Powered by Deep Web Technologies
Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Broader source: Energy.gov (indexed) [DOE]

Testing Advanced Vehicle Testing Activity Maintenance Sheet for 2010 Ford Fusion VIN 3FADP0L32AR194699 Date Mileage Description Cost 1012009 5915 Changed oil and filter 28.77...

2

HEV Fleet Testing - 2010 Ford Fusion VIN:4699 - Fleet Testing...  

Broader source: Energy.gov (indexed) [DOE]

699 Fleet Testing Results To Date Operating Statistics Distance Driven: 73,490 Average Trip Distance: 10.8 mi Stop Time with Engine Idling: 13% Trip Type CityHighway: 86%...

3

HEV Fleet Testing - 2010 Ford Fusion vin#4757  

Broader source: Energy.gov (indexed) [DOE]

757 Fleet Testing Results To Date Operating Statistics Distance Driven: 145,595 Average Trip Distance: 11.3 mi Stop Time with Engine Idling: 11% Trip Type CityHighway:...

4

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

5

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...

6

Chevrolet Malibu HEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Malibu HEV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Malibu hybrid electric vehicles (HEVs) entered Accelerated testing during November 2012 in a fleet in...

7

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Broader source: Energy.gov (indexed) [DOE]

DU5A0006063 Date Mileage Description Cost 8192009 5,090 Changed oil and filter and rotated tires 39.28 9162009 14,484 Changed oil and filter and replaced flat tire 152.58 10...

8

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

9

activity federal fleet: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to dictate the time at which they are replaced. This additional information 110 2003 REPORT TO THE FLEET OCTOBER 2003 PAGE 37 Annual Report: IFQ Fee (Cost Recovery) Program...

10

DOE Field Operations Program EV and HEV Testing  

SciTech Connect (OSTI)

The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

11

HEV Fleet Testing - Summary Fact Sheet for 2010 Ford Fusion  

Broader source: Energy.gov (indexed) [DOE]

Ford Fusion VIN 3FADP0L32AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

12

HEV Fleet Testing - Summary Fact Sheet for 2010 Honda Insight  

Broader source: Energy.gov (indexed) [DOE]

courts, law offices, and medical facilities on city streets and urban freeways. Vehicle Specifications Engine: 1.3 L 4-cylinder Electric Motor: 10 kW Battery: NiMH Seatbelt...

13

HEV Fleet Testing - Summary Fact Sheet for 2010 Toyota Prius  

Broader source: Energy.gov (indexed) [DOE]

courts, law offices, and medical facilities on city streets and urban freeways. Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt...

14

HEV Fleet Testing - Summary Fact Sheet 2011 Hyundai Sonata vin...  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata VIN KMHEC4A47BA003539 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features:...

15

HEV Fleet Testing - Summary Fact Sheet 2011 Hyundai Sonata vin...  

Broader source: Energy.gov (indexed) [DOE]

2011 Hyundai Sonata VIN KMHEC4A43BA004932 Vehicle Specifications Engine: 2.4 L Electric Motor: 30 kW Battery: Lithium Polymer Seatbelt Positions: Five Payload: 1074 lbs Features:...

16

HEV Fleet Testing - Summary Fact Sheet 2010 Toyota Prius  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius VIN JTDKN3DU2A5010462 Vehicle Specifications Engine: 1.8 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 885 lbs Features:...

17

Fleet DNA (Presentation)  

SciTech Connect (OSTI)

The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return on technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.

Walkokwicz, K.; Duran, A.

2014-06-01T23:59:59.000Z

18

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

SciTech Connect (OSTI)

Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

19

HEV, PHEV, EV Test Standard Development and Validation | Department...  

Broader source: Energy.gov (indexed) [DOE]

HEV, PHEV, EV Test Standard Development and Validation HEV, PHEV, EV Test Standard Development and Validation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

20

Honda Gen II Insight HEV Accelerated Testing - August 2012  

Broader source: Energy.gov (indexed) [DOE]

Honda Gen II Insight HEV Accelerated Testing - August 2012 Two model year 2010 Honda Generation II Insight hybrid electric vehicles (HEVs) entered Accelerated testing during July...

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

22

AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing  

Broader source: Energy.gov (indexed) [DOE]

Testing * 18 HEV models and 47 HEVs tested to date: Year Model Vehicles Testing Status 2001 Honda Insight 6 Completed 2002 Gen I Toyota Prius 6 Completed 2003 Gen I Honda...

23

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

24

Cask fleet operations study  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

Not Available

1988-01-01T23:59:59.000Z

25

Fleet Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fleet management includes commercial and agency owned motor vehicles such as cars, vans, trucks, and buses. Fleet (vehicle) management at the headquarters level includes a range of...

26

The 1995 HEV challenge: Results and technology summary  

SciTech Connect (OSTI)

The objective of this paper is to analyze and summarize the performance results and the technology used in the 1995 Hybrid Electric Vehicle (HEV) Challenge. Government and industry are exploring hybrid electric vehicle technology to significantly improve fuel economy and reduce emissions of the vehicles without sacrificing performance. This last in a three-year series of HEV competitions provided the testing grounds to evaluate the different approaches of 29 universities and colleges constructing HEVS. These HEVs competed in an affay of events, including: acceleration, emissions testing, consumer acceptance, range, vehicle handling, HVAC testing, fuel economy, and engineering design. The teams also documented the attributes of their vehicles in the technical reports. The strategies and approaches to HEV design are analyzed on the basis of the data from each of the events. The overall performance for promising HEV approaches is also examined. Additional significant design approaches employed by the teams are presented, and the results from the events are discussed.

LeBlanc, N.; Larsen, R.; Duoba, M.

1996-03-01T23:59:59.000Z

27

Executive Fleet Vehicles Report  

Broader source: Energy.gov [DOE]

On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance.  In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management...

28

Resources for Fleet Managers  

Broader source: Energy.gov [DOE]

Fleet managers will benefit from the lower fuel costs, more reliable fuel prices, and lower emissions that come from using alternative fuels and advanced technologies made possible through the work...

29

HEV Fleet Testing - Summary Fact Sheet 2010 Ford Fusion vin#4757  

Broader source: Energy.gov (indexed) [DOE]

www.eere.energy.govinformationcenter Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

30

HEV Fleet Testing - Summary Fact Sheet for the 2010 Honda Insight  

Broader source: Energy.gov (indexed) [DOE]

Operating Cost: Purchase Cost: 26,134 (709)* Kelley Blue Book: 5,909 (1012) Sale Price: In Operation Maintenance Cost: 0.03mile Operating Cost: 0.12mile** Total...

31

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

32

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

Not Available

2011-03-01T23:59:59.000Z

33

Julie Crenshaw Van Fleet  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7January 2015JimJulie Crenshaw Van Fleet 127 S.

34

Working With the Federal Fleets (Presentation)  

SciTech Connect (OSTI)

Presentation about federal fleet data, working with the federal government, and results from a survey of Clean Cities coordinators about their experiences with regulated fleets.

Daley, R.

2010-10-25T23:59:59.000Z

35

A Library of SIMULINK Blocks for Real-Time Control of HEV Traction John Chiasson1  

E-Print Network [OSTI]

algorithms for the various types of motor drives considered for hybrid electric vehicles (HEVs algorithms for the various types of motor drives considered for hybrid electric vehicles (HEVs02FCC-30 A Library of SIMULINK Blocks for Real-Time Control of HEV Traction Drives John Chiasson1

Tolbert, Leon M.

36

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network [OSTI]

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

37

Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-06-10T23:59:59.000Z

38

CleanFleet. Final report: Volume 8, fleet economics  

SciTech Connect (OSTI)

The costs that face a fleet operator in implementing alternative motor fuels into fleet operations are examined. Five alternatives studied in the CleanFleet project are considered for choice of fuel: compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The cost assessment is built upon a list of thirteen cost factors grouped into the three categories: infrastructure costs, vehicle owning costs, and operating costs. Applicable taxes are included. A commonly used spreadsheet was adapted as a cost assessment tool. This tool was used in a case study to estimate potential costs to a typical fleet operator in package delivery service in the 1996 time frame. In addition, because electric cargo vans are unlikely to be available for the 1996 model year from original equipment manufacturers, the case study was extended to the 1998 time frame for the electric vans. Results of the case study are presented in cents per mile of vehicle travel for the fleet. Several options available to the fleet for implementing the fuels are examined.

NONE

1995-12-01T23:59:59.000Z

39

Fleet DNA Project (Fact Sheet)  

SciTech Connect (OSTI)

The Fleet DNA Project - designed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in partnership with Oak Ridge National Laboratory - aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet transportation data for optimizing the design of advanced vehicle technologies or for selecting a given technology to invest in. An easy-to-access online database will help vehicle manufacturers and fleets understand the broad operational range for many of today's commercial vehicle vocations.

Not Available

2012-10-01T23:59:59.000Z

40

Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration  

E-Print Network [OSTI]

Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration Policy Contact, and established campus vehicle fleet service under Facilities Management operations. The purpose of the fleet vehicles. This policy is applicable to the entire Mines fleet, which includes department vehicles. 2

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AVTA: Honda Civic HEV 2013 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2013 Honda Civic hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

42

AVTA: Honda CRZ HEV 2011 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Honda CRZ hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

43

AVTA: Mercedes Benz HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Mercedes Benz hybrid-electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

44

Fleet Briefings | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire2Fleet Briefings Fleet

45

AVTA: Honda Insight HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Honda Insight hybrid-electric vehicle. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_honda_insight.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

46

AVTA: Hyundai Sonata HEV 2011 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Hyundai Sonata hybrid electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2011_hyundai_sonata_hybrid.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

47

AVTA: Ford Fusion HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_fusion_hybrid.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

48

Bus Fleet Type and Age Replacement Optimization: A case study utilizing King County Metro fleet data  

E-Print Network [OSTI]

1 Bus Fleet Type and Age Replacement Optimization: A case study utilizing King County Metro fleet and a hybrid bus. Employing real-world bus fleet data from King County Metro (Washington State, USA) multiple multiple fleets of buses with different types of buses serving different routes. For example, King County

Bertini, Robert L.

49

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

Not Available

2014-01-01T23:59:59.000Z

50

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

51

AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA …Ford Fusion HEV

52

AVTA: 2011 Honda CRZ HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTASmartHonda CRZ HEV

53

AVTA: 2013 Chevrolet Malibu HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota Prius PHEVofMalibu HEV

54

HEV, PHEV, BEV Test Standard Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED Hot TestingEPA2010 | Department- -HEV,

55

Energy management of HEV to optimize fuel consumption and pollutant emissions  

E-Print Network [OSTI]

AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

Paris-Sud XI, Université de

56

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

Not Available

2012-01-01T23:59:59.000Z

57

A cask fleet operations study  

SciTech Connect (OSTI)

This document describes the cask fleet currently available to transport spent nuclear fuels. The report describes the proposed operational procedures for these casks and the vehicles intended to transport them. Included are techniques for loading the cask, lifting it onto the transport vehicle, preparing the invoices, and unloading the cask at the destination. The document concludes with a discussion on the maintenance and repair of the casks. (tem) 29 figs.

Not Available

1988-03-01T23:59:59.000Z

58

Federal Fleet Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet overview of FEMP services and assistance available to Federal fleet managers to implement alternative fuel and advanced vehicle strategies in compliance with Federal goals and requirements.

Not Available

2010-06-01T23:59:59.000Z

59

Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)  

SciTech Connect (OSTI)

This presentation by Keith Wipke at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

Wipke, K.

2007-05-17T23:59:59.000Z

60

Fleet Vehicles | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.62 16 30Fleet

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Activities and Accomplishments in Model Year 2007  

SciTech Connect (OSTI)

Document summarizes the compliance activity of EPAct-covered state and alternative fuel provider fleets.

Not Available

2008-09-01T23:59:59.000Z

62

Scalable Statistical Monitoring of Fleet , Dimitry Gorinevsky  

E-Print Network [OSTI]

LLC, Palo Alto, CA e-mail: dimitry@mitekan.com Abstract: This paper considers the problem of fitting monitoring of data from a fleet (population) of similar units. A fleet-wide extension of the multivariable historical cruise flight data. 1. INTRODUCTION 1.1 Population monitoring problems This paper considers

63

Hoover Police Fleet Reaches Alternative Fuel Milestone  

Broader source: Energy.gov [DOE]

When Tony Petelos became the mayor of Hoover in 2004, the police fleet was run down. Within the next year, Petelos, with support from the community, called for a big change: switch out the old police fleet with new, flexible-fueled vehicles.

64

Vehicle Technologies and Bus Fleet Replacement Optimization  

E-Print Network [OSTI]

1 Vehicle Technologies and Bus Fleet Replacement Optimization: problem properties and sensitivity: R41 #12;2 Abstract This research presents a bus fleet replacement optimization model to analyze hybrid and conventional diesel vehicles, are studied. Key variables affecting optimal bus type

Bertini, Robert L.

65

Business Case for CNG in Municipal Fleets (Presentation)  

SciTech Connect (OSTI)

Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

Johnson, C.

2010-07-27T23:59:59.000Z

66

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

67

Fueling the Navy's Great Green Fleet with Advanced Biofuels ...  

Broader source: Energy.gov (indexed) [DOE]

Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes...

68

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

69

Deployment of EVs in the Federal Fleet  

Broader source: Energy.gov [DOE]

Presentation covers the Deployment of EV's in the Federal Fleet and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

70

Stochastic ship fleet routing with inventory limits   

E-Print Network [OSTI]

This thesis describes a stochastic ship routing problem with inventory management. The problem involves finding a set of least costs routes for a fleet of ships transporting a single commodity when the demand for ...

Yu, Yu

2010-01-01T23:59:59.000Z

71

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

SciTech Connect (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

72

EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG  

E-Print Network [OSTI]

EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG evolution, vehicle ownership, plug-in hybrid electric vehicles (PHEVs), climate change policy, stated preference, opinion survey, microsimulation ABSTRACT In todays world of volatile fuel prices and climate

Kockelman, Kara M.

73

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV  

E-Print Network [OSTI]

1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive--Comparison, electric propulsion, hybrid electric vehicle (HEV). I. INTRODUCTION SELECTION of traction motors for hybrid of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor

74

Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)  

SciTech Connect (OSTI)

Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

Gonder, J.; Pesaran, A.

2010-03-18T23:59:59.000Z

75

2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV  

E-Print Network [OSTI]

defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables. This affects the material and manufacturing costs of the battery, electric motor, and controller. *Prepared performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV

Tolbert, Leon M.

76

Contributing Data to the Fleet DNA Project (Brochure)  

SciTech Connect (OSTI)

The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.

Not Available

2014-09-01T23:59:59.000Z

77

Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study  

E-Print Network [OSTI]

Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study M. Zeraoulia1 Combustion Engine (ICE) and the electric motor to deliver power in parallel to drive the wheels. Since both the ICE and electric motor are generally coupled to the drive shaft of the wheels via two clutches

Paris-Sud XI, Université de

78

Silicon Carbide Power Device Characterization for HEVs Burak Ozpineci1,3  

E-Print Network [OSTI]

Silicon Carbide Power Device Characterization for HEVs Burak Ozpineci1,3 burak@ieee.org Leon M: The emergence of silicon carbide- (SiC-) based power semiconductor switches, with their superior features material. Another material, silicon carbide (SiC), with superior properties compared with Si, is a good

Tolbert, Leon M.

79

Effects of Silicon Carbide (SiC) Power Devices on HEV PWM Inverter Losses*  

E-Print Network [OSTI]

Effects of Silicon Carbide (SiC) Power Devices on HEV PWM Inverter Losses* Burak Ozpineci1,3 burak and Education Oak Ridge, TN 37831-0117 Abstract-The emergence of silicon carbide- (SiC-) based power, silicon carbide (SiC) with its superior properties compared with Si, is a good candidate to be used

Tolbert, Leon M.

80

Commercial Fleet Demand for Alternative-Fuel Vehicles in California  

E-Print Network [OSTI]

Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*Abstract—Fleet demand for alternative-fuel vehicles (‘AFVs’

Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Frequently Asked Questions: About Federal Fleet Management (Brochure)  

SciTech Connect (OSTI)

Answers to frequently asked questions about Federal fleet management, Federal requirements, reporting, advanced vehicles, and alternative fuels.

Not Available

2009-10-01T23:59:59.000Z

82

Chronological History of Federal Fleet Actions and Mandates (Brochure)  

SciTech Connect (OSTI)

This chronological history of Federal fleet actions and mandates provides a year-by-year timeline of the acts, amendments, executive orders, and other regulations that affect Federal fleets. The fleet actions and mandates included in the timeline span from 1988 to 2009.

Not Available

2011-04-01T23:59:59.000Z

83

Fleet DNA Project Data Summary Report (Presentation)  

SciTech Connect (OSTI)

This presentation includes graphical data summaries that highlight statistical trends for medium- and heavy-duty commercial fleet vehicles operating in a variety of vocations. It offers insight for the development of vehicle technologies that reduce costs, fuel consumption, and emission.

Walkowicz, K.; Duran, A.; Burton, E.

2014-04-01T23:59:59.000Z

84

CleanFleet. Volume 2, Project Design and Implementation  

SciTech Connect (OSTI)

The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

NONE

1995-12-01T23:59:59.000Z

85

FleetAtlas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's picture SubmittedFleetAtlas

86

Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

2006-06-01T23:59:59.000Z

87

Size and transportation capabilities of the existing US cask fleet  

SciTech Connect (OSTI)

This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade.

Danese, F.L. (Science Applications International Corp., Oak Ridge, TN (USA)); Johnson, P.E.; Joy, D.S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

88

Strategies for Decreasing Petroleum Consumption in the Federal Fleet (Presentation)  

SciTech Connect (OSTI)

Presentation offers strategies federal agency fleets can use to reduce petroleum consumption and build or gain access to alternative fuel infrastructure.

Putsche, V.

2006-06-01T23:59:59.000Z

89

Controlled Hydrogen Fleet and Infrastructure Analysis (2008 Presentation)  

SciTech Connect (OSTI)

This presentation by Keith Wipke at the 2008 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

Wipke, K.; Sprik, S.; Kurtz, J.

2008-06-10T23:59:59.000Z

90

Fleet DNA Project - Data Dictionary for Public Download Files  

SciTech Connect (OSTI)

Reference document for the Fleet DNA results data shared on the NREL public website. The document includes variable definitions and descriptions to assist users in understanding data.

Duran, A.; Burton, E.; Kelly, K.; Walkowicz, K.

2014-09-01T23:59:59.000Z

91

State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered under the Energy Policy Acts of 1992 and 2005.

Not Available

2009-12-01T23:59:59.000Z

92

AVTA: 2013 Ford C-Max Energi Fleet  

Broader source: Energy.gov [DOE]

VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

93

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric...

94

Merit Review: EPAct State and Alternative Fuel Provider Fleets...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications 2012 Merit Review: EPAct State and Alternative Fuel Provider Fleets Vehicle Technologies Office Merit Review 2014: EPAct State and...

95

New National Clean Fleets Partners Build New Roads to Sustainability...  

Energy Savers [EERE]

in the country. Read how UPS, another National Clean Fleets Partner, is reducing petroleum use and emissions of its vehicles. From picking up our recyclables to fixing our...

96

Large Fleets Lead in Petroleum Reduction (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describes Clean Cities' National Petroleum Reduction Partnership, an initiative through which large private fleets can receive support from Clean Cities to reduce petroleum consumption.

Proc, H.

2011-03-01T23:59:59.000Z

97

State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)  

SciTech Connect (OSTI)

This fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered by the Energy Policy Act.

Not Available

2014-03-01T23:59:59.000Z

98

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

99

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

100

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

battery chemistry for future HEVs (including PHEVs) is currently Li-ion.its battery pack, but it used lead-acid rather than Li-ion

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AVTA: Toyota Prius Gen III HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_toyota_prius.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

102

Clean Fleets Announcement | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrie NoonanClassification TrainingofClean EnergyandFleets

103

NREL: Transportation Research - Fleet Test and Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-duty truck with

104

Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices  

SciTech Connect (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

NONE

1997-06-01T23:59:59.000Z

105

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)  

SciTech Connect (OSTI)

Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

Not Available

2012-04-01T23:59:59.000Z

106

Biofuels, Climate Policy, and the European Vehicle Fleet  

E-Print Network [OSTI]

Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

107

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network [OSTI]

Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

108

Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)  

SciTech Connect (OSTI)

The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

Cosgrove, J.; Gonder, J.; Pesaran, A.

2013-11-01T23:59:59.000Z

109

cDNA encoding a polypeptide including a hev ein sequence  

DOE Patents [OSTI]

A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

2000-07-04T23:59:59.000Z

110

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

SciTech Connect (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

Barlow, F.D.; Elshabini, A.

2006-11-30T23:59:59.000Z

111

CleanFleet. Final report: Volume 1, summary  

SciTech Connect (OSTI)

The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

NONE

1995-12-01T23:59:59.000Z

112

Abstract--Control strategies have been developed for Hybrid Electric Vehicles (HEV) that minimize fuel consumption while  

E-Print Network [OSTI]

is typically the ubiquitous internal combustion engine, tailpipe emissions must also be considered. This paper consumption and engine out emissions. If catalysts or other after treatments are used, minimization of engine sum of fuel consumption and tailpipe emissions for an HEV equipped with a dual mode Electrically

Peng, Huei

113

Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles  

Broader source: Energy.gov [DOE]

The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

114

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

SciTech Connect (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

2006-11-01T23:59:59.000Z

115

Audit Report VEHICLE FLEET MANAGEMENT AT THE IDAHO NATIONALENGINEERING...  

Broader source: Energy.gov (indexed) [DOE]

In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General...

116

Dynamic incentive scheme for rental vehicle fleet management  

E-Print Network [OSTI]

Mobility on Demand is a new transportation paradigm aimed to provide sustainable transportation in urban settings with a fleet of electric vehicles. Usage scenarios prpopsed by Mobility on Demand systems must allow one-way ...

Zhou, SiZhi

2012-01-01T23:59:59.000Z

117

Biofuels, Climate Policy and the European Vehicle Fleet  

E-Print Network [OSTI]

We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

Rausch, Sebastian

118

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect (OSTI)

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

119

Merit Review: EPAct State and Alternative Fuel Provider Fleets...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ti13ohara.pdf More Documents & Publications Merit Review: EPAct State and Alternative Fuel Provider Fleets 2012 Merit Review: EPAct State and Alternative Fuel Provider...

120

Vehicle Technologies Office Merit Review 2013: Fleet DNA  

Broader source: Energy.gov [DOE]

Presentation given by the National Renewable Energy Laboratory (NREL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a tool for analyzing fleet characteristics.

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office Merit Review 2014: Fleet DNA  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fleet DNA.

122

Fleet Compliance Results for MY 2011/FY 2012 (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2011/fiscal year 2012.

Not Available

2013-02-01T23:59:59.000Z

123

Network design and fleet allocation model for vessel operation  

E-Print Network [OSTI]

Containership operators in the U.S. are confronted with a number of problems in the way they make critical fleet allocation decisions to meet the increase of shippers' demands. Instead of the empirical approach, this ...

Li, Xiaojing, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

124

National Federal Fleet Loaner Program, Interim Status Report  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Loaner Program is to increase the awareness, deployment, and use of electric vehicles (EVs) in Federal fleets. The Loaner Program accomplishes this by providing free EVs to Federal fleets on a loaner basis, generally for 1 or 2 months. The Program partners DOE with six electric utilities, with DOE providing financial support and some leads on Federal fleets interested in obtaining EVs. The utilities obtain the vehicles, identify candidate loaner fleets, loan the vehicles, provide temporary charging infrastructure, provide overall support to participating Federal fleets, and support fleets with their leasing decisions. While the utilities have not had the success initially envisioned by themselves, DOE, the Edison Electric Institute, and the Electric Vehicle Association of the Americas, the utilities can not be faulted for their efforts, as they are not the entity that makes the ultimate lease or no-lease decision. Some external groups have suggested to DOE that they direct other federal agencies to change their processes to make loaning vehicles easier; this is simply not within the power of DOE. By law, a certain percentage of all new vehicle acquisitions are supposed to be alternative fuel vehicles (AFV); however, with no enforcement, the federal agencies are not compelled to lease AFVs such as electric vehicles.

Francfort, James Edward

2000-10-01T23:59:59.000Z

125

Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study  

E-Print Network [OSTI]

(petrol ICE, diesel ICE, LPG ICE, petrol HEV), engine size (2 litres) and vehicle age. The ‘most used vehicle’ reported by the participants was taken as the reference vehicle for the emissions analysis. Where one or more... fleet average of petrol and diesel car emissions factors. Multiplying total distance travelled by these speed-emissions factors gave us an estimate of the total ‘hot’ emissions for each vehicle when the engine was warmed up. As a final adjustment...

Goodman, Anna; Brand, Christian; Ogilvie, David; on behalf of the iConnect consortium

2012-08-03T23:59:59.000Z

126

Electric vehicle fleet operations in the United States  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, batteries, and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation testing of electric vehicles and supporting the development of an electric vehicle infrastructure. These efforts include the evaluation of electric vehicles in baseline performance, accelerated reliability, and fleet operations testing. The baseline performance testing focuses on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 16 electric vehicle models from 1994 through 1997. During 1997, the Chevrolet S10 and Ford Ranger electric vehicles were tested. During 1998, several additional electric vehicles from original equipment manufacturers will also be baseline performance tested. This and additional information is made available to the public via the Program`s web page (http://ev.inel.gov/sop). In conjunction with industry and other groups, the Program also supports the Infrastructure Working Council in its development of electric vehicle communications, charging, health and safety, and power quality standards. The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its qualified vehicle test partners: Electric Transportation Applications, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company at the Idaho National Engineering and Environmental Laboratory.

Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; O`Hara, D. [Dept. of Energy, Washington, DC (United States)

1998-03-01T23:59:59.000Z

127

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

128

NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo ofHydraulic Hybrid Fleet

129

Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet) Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell...

130

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 This report is the sixth in an annual series of reports that...

131

Clean Cities Coordinators and Stakeholders Awarded at the Green Fleet Conference and Expo  

Broader source: Energy.gov [DOE]

At the 2013 Green Fleet Conference and Expo, a number of Clean Cities coordinators and stakeholders received awards for their dedication to increasing the environmental sustainability of vehicle fleets.

132

U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008 U.S....

133

Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status This report...

134

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

135

BurbankBus' clean fuel fleet now includes a zero-emission hydrogen-fueled bus. BurbankBus, which provides transit  

E-Print Network [OSTI]

Bus fixed-route fleet consists of 17 compressed natural gas (CNG) buses. This fleet has been running on 100

136

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2008-10-01T23:59:59.000Z

137

EPAct Requirements and Clean Cities Resources for Fleets (Fact Sheet) (Revised)  

SciTech Connect (OSTI)

This fact sheet explains resources provided by the Clean Cities program to help fleet managers meet EPAct requirements.

Not Available

2011-08-01T23:59:59.000Z

138

EPAct Requirements and Clean Cities Resources for Fleets (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet explains resources provided by the Clean Cities program to help fleet managers meet EPAct requirements.

Not Available

2010-01-01T23:59:59.000Z

139

Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet Fuel  

E-Print Network [OSTI]

PENNSTATE Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet work. The goal was to research and implement biodiesel into their fleet by finding the best biodiesel for the implementation of biodiesel into their fleet. This will include: · Prospective suppliers of biodiesel fuel

Demirel, Melik C.

140

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network [OSTI]

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the… (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The origin of the lost fleet of the mongol empire  

E-Print Network [OSTI]

iii ABSTRACT The Origin of the Lost Fleet of the Mongol Empire. (December 2008) Randall James Sasaki, B.A., Southwest Missouri State University Chair of Advisory Committee: Dr. Louis Filipe M. Vieira de Castro In 1281 C.E., under the rule... ................................................................................................................ xv CHAPTER I INTRODUCTION .......................................................................................... 1 II A BRIEF HISTORY OF EAST ASIA ........................................................... 7 Before the Invasion...

Sasaki, Randall James

2009-05-15T23:59:59.000Z

142

FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE  

E-Print Network [OSTI]

a strategy to develop a hydrogen economy that emphasizes co-developing hydrogen infrastructure in parallel in developing a path to a hydrogen economy. The Validation project will seek optimal system solutions to addressDRAFT FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE DEMONSTRATION

143

Progress and Challenges for PEM Transit Fleet Applications  

E-Print Network [OSTI]

. #12;· Brief company history in area of fuel cell buses · Current fuel cell bus deployments commercialization of fuel cell buses · Fuel cell bus R&D needs · Future plans Agenda 2 #12;UTC Fleet history · 14+ yr experience integrating fuel cell technology into buses SunLine, AC Transit, LAMTA, Chula Vista 30

144

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

145

Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...  

Broader source: Energy.gov (indexed) [DOE]

HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

146

Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook (Book)  

SciTech Connect (OSTI)

A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.

Daley, R.; Ahdieh, N.; Bentley, J.

2014-01-01T23:59:59.000Z

147

Fleet Testing Advanced Vehicle Testing Activities - 2010 Honda...  

Broader source: Energy.gov (indexed) [DOE]

Changed oil and filter 28.25 8192009 10,414 Changed oil and filter and checked all fluids, belts, battery, etc. 42.77 9182009 17,488 Changed oil and filter and replaced air...

148

CleanFleet. Final report: Volume 5, employee attitude assessment  

SciTech Connect (OSTI)

The experiences of couriers, operations managers, vehicle handlers (refuelers), and mechanics who drove and/or worked with alternative fuel vehicles, and the attitudes and perceptions of people with these experiences, are examined. Five alternative fuels studied in the CleanFleet project are considers& compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The three major areas of interest include comparative analysis of issues such as health, safety and vehicle performance, business issues encompassing several facets of station operations, and personal commentary and opinions about the CleanFleet project and the alterative fuels. Results of the employee attitude assessment are presented as both statistical and qualitative analysis.

NONE

1995-12-01T23:59:59.000Z

149

Heavy-duty fleet test evaluation of recycled engine coolant  

SciTech Connect (OSTI)

A 240,000 mile (386,232 km) fleet test was conducted to evaluate recycled engine coolant against factory fill coolant. The fleet consisted of 12 new Navistar International Model 9600 trucks equipped with Detroit Diesel Series 60 engines. Six of the trucks were drained and filled with the recycled engine coolant that had been recycled by a chemical treatment/filtration/reinhibited process. The other six test trucks contained the factory filled coolant. All the trucks followed the same maintenance practices which included the use of supplemental coolant additives. The trucks were equipped with metal specimen bundles. Metal specimen bundles and coolant samples were periodically removed to monitor the cooling system chemistry. A comparison of the solution chemistry and metal coupon corrosion patterns for the recycled and factory filled coolants is presented and discussed.

Woyciesjes, P.M.; Frost, R.A. [Prestone Products Corp., Danbury, CT (United States). Coolant Group

1999-08-01T23:59:59.000Z

150

To learn more about AT&T Fleet Management Solutions, visit www.att.com/fleet-management or have us contact you.  

E-Print Network [OSTI]

understand how a location-based application can help companies with remote workers, remote assets or fleets that manage a remote workforce or fleet of vehicles face today. To meet those challenges, successful companies.Largeenterprise or small business, manufacturer or plumbing and heating contractor, finding ways to beat the competition

Fisher, Kathleen

151

The ethanol heavy-duty truck fleet demonstration project  

SciTech Connect (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

152

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect (OSTI)

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

153

Predictive tools for coolant development: An accelerated aging procedure for modeling fleet test results  

SciTech Connect (OSTI)

The objective of this study was to develop an accelerated aging test (AAT) for conventional and extended life coolants that will predict coolant composition and performance after 100,000 or more miles (160,930 km) of use. The procedure was developed by examining the effects of a series of cooling system metals, their surface area and the amount of each used, test temperature, glycol concentration, and test time on important chemical and physical properties of the test coolant. The chemical and physical properties evaluated included the accumulation of glycol degradation products, the depletion rate of active inhibitors, the pH drop, and the presence of corrosion products in solution. In addition, the test coolant performance was evaluated in ASTM D 1384 and D 4340. The effects of variation in the test procedure on the coolant were compared to actual coolant from extended duration fleet tests. The test procedure selected gave test coolant with composition, physical properties, and performance that compared favorably with the fleet test fluid. The test performance was validated by comparing the properties of a series fluids after this test to corresponding fluids removed from vehicles after extended use. An example of fluid development using this procedure is presented. Further areas of investigation are suggested. It is recommended that the general test procedure be considered for adoption as an ASTM test method for evaluation of the extended performance of fluids in automotive and light duty cooling systems.

Gershun, A.V.; Mercer, W.C. [Prestone Products Corp., Danbury, CT (United States)

1999-08-01T23:59:59.000Z

154

Field Operations Program Neighborhood Electric Vehicles - Fleet Survey  

SciTech Connect (OSTI)

This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles(NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog- forming emissions annually.

Francfort, James Edward; Carroll, M.

2001-07-01T23:59:59.000Z

155

Field Operations Program - Neighborhood Electric Vehicle Fleet Use  

SciTech Connect (OSTI)

This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles (NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog-forming emissions annually.

Francfort, J. E.; Carroll, M. R.

2001-07-02T23:59:59.000Z

156

First interim report of the Federal Fleet Conversion Task Force  

SciTech Connect (OSTI)

The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

Not Available

1993-08-01T23:59:59.000Z

157

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

Stephen Schey; Jim Francfort; Ian Nienhueser

2014-06-01T23:59:59.000Z

158

The _Ibmitted manuscript has been authored bv e contr=,orof,,eU.S.Go._.me., -H_e-(-;V--96-37  

E-Print Network [OSTI]

The _Ibmitted manuscript has been authored bv e contr=,orof,,eU.S.Go._.me., -H_e-(-;V--96-37 under, with the focus being on benchmarks and technology dem- MARK 1TESTBEDS onstrations to demonstrate proof of princi

Grossman, Robert

159

High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal  

E-Print Network [OSTI]

, inverter, efficiency, hybrid electric vehicle, HEV, PHEV. I. INTRODUCTION Development of power electronics system in an under-the-hood high temperature environment. Development of new power devices is a critical aspect for future power electronic applications along with new topologies and control techniques

Tolbert, Leon M.

160

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information  

Broader source: Energy.gov [DOE]

Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)  

SciTech Connect (OSTI)

June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-06-01T23:59:59.000Z

162

Federal Fleet Files, FEMP, Vol. 2, No. 13 - December 2010 (Fact Sheet)  

SciTech Connect (OSTI)

December 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to federal agencies.

Not Available

2010-12-01T23:59:59.000Z

163

Federal Fleet Files, FEMP, Vol. 1, No. 4 - September 2009 (Fact Sheet)  

SciTech Connect (OSTI)

September 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-09-01T23:59:59.000Z

164

Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010 (Fact Sheet)  

SciTech Connect (OSTI)

March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-03-01T23:59:59.000Z

165

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers  

Broader source: Energy.gov [DOE]

Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

166

Comments by Julie Crenshaw Van Fleet on DOE/SEA-04, Special Environmen...  

Broader source: Energy.gov (indexed) [DOE]

Julie Crenshaw Van Fleet on DOESEA-04, Special Environmental Analysis: For Actions Taken Under U.S. Department of Energy Emergency Orders Regarding Operation of the Potomac River...

167

Federal Fleet Files, FEMP, Vol. 1, No. 3 - July 2009 (Fact Sheet)  

SciTech Connect (OSTI)

July 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-07-01T23:59:59.000Z

168

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit...

169

Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)  

SciTech Connect (OSTI)

October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-10-01T23:59:59.000Z

170

Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)  

SciTech Connect (OSTI)

November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-11-01T23:59:59.000Z

171

Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)  

SciTech Connect (OSTI)

May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-05-01T23:59:59.000Z

172

Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

Broader source: Energy.gov [DOE]

The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

173

Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010 (Fact Sheet)  

SciTech Connect (OSTI)

January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2010-01-01T23:59:59.000Z

174

Federal Fleet Files, FEMP, Vol. 1, No. 1 - May 2009 (Fact Sheet)  

SciTech Connect (OSTI)

Monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-05-01T23:59:59.000Z

175

Federal Fleet Files, FEMP, Vol. 2, No. 2 - November 2009 (Fact Sheet)  

SciTech Connect (OSTI)

November 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

Not Available

2009-11-01T23:59:59.000Z

176

Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

Not Available

2012-03-01T23:59:59.000Z

177

Controlled Hydrogen Fleet and Infrastructure Demonstration Project  

SciTech Connect (OSTI)

This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

Dr. Scott Staley

2010-03-31T23:59:59.000Z

178

Texas Propane Fleet Pilot Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -TemplateDavidDepartment ofFleet Pilot

179

Fleet DNA Project Data Summary Report for Bucket Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M. R.Fleet34 27

180

Fleet DNA Project Data Summary Report for City Transit Buses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M. R.Fleet34

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fleet DNA Project Data Summary Report for Class 8 Tractors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M. R.Fleet3426 2

182

Fleet DNA Project Data Summary Report for Delivery Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M. R.Fleet3426

183

NREL: Transportation Research - Alternative Fuel Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternative Fuel Fleet Vehicle

184

NREL: Transportation Research - Fleet Test and Evaluation Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-duty truck

185

NREL: Transportation Research - Hybrid Electric Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of

186

Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its Fleeton Alternative Fuels

187

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2009/FY 2010 (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2009/fiscal year 2010.

Not Available

2010-12-01T23:59:59.000Z

188

Nuclear power fleets and uranium resources recovered from phosphates  

SciTech Connect (OSTI)

Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

189

United States navy fleet problems and the development of carrier aviation, 1929-1933  

E-Print Network [OSTI]

valuable platform to explore the potential uses of carrier aviation, but was usually limited to scouting and fleet air defense in the U.S. Navy??s annual interwar exercises called fleet problems. This began to change in 1929 with the introduction...

Wadle, Ryan David

2005-11-01T23:59:59.000Z

190

OPERATING A FLEET OF ELECTRIC TAXIS BERNAT GACIAS AND FREDERIC MEUNIER  

E-Print Network [OSTI]

of electric taxi fleets is highly desirable from a sustainable point of view. Nevertheless, the weak autonomy of such fleets finds is main motivation in sustainable issues: electric vehicles release almost no air pollutants. However, the main drawback of an electric vehicle is its weak autonomy ­ 80 km in the case of the Centrale

Boyer, Edmond

191

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-09-01T23:59:59.000Z

192

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-05-01T23:59:59.000Z

193

Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997  

SciTech Connect (OSTI)

This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

Provenzano, J.J.

1997-04-01T23:59:59.000Z

194

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect (OSTI)

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

195

CleanFleet. Final report: Volume 7, vehicle emissions  

SciTech Connect (OSTI)

Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

NONE

1995-12-01T23:59:59.000Z

196

Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, June 2010, Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

Not Available

2010-06-01T23:59:59.000Z

197

Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, July 2011, Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

Not Available

2011-07-01T23:59:59.000Z

198

List of Attendees at the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting  

Broader source: Energy.gov [DOE]

This list of attendees represents those that attended the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting pre-solicitation meeting in Detroit, Michigan, on March 19, 2003.

199

Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

Broader source: Energy.gov [DOE]

This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

200

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2008/fiscal year 2009.

Not Available

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs  

SciTech Connect (OSTI)

This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

Not Available

1992-07-01T23:59:59.000Z

202

Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

203

Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers  

SciTech Connect (OSTI)

The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

2013-09-30T23:59:59.000Z

204

Pollution prevention opportunity assessment for Sandia National Laboratories/New Mexico's fleet services department.  

SciTech Connect (OSTI)

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/New Mexico's (SNL/NM) Fleet Services Department between December 2001 and August 2002. This is the third PPOA conducted at Fleet in the last decade. The primary purpose of this PPOA was to review progress of past initiatives and to provide recommendations for future waste reduction measures of hazardous and solid waste streams and increasing the purchase of environmentally friendly products. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The Sandia National Laboratories/New Mexico Pollution Prevention Group will work with SNL/NM's Fleet Services to implement these options.

Richardson, Anastasia Dawn

2003-06-01T23:59:59.000Z

205

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

206

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility  

SciTech Connect (OSTI)

This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort

2014-10-01T23:59:59.000Z

207

Conventional vs Electric Commercial Vehicle Fleets 1 Paper published in the Proceedings of "The Seventh International Conference on City Logistics"  

E-Print Network [OSTI]

and lower per-mile operating and maintenance costs. However, the initial purchase cost of electric vehicles operating and maintenance costs of electric vehicles and their high initial capital costs. In this paper. Given the high capital costs associated with vehicle fleets, if fleet owners were to replace

Bertini, Robert L.

208

DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2  

E-Print Network [OSTI]

DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2 3 4 and for publication in Transportation21 22 23 ABSTRACT24 25 Shared autonomous (fully-automated) vehicles (SAVs, destinations and departure times in the same vehicle), optimizing fleet sizing, and32 anticipating

Kockelman, Kara M.

209

Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and  

E-Print Network [OSTI]

convention is used to denote different types of vehicles and engine technologies. Internal combustion engine of energy. Hybrid electric vehicles (HEV) have an internal combustion engine but also a battery that can and no combustion engine. Although still a small share of the automobile marketplace, hybrid vehicle models

210

Airline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches  

E-Print Network [OSTI]

-based. The preventative alternative involves the transmission of maintenance data to maintenance personnel whenAirline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches Mike Dupuy, Dan Wesely, Cody Jenkins Abstract ­ Airline maintenance is a significant contributor

211

DECREASING THE AGE OF VEHICLE FLEETS: IS IT WORTH IT FROM A SAFETY PERSPECTIVE  

E-Print Network [OSTI]

. Although not staggering the benefit-cost ratio is larger than one considering existing vehicle replacement programs can cost $700 per vehicle. The benefit may be higher in areas with higher proportion of olderDECREASING THE AGE OF VEHICLE FLEETS: IS IT WORTH IT FROM A SAFETY PERSPECTIVE Patrick McGowen, M

McGowen, Patrick

212

Economic costs and environmental impacts of alternative fuel vehicle fleets in local government: An interim assessment  

E-Print Network [OSTI]

Economic costs and environmental impacts of alternative fuel vehicle fleets in local government. This paper examines the cost effectiveness and environmental impact of the conversion of a 180 plus vehicle of Civil and Materials Engineering, and Institute for Environmental Science and Policy, University

Illinois at Chicago, University of

213

Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)  

SciTech Connect (OSTI)

A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

Brennan, A.

2011-04-01T23:59:59.000Z

214

Optimal Fleet Management Plan Excerpt from the Vehicle Allocation Methodology (VAM) required by  

E-Print Network [OSTI]

's Alternative Fuels and Advanced Vehicles Data Center: http://www.afdc.energy.gov/afdc/locator/stations/ which by Presidential Memorandum ­ Federal Fleet Performance, 24 May 2011 Alternative Fuel Vehicles (AFV): A) USACE has to AFV fueling stations during vehicle acquisitions beyond 31 DEC 2015; the Transportation Division

US Army Corps of Engineers

215

Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint  

SciTech Connect (OSTI)

This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

Sparks, W.; Singer, M.

2010-06-01T23:59:59.000Z

216

Primary productivity demands of global fishing fleets Reg Watson1,2  

E-Print Network [OSTI]

Primary productivity demands of global fishing fleets Reg Watson1,2 , Dirk Zeller1 & Daniel Pauly1 production driven by solar energy. Primary production required (PPR) esti- mates how much primary production. Pauly. 2013. Primary productivity demands of global fisheries. Fish and Fisheries. #12;Introduction

Pauly, Daniel

217

The University of Texas at Austin Energy Savings Program for Fleet  

E-Print Network [OSTI]

. With the continued increase in the price of fuel, it is imperative that the University develop and implement miles projected to grow about one percent per year, dependence on foreign oil will continue to rise of new technologies for fuel efficiency by reducing the age of the fleet. Implement an optimum life cycle

Yang, Zong-Liang

218

A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS  

E-Print Network [OSTI]

A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS Marco a demand responsive transit service with a predetermined quality for the user in terms of waiting time models; Continuous approximation models; Paratransit services; Demand responsive transit systems. #12;3 1

Dessouky, Maged

219

fishing fleets were allegedly hampering their mackerel-fishing operations. Pa-  

E-Print Network [OSTI]

fishing fleets were allegedly hampering their mackerel-fishing operations. Pa- trols by fishery of the EEZ, d)jurisdiction over the preser- vation of the marine environment (in- cluding control Olicia/ de /a Fedemcion . At a joint press conference following the signing of the Presidential message

220

Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines  

E-Print Network [OSTI]

An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

Wang, T.; Braquet, L.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Visual Mining and Statistics for a Turbofan Engine Fleet Jrme Lacaille  

E-Print Network [OSTI]

1 Visual Mining and Statistics for a Turbofan Engine Fleet Jérôme Lacaille Snecma Etablissement de of engines. Every day, data from aircraft engines are broadcasted to the ground. Some airlines companies rely on their engine manufacturer to control the engines' behavior and help prepare for maintenance scheduling

Paris-Sud XI, Université de

222

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect (OSTI)

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

223

Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan  

SciTech Connect (OSTI)

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

Robert Youngblood

2011-01-01T23:59:59.000Z

224

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network [OSTI]

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

225

Audit Report VEHICLE FLEET MANAGEMENT AT THE IDAHO NATIONALENGINEERING AND ENVIRONMENTAL LABORATORY, WR-B-99-02  

Broader source: Energy.gov [DOE]

In a prior report, Audit of Light Vehicle Fleet Management at the Idaho National Engineering Laboratory, WR-B-93-7, September 29, 1993, the Office of Inspector General (OIG) concluded that vehicle...

226

An Empirical Study of Alternative Fuel Vehicle Choice by Commercial Fleets: Lessons in Transportation Choices, and Public Agencies' Organization  

E-Print Network [OSTI]

1990). “The Economics of Alternative Fuel Use: SubstitutingAn Empirical Study of Alternative Fuel Vehicle Choice byFleet Demand for Alternative-Fuel Vehicles,” with T. Golob,

Crane, Soheila Soltani

1996-01-01T23:59:59.000Z

227

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network [OSTI]

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

228

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park  

SciTech Connect (OSTI)

This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort; Ian Nienhueser

2014-08-01T23:59:59.000Z

229

Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments  

SciTech Connect (OSTI)

The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

Not Available

1982-02-01T23:59:59.000Z

230

INL receives GreenGov Presidential Award for fleet fuel efficiency improvements  

ScienceCinema (OSTI)

Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

231

INL receives GreenGov Presidential Award for fleet fuel efficiency improvements  

SciTech Connect (OSTI)

Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

None

2010-01-01T23:59:59.000Z

232

Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet  

SciTech Connect (OSTI)

Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

2014-05-01T23:59:59.000Z

233

CleanFleet. Final report: Volume 3, vehicle maintenance and durability  

SciTech Connect (OSTI)

CleanFleet is a demonstration of panel vans operating on five alternative motorfuels in commercial package delivery operations in the South Coast Air Basin of California. The five alternative fuels are propane gas, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), methanol (M-85 with 15 percent RFG), and electricity. Data were gathered on in-use emissions, operations, and fleet economics. This volume of the final report summarizes the maintenance required on these vans from the time they were introduced into the demonstration (April through early November 1992) until the end of the demonstration in September 1994. The vans were used successfully in FedEx operations; but, to varying degrees, the alternative fuel vehicles required more maintenance than the unleaded gasoline control vehicles. The maintenance required was generally associated with the development state of the fuel-related systems. During the demonstration, no non-preventive maintenance was required on the highly developed fuel-related systems in any of the unleaded gasoline production vehicles used either as controls or as RFG test vehicles. The maintenance problems encountered with the less developed systems used in this demonstration may persist in the short term with vehicles featuring the same or similar systems. This means that fleet operators planning near-term acquisitions of vehicles incorporating such systems should consider the potential for similar problems when (1) selecting vendors and warranty provisions and (2) planning maintenance programs.

NONE

1995-12-01T23:59:59.000Z

234

Electric vehicle fleet operations in the United States  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, and advanced batteries and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation of electric vehicles. These efforts have included on-board data acquisition of electric vehicle operations and baseline performance testing. The baseline performance tests focus on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 14 electric vehicles will also be baseline performance tested. The baseline performance testing has documented annual improvements in performance. This and additional information is made available to the public via the internet homepage (http://ev.inel.gov). The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its new qualified vehicle test partners: Electric Transportation Application of Phoenix, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company, at the Idaho National Engineering Laboratory. 4 refs., 5 figs., 2 tabs.

Francfort, J.E. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); O`Hara, D. [Dept. of Energy, Washington, DC (United States)

1997-10-01T23:59:59.000Z

235

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

2005-01-01T23:59:59.000Z

236

REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY  

SciTech Connect (OSTI)

The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

Blau, P.J.

2003-02-03T23:59:59.000Z

237

Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its Fleet Blue RidgeCalifornia RampsDuneSan

238

Alternative Fuels Data Center: Corporate Fleets Set the Pace for a Green  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its Fleeton Alternative

239

Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricityAlternative Fuels Maryland County Fleet

240

Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

K. B. Campbell

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 and O-2 in Amorphous SolidData

242

Assessment of institutional barriers to the use of natural gas in automotive vehicle fleets  

SciTech Connect (OSTI)

Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified and assessed. Recommendations for barrier removal were then developed. The research technique was a combination of literature review and interviews of knowledgeable persons in government and industry, including fleet operators and marketers of natural gas vehicles and systems. Eight types of institutional barriers were identified and assessed. The most important were two safety-related barriers: (1) lack of a national standard for the safety design and certification of natural gas vehicles and refueling stations; and (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements. Other barriers addressed include: (3) need for clarification of EPA's tampering enforcement policy; (4) the US hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale-for-resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufacturers warranties; and (8) need for a natural gas to gasoline-equivalent-units conversion factor for use in calculation of state road use taxes. Insurance on natural gas vehicles, and state emissions and anti-tampering regulations were also investigated as part of the research but were not found to be barriers.

Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

1983-08-01T23:59:59.000Z

243

Alternative fuel vehicles for the state fleets: Results of the 5-year planning process  

SciTech Connect (OSTI)

This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

Not Available

1993-05-01T23:59:59.000Z

244

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore  

SciTech Connect (OSTI)

This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort

2014-11-01T23:59:59.000Z

245

Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)  

SciTech Connect (OSTI)

This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

Not Available

2012-04-01T23:59:59.000Z

246

Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)  

SciTech Connect (OSTI)

This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

Not Available

2014-03-01T23:59:59.000Z

247

Fleet Services Fleet Services Facility  

E-Print Network [OSTI]

· 287 rental vehicles: economy, hybrid, standard and large cars, mini and 12 passenger and cargo vans, pickup trucks, buses, and police cars. · 2 buses with drivers: 20 passenger and 44passenger · 10

Beex, A. A. "Louis"

248

University partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E&E reporter  

E-Print Network [OSTI]

the purchase of battery electric and fuel cell powered vehicles." ARB and the Chinese government agencyUniversity partners with China to help it develop electric vehicle fleet Anne C. Mulkern, E to speed adoption of plug-in electric and fuel-cell electric vehicles, the school said yesterday. UC Davis

California at Davis, University of

249

Impacts of Economic, Technological and Operational Factors on the1 Economic Competitiveness of Electric Commercial Vehicles in Fleet2  

E-Print Network [OSTI]

of Electric Commercial Vehicles in Fleet2 Replacement Decisions3 4 5 6 7 Wei Feng8 Ph.D. Student9 Department-miles traveled, commercial9 diesel powered vehicles can account for up to 90% of NOx and particulate matter (PM)10 emissions [2].11 12 Electric commercial vehicles (ECVs) are seen by many governments

Bertini, Robert L.

250

Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and  

E-Print Network [OSTI]

Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy of Civil and Environmental Engineering Portland State University Jesse A. Boudart Graduate Student Department of Civil and Environmental Engineering Portland State University Wei Feng PhD Student Department

Bertini, Robert L.

251

Results Conclusions & Future Work TRADEOFF ANALYSIS OF Design of a Green Campus Motor Fleet Decision Support System  

E-Print Network [OSTI]

for Federal Fleet Performance. Additional reporting requirements. Community Clean local environment Additional Emissions ? Note Status Quo Yes $65100 Yes Yes Not on track to meet DOT requirements LSEV's Yes $5 the power to affect industry and increase the availability of alternative fuels 30% reduction in petroleum

252

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

253

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

254

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

255

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

256

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

257

Advanced HEV/PHEV Concepts  

Broader source: Energy.gov (indexed) [DOE]

data - Cleansed data freely available for download - Controlled access to detailed spatial data * User application process * Software tools available through secure web...

258

Benchmarking EV and HEV Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField Experiment | DepartmentEV and

259

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

260

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market  

E-Print Network [OSTI]

Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

De los Ríos Vergara, Andrés

2011-01-01T23:59:59.000Z

262

Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]); Site inspection to evaluate the condition of the fencing and signs; and Preparation and submittal of the Post-Closure Monitoring Report.

A. T. Urbon

2001-08-01T23:59:59.000Z

263

Fleet test evaluations of an automotive and medium-duty truck coolant filter conditioner  

SciTech Connect (OSTI)

The use of coolant filtration and supplemental coolant additives (SCA) to replenish depleted protective chemistry has been applied in the heavy duty diesel arena for many years. Some filtration of coolant and SCA usage in light gasoline engine and automotive diesel engine vehicles has taken place using off-board equipment to filter and recondition coolant. As concerns about the environment have increased, disposal of spent coolant that is replaced on a scheduled basis is a burden on fleets as well as individuals. In addition, as the efforts by vehicle manufacturers to extend or eliminate routine service intervals of vehicle systems increase, the use of an on-board system has become more attractive. A number of filtration/conditioning designs have been developed for light and medium duty use and have been on field tests for over a year. These field tests are described and reported, along with background on the filter design and chemistry package used. Field testing included: low and high mileage vehicles; newer and older vehicles; well and poorly maintained vehicles; and an assessment of the possibility of overcharging of the coolant chemistry.

Wright, A.B. [AlliedSignal Filters and Spark Plugs, Perrysburg, OH (United States)

1999-08-01T23:59:59.000Z

264

Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

2001-12-01T23:59:59.000Z

265

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect (OSTI)

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

266

Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary  

SciTech Connect (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

NONE

1997-03-01T23:59:59.000Z

267

Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011  

SciTech Connect (OSTI)

On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

Not Available

2011-03-01T23:59:59.000Z

268

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

SciTech Connect (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

269

An evaluation of a weight-lifting belt and back injury prevention training class for fleet service clerks  

E-Print Network [OSTI]

. 3142 NS 0. 0323 0. 8390 NS 0. 1181 NS 0. 1606 NS 0. 4043 NS 0. 0703 NS ' Significant at pc0. 05. NS Non-Significant at pe0. 05 8: Belt Group 8&T: Belt & Training Group L: Line(inside/Outside Aircraft) BR: Bagroom C: Cabin Service M...AN EVALUATION OF A WEIGHT-LIFTING BELT AND BACK INJURY PREVENTION TRAINING CLASS FOR FLEET SERVICE CLERKS A Thesis by CHERYL RENEE REDDELL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Reddell, Cheryl Renee?

2012-06-07T23:59:59.000Z

270

Introduction to the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect (OSTI)

Early in 2003, the U.S. Department of Energy (DOE) initiated the ''Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project'' solicitation. The purpose of this project is to examine the impact and performance of fuel cell vehicles and the requisite hydrogen infrastructure in real-world applications. The integrated nature of the project enables DOE to work with industry to test, demonstrate, and validate optimal system solutions. Information learned from the vehicles and infrastructure will be fed back into DOE's R&D program to guide and refocus future research as needed, making this project truly a ''learning demonstration''.

Wipke, K.; Welch, C.; Gronich, S.; Garbak, J.; Hooker, D.

2006-05-01T23:59:59.000Z

271

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory andVelocityPlatinum-LoadingPlug-LoadFleet

272

Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.

Rich, Bechtold [Alliance Technical Services; Thomas, John F [ORNL; Huff, Shean P [ORNL; Szybist, James P [ORNL; West, Brian H [ORNL; Theiss, Timothy J [ORNL; Timbario, Tom [Alliance Technical Services; Goodman, Marc [Alliance Technical Services

2007-08-01T23:59:59.000Z

273

PHASE II CHARACTERIZATION SURVEY OF THE USNS BRIDGE (T AOE 10), MILITARY SEALIFT FLEET SUPPORT COMMAND, NAVAL STATION, NORFOLK, VIRGINIA DCN 5180-SR-01-0  

SciTech Connect (OSTI)

In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 T?hoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ship’s air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after the event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.

NICK A. ALTIC

2012-08-30T23:59:59.000Z

274

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on  

E-Print Network [OSTI]

ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel of both. FFV's are equipped with an engine and fuel system designed specifically to be compatible with ethanol's chemical properties. FFV's qualify as alternative fuel vehicles under the Energy Policy Act

Kirschner, Denise

275

MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) Fleet Services to conduct a motor vehicle record check to  

E-Print Network [OSTI]

MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) ­ Fleet Services to conduct a motor vehicle record check to verify eligibility to operate University of Michigan (U-M) vehicles. Form Instructions: · Complete each section of the form · Print and fax

Kirschner, Denise

276

Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,  

E-Print Network [OSTI]

Motor Vehicle Fleet Emissions by OP-FTIR K I M B E R L Y S . B R A D L E Y , K E V I N B . B R O O concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing

Denver, University of

277

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

278

Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation  

SciTech Connect (OSTI)

Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

2012-01-01T23:59:59.000Z

279

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012  

SciTech Connect (OSTI)

This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year. There are 25 active FCEBs in demonstrations this year at eight locations.

Eudy, L.; Chander, K.; Gikakis, C.

2012-11-01T23:59:59.000Z

280

Current Source Inverters for HEVs and FCVs  

Broader source: Energy.gov (indexed) [DOE]

weight for inverters. Currently, it contributes - Cost and weight, up to 23% of an inverter - Volume, up to 30% of an inverter * Ability of film capacitors to operate at higher...

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HEV, PHEV, BEV Test Standard Validation  

Broader source: Energy.gov (indexed) [DOE]

BEV Test Standard Validation 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Michael Duoba Argonne National Laboratory Sponsored by Lee Slezak...

282

Assessment of Nanofluids for HEV Cooling Applications  

Broader source: Energy.gov (indexed) [DOE]

resolution (expect total 150K) Timeline Barriers Budget FY11 - 50K * Relevance Fluids containing nanoparticles have a proven ability to increase thermal conductivity and...

283

Field Operations Program Activities Status Report  

SciTech Connect (OSTI)

The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

J. E. Francfort; D. V. O'Hara; L. A. Slezak

1999-05-01T23:59:59.000Z

284

Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect (OSTI)

This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

Ronald Grasman

2011-12-31T23:59:59.000Z

285

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

286

MOTOR FLEET MANAGEMENT REGULATIONS  

E-Print Network [OSTI]

............................................................12 D. PREVENTIVE MAINTENANCE...........................................12 E. REPAIRS AND MAINTENANCE......................................10 D. TRANSPORTATION TO AND FROM MFM FACILITIES.11 VI. MAINTENANCE AND CARE OF VEHICLES. ROUTINE MAINTENANCE..................................................12 C. VEHICLE WASHING

Howitt, Ivan

287

NORTHERN VICTOR FLEET COOPERATIVE  

E-Print Network [OSTI]

and Board Meetings. The Members met on November 9, 2007, in Seattle and elected the following Seafoods (owner of six trawlers in the Cooperative), Norman Johannessen (an owner of the F/Vs POSEIDON of the F/Vs NORDIC FURY and PACIFIC FURY). For 2008, the Members approved the extension of and changes

288

Legacy Fleet Improvements  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

289

Management of Fleet Inventory  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

In fulfillment of Executive Order 13514, DOE began a 3-year, 3-phase strategy to reduce greenhouse gas emissions and decrease petroleum use.

2011-01-27T23:59:59.000Z

290

Julie Crenshaw Van Fleet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in any of the emitted pollutants, harm to health, or a nuisance that causes people to cough? During December of 2006 the PRGS did operate at full capacity due to a PEPCO repair....

291

Clean Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the SunWestern2

292

Clean Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the

293

Clean Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the1 S u m m a

294

Advanced Vehicle Benchmarking of HEVs and PHEVs  

Broader source: Energy.gov (indexed) [DOE]

rd Qtr 2008 - 2010 Honda Insight: 3 rd Qtr 2009 - 2010 Toyota Prius: 4 th Qtr 2009 - 2010 Fusion Hybrid: 4 th Qtr 2009 - 2010 Saturn Vue Hybrid: 4 th Qtr 2009 PHEV Benchmarking -...

295

Benchmarking of Advanced HEVs and PHEVs over a Wide Range...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08carlson.pdf More Documents & Publications Off-Cycle Benchmarking...

296

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

297

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

298

Ashland oil, Inc. v. Sonford Products Corp., Kelley v. Tiscornia, and United States v. Fleet Factors Corp.: Upholding EPA`s lender liability rule  

SciTech Connect (OSTI)

John Grisham`s novel The Firm relates the story of Mitchell McDeere, a young law school graduate who believes that he is joining a {open_quotes}white shoe{close_quotes} Memphis, Tennessee, firm but discovers that the firm is controlled by the Mob. A similar, but different, {open_quotes}surprise{close_quotes} has befallen banks as a result of toxic waste cleanup cost claims. When the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) was passed in 1980, banks had no cause for alarm because the Act provided an exemption from its ownership-based liability for any lender holding {open_quotes}indicia of ownership primarily to protect his security interest{close_quotes} in a hazardous waste facility. Based on the statutory language, it seemed reasonably clear that Congress did not intend to impose liability on secured creditors merely for securing a debt with a deed of trust or mortgage. Unfortunately, lender liability for CERCLA claims arose in the mid-1980s out of two lower federal court decisions and the Eleventh Circuit`s controversial, to say the least, 1990 decision in United States v. Fleet Factors Corp (Fleet Factors II). The major issues currently confronting lenders under CERCLA are (1) the extent to which a secured creditor may involve itself in the debtor`s operations, especially during a loan workout program, without becoming liable for cleanup costs as a CERCLA {open_quotes}owner or operator{close_quotes} and (2) whether a lender who forecloses on collateral and takes title is liable under CERCLA. 94 refs.

Evans, W.D. Jr. [San Francisco`s Graham & James, Washington, DC (United States)

1993-12-31T23:59:59.000Z

299

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

300

Addendum to the Closure Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site, Revision 0  

SciTech Connect (OSTI)

This document constitutes an addendum to the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, December 1997 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-19-01, A12 Fleet Ops Steam Cleaning Efflu. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect (OSTI)

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

302

Design change management in regulation of nuclear fleets: World nuclear association's working groups on Cooperation in Reactor Design Evaluation and Licensing (CORDEL)  

SciTech Connect (OSTI)

The 60 year life of a reactor means that a plant will undergo change during its life. To ensure continuing safety, changes must be made with a full understanding of the design intent. With this aim, regulators require that each operating organisation should have a formally designated entity responsible for complete design knowledge in regard to plant safety. INSAG-19 calls such an entity 'Design Authority'. This requirement is difficult to achieve, especially as the number of countries and utilities operating plants increases. Some of these operating organisations will be new, and some will be small. For Gen III plants sold on a turnkey basis, it is even more challenging for the operating company to develop and retain the full knowledge needed for this role. CORDEL's Task Force entitled 'Design Change Management' is investigating options for effective design change management with the aim to support design standardization throughout a fleet's lifetime by means of enhanced international cooperation within industry and regulators. This paper starts with considering the causes of design change and identifies reasons for the increased beneficial involvement of the plant's original vendor in the design change process. A key central theme running through the paper is the definition of responsibilities for design change. Various existing mechanisms of vendor-operator interfaces over design change and how they are managed in different organisational and regulatory environments around the world are considered, with the functionality of Owners Groups and Design Authority being central. The roles played in the design change process by vendors, utilities, regulators, owners' groups and other organisations such as WANO are considered The aerospace industry approach to Design Authority has been assessed to consider what lessons might be learned. (authors)

Swinburn, R. [CORDEL DCM Task Force, Rolls-Royce Plc (United Kingdom); Borysova, I. [CORDEL, WNA, 22a St.James Sq., London SW1Y 4JH (United Kingdom); Waddington, J. [CORDEL Group (United Kingdom); Head, J. G. [CORDEL Group, GE-Hitachi Nuclear Energy (United Kingdom); Raidis, Z. [CORDEL Group, Candu Energy (United Kingdom)

2012-07-01T23:59:59.000Z

303

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

304

NREL: Transportation Research - Fleet DNA: Commercial Fleet Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo ofStudy

305

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

33 Overall DC electrical energy consumption (DC Whmi) 26 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 6,332 Total distance...

306

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

1 Overall DC electrical energy consumption (DC Whmi) 64 Overall DC electrical energy captured from regenerative braking (DC Whmi) 30 Total number of trips 4,292 Total distance...

307

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

50 Overall DC electrical energy consumption (DC Whmi) 39 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 10,624 Total...

308

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

15 Overall DC electrical energy consumption (DC Whmi) 13 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 2,405 Total distance...

309

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

8 Overall DC electrical energy consumption (DC Whmi) 70 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 1,225 Total distance...

310

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

0 Overall DC electrical energy consumption (DC Whmi) 66 Overall DC electrical energy captured from regenerative braking (DC Whmi) 30 Total number of trips 725 Total distance...

311

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

4 Overall DC electrical energy consumption (DC Whmi) 65 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 2,348 Total distance...

312

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

0 Overall DC electrical energy consumption (DC Whmi) 0 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 1,579 Total distance...

313

Chrysler Town & Country PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

9 Overall AC electrical energy consumption (AC Whmi) 79 Overall DC electrical energy consumption (DC Whmi) 63 Overall DC electrical energy captured from regenerative braking...

314

FINAL REPORT UNALASKA FLEET COOPERATIVE  

E-Print Network [OSTI]

the inshore and offshore sectors of the Bering Sea Pollock fishery. The offshore component formed the Pollock of delivering offshore to factory trawlers and the Mothership sector. The Mothership Sector formed one with the Alyeska Seafood Inc plant in Unalaska under section 2 10(b) of the American Fisheries Act. MEMBER VESSEL

315

FINAL REPORT UNALASKA FLEET COOPERATIVE  

E-Print Network [OSTI]

established in both the inshore and offshore sectors of the Bering Sea Pollock fishery. The offshore component vessels with history of delivering offshore to factory trawlers and the Mothership sector. The Mothership that qualify to form a fishery cooperative associated with the Alyeska Seafood Inc plant in Unalaska under

316

Ford Escape Advanced Research Fleet  

Broader source: Energy.gov (indexed) [DOE]

period: 2011 Number of vehicle days driven: 3,184 All Trips Combined Overall gasoline fuel economy (mpg) 39 Overall AC electrical energy consumption (AC Whmi) 100...

317

Ford Escape Advanced Research Fleet  

Broader source: Energy.gov (indexed) [DOE]

period: 2010 Number of vehicle days driven: 3,778 All Trips Combined Overall gasoline fuel economy (mpg) 38 Overall AC electrical energy consumption (AC Whmi) 100...

318

Fleet Management | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors ProgramEnergy FallFast FactsProperty »

319

Ford Escape Advanced Research Fleet  

Broader source: Energy.gov (indexed) [DOE]

2012 All Trips Combined Overall gasoline fuel economy (mpg) 39 Overall AC electrical energy consumption (AC Whmi) 106 Overall DC electrical energy consumption (DC Whmi)...

320

GREET Fleet | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2GHGenius Jump to:4GREET

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fleet Biodiesel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25 YearsFlat Ridge 2Wind

322

Connecticut Fuel Cell Activities: Markets, Programs, & Models  

E-Print Network [OSTI]

· Connecticut DOT Plan for Hydrogen Stations and Zero Emission Fuel Cell Vehicles (In Development) · Renewable) Passenger Car Light Truck Transit Bus Hydrogen Fuel Cell Gasoline Powered Car Hydrogen Fuel Cell Gasoline fleets, delivery fleets, major highway fueling stations, etc. Connecticut Hydrogen Roadmap #12;9 9

323

2013 Federal Energy and Water Management Award Winner Commander...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commander Fleet Activities Yokosuka 2013 Federal Energy and Water Management Award Winner Commander Fleet Activities Yokosuka fewm13yokosukajapanhighres.pdf...

324

U.S. Based HEV and PHEV Transaxle Program  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

325

HEV, PHEV, EV Test Standard Development and Validation  

Broader source: Energy.gov (indexed) [DOE]

EV Test Standard Development and Validation 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 13-17, 2013 Michael Duoba, Henning Lohse-Busch, Kevin...

326

Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 JeffersonFuel-Efficient Tires

327

AVTA: Chevrolet Malibu HEV 2013 Testing Results | Department...  

Broader source: Energy.gov (indexed) [DOE]

The following reports describe results of testing done on a 2013 Chevrolet Malibu hybrid electric vehicle. The baseline performance testing provides a point of comparison...

328

AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid...  

Broader source: Energy.gov (indexed) [DOE]

and development. The following reports describe results of testing done on a 2010 Civic hybrid electric vehicle with an advanced experimental ultra-lead acid battery, an...

329

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

SciTech Connect (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

330

Nanophosphate technology for HEV applications | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department

331

AVTA: 2010 Honda Insight HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA …Ford

332

AVTA: 2010 Mercedes Benz HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA …FordEnergy

333

AVTA: 2011 Hyundai Sonata HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTASmartHonda CRZ

334

AVTA: 2013 Honda Civic HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota PriusMax

335

Advanced HEV/PHEV Concepts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE HydrogenRecord

336

Current Source Inverters for HEVs and FCVs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens31, 2015 | DepartmentCompany Industry

337

High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCE andHigh RiskWastePower

338

Hydraulic HEV Fuel Consumption Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto Apply for

339

Assessment of Nanofluids for HEV Cooling Applications | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope Change #1Impacts | Department of Energyof

340

USABC HEV and PHEV Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,NovemberUS Tier1 DOEof

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

USABC HEV and PHEV Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,NovemberUS Tier1 DOEof0 DOE

342

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Broader source: Energy.gov (indexed) [DOE]

- cont'd * University of California Davis, with 13 Hymotion Prius being used by 70 public drives * Oregon State Government fleets, 3 Hymotion PHEVs * National Rural Electric...

343

Fleet test evaluation of fully formulated heavy-duty coolant technology maintained with a delayed-release filter compared with coolant inhibited with a nitrited organic acid technology: An interim report  

SciTech Connect (OSTI)

This paper is a controlled extended service interval (ESI) study of the comparative behaviors of a nitrite/borate/low-silicate, low total dissolved solids (TDS) coolant maintained with delayed-release filters, and an organic acid inhibited coolant technology in heavy-duty engines. It reports both laboratory and fleet test data from 66 trucks, powered with different makes of heavy-duty diesel engines. The engines were cooled with three different types of inhibitors and two different glycol base (ethylene glycol and propylene glycol) coolants for an initial period exceeding two years and 500,000 km (300,000 miles). The data reported include chemical depletion rates, periodic coolant chemical analyses, and engine/cooling system reliability experience. The ongoing test will continue for approximately five years and a 1.6 million km (1 million miles) duration. Thirteen trucks were retained as controls, operating with ASTM D 4985 specification (GM-6038 type) coolant maintained with a standard ASTM D 57542 supplemental coolant additive (SCA). Engines produced by Caterpillar, Detroit Diesel Corp., Cummins Engine Co., and Mack Trucks are included in the test mix.

Aroyan, S.S.; Eaton, E.R. [Penray Companies, Inc., Elk Grove Village, IL (United States). Technical Service

1999-08-01T23:59:59.000Z

344

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect (OSTI)

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

345

Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143  

SciTech Connect (OSTI)

Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

Thornton, M.

2013-06-01T23:59:59.000Z

346

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

45 Overall DC electrical energy consumption (DC Whmi) 29 Overall DC electrical energy captured from regenerative braking (DC Whmi) 39 Total number of trips 10,847 Total...

347

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

3 Overall DC electrical energy consumption (DC Whmi) 4 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 5,888 Total distance...

348

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

148 Overall DC electrical energy consumption (DC Whmi) 87 Overall DC electrical energy captured from regenerative braking (DC Whmi) 46 Total number of trips 6,223 Total...

349

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

52 Overall DC electrical energy consumption (DC Whmi) 29 Overall DC electrical energy captured from regenerative braking (DC Whmi) 39 Total number of trips 22,071 Total...

350

Chrysler RAM PHEV Fleet Test Reports  

Broader source: Energy.gov (indexed) [DOE]

33 Overall DC electrical energy consumption (DC Whmi) 74 Overall DC electrical energy captured from regenerative braking (DC Whmi) 33 Total number of trips 5,273 Total distance...

351

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

0 Overall DC electrical energy consumption (DC Whmi) 61 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 111,773 Total...

352

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

20 Overall AC electrical energy consumption (AC Whmi) 93 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking...

353

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

4 Overall DC electrical energy consumption (DC Whmi) 72 Overall DC electrical energy captured from regenerative braking (DC Whmi) 44 Total number of trips 36,749 Total distance...

354

EPAct State and Alternative Fuel Provider Fleets  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

355

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

number of charging events 2,590 Number of charging events at Level 1 | Level 2 588 | 1990 Total charging energy consumed (AC kWh) 17,571 Charging energy consumed at Level 1 |...

356

California Fleets and Workplace Alternative Fuels Project  

Broader source: Energy.gov (indexed) [DOE]

information. 2014 DOE Vehicle Technologies Office Review Presentation Damian Breen Deputy Air Pollution Control Officer Bay Area Air Quality Management District Project ID: TI035...

357

Case Study - Compressed Natural Gas Refuse Fleets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites ProposedOccupational Health Services > Return to WorkCNG

358

Case Study … Propane School Bus Fleets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites ProposedOccupational Health Services > Return

359

What is the GREET Fleet Footprint Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign InWhat Was

360

Sustainable Federal Fleets | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizing Opportunities |

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sustainable Federal Fleets Catalog of Services  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance withPhotoSheet),

362

Sustainable Federal Fleets | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S.Improve Emitter4-0140,details the Federal Energy ManagementFEMP's

363

UPS CNG Truck Fleet Final Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof EnergyLeaseEnergyUNCLASSIFIED 2UPDATED:UPGRADING®

364

Sandia National Laboratories: aggregated fleet reliability data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZpartsmicrogrid system Newaggregated

365

HyFLEET:CUTE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is aHy9 Jump to:

366

Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)  

SciTech Connect (OSTI)

This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-05-01T23:59:59.000Z

367

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Refueling Infrastructure for...

368

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

369

Active Power Control from Wind Power (Presentation)  

SciTech Connect (OSTI)

In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

Ela, E.; Brooks, D.

2011-04-01T23:59:59.000Z

370

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect (OSTI)

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

371

FY 12 FLEET DATA REPORTING INSTRUCTIONS Page 1 of 4 Instruction Sheet for Fleet Data Reporting  

E-Print Network [OSTI]

combination of the fuels. Electric: a vehicle powered primarily by an electric motor that draws current from rechargeable storage batteries or other sources of electric current. Hybrid Electric*: a vehicle primarily powered by an electric motor drawing current from rechargeable storage batteries, fuel cells, or other

Arizona, University of

372

Federal Express CleanFleet Final Report Volume 8: Fleet Economics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)  EIA expects that theDepartmentPolicy48

373

Catalyst activator  

DOE Patents [OSTI]

A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

McAdon, Mark H. (Midland, MI); Nickias, Peter N. (Midland, MI); Marks, Tobin J. (Evanston, IL); Schwartz, David J. (Lake Jackson, TX)

2001-01-01T23:59:59.000Z

374

Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

None

2007-09-30T23:59:59.000Z

375

Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

Marlino, Laura D [ORNL

2007-09-01T23:59:59.000Z

376

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

press/105827/article.html Electric Drive TransportationAssociation (2005) Electric Drive Market and SalesGM's New Family of Electric-drive Propulsion Systems.

Heffner, Reid R.

2007-01-01T23:59:59.000Z

377

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

haul merchandise, but he no longer played a role in the business, and the truck’s 20 MPG fuel economy

Heffner, Reid R.

2007-01-01T23:59:59.000Z

378

Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain  

E-Print Network [OSTI]

presents research works in the topics of fault analysis and fault tolerant control of an electric vehicle mechanism (transition strategy) at sensor fault occurrence. Index Terms--Electric vehicle, induction motor-tolerant AC motor drives in industrial applications [9-10- 41]. II. ELECTRIC VEHICLE POWERTRAIN COMPONENTS

Brest, Université de

379

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Hybrid Vehicle? Study #715238, conducted for National Renewableand Renewable Energy, Report DOE/EE-0314 Valdes-Dapena, P. (2005) Hybrids:

Heffner, Reid R.

2007-01-01T23:59:59.000Z

380

Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives  

SciTech Connect (OSTI)

High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce the characteristic current to value of the rated current, which will enable them to operate at high CPSR. This feature also limits short-circuit fault currents. Second, their segmented structure simplifies assembly problems and is expected to reduce assembly costs. Third, the back-emf waveform is nearly sinusoidal with low cogging. To examine in depth this design ORNL entered into a collaborative agreement with the University of Wisconsin to build and test a 6 kW laboratory demonstration unit. Design, fabrication, and testing of the unit to 4000 rpm were completed during FY 2005. The motor will be sent to ORNL to explore ways to control its inverter to achieve higher efficiency during FY 2006. This paper first reviews the concept of characteristic current and what is meant by optimal flux weakening. It then discusses application of the fractional-slot concentrated winding technique to increase the d-axis inductance of a PMSM showing how this approach differs from an integral-slot motor with sinusoidal-distributed windings. This discussion is followed by a presentation of collaborative analyses and comparison with the University of Wisconsin's measured data on a 6 kW, 36-slot, 30-pole motor with concentrated windings. Finally ORNL presents a PMSM design with integral-slot windings that appears to meet the FreedomCAR Specifications, but has some disadvantages. Further collaboration with the University of Wisconsin is planned for FY 2006 to design a motor that meets FreedomCAR specifications.

Bailey, J.M.

2005-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Role of Advertising in Brand Image Development. The JournalD. (1986) Strategic Brand Concept-Image Management Journalthe Impact of Self-Image Congruence on Brand Preference and

Heffner, Reid R.

2007-01-01T23:59:59.000Z

382

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Bradford, S. (2003) Are Hybrid Cars Worth It? Smartmoney 28p. C1. Hakim, D. (2005b) Hybrid-Car Tinkerers Scoff at No-Dollars and Sense of Hybrid Cars. Available from: http://

Heffner, Reid R.

2007-01-01T23:59:59.000Z

383

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

haul cargo in the truck, but both he and Ellen were feeling guilty about the truck’s high fuelhaul merchandise, but he no longer played a role in the business, and the truck’s 20 MPG fuel

Heffner, Reid R.

2007-01-01T23:59:59.000Z

384

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

Would You Buy a Hybrid Vehicle? Study #715238, conducted forcars/high-cost-of-hybrid-vehicles- 406/overview.htm ConsumerRelease. (2005) Most Hybrid Vehicles Not as Cost-Effective

Heffner, Reid R.

2007-01-01T23:59:59.000Z

385

AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidance forTheAUGSafety

386

AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTA …Ford FusionTesting

387

AVTA: 2010 Toyota Prius Gen III HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High26-OPAM63-OPAMGuidanceAVTASmart Fortwo

388

AVTA: 2013 Ford C-MAX HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy Toyota Prius PHEVofMalibuMAX

389

AVTA: 2013-2014 Volkswagen Jetta HEV Testing Results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department of Energy ToyotaEnergy

390

Review of A123s HEV and PHEV USABC Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLEOperated inFebruary 26, 2009 Independent

391

U.S. Based HEV and PHEV Transaxle Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy The DepartmentNO.2 DOE

392

U.S. Based HEV and PHEV Transaxle Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy The DepartmentNO.2 DOE1

393

U.S. Based HEV and PHEV Transaxle Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy The DepartmentNO.2 DOE10

394

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

headed sales and marketing at BMW, run Ford’s internationalfor example, that Volvo and BMW are two distinct automobileVolvo Automobile Safe BMW Automobile High-Performance In

Heffner, Reid R.

2007-01-01T23:59:59.000Z

395

Nanostructured Metal Oxide Anodes (Presentation)  

SciTech Connect (OSTI)

This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

2009-05-01T23:59:59.000Z

396

Clean Cities Annual Metrics Report 2008  

SciTech Connect (OSTI)

This report summarizes the Department of Energy's Clean Cities coalition accomplishments in 2008, including petroleum displacement data, membership, funding, sales of alternative fuel blends, deployment of AFVs and HEVs, idle reduction initiatives, and fuel economy activities.

Johnson, C.; Bergeron, P.

2009-09-01T23:59:59.000Z

397

Clean Cities Annual Metrics Report 2009 (Revised)  

SciTech Connect (OSTI)

Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

Johnson, C.

2011-08-01T23:59:59.000Z

398

Activity report  

SciTech Connect (OSTI)

This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

Yu, S W

2008-08-11T23:59:59.000Z

399

Federal Biomass Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass...

400

Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

SciTech Connect (OSTI)

Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

4-H Activities  

E-Print Network [OSTI]

4-H activities offer young people many exciting opportunities for personal development. These activities often are a part of their projects. This publication outlines activity options....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

402

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

SciTech Connect (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

403

Focus Group Activities | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire2Fleet

404

Activated Boron Nitride Derived from Activated Carbon  

E-Print Network [OSTI]

combination of chemical, thermal, and electrical properties. The utility of activated carbon suggests is characterized by scanning electron microscopy, high-resolution transmission electron microscopy, electron energy loss spectroscopy, and surface area analysis. The activated BN microstructure is similar

Zettl, Alex

405

Secondary Energy Infobook Activities (19 Activities)'  

Broader source: Energy.gov (indexed) [DOE]

Infobook Activities (19 Activities) Grades: 9-12 Topics: Energy Basics Owner: NEED This educational material is brought to you by the U.S. Department of Energy's Office of Energy...

406

Capturing fleeting intermediates in a catalytic CH amination reaction cycle  

E-Print Network [OSTI]

droplets in a stream of gas form a spray that impacts a surface containing a sample of interest the mechanism for Rh-catalyzed C­H amination depicted in Fig. 1. Sulfamate 2 and iodine oxidant 3 condense and extracts analyte into secondary microdroplets. Subsequent desolvation generates gas-phase ions that can

Zare, Richard N.

407

Ford Escape Advanced Research Fleet Monthly Summary Report -...  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 38 Overall AC electrical energy consumption (AC Whmi) 88 Overall DC electrical energy consumption (DC Whmi) 62 Total number of trips...

408

Ford Escape Advanced Research Fleet Monthly Summary Report -...  

Broader source: Energy.gov (indexed) [DOE]

97 Overall DC electrical energy consumption (DC Whmi) 67 Total number of trips 1,720 Total distance traveled (mi) 19,451 Trips in Charge Depleting (CD) mode Gasoline fuel...

409

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 19 Overall AC electrical energy consumption (AC Whmi) 85 Overall DC electrical energy consumption (DC Whmi) 54 Overall DC electrical...

410

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

1 Overall DC electrical energy consumption (DC Whmi) 65 Overall DC electrical energy captured from regenerative braking (DC Whmi) 45 Total number of trips 10,555 Total distance...

411

Ford Escape Advanced Research Fleet Monthly Summary Report -...  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 39 Overall AC electrical energy consumption (AC Whmi) 110 Overall DC electrical energy consumption (DC Whmi) 77 Total number of trips...

412

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

87 Overall DC electrical energy consumption (DC Whmi) 54 Overall DC electrical energy captured from regenerative braking (DC Whmi) 47 Total number of trips 6,560 Total distance...

413

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

3 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 13,167 Total distance...

414

Ford Escape Advanced Research Fleet Monthly Summary Report -...  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 41 Overall AC electrical energy consumption (AC Whmi) 124 Overall DC electrical energy consumption (DC Whmi) 87 Total number of trips...

415

Ford Escape Advanced Research Fleet Monthly Summary Report -...  

Broader source: Energy.gov (indexed) [DOE]

41 Overall AC electrical energy consumption (AC Whmi) 118 Overall DC electrical energy consumption (DC Whmi) 84 Total number of trips 1,919 Total distance traveled (mi)...

416

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 19 Overall AC electrical energy consumption (AC Whmi) 181 Overall DC electrical energy consumption (DC Whmi) 104 Overall DC electrical...

417

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

5 Overall AC electrical energy consumption (AC Whmi) 111 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking...

418

Ford Escape Advanced Research Fleet Monthly Summary Report -...  

Broader source: Energy.gov (indexed) [DOE]

00 Overall DC electrical energy consumption (DC Whmi) 72 Total number of trips 1,755 Total distance traveled (mi) 20,687 Trips in Charge Depleting (CD) mode Gasoline fuel...

419

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 21 Overall AC electrical energy consumption (AC Whmi) 93 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical...

420

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

18 Overall DC electrical energy consumption (DC Whmi) 74 Overall DC electrical energy captured from regenerative braking (DC Whmi) 45 Total number of trips 11,462 Total...

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

190 Overall DC electrical energy consumption (DC Whmi) 111 Overall DC electrical energy captured from regenerative braking (DC Whmi) 50 Total number of trips 2,055 Total...

422

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 20 Overall AC electrical energy consumption (AC Whmi) 94 Overall DC electrical energy consumption (DC Whmi) 72 Overall DC electrical...

423

Monthly Summary Results for the Chrysler RAM PHEV Fleet  

Broader source: Energy.gov (indexed) [DOE]

Overall gasoline fuel economy (mpg) 19 Overall AC electrical energy consumption (AC Whmi) 104 Overall DC electrical energy consumption (DC Whmi) 70 Overall DC electrical...

424

Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with their own data to obtain more customized results. The VICE Model is housed on DOE's Alternative Fuels Data Center, home to many robust tools and resources related to the...

425

Operability and Emissions from a Medium-Duty Fleet Operating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyzed DPFs 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Shell Global Solutions (US) Inc. 2004deercherrillo.pdf More Documents & Publications...

426

Vehicle Technologies Office Merit Review 2014: California Fleets...  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers...

427

Optimal Fueling Strategies for Locomotive Fleets in Railroad Networks  

E-Print Network [OSTI]

Price 3 · Railroad fuel consumption remains steady · Crude oil price sharply increases in recent years · Fuel (diesel) price influenced by: ­ Crude oil price ­ Refining ­ Distribution and marketing ­ Others 4 locomotive j bj=Tank capacity rj=Fuel consumption rate nj=Number of stops fj=Travel frequency gj=Initial fuel

Barkan, Christopher P.L.

428

Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicles Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on...

429

New system enables fleets to tailor maintenance programs  

SciTech Connect (OSTI)

The Lubrizol Corporation has developed FluiPak and FluiPak Lite systems to pull engine oils and sample them continuously, helping to maintain mining equipment between oil change intervals. The FluiPak system has a control box, a sensor box and a reserve system. FluiPak Lite is simply a cut-down version of FluiPak. The article explains how the system works to detect in real time oil quality and contaminants and hence optimize drain intervals and also prolong engine component life and reduce waste oil disposal costs. 100 units are currently installed in coal operations. 5 figs., 5 photos.

Fiscor, S.

2007-08-15T23:59:59.000Z

430

Dual-Fuel Truck Fleet: Start-Up Experience  

SciTech Connect (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

431

Merit Review: EPAct State and Alternative Fuel Provider Fleets...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

merit08bluestein.pdf More Documents & Publications OVTP Merit Review EPAct State & Alternative Fuel Provider Data Collection and Management Merit Review: EPAct State and...

432

Major Corporate Fleets Align to Reduce Oil Consumption | Department...  

Broader source: Energy.gov (indexed) [DOE]

electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and...

433

Cooperation is Fleeting in the World of Transposable Elements  

E-Print Network [OSTI]

evolutionary past, essentially since the Industrial Revolution. The transposons that spread these genes for the degradation of toxic industrial waste, genes crucial for cleaning up polluted environments [1­3]. The global

Wagner, Andreas

434

Lynn C. Simpson Director, Total Fleet Force Manpower &  

E-Print Network [OSTI]

responsibilities include strategic workforce planning and management, program management and execution, policy Directorate in planning, implementation, and management of major programmatic and organization initiatives

435

Geographic Information System for Visualization of PHEV Fleet Data |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for naturalGeneral Service LEDDepartment of

436

Clean Cities Michigan Green Fleets | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of

437

Controlled Hydrogen Fleet & Infrastructure Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergy Contractor& Infrastructure Analysis

438

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergy Contractor& Infrastructure

439

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergy Contractor& InfrastructureProject |

440

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergy Contractor& InfrastructureProject

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergy Contractor&

442

Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical Officerof Energy Clean Cities Moving

443

Vehicle Technologies Office: Resources for Fleet Managers | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanicalof Energy About

444

National Clean Fleets Partnership Fact Sheet and Progress Update |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6Clean

445

National Clean Fleets Partnership Moves Forward | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6CleanClean

446

Merit Review: EPAct State and Alternative Fuel Provider Fleets | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -to DOEEnergy

447

Merit Review: EPAct State and Alternative Fuel Provider Fleets | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -to DOEEnergyof Energy

448

Overview of VMT Reduction and Legacy Fleet Improvement | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy Joining| Department ofU.S. Hydrogen

449

Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReport |MotorsReportReadiness for

450

Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport | Department ofEnergy

451

Vehicle Technologies Office: Regulated Fleets | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport |(GATE) |EnergyDepartment

452

Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanolNaturalFuel

453

Merit Review: EPAct State and Alternative Fuel Provider Fleets | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM ProjectMemoDepartment ofEM BudgetEnergyof

454

America's Clean, Efficient Fleets: An Infographic | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and ApprovalAmandaClean, Efficient

455

The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeTheDepartment of Energy

456

K VS I,,'o Aledrs Fleet Surveys  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy Consumption Series(STEO)K

457

Perspectives on AFVs: 1996 Federal Fleet Manager Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartmentPersonnel Management (3000-3999)Integrated

458

A nautical archaeological study of Kublai Khan's fleets  

E-Print Network [OSTI]

huge cabins and masts. One ship could carry several hundred people and a year's provisions. Pig raising and liquor brewing were done on board. The cargo capacity of these ships was great. They did not have to fear big waves, but had to be careful... by the crew. The main compartment was divided into four sections and used, most likely, for cargo storage. The after compartment was a cabin for officers or special guests. A deckhouse used for similar purposes rose to a height of about three meters above...

Inoue, Takahiko

1991-01-01T23:59:59.000Z

459

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt068miyasato2010p.pdf More Documents...

460

2012 Merit Review: EPAct State and Alternative Fuel Provider Fleets |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergyof Environmental Management |FY12Sustainable,

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2013 Federal Energy and Water Management Award Winner Commander Fleet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergyofDepartment ofLabor Category3 Facility

462

Sustainable Federal Fleets Catalog of Services | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizing Opportunities | DepartmentBuildings

463

Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion DemonstratorEast Fork Poplar6Department|

464

The Ethanol Heavy-Duty Truck Fleet Demonstration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2Different ImpactsThe Energy

465

New National Clean Fleets Partners Build New Roads to Sustainability |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells | Department ofEnergy

466

New Technologies Improve WIPP Fleet Safety | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells |of Energy New Steps toNew StudyMillionNew

467

DOE Railcar Fleet Asset Planning & Lessons Learned  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment of Energy Revised Report

468

Fleet DNA Project Data Summary Report for Delivery Vans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.

469

Fleet DNA Project Data Summary Report for Refuse Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.62 16 30 31 61

470

Fleet DNA Project Data Summary Report for School Buses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.62 16 30 31

471

Fleet DNA Project Data Summary Report for Service Vans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.62 16 30 3135

472

Fleet DNA Project … Data Dictionary for Public Download Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.62 16 30

473

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstom EnergyEnergyOpen Energy

474

Executive Order 13514: Comprehensive Federal Fleet Management Handbook |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56 EvaluationFriday,ChangeFederalDepartment of

475

America's Clean Efficient Fleets: An Infographic | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to Smart Grid Implementation |

476

Progress and Challenges for PEM Transit Fleet Applications | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment ofProgram

477

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? | Department ofDepartment6RECII'IENT:Solazyme,lAof

478

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? | Department

479

Secretary Chu Announces Addition of Electric Vehicles to Federal Fleet |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services2014Need for a

480

Six New Corporations Join the National Clean Fleets Partnership |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE) |SeniorIt seemsReport that

Note: This page contains sample records for the topic "activity hev fleet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Business Case for Compressed Natural Gas in Municipal Fleets | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding theINNOVATIONof Energy Business

482

UNEP Toolkit for Clean Fleet Strategy Development | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to:Development Reports Jump to:Kit

483

Department of Energy Issues Federal Fleet Management Guidance | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing WithDevelopment of NewImplements APIs inNationalof

484

Alternative Fuels Data Center: Propane Powers Fleets Across the Nation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvaniaOrleans

485

Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank OverfillSanTexasUtah559 vehicles

486

Business Case for Compressed Natural Gas in Municipal Fleets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,ServicesBurning PlasmaBusiness7A2-47919 June 2010

487

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGo Map_thumbnail WorkplacePropane

488

New Fleet eTraining Available | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartment ofofof

489

Alternative Fuels Data Center: District of Columbia's Government Fleet Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-ElectricCNGDiesel VehicleFuela

490

Alternative Fuels Data Center: Massachusetts Fleet Braun's Express  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricityAlternative Fuels Maryland

491

Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative FuelsFuelingStaples

492

Airline fleet assignment and schedule design : integrated models and algorithms  

E-Print Network [OSTI]

In scheduled passenger air transportation, airline profitability is critically influenced by the airline's ability to construct flight schedules containing flights at desirable times in profitable markets. In this dissertation, ...

Lohatepanont, Manoj, 1974-

2002-01-01T23:59:59.000Z

493

Activity Based Costing  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

1997-03-28T23:59:59.000Z

494

Michael Flachsel Active Directory  

E-Print Network [OSTI]

1 Michael Flachsel Active Directory Allgemeiner Aufbau & Struktur an der TUB 6. Juni 2007 Inhalt Directory" #12;2 Inhalt Motivation Grundlagen Motivation Grundlagen Warum Active Directory Grundlagen gemeldeten Typen (c) 2007 Michael Flachsel ,,Active Directory" Inhalt Motivation Grundlagen Motivation

Berlin,Technische Universität

495

Active stewardship: sustainable future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

496

Clean Cities Now, Vol. 12, No. 2 - May 2008  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2008-05-01T23:59:59.000Z

497

Clean Cities Now, Vol. 13, No.1 - February 2009 (Brochure)  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2009-02-01T23:59:59.000Z

498

Clean Cities Now, Vol. 12, No. 3 - July 2008  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2008-07-01T23:59:59.000Z

499

Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption from FY05 Milestone Report (Presentation)  

SciTech Connect (OSTI)

Presented to DOE management staff on September 14, 2005 at the DOE headquarters in Washington DC. Content was updated January 19, 2006 for publication. This presentation addresses plug-in hybrid electric vehicle (PHEV) market and technology issues for research and development efforts.

Markel, T.; O'Keefe, M.; Simpson, A.; Gonder, J.; Brooker, A.

2006-01-19T23:59:59.000Z

500

Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

Gonder, J.; Ireland, J.; Cosgrove, J.

2013-04-01T23:59:59.000Z