alexandria, Virginia Update 2 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit ...

  20. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect (OSTI)

    Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

    2004-05-15

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  1. Activities

    Broader source: Energy.gov [DOE]

    Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

  2. Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois

    Broader source: Energy.gov [DOE]

    A project important to demonstrating the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of injecting carbon dioxide from an industrial plant at a large-scale test site in Illinois.

  3. Longitudinal injection transients in an electron storagering

    SciTech Connect (OSTI)

    Byrd, J.M.; De Santis, S.

    2000-11-02

    We present the results of an experimental study of the longitudinal beam dynamics at injection in the Advanced Light Source (ALS), an electron storage ring. By measuring the longitudinal bunch distribution following injection using a streak camera, we were able to study several useful and interesting e.ects as well as improve overall injection efficiency. These include measurement and correction of the phase and energy offsets at injection, measurement of the injected bunch length and energy spread, direct observation of phase space filamentation due to the spread in synchrotron frequencies, and measurement of the effective damping rate of the bunch shape including radiation damping and decoherence. We have also made some initial studies of the decay of an uncaptured beam at injection which may provide a novel means of measuring the radiation loss per turn.

  4. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C.; Watkins, Arthur D.

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  5. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  6. The second generation of electronic diesel fuel injection systems - Investigation with a rotary pump

    SciTech Connect (OSTI)

    Yamada, K.; Oshizawa, H.

    1986-01-01

    This paper describes concepts of the next generation of electronic diesel fuel injection (EDFI) systems, and the test results of the prototype, named ''Model-1.'' Important characteristics of the next generation of EDFI will be; mechanical simplicity, direct control and pump intelligence. Direct spill control using a high speed solenoid valve for injection regulation and pump mounted electronic circuits were used in the ''Model-1'' system. The test results demonstrate the advantages of this system, and suggest possibilities of new function such as individual cylinder control, pilot injection and multi fuel usage.

  7. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  8. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  9. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  10. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  11. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Abstract Required...

  12. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Abstract Required fees and form...

  13. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Environmental Permit Handbook -...

  14. Hawaii Underground Injection Control Permitting Webpage | Open...

    Open Energy Info (EERE)

    Permitting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii...

  15. Low Temperature Catalyst for Fuel Injection System

    Broader source: Energy.gov [DOE]

    A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system.

  16. Summary of activities at the Engineered Barriers Test Facility, October 1, 1995 to January 31, 1997, and initial data

    SciTech Connect (OSTI)

    Porro, I.; Keck, K.N.

    1997-03-01

    Replicates of two engineered barrier designs (a thick soil barrier and a bio/capillary barrier) were constructed in the test plots of the facility. Prior to placement of any soil in the test plots, instruments were calibrated and attached to plot instrument towers, which were then installed in the test plots. Soil from Spreading Area B was installed in the test plots in lifts and compacted. Instruments attached to the instrument tower were placed in shallow trenches dug in the lifts and buried. Each instrument was checked to make sure it functioned prior to installation of the next lift. Soil samples were collected from each lift in one plot during construction for later determination of physical and hydraulic properties. After completion of the test plots, the data acquisition system was finalized, and data collection began. Appropriate instrument calibration equations and equation coefficients are presented, and data reduction techniques are described. Initial data show test plot soils drying throughout the summer and early fall. This corresponds to low rainfall during this period. Infiltration of water into the test plots was first detected around mid-November with several subsequent episodes in December. Infiltration was verified by corresponding measurements from several different instruments [time domain reflectometry (TDR), neutron probe, thermocouple psychrometers, and heat dissipation sensors]. Tensiometer data does not appear to corroborate data from the other instruments. Test plots were warmer on the side closest to the access trench indicating a temperature effect from the trench. This resulted in greater soil moisture freezing with less and shallower infiltration on the far side of the plots than on the side closest to the trench. At the end of this monitoring period, infiltration in all but two of the test plots has reached the 155-cm depth. Infiltration in test plots B2 and S3 has reached only the 140-cm depth. The monitored infiltration events have not resulted in drainage from the bottom of the test plots.

  17. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers

    SciTech Connect (OSTI)

    Frougier, J. Jaffrs, H.; Deranlot, C.; George, J.-M.; Baili, G.; Dolfi, D.; Alouini, M.; Sagnes, I.; Garnache, A.

    2013-12-16

    We fabricated and characterized an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well Vertical External Cavity Surface Emitting Laser (VECSEL). The structure is designed to allow the integration of a Metal-Tunnel-Junction ferromagnetic spin-injector for future electrical injection. We report here the control at room temperature of the electromagnetic field polarization using optical spin injection in the active medium of the VECSEL. The switching between two highly circular polarization states had been demonstrated using an M-shaped extended cavity in multi-modes lasing. This result witnesses an efficient spin-injection in the active medium of the LASER.

  18. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  19. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  20. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  1. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, Richard P.; Lott, James A.

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  2. Injection Molding of Plastics from Agricultural Materials

    SciTech Connect (OSTI)

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  3. Injection and Monitoring at the Wallula Basalt Pilot Project

    SciTech Connect (OSTI)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show that mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.

  4. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less

  5. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  6. Dual effects of stochastic heating on electron injection in laser wakefield acceleration

    SciTech Connect (OSTI)

    Deng, Z. G.; Wang, X. G.; Yang, L.; Zhou, C. T.; Yu, M. Y.; Ying, H. P.

    2014-08-15

    Electron injection into the wakefield of an intense short laser pulse by a weaker laser pulse propagating in the opposite direction is reconsidered using two-dimensional (2D) particle-in-cell simulations as well as analytical modeling. It is found that for linearly polarized lasers the injection efficiency and the quality of the wakefield accelerated electrons increase with the intensity of the injection laser only up to a certain level, and then decreases. Theory and simulation tracking test electrons originally in the beat region of the two laser pulses show that the reduction of the injection efficiency at high injection-laser intensities is caused by stochastic overheating of the affected electrons.

  7. Category:Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    this category, out of 9 total. D Downhole Fluid Sampling E Earth Tidal Analysis F Flow Test I Injectivity Test S Static Temperature Survey Stress Test T Tracer Testing V Vertical...

  8. Bibliography: injection technology applicable to geothermal utilization

    SciTech Connect (OSTI)

    Darnell, A.J.; Eichelberger, R.L.

    1982-03-19

    This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

  9. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  10. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  11. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  12. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  13. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  14. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  15. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  17. Engineering-Scale Development of Injection Casting Technology for Metal Fuel Cycle

    SciTech Connect (OSTI)

    Ogata, Takanari; Tsukada, Takeshi

    2007-07-01

    Engineering-scale injection casting tests were conducted in order to demonstrate the applicability of injection casting technology to the commercialized fast reactor fuel cycle. The uranium-zirconium alloy slugs produced in the tests were examined with reference to the practical slug specifications: average diameter tolerance {+-} 0.05 mm, local diameter tolerance {+-} 0.1 mm, density range 15.3 to 16.1 g/cm{sup 3}, zirconium content range 10 {+-} 1 wt% and total impurity (C, N, O, Si) <2000 ppm, which were provisionally determined. Most of the slugs satisfied these specifications, except for zirconium content. The impurity level was sufficiently low even though the residual and scrapped alloys were repeatedly recycled. The weight ratio of injected metal to charged metal was sufficiently high for a high process throughput. The injection casting technology will be applicable to the commercialized fuel cycle when the issue of zirconium content variation is resolved. (authors)

  18. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Smith, J.; Chang, R.

    1996-07-27

    The overall objective this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. During Phase 1, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed and will be integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will then be injected into the flue gas stream upstream of the test device to determine the mercury removal efficiency for each sorbent. During the Phase 11 effort, component integration for the most promising dry sorbent technology (technically and economically feasible) shall be tested at the 5000 acfm pilot-scale. An extensive work plan has been developed for the project. Three sorbents will be selected for evaluation at the facility through investigation, presentation, and discussion among team members: PSCO, EPRI, ADA, and DOE. The selected sorbents will be tested in the five primary bench-scale configurations: pulse `et baghouse, TOXECON, reverse-gas baghouse, electrostatic precipitator, and an ESP or fabric filter `with no Comanche ash in the flue gas stream. In the EPRI TOXECON system, mercury sorbents will be injected downstream of a primary particulate control device, and collected in a pulse-jet baghouse operated at air-to-cloth ratios of 12 to 16 ft/min, thus separating the mercury and sorbent from the captured flyash. In the no-ash configuration, an external flyash sample will be injected into a clean gas stream to investigate possible variations in sorbent effectiveness in the presence of different ashes. The use of an existing test facility, a versatile design for the test fixture, and installation of a continuous mercury analyzer will allow for the completion of this ambitious test plan. The primary activity during the quarter was to complete fabrication and installation of the facility.

  19. Experimental Investigation of Effect of Injection Parameters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Optimization of Direct-Injection H2 ...

  20. Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004. Award-winning accomplishments included KAT's increase in annual ridership

  1. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  2. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  3. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  4. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

  5. HARD X-RAY LAGS IN ACTIVE GALACTIC NUCLEI: TESTING THE DISTANT REVERBERATION HYPOTHESIS WITH NGC 6814

    SciTech Connect (OSTI)

    Walton, D. J.; Harrison, F. A.; Zoghbi, A.; Reynolds, C. S.; Cackett, E. M.; Uttley, P.; Fabian, A. C.; Kara, E.; Miller, J. M.; Reis, R. C.

    2013-11-10

    We present an X-ray spectral and temporal analysis of the variable active galaxy NGC 6814, observed with Suzaku during 2011 November. Remarkably, the X-ray spectrum shows no evidence for the soft excess commonly observed amongst other active galaxies, despite its relatively low level of obscuration, and is dominated across the whole Suzaku bandpass by the intrinsic powerlaw-like continuum. Despite this, we clearly detect the presence of a low-frequency hard lag of ∼1600 s between the 0.5-2.0 and 2.0-5.0 keV energy bands at greater than 6σ significance, similar to those reported in the literature for a variety of other active galactic nuclei (AGNs). At these energies, any additional emission from, e.g., a very weak, undetected soft excess, or from distant reflection must contribute less than 3% of the observed countrates (at 90% confidence). Given the lack of any significant continuum emission component other than the powerlaw, we can rule out models that invoke distant reprocessing for the observed lag behavior, which must instead be associated with this continuum emission. These results are fully consistent with a propagating fluctuation origin for the low-frequency hard lags, and with the interpretation of the high-frequency soft lags—a common feature seen in the highest quality AGN data with strong soft excesses—as reverberation from the inner accretion disk.

  6. Fuel injection characteristics and combustion behavior of a direct-injection stratified-charge engine

    SciTech Connect (OSTI)

    Balles, E.N.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder disc engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder. There are strong indications that individual cycles undergo partial or complete misfire.

  7. Microfabricated injectable drug delivery system

    DOE Patents [OSTI]

    Krulevitch, Peter A.; Wang, Amy W.

    2002-01-01

    A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

  8. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI ...

  9. Summary of the Optics, IR, Injection, Operations, Reliability...

    Office of Scientific and Technical Information (OSTI)

    Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group Citation Details In-Document Search Title: Summary of the Optics, IR, Injection, ...

  10. V-170: Apache Subversion Hook Scripts Arbitrary Command Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability V-170: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability June 4, 2013 - 12:17am...

  11. Injection System and Engine Strategies for Advanced Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection System and Engine Strategies for Advanced Emission Standards Injection System and Engine Strategies for Advanced Emission Standards Presentation given at DEER 2006, ...

  12. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel ...

  13. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction ...

  14. Low Cost Injection Mold Creation via Hybrid Additive and Conventional...

    Office of Scientific and Technical Information (OSTI)

    parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. ...

  15. Waterflooding injectate design systems and methods Brady, Patrick...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Brady, Patrick V.; Krumhansl, James L. A method of designing an injectate to be used in a waterflooding operation is disclosed....

  16. EPA - Underground Injection Control Classes of Wells webpage...

    Open Energy Info (EERE)

    Underground Injection Control Classes of Wells webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Underground Injection Control Classes of...

  17. Utah Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Underground Injection Control Program Webpage Abstract Provides...

  18. Idaho Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Underground Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Underground Injection Control Program Webpage...

  19. Vermont Underground Injection Control Rule | Open Energy Information

    Open Energy Info (EERE)

    Underground Injection Control Rule Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Underground Injection Control...

  20. Microseismic Study with LBNL - Monitoring the Effect of Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, ... Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, ...

  1. Numerical modeling of water injection into vapor-dominatedgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs Citation Details In-Document Search Title: Numerical modeling of water injection ...

  2. Flow monitoring and control system for injection wells (Patent...

    Office of Scientific and Technical Information (OSTI)

    Flow monitoring and control system for injection wells Title: Flow monitoring and control system for injection wells The present invention relates to a system for monitoring and ...

  3. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. ...

  4. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  5. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect (OSTI)

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H[sub 2]O[sub 2], and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H[sub 2]O[sub 2] injection as an oxygenation technique.

  6. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect (OSTI)

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H{sub 2}O{sub 2}, and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H{sub 2}O{sub 2} injection as an oxygenation technique.

  7. Powder Injection Molding of Titanium Components

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  8. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  9. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-01

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  10. High Resolution RANS NLH Study of Stage 67 Tip Injection Physics

    SciTech Connect (OSTI)

    Matheson, Michael A

    2014-01-01

    Numerical prediction of the Stage 67 transonic fan stage employing wall jet tip injection flow control and study of the physical mechanisms leading to stall suppression and stability enhancement afforded by endwall recirculation/injection is the focus of this paper. Reynolds averaged Navier-Stokes computations were used to perform detailed analysis of the Stage 67 configuration experimentally tested at NASA s Glenn Research Center in 2004. Time varying prediction of the stage plus recirculation and injection flowpath were performed utilizing the Nonlinear Harmonic approach. Significantly higher grid resolution per passage was achieved than what has been generally employed in prior reported numerical studies of spike stall phenomena in transonic compressors. This paper focuses on characterizing the physics of spike stall embryonic stage phenomena and the impact of tip injection, resulting in experimentally and numerically demonstrated stall suppression

  11. Numerical investigation of electron self-injection in the nonlinear bubble regime

    SciTech Connect (OSTI)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Rossi, F.

    2013-10-15

    The process of electron self-injection in the nonlinear bubble wake generated by a short and intense laser pulse propagating in a uniform underdense plasma is studied by means of fully self-consistent particle-in-cell simulations and test-particle simulations. We consider a wake generated by a non-evolving laser driver traveling with a prescribed velocity, which then sets the structure and the velocity of the wake, so the injection dynamics is decoupled from driver evolution, but a realistic structure for the wakefield is retained. We show that a threshold for self-injection into a non-evolving bubble wake exists, and we characterize the dependence of the self-injection threshold on laser intensity, wake velocity, and plasma temperature for a range of parameters of interest for current and future laser-plasma accelerators.

  12. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  13. High pressure injection of dimethyl ether

    SciTech Connect (OSTI)

    Glensvig, M.; Sorenson, S.C.; Abata, D.

    1996-12-31

    Partially oxygenated hydrocarbons produced from natural gas have been shown to be viable alternate fuels for the diesel engine, showing favorable combustion characteristics similar to that of diesel fuel but without exhaust particulates and with significantly reduced NO{sub x} emissions and lower engine noise. Further, engine studies have demonstrated that such compounds, like dimethyl ether (DME), can be injected at much lower pressures than conventional diesel fuel with better overall performance. This experimental study compares the injection of DME to that of conventional diesel fuel. Both fuels were injected into a quiescent high pressure chamber containing Nitrogen at pressures up to 25 atmospheres at room temperature with a pintle nozzle and jerk pump. Comparisons were obtained with high speed photography using a Hycam camera. Results indicate that there are significant differences in spray geometry and penetration which are not predictable with analytical models currently used for diesel fuels.

  14. Electrically Injected UV-Visible Nanowire Lasers

    SciTech Connect (OSTI)

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  15. System Study: High-Pressure Coolant Injection 1998-2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  16. System Study: High-Pressure Safety Injection 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  17. Defect Prevention and Detection in Software for Automated Test Equipment

    SciTech Connect (OSTI)

    E. Bean

    2006-11-30

    Software for automated test equipment can be tedious and monotonous making it just as error-prone as other software. Active defect prevention and detection are also important for test applications. Incomplete or unclear requirements, a cryptic syntax used for some test applicationsespecially script-based test sets, variability in syntax or structure, and changing requirements are among the problems encountered in one tester. Such problems are common to all software but can be particularly problematic in test equipment software intended to test another product. Each of these issues increases the probability of error injection during test application development. This report describes a test application development tool designed to address these issues and others for a particular piece of test equipment. By addressing these problems in the development environment, the tool has powerful built-in defect prevention and detection capabilities. Regular expressions are widely used in the development tool as a means of formally defining test equipment requirements for the test application and verifying conformance to those requirements. A novel means of using regular expressions to perform range checking was developed. A reduction in rework and increased productivity are the results. These capabilities are described along with lessons learned and their applicability to other test equipment software. The test application development tool, or application builder, is known as the PT3800 AM Creation, Revision and Archiving Tool (PACRAT).

  18. Mixed Mode Fuel Injector And Injection System

    DOE Patents [OSTI]

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  19. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; Fisher, Alan; Huang, Xiaobiao; Safranek, James; Westerman, Stuart; Cheng, Weixing; Mok, Walter; /Unlisted

    2012-06-21

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  20. Passive injection control for microfluidic systems

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  1. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  2. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  3. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E.

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  4. Passive safety injection system using borated water

    DOE Patents [OSTI]

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  5. Silicone injection restores failing submarine cables

    SciTech Connect (OSTI)

    Tilstra, M.

    1995-12-01

    Faced with the prospect of replacing nearly 10 miles of aging undersea cables, Orcas Power & Light Co (Opalco) elected instead to inject silicone into as many of the cables as possible. Silicone injection has been used extensively on underground residential distribution (URD) and feeder cables, but only two underwater cables had previously been injected: a feeder cable for Florida Power Corp under an intercoastal waterway and a cable for Washington Water Power Co under a lake in western Idaho. The compound restores power cables damaged by water treeing and prevents further water damage. Selection criteria included age, type, and whether the cables had ever been spliced. Older, soldered, hand-wrapped splices were avoided as they block the CableCure fluid from flowing through. This makes the cable uninjectable unless the splices are replaced with the molded type. The first cables chosen for injection were between 15 and 30 years old and clear of soldered splices. They also were free from faults. 4 figs.

  6. Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. Evaluation of injection well risk management potential in the Williston Basin

    SciTech Connect (OSTI)

    1989-09-01

    The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

  8. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

  9. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect (OSTI)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

  10. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  11. Waterflooding injectate design systems and methods

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2014-08-19

    A method of designing an injectate to be used in a waterflooding operation is disclosed. One aspect includes specifying data representative of chemical characteristics of a liquid hydrocarbon, a connate, and a reservoir rock, of a subterranean reservoir. Charged species at an interface of the liquid hydrocarbon are determined based on the specified data by evaluating at least one chemical reaction. Charged species at an interface of the reservoir rock are determined based on the specified data by evaluating at least one chemical reaction. An extent of surface complexation between the charged species at the interfaces of the liquid hydrocarbon and the reservoir rock is determined by evaluating at least one surface complexation reaction. The injectate is designed and is operable to decrease the extent of surface complexation between the charged species at interfaces of the liquid hydrocarbon and the reservoir rock. Other methods, apparatus, and systems are disclosed.

  12. An injectable acoustic transmitter for juvenile salmon

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation, and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.

  13. An injectable acoustic transmitter for juvenile salmon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  14. Target injection methods for inertial fusion energy

    SciTech Connect (OSTI)

    Petzoldt, R.W.; Moir, R.W.

    1994-06-01

    We have studied four methods to inject IFE targets: the gas gun, electrostatic accelerator, induction accelerator, and rail gun. We recommend a gas gun for indirect drive targets because they can support a gas pressure load on one end and can slide along the gun barrel without damage. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable; for other types of targets, a sabot would be necessary. A cam and poppet valve arrangement is recommended for gas flow control. An electrostatic accelerator is attractive for use with lightweight spherical direct drive targets. Since there is no physical contact between the target and the injector, there will be no wear of either component during the injection process. An induction accelerator has an advantage of no electrical contact between the target and the injector. Physical contact is not even necessary, so the wear should be minimal. It requires a cylindrical conductive target sleeve which is a substantial added mass. A rail gun is a simpler device than an electrostatic accelerator or induction accelerator. It requires electrical contact between the target and the rails and may have a significant wear rate. The wear in a vacuum could be reduced by use of a solid lubricant such as MoS{sub 2}. The total required accuracy of target injection, tracking and beam pointing of {plus_minus}0.4 mm appears achievable but will require development and experimental verification.

  15. Stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  16. Duct injection technology prototype development. Materials corrosion report, Revision 1

    SciTech Connect (OSTI)

    Harper, S.L.

    1991-08-01

    This report describes a test program conducted to determine the corrosion rate of materials in the dry scrubber or duct injection systems. Four materials were evaluated: 1010 carbon steel, Corten, 317SS and Hastelloy C-276. The results show that acidic conditions result in higher corrosion rates than alkaline conditions for all the materials. The carbon steel, Corten and stainless steel show moderate to heavy pitting attack in the acidic environment. For the alkaline conditions, the corrosion rates of carbon steel and Corten were higher than the stainless steel or Hastelloy C-276. Also, the corrosion rate of abraded specimens were four time those of unabraded specimens in the flue gas. It is probable that areas of wall-wetting and plugging in the duct injection process will exhibit high rates of corrosion for the carbon steel, Corten, and stainless steel materials. General corrosion and pitting corrosion will predominate. Additionally, abraded duct areas will corrode at a significantly higher rate than unabraded duct materials. 6 refs., 11 figs., 7 tabs.

  17. Development, Testing and Validation of a Waste Assay System for the Measurement and Characterisation of Active Spent Fuel Element Debris From UK Magnox Reactors - 12533

    SciTech Connect (OSTI)

    Mason, John A.; Burke, Kevin J.; Looman, Marc R.; Towner, Antony C.N.; Phillips, Martin E.

    2012-07-01

    This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part of the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to simulate the geometry of the sorting cell and the distribution of radioactive sources has helped to ensure that all of the detector shielding requirements are addressed and suitable Cs-137 and Co-60 discrimination can be achieved. The WTAS in its present form or in other configurations has relevance to the measurement of other active ILW and highly active RH waste. Examples include high activity RH LLW and RH TRU (Transuranic) waste as defined in the United States arising from both commercial nuclear and Department of Energy (DOE) operations. The analysis is able to analyse a range of radionuclides beyong those expected in the Magnox FED cases. (authors)

  18. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Yu, Y. B. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: hyf@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-12-10

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ?t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  19. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  20. T-731:Symantec IM Manager Code Injection Vulnerability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T-731:Symantec IM Manager Code Injection Vulnerability T-731:Symantec IM Manager Code Injection Vulnerability September 30, 2011 - 8:30am Addthis PROBLEM: Symantec IM Manager Code...

  1. High frequency pacing of edge localized modes by injection of...

    Office of Scientific and Technical Information (OSTI)

    High frequency pacing of edge localized modes by injection of lithium granules in DIII-D ... Title: High frequency pacing of edge localized modes by injection of lithium granules in ...

  2. RRC - Summary of Injection Control Rules | Open Energy Information

    Open Energy Info (EERE)

    Summary of Injection Control Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: RRC - Summary of Injection Control Rules Abstract This webpage...

  3. WAC - 173-218 Underground Injection Control Program | Open Energy...

    Open Energy Info (EERE)

    8 Underground Injection Control Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173-218 Underground Injection...

  4. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  5. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. You are accessing a ...

  6. Research and development of RHIC injection kicker upgrade with nano second FID pulse generator

    SciTech Connect (OSTI)

    Zhang W.; Sandberg, J.; Hahn, H.; Fischer, W.; Liaw, C.J.; Pai, C.; Tuozzolo, J.

    2012-05-20

    Our recent effort to test a 50 kV, 1 kA, 50 ns pulse width, 10 ns pulse rise time FID pulse generator with a 250 ft transmission cable, resistive load, and existing RHIC injection kicker magnet has produced unparalleled results. This is the very first attempt to drive a high strength fast kicker magnet with a nano second high pulsed power (50 MVA) generator for large accelerator and colliders. The technology is impressive. We report here the result and future plan of RHIC Injection kicker upgrade.

  7. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  8. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect (OSTI)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

  9. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  10. Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone

    SciTech Connect (OSTI)

    Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F.

    2010-04-15

    The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

  11. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  12. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOE Patents [OSTI]

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  13. Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection

    SciTech Connect (OSTI)

    Itagaki, H.; Inomoto, M.; Asai, T.; Takahashi, Ts.

    2014-03-15

    Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

  14. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect (OSTI)

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  15. Alternative Designs for the NSLS-II Injection Straight Section

    SciTech Connect (OSTI)

    Shaftan,T.; Heese, R.; Weihreter, E.; Willeke, F.; Rehak, M.; Meier, R.; Fliller, R.; Johnson, E. D.

    2009-05-04

    Brookhaven National Laboratory (BNL) is developing a state-of-the-art 3 GeV synchrotron light source, the NSLS-II [1]. The 9.3 meter-long injection straight section of its storage ring now fits a conventional injection set-up consisting of four kickers producing a closed bump, together with a DC septum and a pulsed septum. In this paper, we analyze an alternative option based on injection via a pulsed sextupole magnet. We discuss the dynamics of the injected and stored beams and, subsequently, the magnet's specifications and tolerances. We conclude by summarized the advantages and drawbacks of each injection scheme.

  16. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect (OSTI)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  17. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  18. Determining How Magnetic Helicity Injection Really Works

    SciTech Connect (OSTI)

    Paul M. Bellan

    2001-10-09

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments.

  19. Ejector device for direct injection fuel jet

    DOE Patents [OSTI]

    Upatnieks, Ansis (Livermore, CA)

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  20. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    SciTech Connect (OSTI)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  1. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J.

    1996-12-31

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  2. Stress Test | Open Energy Information

    Open Energy Info (EERE)

    Stress Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stress Test Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration...

  3. Ferromagnetic-organic interfacial states and their role on low voltage current injection in tris-8-hydroxyquinloline (Alq{sub 3}) organic spin valves

    SciTech Connect (OSTI)

    Zhang, H. T.; Drew, A. J.; Zhang, S. J. E-mail: t.kreouzis@qmul.ac.uk; Kreouzis, T. E-mail: t.kreouzis@qmul.ac.uk; Han, S.; Desai, P.; Scott, K.; Zhan, Y. Q.; Li, W.; Si, W.; Gillin, W. P.

    2014-11-17

    Organic Spin Valves (OSVs) operate at small bias (<100 mV) when carrier injection should not occur due to injection barriers and in built potentials. We explore the consequences of hybrid-interface states between a ferromagnetic electrode and an organic semiconductor in OSV carrier injection. By temperature-dependent Dark Injection measurements, we observe hole trapping due to these filled states and measure a low thermal activation energy (∼100 meV) of the carrier density within OSVs. The small injection barrier is consistent with a significant interfacial potential, due to hybrid-interface state filling, overcoming the injection barrier due to the electrode work function—transport level mismatch.

  4. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect (OSTI)

    BENECKE MW

    2010-09-08

    This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is expected that Tc-99 and nitrate will remain with the water residual that is not removed, or remain as a salt bound to the soil particles. In addition, the SDPT will be conducted at lower extraction velocities to preclude pore water entrainment and thus, the extracted air effluent should be free of the contaminant residual present in the targeted moist zone. However, to conservatively bound the planned activity for potential radionuclide air emissions, it is assumed, hypothetically, that the Tc-99 does not remain in the zone of interest, but that it instead travels with the evaporated moisture to the extraction well and to the test equipment at the land surface. Thus, a release potential would exist from the planned point source (powered exhaust) for Tc-99 in the extracted moist air. In this hypothetical bounding case there would also be a potential for very minor fugitive emissions to occur due to nitrogen injection into the soil. The maximum value for Tc-99, measured in the contaminated moist zone, is used in calculating the release potential described in Section 2.3. The desiccation mechanism will be evaporation. Nitrate is neither a criteria pollutant nor a toxic air pollutant. It would remain nitrate as a salt adhered to sand and silt grains or as nitrate dissolved in the pore water. Nitrogen, an inert gas, will be injected into the ground during the test. Tracer gasses will also be injected near the beginning, middle, and the end of the test. The tracer gasses are sulfur hexafluoride, trichlorofluoromethane, and difluoromethane.

  5. Secondary air injection system and method

    DOE Patents [OSTI]

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  6. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  7. Boise geothermal injection well: Final environmental assessment

    SciTech Connect (OSTI)

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  8. Pneumatic direct cylinder fuel injection system

    SciTech Connect (OSTI)

    Reinke, P.E.

    1988-09-20

    This patent describes a pneumatic direct cylinder fuel injection system for use in an internal combustion engine of the type having an engine block means with an air induction means for supplying induction air to cylinders in the engine block means, with each cylinder having a piston reciprocable therein so as to define a combustion chamber which includes a stratified charge chamber as a portion thereof, the system including a plurality of pneumatic injectors, with the pneumatic injector being supported by the engine block means in position to discharge an air/fuel mixture into an associate stratified charge chamber, each of the pneumatic injectors including a body means terminating at one end thereof in a nozzle body, a bore means through the body means and the nozzle body, a valve seat encircling the bore means at the outboard free end of the nozzle body, the opposite end of the bore means being connectable to a source of air at a predetermined pressure, a poppet valve operatively positioned in the bore means. The poppet value includes a head movable between an open position and closed position relative to the valve seat and a stem extending from the head and defining with the bore means an air passage, control means operatively associated with the poppet valve to normally maintain the poppet valve in the closed position and being operative to permit movement of the poppet valve to the open position and, an electromagnetic fuel injector operatively positioned in the body means for injecting pressurized fuel into the air passage upstream of the head of the poppet valve in terms of the direction of air flow through the air passage during a compression stroke of the piston in the associate cylinder, the arrangement being such that when the compression pressure reaches a predetermined pressure the poppet valve will be moved to the valve closed position.

  9. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect (OSTI)

    Petzoldt, R.W.

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  10. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  11. Replenishing data descriptors in a DMA injection FIFO buffer

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Cernohous, Bob R.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.

    2011-10-11

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  12. Low Cost Injection Mold Creation via Hybrid Additive and Conventional

    Office of Scientific and Technical Information (OSTI)

    Manufacturing (Technical Report) | SciTech Connect Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details In-Document Search Title: Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this

  13. Spin injection and spin transport in paramagnetic insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Spin injection and spin transport in paramagnetic insulators This content will become publicly available on February 22, 2017 Title: Spin injection and spin transport in paramagnetic insulators We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above

  14. Spin injection and spin transport in paramagnetic insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect SciTech Connect Search Results Journal Article: Spin injection and spin transport in paramagnetic insulators Citation Details In-Document Search This content will become publicly available on February 22, 2017 Title: Spin injection and spin transport in paramagnetic insulators We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow

  15. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  16. Influence of water injection on performance and emissions of a direct-injection hydrogen research engine.

    SciTech Connect (OSTI)

    Nande, A. M.; Wallner, T.; Naber, J.

    2008-10-06

    The application of hydrogen (H{sub 2}) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions.

  17. Impact of Extreme Injection Pressure and EGR on the Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Extreme Injection Pressure and EGR on the Combustion System of a HD Single Cylinder Engine Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  18. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  19. Low Cost Injection Mold Creation via Hybrid Additive and Conventional...

    Office of Scientific and Technical Information (OSTI)

    Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details ... reduce the cost of the tooling (machining and materials) required to create ...

  20. An Injectable Apatite PRB for In Situ Strontium-90 Immobilization...

    Office of Scientific and Technical Information (OSTI)

    Title: An Injectable Apatite PRB for In Situ Strontium-90 Immobilization. Abstract not provided. Authors: Moore, Robert C. ; Vermeul, Vince ; Szecsody, Jim ; Fritz, Brad ; ...

  1. Summary of the Optics, IR, Injection, Operations, Reliability...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group Citation Details In-Document Search Title: Summary of the Optics, ...

  2. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2 Internal Combustion Engine Research Towards 45% ...

  3. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, and Emissions Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  4. Texas Water Code 27A General Provisions for Injection Wells ...

    Open Energy Info (EERE)

    WellsLegal Abstract These rules outline the requirements for construction and maintenance of injection wells in Texas. Published NA Year Signed or Took Effect 1977 Legal...

  5. Oregon Fees for Underground Injection Control Program Fact Sheet...

    Open Energy Info (EERE)

    Fees for Underground Injection Control Program Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material:...

  6. Hawaii Underground Injection Control Permit Packet | Open Energy...

    Open Energy Info (EERE)

    PermittingRegulatory Guidance - Supplemental Material: Hawaii Underground Injection Control Permit PacketPermittingRegulatory GuidanceSupplemental Material Author State of...

  7. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  8. WSDE Underground Injection Control Well Registration Form | Open...

    Open Energy Info (EERE)

    Injection Control Well Registration Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit Application: WSDE Underground...

  9. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  10. Numerical Simulation of Injectivity Effects of Mineral Scaling...

    Office of Scientific and Technical Information (OSTI)

    Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir Citation Details In-Document Search Title: Numerical Simulation ...

  11. Hawaii Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Program Webpage Author State of Hawaii Department...

  12. Oregon Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Webpage Abstract Provides overview of regulations...

  13. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  14. Oxidation characteristics of gasoline direct-injection (GDI)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation Title Oxidation characteristics of gasoline...

  15. Numerical modeling of water injection into vapor-dominatedgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing ...

  16. Testing of GFL Geosiphon

    SciTech Connect (OSTI)

    Steimke, J.L.

    2001-07-10

    A full-scale, transparent replica of a GeoSiphon was constructed in the TFL to test a new concept, using a solar powered vacuum pump to remove accumulated gases from the air chamber. It did not have a treatment cell containing iron filings as do the actual TNX GeoSiphons in the field, but it was accurate in all other respects. The gas generation that is observed in an actual GeoSiphon was simulated by air injection at the inlet of the TFL GeoSiphon. After facility shakedown, three stages of testing were conducted: verification testing, parametric testing and long term testing. In verification testing, the TFL GeoSiphon was used to reproduce a particular test at TNX in which the water flowrate decreased gradually as the result of air accumulation at the crest of a siphon without an air chamber. For this test the vacuum pump was not used and the air chamber was initially filled with air rather than water. Agreement between data from the TNX GeoSiphon and the TFL GeoSiphon was good, which gave confidence that the TFL GeoSiphon was a good hydraulic representation of the TNX GeoSiphon. For the remaining tests, the solar powered vacuum pump and air chamber were used. In parametric testing, steady state runs were made for water flowrates ranging from 1 gpm to 19 gpm, air injection rates ranging from 0 to 77 standard cc/min and outfall line angles ranging from vertical to 60 degrees from vertical. In all cases, the air chamber and vacuum pump removed nearly all of the air and the GeoSiphon operated without problems. In long term testing, the GeoSiphon was allowed to run continuously for 21 days at one set of conditions. During this time the solar cell kept the storage battery fully charged at all times and the control circuit for the vacuum pump operated reliably. The solar panel was observed to have a large excess capacity when used with the vacuum pump. With two changes, the concept of using a solar powered vacuum pump attached to an air chamber should be ready for long term use in the field. Those changes are to insulate the air chamber of the GeoSiphon so it will not freeze in the winter and to make the tank from steel rather than transparent plastic.

  17. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  18. Dynamic Feed Control For Injection Molding

    DOE Patents [OSTI]

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  19. Transonic Combustion ’- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine

    Broader source: Energy.gov [DOE]

    Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

  20. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  1. Histopathological Alterations after Single Epidural Injection of Ropivacaine, Methylprednizolone Acetate, or Contrast Material in Swine

    SciTech Connect (OSTI)

    Kitsou, Maria-Chrysanthi; Kostopanagiotou, Georgia; Kalimeris, Konstantinos; Vlachodimitropoulos, Demetrios; Soultanis, Konstantinos; Batistaki, Chrysanthi; Kelekis, Alexis

    2011-12-15

    Purpose: The consequences from the injection of different types of drugs in the epidural space remains unknown. Increasing evidence suggests that localized inflammation, fibrosis, and arachnoiditis can complicate sequential epidural blockades, or even epidural contrast injection. We investigate the in vivo effect of epidural injections in the epidural space in an animal model. Materials and Methods: A group of ten male adult pigs, five punctures to each at distinct vertebral interspaces under general anesthesia, were examined, testing different drugs, used regularly in the epidural space (iopamidol, methylprednisolone acetate, ropivacaine). Each site was marked with a percutaneous hook wire marker. Histological analysis of the epidural space, the meninges, and the underlying spinal cord of the punctured sites along with staining for caspase-3 followed 20 days later. Results: The epidural space did not manifest adhesions or any other pathology, and the outer surface of the dura was not impaired in any specimen. The group that had the contrast media injection showed a higher inflammation response compared to the other groups (P = 0.001). Positive staining for caspase-3 was limited to <5% of neurons with all substances used. Conclusion: No proof of arachnoiditis and/or fibrosis was noted in the epidural space with the use of the above-described drugs. A higher inflammation rate was noted with the use of contrast media.

  2. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  3. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthitemore » component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.« less

  4. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  5. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  6. High pressure injection and atomization characteristics of methanol

    SciTech Connect (OSTI)

    Aigal, A.K.; Pundir, B.P.; Khatchian, A.S.

    1986-01-01

    Research on conversion of diesel engines for operation on methanol is, currently, of worldwide interest. Due to requirements of higher cyclic delivery of methanol and changes in fuel properties e.g. compressibility, wave propagation velocity, viscosity, surface tension, density etc., injection and atomization characteristics of methanol are expected to be different from diesel. From the equation of continuity and forces acting on the injection system elements and applying the principles of similarity, modifications required in the injection system were identified. Methanol injection and atomization characteristics were studied with a modified injection system and compared with those observed with diesel fuel. Methanol gave more favourable cyclic delivery characteristics than diesel. Laser diffraction technique was used to study time and space resolved drop size distribution in methanol and diesel sprays. With methanol, drop size distribution were, generally, much narrower and droplets were smaller than diesel. Spatial distribution of drop size in methanol spray showed somewhat different trends than for diesel.

  7. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  8. Creating unstable velocity-space distributions with barium injections

    SciTech Connect (OSTI)

    Pongratz, M.B.

    1983-01-01

    Large Debye lengths relative to detector dimensions and the absence of confining walls makes space an attractive laboratory for studying fundamental theories of plasma instabilities. However, natural space plasmas are rarely found displaced from equilibrium enough to permit isolation and diagnosis of the controlling parameters and driving conditions. Furthermore, any plasma or field response to the departure from equilibrium can be masked by noise in the natural system. Active experiments provide a technique for addressing the chicken or egg dilemma. Early thermite barium releases were generally conducted at low altitudes from sounding rockets to trace electric fields passively or to study configuration-space instabilities. One can also study velocity-space instabilities with barium releases. Neutral barium vapor releases wherein a typical speed greatly exceeds the thermal speed can be used to produce barium ion velocity-space distributions that should be subject to a number of microinstabilities. We examine the ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped-charges.

  9. Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results...

  10. Operation greenhouse, scientific director`s report of atomic weapon tests at Eniwetok, 1951, annex 9.2, Sandia Corporation Proving Ground Group. Part 3. Fuzing and firing activities, December 1951 (sanitized version)

    SciTech Connect (OSTI)

    1996-10-29

    This report covers the activities of the Fuzing and Firing Team of Task Unit 3.1.4, the Weapons Assembly Organization. The Fuzing and Firing Team was directly responsible for the assembly and testing of the various fuzing and firing systems necessary to detonate the experimental weapons under test. Other responsibilities of this group included the supplying of fiducial signals from the firing sets for the transit-time experiments being conducted by other groups and a partial responsibility for the final arming of the weapons fired on the towers.

  11. Crane Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ... A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty ...

  12. Project W320 heel jet secondary catch mechanism lateral load test - test report

    SciTech Connect (OSTI)

    Bellomy, J.R.

    1994-12-01

    This test report summarizes testing activities and documents the results of the lateral load test performed on the Heel Jet Secondary Catch Mechanism.

  13. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 243 137 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of

  14. South Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 80 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas

  15. Wisconsin Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  16. Connecticut Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 683 740 746 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of

  17. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections

  18. Georgia Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 123 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  19. Idaho Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  20. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, Ray A. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

    1995-01-01

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  1. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  2. North Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) North Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 2,626 2,019 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections

  3. Alaska Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into

  4. Lustre Tests

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    Lustre-tests is a package of regression tests for the Lustre file system containing I/O workloads representative of problems discovered on production systems.

  5. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and ... Testing Overview and Progress of the Battery Testing, Analysis, and Design Activity ...

  6. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    Convert a Geothermal Injection Well - Form 4003-3 Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal...

  7. DOE Regional Partner Initiates CO2 Injection Study in Virginia...

    Broader source: Energy.gov (indexed) [DOE]

    injecting carbon dioxide (CO2) into coal seams in the Central Appalachian Basin to determine the feasibility of CO2 storage in unmineable coal seams and the potential for enhanced ...

  8. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal...

    Broader source: Energy.gov (indexed) [DOE]

    begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to ... indicated that the region's low-rank coal seams have the capacity to store up to 8 ...

  9. Fact #869: April 20, 2015 Gasoline Direct Injection Captures...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use File fotw869web.xlsx More Documents & Publications Fact 905: December 28, 2015 ...

  10. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  11. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H.

    2003-06-10

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  12. COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION...

    Office of Scientific and Technical Information (OSTI)

    COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION OF sup 26Al BY A NEARBY SUPERNOVA Citation Details In-Document Search Title: COLLATERAL EFFECTS ON SOLAR ...

  13. Title 40 CFR 144 Underground Injection Control Program | Open...

    Open Energy Info (EERE)

    44 Underground Injection Control Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40 CFR 144...

  14. Gasoline Compression Ignition - Start of Injection Timing Sweep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us For more information, contact Greg Cunningham at (630) 252-8232 or media@anl.gov. Gasoline Compression Ignition - Start of Injection Timing Sweep (VERIFI) Share Topic...

  15. Premixed direct injection nozzle for highly reactive fuels

    DOE Patents [OSTI]

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  16. Flow regimes for fluid injection into a confined porous medium...

    Office of Scientific and Technical Information (OSTI)

    For a two-dimensional configuration with point source injection, a nonlinear convection-diffusion equation is derived to describe the time evolution of the fluid-fluid interface. ...

  17. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    SciTech Connect (OSTI)

    Dougal, R.A.

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  18. Memory and Spin Injection Devices Involving Half Metals (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Memory and Spin Injection Devices Involving Half Metals Citation Details In-Document Search Title: Memory and Spin Injection Devices Involving Half Metals Authors: Shaughnessy, M. ; Snow, Ryan ; Damewood, L. ; Fong, C. Y. Publication Date: 2011-01-01 OSTI Identifier: 1198038 Grant/Contract Number: AC52-07NA27344 Type: Published Article Journal Name: Journal of Nanomaterials Additional Journal Information: Journal Volume: 2011; Journal ID: ISSN 1687-4110 Publisher: Hindawi

  19. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, R.M.; Archuleta, J.; Fink, C.F.

    The disclosure relates to downhole injection of radioactive /sup 82/Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular /sup 82/Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the /sup 82/Br into surrounding fractured strata. A sensor in a remote horehole reads progress of the radioactive material through fractured structure.

  20. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, Robert M.; Archuleta, Jacobo R.; Fink, Conrad F.

    1983-01-01

    The disclosure relates to downhole injection of radioactive .sup.82 Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular .sup.82 Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the .sup.82 Br into surrounding fractured strata. A sensor in a remote borehole reads progress of the radioactive material through fractured structure.

  1. Passive injection: A strategy for mitigating reservoir pressurization,

    Office of Scientific and Technical Information (OSTI)

    induced seismicity and brine migration in geologic CO2 storage (Journal Article) | SciTech Connect Journal Article: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Authors: Dempsey, David ; Kelkar, Sharad ; Pawar, Rajesh Publication

  2. Boundary condition and fuel composition effects on injection processes of

    Office of Scientific and Technical Information (OSTI)

    high-pressure sprays at the microscopic level (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level This content will become publicly available on March 22, 2018 « Prev Next » Title: Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level Authors: Manin, J. ; Bardi, M. ; Pickett, L. M. ; Payri, R.

  3. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  4. Productivity and injectivity of horizontal wells. Quarterly report, January

    Office of Scientific and Technical Information (OSTI)

    1, 1995--March 31, 1995 (Technical Report) | SciTech Connect Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1995--March 31, 1995 Citation Details In-Document Search Title: Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1995--March 31, 1995 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as

  5. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    SciTech Connect (OSTI)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  6. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect (OSTI)

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

  7. A comparison of implantation methods for large PIT tags or injectable acoustic transmitters in juvenile Chinook salmon

    SciTech Connect (OSTI)

    Cook, Katrina V.; Brown, Richard S.; Deng, Zhiqun; Klett, Ryan S.; Li, Huidong; Seaburg, Adam; Eppard, M. B.

    2014-04-15

    The miniaturization of acoustic transmitters may allow greater flexibility in terms of the size and species of fish available to tag. New downsized injectable acoustic tags similar in shape to passive integrated transponder tags can be rapidly injected rather than surgically implanted through a sutured incision, as is current practice. Before wide-scale field use of these injectable transmitters, standard protocols to ensure the most effective and least damaging methods of implantation must be developed. Three implantation methods were tested in various sizes of juvenile Chinook salmon Oncorhynchus tschawytscha. Methods included a needle bevel-down injection, a needle bevel-up injection with a 90-degree rotation, and tag implantation through an unsutured incision. Tagged fish were compared to untagged control groups. Weight and wound area were measured at tagging and every week for 3 weeks; holding tanks were checked daily for mortalities and tag losses. No differences among treatments were found in growth, tag loss, or survival, but wound area was significantly reduced among incision-treated fish. The bevel-up injection had the worst results in terms of tag loss and wound area and also had high mortality. Implantation through an incision resulted in the lowest tag loss but the highest mortality. Fish from the bevel-down treatment group had the least mortality; wound areas also were smaller than the bevel-up treatment group. Cumulatively, the data suggest that the unsutured incision and bevel-down injection methods were the most effective; the drawbacks of both methods are described in detail. However, we further recommend larger and longer studies to find more robust thresholds for tagging size that include more sensitive measures.

  8. Flow regimes for fluid injection into a confined porous medium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  9. Water spray ejector system for steam injected engine

    SciTech Connect (OSTI)

    Hines, W.R.

    1991-10-08

    This paper describes a method of increasing the power output of a steam injected gas turbine engine. It comprises: a compressor, a combustor having a dome which receives fuel and steam from a dual flow nozzle, and a turbine in series combination with a gas flow path passing therethrough, and a system for injection of superheated steam into the gas flow path, the method comprising spraying water into the steam injection system where the water is evaporated by the superheated steam, mixing the evaporated water with the existing steam in the steam injection system so that the resultant steam is at a temperature of at least 28 degrees celsius (50 degrees fahrenheit) superheat and additional steam is added to the dome from the fuel nozzle to obtain a resultant increased mass flow of superheated steam mixture for injection into the gas flow path, and controlling the amount of water sprayed into the steam injection system to maximize the mass flow of superheated steam without quenching the flame.

  10. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect (OSTI)

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convectiondiffusion equation is derived to describe the time evolution of the fluidfluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convectiondiffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  11. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  12. Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces

    SciTech Connect (OSTI)

    Strelcov, Evgheni; Ievlev, Dr. Anton; Jesse, Stephen; Kravchenko, Ivan I; Shur, V.Y.; Kalinin, Sergei V

    2014-01-01

    Mapping surface potential with time-resolved Kelvin Probe Force Microscopy (tr-KPFM) in LiNbO3 periodically-poled single crystal revealed activation of the surface ionic subsystem. Electric fields higher than certain threshold value but lower than the switching field induce injection of charge from the biased electrode, formation of an active region in its vicinity and uneven distribution of screening charge on the opposite ferroelectric domains. Tr-KPFM technique allows investigating these phenomena in details.

  13. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    SciTech Connect (OSTI)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  14. Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

  15. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    1998-06-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

  16. An Elastic-Plastic and Strength Prediction Model for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.

    2008-09-01

    This paper applies a recently developed model to predict the elastic-plastic stress/strain response and strength of injection-molded long-fiber thermoplastics (LFTs). The model combines a micro-macro constitutive modeling approach with experimental characterization and modeling of the composite microstructure to determine the composite stress/strain response and strength. Specifically, it accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length, orientation and volume fraction distributions in the composite formed by the injection-molding process. Injection-molded-long-glass-fiber/polypropylene (PP) specimens were prepared for mechanical characterization and testing. Fiber length, orientation, and volume fraction distributions were then measured at some selected locations for use in the computation. Fiber orientations in these specimens were also predicted using an anisotropic rotary diffusion model developed for LFTs. The stress-strain response of the as-formed composite was computed by an incremental procedure that uses the Eshelbys equivalent inclusion method, the Mori-Tanaka assumption and a fiber orientation averaging technique. The model has been validated against the experimental stress-strain results obtained for these long-glass-fiber/PP specimens.

  17. A wide variety of injection molding technologies is now applicable to small series and mass production

    SciTech Connect (OSTI)

    Blo, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Lser, C., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Michaelis, J., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de [Kunststoff-Zentrum in Leipzig gGmbH (KuZ), Leipzig (Germany)

    2014-05-15

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  18. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  19. Materials for High-Pressure Fuel Injection Systems

    SciTech Connect (OSTI)

    Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N.; Pollard, M.

    2011-09-30

    The high-level goal of this multi-year effort was to facilitate the Advanced Combustion Engine goal of 20% improvement (compared to 2009 baseline) of commercial engine efficiency by 2015. A sub-goal is to increase the reliability of diesel fuel injectors by investigating modelbased scenarios that cannot be achieved by empirical, trial and error methodologies alone. During this three-year project, ORNL developed the methodology to evaluate origins and to record the initiation and propagation of fatigue cracks emanating from holes that were electrodischarge machined (EDM), the method used to form spray holes in fuel injector tips. Both x-ray and neutron-based methods for measuring residual stress at four different research facilities were evaluated to determine which, if any, was most applicable to the fuel injector tip geometry. Owing to the shape and small volumes of material involved in the sack area, residual stress data could only be obtained in the walls of the nozzle a few millimeters back from the tip, and there was a hint of only a small compressive stress. This result was consistent with prior studies by Caterpillar. Residual stress studies were suspended after the second year, reserving the possibility of pursuing this in the future, if and when methodology suitable for injector sacks becomes available. The smooth specimen fatigue behavior of current fuel injector steel materials was evaluated and displayed a dual mode initiation behavior. At high stresses, cracks started at machining flaws in the surface; however, below a critical threshold stress of approximately 800 MPa, cracks initiated in the bulk microstructure, below the surface. This suggests that for the next generation for high-pressure fuel injector nozzles, it becomes increasingly important to control the machining and finishing processes, especially if the stress in the tip approaches or exceeds that threshold level. Fatigue tests were also conducted using EDM notches in the gage sections. Compared to the smooth specimens, EDM notching led to a severe reduction in total fatigue life. A reduction in fatigue life of nearly four orders of magnitude can occur at an EDM notch the approximate size of fuel injector spray holes. Consequently, the initiation and propagation behavior of cracks from small spray holes is relevant for generation of design quality data for the next generation diesel fuel injection devices. This is especially true since the current design methodologies usually rely on the less conservative smooth specimen fatigue testing results, and since different materials can have varying levels of notch fatigue resistance.

  20. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are ...

  1. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect (OSTI)

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  2. Exploratory simulations of multiphase effects in gas injection and ventilation tests in an underground rock laboratory

    SciTech Connect (OSTI)

    Finsterle, S. . Versuchsanstalt fuer Wasserbau, Hydrologie und Glaciologie); Schlueter, E.; Pruess, K. )

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects was sponsored by the US Department of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL) and the Swiss Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaella (Nagra) and concluded in September 1989. 16 refs., 29 figs., 4 tabs.

  3. Effect of heterostructure design on carrier injection and emission characteristics of 295?nm light emitting diodes

    SciTech Connect (OSTI)

    Mehnke, Frank Kuhn, Christian; Stellmach, Joachim; Rothe, Mark-Antonius; Reich, Christoph; Ledentsov, Nikolay; Pristovsek, Markus; Wernicke, Tim; Kolbe, Tim; Lobo-Ploch, Neysha; Rass, Jens; Kneissl, Michael

    2015-05-21

    The effects of the heterostructure design on the injection efficiency and external quantum efficiency of ultraviolet (UV)-B light emitting diodes (LEDs) have been investigated. It was found that the functionality of the Al{sub x}Ga{sub 1?x}N:Mg electron blocking layer is strongly influenced by its aluminum mole fraction x and its magnesium doping profile. By comparing LED electroluminescence, quantum well photoluminescence, and simulations of LED heterostructure, we were able to differentiate the contributions of injection efficiency and internal quantum efficiency to the external quantum efficiency of UV LEDs. For the optimized heterostructure using an Al{sub 0.7}Ga{sub 0.3}N:Mg electron blocking layer with a Mg to group III ratio of 4% in the gas phase the electron leakage currents are suppressed without blocking the injection of holes into the multiple quantum well active region. Flip chip mounted LED chips have been processed achieving a maximum output power of 3.5 mW at 290?mA and a peak external quantum efficiency of 0.54% at 30?mA.

  4. NOx Sensor for Direct Injection Emission Control

    SciTech Connect (OSTI)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

  5. Injection of ?-like suprathermal particles into diffusive shock acceleration

    SciTech Connect (OSTI)

    Kang, Hyesung; Petrosian, Vah; Ryu, Dongsu; Jones, T. W. E-mail: vahe@stanford.edu E-mail: twj@msi.umn.edu

    2014-06-20

    We consider a phenomenological model for the thermal leakage injection in the diffusive shock acceleration (DSA) process, in which suprathermal protons and electrons near the shock transition zone are assumed to have the so-called ?-distributions produced by interactions of background thermal particles with pre-existing and/or self-excited plasma/MHD waves or turbulence. The ?-distribution has a power-law tail, instead of an exponential cutoff, well above the thermal peak momentum. So there are a larger number of potential seed particles with momentum, above that required for participation in the DSA process. As a result, the injection fraction for the ?-distribution depends on the shock Mach number much less severely compared to that for the Maxwellian distribution. Thus, the existence of ?-like suprathermal tails at shocks would ease the problem of extremely low injection fractions, especially for electrons and especially at weak shocks such as those found in the intracluster medium. We suggest that the injection fraction for protons ranges 10{sup 4}-10{sup 3} for a ?-distribution with 10 ? ? {sub p} ? 30 at quasi-parallel shocks, while the injection fraction for electrons becomes 10{sup 6}-10{sup 5} for a ?-distribution with ? {sub e} ? 2 at quasi-perpendicular shocks. For such ? values the ratio of cosmic ray (CR) electrons to protons naturally becomes K {sub e/p} ? 10{sup 3}-10{sup 2}, which is required to explain the observed ratio for Galactic CRs.

  6. Optical injection probing of single ZnO tetrapod lasers

    SciTech Connect (OSTI)

    Szarko, Jodi M.; Song, Jae Kyu; Blackledge, Charles Wesley; Swart, Ingmar; Leone, Stephen R.; Li, Shihong; Zhao, Yiping

    2004-11-23

    The properties of zinc oxide (ZnO) nanotetrapod lasers are characterized by a novel ultrafast two-color pump/stimulated emission probe technique. Single legs of tetrapod species are isolated by a microscope objective, pumped by 267 nm pulses, and subjected to a time-delayed 400 nm optical injection pulse, which permits investigation of the ultrafast carrier dynamics in the nanosize materials. With the optical injection pulse included, a large increase in the stimulated emission at 400 nm occurs, which partially depletes the carriers at this wavelength and competes with the normal 390 nm lasing. At the 390 nm lasing wavelengths, the optical injection causes a decrease in the stimulated emission due to the energetic redistribution of the excited carrier depletion, which occurs considerably within the time scale of the subpicosecond duration of the injection pulse. The effects of the optical injection on the spectral gain are employed to probe the lasing dynamics, which shows that the full width at half maximum of the lasing time is 3 ps.

  7. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect (OSTI)

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  8. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0)...

  9. Vertical Flowmeter Test | Open Energy Information

    Open Energy Info (EERE)

    Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Flowmeter Test Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration...

  10. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  11. Clot Busting Simulations Test Potential Stroke Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clot Busting Simulations Test Potential Stroke Treatment Clot Busting Simulations Test Potential Stroke Treatment September 24, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Calvariasetup.jpg The array transducer in position above the calvaria (skull). Shown are the ends of the array elements above the computational model of the skull. Researchers are using computer simulations to investigate how ultrasound and tiny bubbles injected into the bloodstream might break up blood clots,

  12. Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT Field Site, Bozeman, Montana

    SciTech Connect (OSTI)

    Kharaka, Y.K.; Thordsen, T.T.; Kakouros, E.; Ambats, G.; Herkelrath, W.N.; Birkholzer, J.T.; Apps, J.A.; Spycher, N.F.; Zheng, L.; Trautz, R.C.; Rauch, H.W.; Gullickson, K.; Beers, S.R.

    2009-09-01

    Approximately 300 kg/day of food-grade CO2 was injected through a perforated pipe placed horizontally 2-2.3 m deep during July 9-August 7, 2008 at the MSU-ZERT field test to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the subsurface storage and potential leakage of CO2. As part of this multidisciplinary research project, 80 samples of water were collected from 10 shallow monitoring wells (1.5 or 3.0 m deep) installed 1-6 m from the injection pipe, at the southwestern end of the slotted section (zone VI), and from two distant monitoring wells. The samples were collected before, during and following CO2 injection. The main objective of study was to investigate changes in the concentrations of major, minor and trace inorganic and organic compounds during and following CO2 injection.

  13. Plasma and Ion Beam Injection into an FRC

    SciTech Connect (OSTI)

    Anderson, M.; Bystritskii, V.; Garate, E.; Rostoker, N.; Song, Y.; Drie, A. van; Binderbauer, M.; Isakov, I.

    2005-10-15

    Experiments on the transverse injection of intense (5-20 A/cm{sup 2}), wide cross-section (10-cm), neutralized, {approx}100-eV H{sup +} plasma and 100-keV H{sup +} ion beams into a preformed B-field reversed configuration (FRC) are described. The FRC background plasma temperature was {approx}5 eV with densities of {approx}10{sup 13} cm{sup -3}. In contrast to earlier experiments, the background plasma was generated by separate plasma gun arrays. For the startup of the FRC, a betatron-type 'slow' coaxial source was used. Injection of the plasma beam into the preformed FRC resulted in a 30-40% increase of the FRC lifetime and the amplitude of the reversed magnetic field. As for the ion beam injection experiment into the preformed FRC, there was evidence of beam capture within the configuration.

  14. Electroconvection under injection from cathode and heating from above

    SciTech Connect (OSTI)

    Mordvinov, A. N.; Smorodin, B. L.

    2012-05-15

    We study the electroconvection that appears in a nonuniformly heated, poorly conducting liquid in a parallel-plate horizontal capacitor due to the action of an external static electric field on the charge injected from the cathode. It is shown that the heating of the layer from above prevents steady-state convection and that, unlike the isothermal situation, electroconvection can appear in the oscillatory manner as a result of direct Hopf bifurcation. The effect of the heating intensity, the intensity of charge injection from the cathode, and the charge mobility on the thresholds of oscillatory and monotonic electroconvection is analyzed and the characteristic scales and frequencies of critical perturbations are determined. The nonlinear wave and steady-state regimes of the 2D convective structures formed in the poorly conducting liquid under the action of thermogravitational and injection mechanisms of convection are analyzed. The domains of existence of standing, traveling, and modulated waves are determined.

  15. Fuel Injection Strategy for Soot-Filter Regeneration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel injection is optimized to allow both fast soot removal and temperatures below 700-800oC in case of drop-to-idle event. A 1-D mathematical model was used to simulate soot loading and temperature variations as a function of time and axial position in the filter during active regenerations and drop-to-idle events. The fact that the maximum temperature reached in a soot filter is a function of the soot loading when the drop-to-idle event occurs has been taken into account for developing this

  16. Technology Solutions Case Study: Ducts Sealing Using Injected Spray Sealant

    SciTech Connect (OSTI)

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated Solutions Collaborative to determine the most cost-effective ways to reduce duct leakage in its low-rise housing units.Two retrofit duct sealing techniquesmanually-applied sealants and injecting a spray sealantwere implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. Ihe cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  17. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  18. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground Storage

  19. Residual orientation in micro-injection molded parts

    SciTech Connect (OSTI)

    Healy, John; Edward, Graham H.; Knott, Robert B. (Monash); (ANSTO)

    2008-06-30

    The residual orientation following micro-injection molding of small rectangular plates with linear polyethylene has been examined using small-angle neutron scattering, and small- and wide-angle X-ray scattering. The effect of changing the molding conditions has been examined, and the residual chain orientation has been compared to the residual orientation of the crystallites as a function of position in the sample. This study has found that, for micromoldings, the orientation of the crystallites decreases with increasing injection speed and increasing mold thickness. The combined data suggest that the majority of the orientation present comes from oriented crystal growth rather than residual chain orientation.

  20. New Jersey Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) New Jersey Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 805 975 1,281 1970's 1,447 1,626 1,765 1,867 3,953 6,378 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  1. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect (OSTI)

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  2. INJECTION CARBON STRIPPING FOIL ISSUES IN THE SNS ACCUMULATOR RING.

    SciTech Connect (OSTI)

    BEEBE-WANG,J.; LEE,Y.Y.; RAPARIA,D.; WEI,J.

    2001-06-18

    We are reporting the results of studies on issues related to the injection stripping foil in the Spallation Neutron Source (SNS) accumulator ring. The problems related to foil heating and foil lifetime, such as current density distribution and temperature distribution in the foil, are investigated. The impact of injection errors on the beam losses at the foil is studied. The particle traversal rate and the beam losses due to scattering in the foil are summarized. Finally, SNS end-to-end simulation results of the foil-missing rate, the foil-hitting rate and the maximum foil temperature are presented.

  3. Turbomachine injection nozzle including a coolant delivery system

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  4. Transition duct with late injection in turbine system

    SciTech Connect (OSTI)

    LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray; Flanagan, James Scott; Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-15

    A system for supplying an injection fluid to a combustor is disclosed. The system includes a transition duct comprising an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The passage defines a combustion chamber. The system further includes a tube providing fluid communication for the injection fluid to flow through the transition duct and into the combustion chamber.

  5. Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  6. Battery Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  7. Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  8. TESTING THE UNIFICATION MODEL FOR ACTIVE GALACTIC NUCLEI IN THE INFRARED: ARE THE OBSCURING TORI OF TYPE 1 AND 2 SEYFERTS DIFFERENT?

    SciTech Connect (OSTI)

    Ramos Almeida, C.; Levenson, N. A.; Radomski, J. T.; Alonso-Herrero, A.; Asensio Ramos, A.; Rodriguez Espinosa, J. M.; Perez Garcia, A. M.; Mason, R.; DIaz-Santos, T.

    2011-04-20

    We present new mid-infrared imaging data for three Type-1 Seyfert galaxies obtained with T-ReCS on the Gemini-South Telescope at subarcsecond resolution. Our aim is to enlarge the sample studied in a previous work to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear spectral energy distributions. Thus, the sample considered here comprises 7 Type-1, 11 Type-2, and 3 intermediate-type Seyferts. The unresolved IR emission of the Seyfert 1 galaxies can be reproduced by a combination of dust heated by the central engine and direct active galactic nucleus (AGN) emission, while for the Seyfert 2 nuclei only dust emission is considered. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having a direct view of the AGN, and vice versa. In our sample, Seyfert 2 tori have larger covering factors (C{sub T} = 0.95 {+-} 0.02) and smaller escape probabilities (P{sub esc} = 0.05% {+-} {sup 0.08}{sub 0.03}%) than those of Seyfert 1 (C{sub T} = 0.5 {+-} 0.1; P{sub esc} = 18% {+-} 3%). All the previous differences are significant according to the Kullback-Leibler divergence. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination toward us, in contradiction with the simplest unification model.

  9. Overview and Progress of the Battery Testing, Analysis, and Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  10. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

  11. Acid-gas injection encounters diverse H{sub 2}S, water phase changes

    SciTech Connect (OSTI)

    Carroll, J.J.

    1998-03-09

    For acid-gas injection systems, pressure-composition diagrams indicate the significant phase changes that H{sub 2}S and water mixtures can undergo when going from an amine unit to downhole in an injection well. This conclusion of a two-part series describes the importance of considering H{sub 2}S and water phase changes in the design of acid gas injection compressors, pipelines, injection wells, and methanol injection.

  12. Highly efficient 6-stroke engine cycle with water injection

    DOE Patents [OSTI]

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  13. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  14. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Blunt, M.J.; Orr, F.M. Jr.

    2001-03-26

    This report was an integrated study of the physics and chemistry affecting gas injection, from the pore scale to the field scale, and involved theoretical analysis, laboratory experiments and numerical simulation. Specifically, advances were made on streamline-based simulation, analytical solutions to 1D compositional displacements, and modeling and experimental measures of three-phase flow.

  15. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  16. One-Dimensional SO2 Predictions for Duct Injection

    Energy Science and Technology Software Center (OSTI)

    1993-10-05

    DIAN1D is a one-dimensional model that predicts SO2 absorption by slurry droplets injected into a flue gas stream with two-fluid atomizers. DIANUI is an interactive user interface for DIAN1D. It prepares the input file for DIAN1D from plant design specifications and process requirements.

  17. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  18. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  19. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  20. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  1. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  2. Combustion control technologies for direct injection SI engine

    SciTech Connect (OSTI)

    Kume, T.; Iwamoto, Y.; Iida, K.; Murakami, M.; Akishino, K.; Ando, H.

    1996-09-01

    Novel combustion control technologies for the direct injection SI engine have been developed. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke. Since air cooling by the latent heat of vaporization increases volumetric efficiency and reduces the octane number requirement, a high compression ratio of 12 to 1 can be adopted. As a result, engines utilizing these types of control technologies show a 10% increase in improved performance over conventional port injection engines.

  3. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  4. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  5. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  6. AVTA: Transit Vehicle Specifications and Test Procedures | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transit Vehicle Specifications and Test Procedures AVTA: Transit Vehicle Specifications and Test Procedures All Advanced Vehicle Testing Activity transit projects follow a rigorous ...

  7. AVTA: Aerovironment AC Level 2 Charging System Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  8. AVTA: Clipper Creek AC Level 2 Charging System Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  9. Activity report

    SciTech Connect (OSTI)

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  10. Design and performance of a punch mechanism based pellet injector for alternative injection in the large helical device

    SciTech Connect (OSTI)

    Mishra, J. S.; Sakamoto, R.; Motojima, G.; Matsuyama, A.; Yamada, H.

    2011-02-15

    A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii R{sub c}= 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.

  11. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  12. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect (OSTI)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

  13. Duct injection technology prototype development: Nozzle development Subtask 4.1, Atomizer specifications for duct injection technology. Topical report 8

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Babcock & Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  14. ISDSN Sensor System Phase One Test Report

    SciTech Connect (OSTI)

    Gail Heath

    2011-09-01

    This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

  15. Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  16. Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  17. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ?10{sup 4} to ?3 10{sup 4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  18. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    SciTech Connect (OSTI)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.

  19. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect (OSTI)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  20. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  1. An experimental study of fuel injection strategies in CAI gasoline engine

    SciTech Connect (OSTI)

    Hunicz, J.; Kordos, P.

    2011-01-15

    Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

  2. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Office of Environmental Management (EM)

    (all-electric, compressed natural gas, diesel, hybrid-electric, neighborhood-electric, plug-in hybrid electric, and stop-start vehicles) as well as medium- and heavy-duty vehicles. ...

  3. Injection monitoring with seismic arrays and adaptive noise cancellation

    SciTech Connect (OSTI)

    Harben, P.E.; Harris, D.B.; Jarpe, S.P.

    1991-01-01

    Although the application of seismic methods, active and passive, to monitor in-situ reservoir stimulation processes is not new, seismic arrays and array processing technology coupled with a new noise cancellation method has not been attempted. Successful application of seismic arrays to passively monitor in-situ reservoir stimulation processes depends on being able to sufficiently cancel the expected large amplitude background seismic noise typical of an oil or geothermal production environment so that small amplitude seismic signals occurring at depth can be detected and located. This report describes the results of a short field experiment conducted to test both the application of seismic arrays for in-situ reservoir stimulation monitoring and the active noise cancellation technique in a real reservoir production environment. Although successful application of these techniques to in-situ reservoir stimulation monitoring would have the greatest payoff in the oil industry, the proof-of-concept field experiment site was chosen to be the Geysers geothermal field in northern California. This site was chosen because of known high seismicity rates, a relatively shallow production depth, cooperation and some cost sharing the UNOCAL Oil Corporation, and the close proximity of the site to LLNL. The body of this report describes the Geysers field experimental configuration and then discusses the results of the seismic array processing and the results of the seismic noise cancellation followed by a brief conclusion. 2 refs., 11 figs.

  4. The New Test Site 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site 1 Energetic staff supports Northrop Grumman tour 2 Educational outreach 2 DAF and seismic activity 3 Pollution prevention 4 Emergency training 6 collaborative effort among both federal and contractor staff is designed to transform the way business is conducted at the Nevada Test Site (NTS). Dubbed the New Test Site, this ongoing initiative will transform operations in numerous ways. One key element of the New Test Site is the proposed transition of large scale hydrodynamic (hydro)

  5. Scattering assisted injection based injectorless mid infrared quantum cascade laser

    SciTech Connect (OSTI)

    Singh, Siddharth Kamoua, Ridha

    2014-06-07

    An injectorless five-well mid infrared quantum cascade laser is analyzed which relies on phonon scattering injection in contrast to resonant tunneling injection, which has been previously used for injectorless designs. A Monte Carlo based self-consistent electron and photon transport simulator is used to analyze the performance of the analyzed design and compare it to existing injectorless designs. The simulation results show that the analyzed design could greatly enhance the optical gain and the characteristic temperatures of injectorless quantum cascade lasers (QCLs) which have typically been hindered by low characteristic temperatures and significant temperature related performance degradation. Simulations of the analyzed device predict threshold current densities of 0.85?kA/cm{sup 2} and 1.95?kA/cm{sup 2} at 77?K and 300?K, respectively, which are comparable to the threshold current densities of conventional injector based QCLs.

  6. South Central Region Natural Gas Injections into Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) South Central Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 43,713 72,210 68,273 129,736 166,816 139,578 127,533 106,014 152,936 188,366 105,938 79,339 2015 42,402 27,815 109,364 202,417 199,245 125,159 103,901 98,174 147,861 157,461 91,849 81,946 2016 39,777 68,898 - = No Data Reported; -- = Not Applicable; NA = Not

  7. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOE Patents [OSTI]

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  8. East Region Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas Injections into Underground Storage (Million Cubic Feet) East Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 9,107 10,259 22,569 71,857 144,145 132,960 120,491 118,493 122,207 94,669 33,103 25,810 2015 8,423 5,281 16,253 88,445 149,767 130,188 108,787 114,704 101,174 71,777 40,221 27,722 2016 8,190 15,514 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  10. Control of cooling losses at high pulverized coal injection rates

    SciTech Connect (OSTI)

    Bonte, L.; Nieuwerburgh, H. Van

    1996-12-31

    One of the problems which is encountered by many blast furnace operators is the appropriate control of the cooling losses of the blast furnace. This problem has been aggravated by the introduction of pulverized coal injection. Even with equal burden and coke composition, both Sidmar furnaces behave differently with respect to the cooling losses. This phenomenon is possibly attributable to the different profile and cooling circuitry of the furnaces. Among other parameters the angles of bosh and stack may favor the formation of scabs or not. Some operators experience a decrease of their cooling losses, other operators have problems to limit their cooling losses to an acceptable level. As a result, different operating practices exist with respect to the burden distribution. The increase of the ore to coke ratio with pulverized coal injection suggests that the coke and sinter quality has to be monitored very carefully in order to avoid permeability problems.

  11. Pacific Region Natural Gas Injections into Underground Storage (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) Pacific Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 4,011 3,540 14,172 43,546 58,466 51,172 32,264 32,879 23,448 31,224 15,841 14,871 2015 5,947 15,411 23,160 28,448 37,851 21,448 19,718 17,633 22,413 27,233 13,622 8,742 2016 7,399 8,534 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  12. AGA Eastern Consuming Region Natural Gas Injections into Underground

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223

  13. AGA Producing Region Natural Gas Injections into Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375

  14. AGA Western Consuming Region Natural Gas Injections into Underground

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122

  15. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOE Patents [OSTI]

    Hartwell, Jack K.; Goodwin, Scott G.; Johnson, Larry O.; Killian, E. Wayne

    1990-01-01

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  16. Apparatus and method for controlling the secondary injection of fuel

    DOE Patents [OSTI]

    Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

    2013-03-05

    A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

  17. Stratified charge injection for gas-fueled rotary engines

    SciTech Connect (OSTI)

    King, S.R.

    1992-03-10

    This patent describes a stratified charge injection for gas-fueled rotary engines having an air intake stroke, a compression stroke, a power stroke, and an exhaust stroke. It comprises a rotor housing, the housing including an air intake port and an exhaust port, and an outer perimeter, a rotor rotatable in the housing, a gaseous fuel injector supplying all of the fuel is connected to the housing between 270{degrees} and 360{degrees} of the rotor rotation after compression top dead center and downstream of the air intake port, the injector providing gaseous fuel at a pressure less than peak compression pressure, the injector located in the middle of the width of the outer perimeter of the housing, spark ignition means in the housing downstream of the injector, and means connected to the fuel injector responsive to the compression pressure for controlling the rate and duration of fuel injection.

  18. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J.; Berg, J. Scott; Kelliher, D. J.; Machida, S.

    2010-03-30

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  19. Pulse-actuated fuel-injection spark plug

    DOE Patents [OSTI]

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  20. A Novel Method of Injection Molding Titanium Components

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Simmons, Kevin L.; Weil, K. Scott

    2005-05-01

    We have developed a unique blend of powder injection molding feedstock materials in which only a small volume fraction of binder (< 8%) is required; the remainder of the mixture consists of the metal powder and a solid aromatic solvent. Because of the nature of the decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process.