National Library of Energy BETA

Sample records for activity ground magnetics

  1. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  2. Ground Magnetics (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration...

  3. Category:Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Magnetics page? For detailed information on Ground...

  4. Ground Magnetics At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Silver Peak Area (DOE GTP) Exploration Activity...

  5. Ground Magnetics At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Alum Area (DOE GTP) Exploration Activity Details Location...

  6. Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Exploration Activity Details...

  7. Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002)...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location...

  8. Ground Magnetics At Chena Geothermal Area (Kolker, 2008) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chena Geothermal Area (Kolker, 2008) Exploration Activity Details Location Chena...

  9. Ground Magnetics At Crump's Hot Springs Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details Location Crump's...

  10. Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chocolate Mountains Area (Alm,...

  11. Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004)...

    Open Energy Info (EERE)

    Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  12. Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...

    Open Energy Info (EERE)

    Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  13. Ground Magnetics At North Brawley Geothermal Area (Edmunds &...

    Open Energy Info (EERE)

    North Brawley Geothermal Area (Edmunds & W., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At North Brawley Geothermal...

  14. Ground Magnetics At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Francisco...

  15. Ground Magnetics At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Raft River Geothermal Area (1979)...

  16. Ground Magnetics At San Emidio Desert Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Magnetics At San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Emidio Desert Area (DOE...

  17. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Blue Mountain...

  18. Ground Magnetics At Neal Hot Springs Geothermal Area (U.S. Geothermal...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Exploration...

  19. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  20. Ground Magnetics At Coso Geothermal Area (1984) | Open Energy...

    Open Energy Info (EERE)

    alteration along faults suggests that hot fluid filled fractures with high permeability. References Roquemore, G. R. (10 May 1984) Ground magnetic survey in the Coso...

  1. Ground Magnetic Data for west-central Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    2012-03-08

    Ground Magnetic Data for west-central Colorado Modeled ground magnetic data was extracted from the Pan American Center for Earth and Environmental Studies database at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was then imported into an Excel spreadsheet. This spreadsheet data was converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and magnetic field strength in nano-Teslas. This point shapefile was then interpolated to an ESRI grid using an inverse-distance weighting method, using ESRI Spatial Analyst. The grid was used to create a contour map of magnetic field strength. This dataset includes the raw spreadsheet data, an ESRI point shapefile showing magnetic sample locations and magnetic field strength, and an ESRI line shapefile showing magnetic contours. Projection: UTM Zone 13 NAD27 Magnetic Contour Shapefile Extent: West -108.698836 East -105.283977 North 41.048206 South 36.950086 Magnetic Point Shapefile Extent: West -108.698832 East -105.283908 North 41.048142 South 36.950086

  2. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperaturemore » of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.« less

  3. Magnetic ground state of semiconducting transition metal trichalcogenide monolayers

    SciTech Connect (OSTI)

    Sivadas, Mr. Nikhil; Daniels, Matthew W.; Swendsen, Robert H.; Okamoto, Satoshi; Xiao, Di

    2015-01-01

    Layered transition-metal trichalcogenides with the chemical formula ABX3 have attracted recent interest as potential candidates for two-dimensional magnets. Using first-principles calculations within density functional theory, we investigate the magnetic ground states of monolayers of Mn- and Cr-based semiconducting trichalcogenides.We show that the second and third nearest-neighbor exchange interactions (J2 and J3) between magnetic ions, which have been largely overlooked in previous theoretical studies, are crucial in determining the magnetic ground state. Specifically, we find that monolayer CrSiTe3 is an antiferromagnet with a zigzag spin texture due to significant contribution from J3, whereas CrGeTe3 is a ferromagnet with a Curie temperature of 106 K. Monolayers of Mn compounds (MnPS3 and MnPSe3) always show antiferromagnetic N eel order. We identify the physical origin of various exchange interactions, and demonstrate that strain can be an effective knob for tuning the magnetic properties. Possible magnetic ordering in the bulk is also discussed. Our study suggests that ABX3 can be a promising platform to explore two-dimensional magnetic phenomena.

  4. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, J.A.; Steyert, W.A.

    1981-01-27

    An apparatus and method for refrigeration are disclosed which provides efficient refrigeration over temperature ranges in excess of 20/sup 0/C and which requires no maintenance and is, therefore, usable on an unmanned satellite. The apparatus comprises a superconducting magnet which may be solenoidal. A piston comprising a substance such as a rare earth substance which is maintained near its Curie temperature reciprocates through the bore of the solenoidal magnet. A magnetic drive rod is connected to the piston and appropriate heat sinks are connected thereto. The piston is driven by a suitable mechanical drive such as an electric motor and cam. In practicing the invention, the body of the piston is magnetized and demagnetized as it moves through the magnetic field of the solenoid to approximate any of the following cycles or a condition thereof as well as, potentially, other cycles: Brayton, Carnot, Ericsson, and Stirling. Advantages of the present invention include: that refrigeration can be accomplished over at least a 20/sup 0/C scale at superconducting temperatures as well as at more conventional temperatures; very high efficiency, high reliability, and small size. (LCL)

  5. Ground Magnetics At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    potential as part of the coordinated exploration program for geothermal sources on the Big Island of Hawaii. Notes A large amount of magnetic data was recovered in this survey;...

  6. Modified Magnetic Ground State in Nimn (2) O (4) Thin Films

    SciTech Connect (OSTI)

    Nelson-Cheeseman, B.B.; Chopdekar, R.V.; Iwata, J.M.; Toney, M.F.; Arenholz, E.; Suzuki, Y.; /SLAC

    2012-08-23

    The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K.

  7. Normal ground state of dense relativistic matter in a magnetic field

    SciTech Connect (OSTI)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.

    2011-04-15

    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter {Delta}. In the chiral limit, the value of {Delta} determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the {Delta} parameter is that it is insensitive to temperature when T<<{mu}{sub 0}, where {mu}{sub 0} is the chemical potential, and increases with temperature for T>{mu}{sub 0}. The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.

  8. Pressure dependence of the magnetic ground states in MnP

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matsuda, Masaaki; Ye, Feng; Dissanayake, Sachith E.; Cheng, J. -G.; Chi, Songxue; Ma, Jie; Zhou, H. D.; Yan, Jia -Qiang; Kasamatsu, S.; Sugino, O.; et al

    2016-03-17

    MnP, a superconductor under pressure, exhibits a ferromagnetic order below TC~290 K followed by a helical order with the spins lying in the ab plane and the helical rotation propagating along the c axis below Ts~50 K at ambient pressure. We performed single-crystal neutron diffraction experiments to determine the magnetic ground states under pressure. Both TC and Ts are gradually suppressed with increasing pressure and the helical order disappears at ~1.2 GPa. At intermediate pressures of 1.8 and 2.0 GPa, the ferromagnetic order first develops and changes to a conical or two-phase (ferromagnetic and helical) structure with the propagation alongmore » the b axis below a characteristic temperature. At 3.8 GPa, a helical magnetic order appears below 208 K, which hosts the spins in the ac plane and the propagation along the b axis. The period of this b axis modulation is shorter than that at 1.8 GPa. Here, our results indicate that the magnetic phase in the vicinity of the superconducting phase may have a helical magnetic correlation along the b axis.« less

  9. Modeling of ground magnetic signatures associated with high latitude ionospheric current systems. Master`s thesis

    SciTech Connect (OSTI)

    Gifford, P.G.

    1995-09-10

    Due to their location, ionospheric currents are difficult to study directly. To gather information indirectly, magnetometers have been placed throughout the polar regions to measure perturbations in the geomagnetic field caused by the currents. Understanding the abilities and limitations of the magnetometer networks to resolve details about changes in the magnetic field provides insight into the accuracy of the data. Discovering these abilities and limitations is the focus of this research. For use with ionospheric current system models, a simulation was made of a ground magnetometer. After validation of this simulation, it was used to verify Fukushima`s theory on the cancellation of the ground magnetic signatures caused by the field aligned currents and Pedersen current. A distribution of the simulated magnetometers, patterned after the Scandinavian Magnetometer Array, proved successful in gathering information about traveling convection twin vortices. A global distribution of the magnetometers was tested with an ionospheric substorm model to find out what effects gaps in magnetometer coverage would have on the accuracy of data collected.

  10. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

  11. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  12. Ground state energy of an exciton in a spherical quantum dot in the presence of an external magnetic field

    SciTech Connect (OSTI)

    Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok

    2015-05-15

    The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.

  13. Active magnetic regenerator method and apparatus

    DOE Patents [OSTI]

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  14. Quenched crystal-field disorder and magnetic liquid ground states in Tb₂Sn2-xTixO₇

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; Matthews, M. J.; Bert, F.; Zhang, J.; Mendels, P.; Fritsch, K.; Granroth, G. E.; Jiramongkolchai, P.; et al

    2015-06-18

    Solid solutions of the “soft” quantum spin ice pyrochlore magnets Tb₂B₂O₇ with B = Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac susceptibility and μSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb³⁺ crystal-field levels appropriate to high B-site mixing (0.5 < x < 1.5 in Tb₂Sn2-xTixO₇) reveal that the doublet ground and first excited states present as continuamore » in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb³⁺ ion.« less

  15. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Raouafi, Nour-Eddine

    2012-11-01

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  16. Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004...

    Open Energy Info (EERE)

    regarding type of magnetic survey. References Stephen C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine...

  17. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect (OSTI)

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  18. Fragile singlet ground-state magnetism in the pyrochlore osmates R2Os2O7 ( R=Y and Ho)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Z. Y.; Calder, S.; Aczel, A. A.; McGuire, M. A.; Sales, B. C.; Mandrus, D. G.; Chen, G.; Trivedi, N.; Zhou, H. D.; Yan, J. -Q.

    2016-04-25

    The singlet ground state magnetism in pyrochlore osmates Y2Os2O7 and Ho2Os2O7 is studied by DC and AC susceptibility, specific heat, and neutron powder di raction measurements. Despite the expected non-magnetic singlet in the strong spin-orbit coupling (SOC) limit for Os4+ (5d4), Y2Os2O7 exhibits a spin-glass (SG) ground state below 4 K with weak magnetism, suggesting possible proximity to a quantum phase transition between the non-magnetic state in the strong SOC limit and the magnetic state in the strong superexchange limit. Ho2Os2O7 has the same structural distortion as occurs in Y2Os2O7. However, the Os sublattice in Ho2Os2O7 shows long- range magneticmore » ordering below 36 K. We find that the sharp difference of the magnetic ground state between Y2Os2O7 and Ho2Os2O7 signals the singlet ground state magnetism in R2 Os2 O7 is fragile and can be disturbed by the weak 4f—5d interactions.« less

  19. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; et al

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  20. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect (OSTI)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  1. Doubly-magic nature of {sup 56}Ni: Measurement of the ground state nuclear magnetic dipole moment of {sup 55}Ni

    SciTech Connect (OSTI)

    Berryman, J. S.; Crawford, H. L.; Mantica, P. F.; Stoker, J. B.; Minamisono, K.; Grinyer, G. F.; Rogers, W. F.; Brown, B. A.; Towner, I. S.

    2009-06-15

    The nuclear magnetic moment of the ground state of {sup 55}Ni (I{sup {pi}}=3/2{sup -}, T{sub 1/2}=204 ms) has been deduced to be |{mu}({sup 55}Ni)|=(0.976{+-}0.026) {mu}{sub N} using the {beta}-ray detecting nuclear magnetic resonance technique. Results of a shell model calculation in the full fp shell model space with the GXPF1 interaction reproduce the experimental value. Together with the known magnetic moment of the mirror partner {sup 55}Co, the isoscalar spin expectation value was extracted as <{sigma}{sigma}{sub z}>=0.91{+-}0.07. The <{sigma}{sigma}{sub z}> shows a trend similar to that established in the sd shell. The present theoretical interpretations of both {mu}({sup 55}Ni) and <{sigma}{sigma}{sub z}> for the T=1/2, A=55 mirror partners support the softness of the {sup 56}Ni core.

  2. An Evaluation of Activated Bismuth Isotopes in Environmental Samples From the Former Western Pacific Proving Grounds

    SciTech Connect (OSTI)

    Robison, W.L.; Brunk, J.A.; Jokela, T.A.

    2000-03-21

    {sup 207}Bi (t{sub 1/2}=32.2 y) was generated by activation of weapons material during a few ''clean'' nuclear tests at the U.S. Western Pacific Proving Grounds of Enewetak and Bikini Atolls. The radionuclides first appeared in the Enewetak environment during 1958 and in the environment of Bikini during 1956. Crater sediments from Bikini with high levels of {sup 207}Bi were analyzed by gamma spectrometry in an attempt to determine the relative concentrations of {sup 208}Bi (t{sup 1/2} = 3.68 x 10{sup 5} y). The bismuth isotopes were probably generated during the ''clean'', 9.3 Mt Poplar test held on 7/12/58. The atom ratio of {sup 208}Bi to {sup 207}Bi (R value) ranges from {approx}12 to over 200 in sections of core sediments from the largest nuclear crater at Bikini atoll. The presence of bismuth in the device is suggested to account for R values in excess of 10.

  3. MTX (Microwave Tokamak Experiment) facility and machine grounding plan

    SciTech Connect (OSTI)

    Bell, H.H.; Rice, B.W.; Petersen, D.E.; Herrera, C.H.

    1987-10-07

    A key issue in the design of fusion research experiments and their related facilities is the control of ground currents. Because of the large magnetic field, high voltages and high currents present in most of these installations, it is essential to avoid ground loops, and to control ground currents during both normal operations and fault conditions. This paper describes the grounding policy that was developed for MTX. The vault area was divided into zones, and each of the four walls was treated as a separate grounding area. Cable runs and magnet buss bars were run into the machine radially. The paper also describes the steps taken to isolate diagnostic signals and power for pumps and instruments. The paper outlines some of the field calculations used to predict problem areas, and to reveal voltage isolation levels that were required. The paper includes the active ground fault detection system used to insure the integrity of the ground system. 2 refs., 5 figs.

  4. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  5. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  6. Magnetic nanoparticle imaging using multiple electron paramagnetic resonance activation sequences

    SciTech Connect (OSTI)

    Coene, A. Dupr, L.; Crevecoeur, G.

    2015-05-07

    Magnetic nanoparticles play an important role in several biomedical applications such as hyperthermia, drug targeting, and disease detection. To realize an effective working of these applications, the spatial distribution of the particles needs to be accurately known, in a non-invasive way. Electron Paramagnetic Resonance (EPR) is a promising and sensitive measurement technique for recovering these distributions. In the conventional approach, EPR is applied with a homogeneous magnetic field. In this paper, we employ different heterogeneous magnetic fields that allow to stabilize the solution of the associated inverse problem and to obtain localized spatial information. A comparison is made between the two approaches and our novel adaptation shows an average increase in reconstruction quality by 5% and is 12 times more robust towards noise. Furthermore, our approach allows to speed up the EPR measurements while still obtaining reconstructions with an improved accuracy and noise robustness compared to homogeneous EPR.

  7. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-01

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M?,? edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [?L = 2.8(1)?B/Pu] and spin moments [?S = ?2.0(1)?B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of ?Lz? and ?Sz? are in excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. Finally, we demonstrate that a split M? as well as a narrow M? XMCD signal may serve as a signature of 5f electron localization in actinide compounds.

  8. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values thatmore » have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  9. Statistical study of free magnetic energy and flare productivity of solar active regions

    SciTech Connect (OSTI)

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M.; Wiegelmann, T.

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  10. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    SciTech Connect (OSTI)

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon; Kim, Youngkwon

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure and the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.

  11. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2012-05-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  12. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  13. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  14. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    SciTech Connect (OSTI)

    Stauffer, M.

    1995-11-01

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans.

  15. Jeff Grounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Grounds Jeff Grounds jeffgrounds-sm.jpg Jeff Grounds Facilities Manager JTGrounds@lbl.gov Phone: (510) 486-7197 Mobile: (510) 207-2273 Last edited: 2016-04-29 11:34:57

  16. Magnetic filtration process, magnetic filtering material, and...

    Office of Scientific and Technical Information (OSTI)

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically ...

  17. MAGNETIC ENERGY AND HELICITY IN TWO EMERGING ACTIVE REGIONS IN THE SUN

    SciTech Connect (OSTI)

    Liu, Y.; Schuck, P. W.

    2012-12-20

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158, are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term, (2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and (4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course. We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  18. MAGNETS

    DOE Patents [OSTI]

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  19. Spin excitations used to probe the nature of exchange coupling in the magnetically ordered ground state of Pr0.5Ca0.5MnO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ewings, R. A.; Perring, T. G.; Sikora, O.; Abernathy, D. L.; Tomioka, Y.; Tokura, Y.

    2016-07-06

    We have used time-of-flight inelastic neutron scattering to measure the spin wave spectrum of the canonical half-doped manganite Pr0.5Ca0.5MnO3 in its magnetic and orbitally ordered phase. Comparison of the data, which cover multiple Brillouin zones and the entire energy range of the excitations, with several different models shows that only the CE-type ordered state provides an adequate description of the magnetic ground state, provided interactions beyond nearest neighbor are included. We are able to rule out a ground state in which there exist pairs of dimerized spins which interact only with their nearest neighbors. The Zener polaron ground state, whichmore » comprises strongly bound magnetic dimers, can be ruled out on the basis of gross features of the observed spin wave spectrum. A model with weaker dimerization reproduces the observed dispersion but can be ruled out on the basis of subtle discrepancies between the calculated and observed structure factors at certain positions in reciprocal space. Adding further neighbor interactions results in almost no dimerization, i.e. interpolating back to the CE model. These results are consistent with theoretical analysis of the degenerate double exchange model for half-doping.« less

  20. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    SciTech Connect (OSTI)

    Yang Xiao; Lin Ganghua; Zhang Hongqi; Mao Xinjie

    2013-09-10

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude {>=}M5.0 and {>=}X1.0.

  1. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  2. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    SciTech Connect (OSTI)

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  3. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    SciTech Connect (OSTI)

    Petrie, G. J. D.

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  4. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    SciTech Connect (OSTI)

    Raphaldini, Breno; Raupp, Carlos F. M. E-mail: carlos.raupp@iag.usp.br

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  5. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect (OSTI)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  6. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect (OSTI)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  7. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    SciTech Connect (OSTI)

    Gilmore, Mark Allen

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  8. Thermally activated switching of perpendicular magnet by spin-orbit spin torque

    SciTech Connect (OSTI)

    Lee, Ki-Seung; Lee, Seo-Won; Min, Byoung-Chul; Lee, Kyung-Jin

    2014-02-17

    We theoretically investigate the threshold current for thermally activated switching of a perpendicular magnet by spin-orbit spin torque. Based on the Fokker-Planck equation, we obtain an analytic expression of the switching current, in agreement with numerical result. We find that thermal energy barrier exhibits a quasi-linear dependence on the current, resulting in an almost linear dependence of switching current on the log-scaled current pulse-width even below 10 ns. This is in stark contrast to standard spin torque switching, where thermal energy barrier has a quadratic dependence on the current and the switching current rapidly increases at short pulses. Our results will serve as a guideline to design and interpret switching experiments based on spin-orbit spin torque.

  9. THE ACOUSTIC CUTOFF FREQUENCY OF THE SUN AND THE SOLAR MAGNETIC ACTIVITY CYCLE

    SciTech Connect (OSTI)

    Jimenez, A.; Palle, P. L.; Garcia, R. A.

    2011-12-20

    The acoustic cutoff frequency-the highest frequency for acoustic solar eigenmodes-is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but are traveling waves. Interference among them gives rise to higher-frequency peaks-the pseudomodes-in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p-modes, making possible the use of pseudomodes to determine the acoustic cutoff frequency. Using data from the GOLF and VIRGO instruments on board the Solar and Heliospheric Observatory spacecraft, we calculate the acoustic cutoff frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 until the present), a variation in the acoustic cutoff frequency with the solar magnetic activity cycle is found.

  10. Boost of plasma current with active magnetic field shaping coils in rotamak discharges

    SciTech Connect (OSTI)

    Yang Xiaokang; Goss, Jermain; Kalaria, Dhara; Huang, Tian Sen

    2011-08-15

    A set of magnetic shaping coils is installed on the Prairie View (PV) rotamak for the study of active plasma shape control in the regimes with and without toroidal field (TF). In the spherical tokamak regime (with TF), plasma current I{sub p} can be boosted by 200% when all five shaping coils (connected in series) are energized. The enhancement of current drive efficiency is mainly attributed to the radial compression and the substantially axial extension of the plasma column; this in turn improves the impedance matching and thus increases antenna input power. In the field-reversed configuration (without TF), plasma current can be boosted by 100% when one middle coil is used; the appearance of radial shift mode limits the achievable value of I{sub p}. The experiments clearly demonstrate that the plasma shape control plays a role in effectively driving plasma current in rotamaks.

  11. Ground Gravity Survey At Clear Lake Area (Skokan, 1993) | Open...

    Open Energy Info (EERE)

    Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Clear Lake Area...

  12. Ground Gravity Survey At Coso Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Coso Geothermal...

  13. Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) ...

    Open Energy Info (EERE)

    Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Crump's Hot...

  14. Ground Gravity Survey At North Brawley Geothermal Area (Biehler...

    Open Energy Info (EERE)

    Ground Gravity Survey At North Brawley Geothermal Area (Biehler, 1964) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At...

  15. Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...

    Open Energy Info (EERE)

    Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  16. Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  17. Ground Gravity Survey At Snake River Plain Region (DOE GTP) ...

    Open Energy Info (EERE)

    Ground Gravity Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Snake River...

  18. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  19. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  20. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect (OSTI)

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  1. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    SciTech Connect (OSTI)

    Kim, Min Sik; Jun, Yubin; Lee, Changha Oh, Jae Eun

    2013-12-15

    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  2. THE EFFECT OF ACTIVITY-RELATED MERIDIONAL FLOW MODULATION ON THE STRENGTH OF THE SOLAR POLAR MAGNETIC FIELD

    SciTech Connect (OSTI)

    Jiang, J.; Cameron, R. H.; Schmitt, D.; Schuessler, M.; Isik, E.

    2010-07-01

    We studied the effect of the perturbation of the meridional flow in the activity belts detected by local helioseismology on the development and strength of the surface magnetic field at the polar caps. We carried out simulations of synthetic solar cycles with a flux transport model, which follows the cyclic evolution of the surface field determined by flux emergence and advective transport by near-surface flows. In each hemisphere, an axisymmetric band of latitudinal flows converging toward the central latitude of the activity belt was superposed onto the background poleward meridional flow. The overall effect of the flow perturbation is to reduce the latitudinal separation of the magnetic polarities of a bipolar magnetic region and thus diminish its contribution to the polar field. As a result, the polar field maximum reached around cycle activity minimum is weakened by the presence of the meridional flow perturbation. For a flow perturbation consistent with helioseismic observations, the polar field is reduced by about 18% compared to the case without inflows. If the amplitude of the flow perturbation depends on the cycle strength, its effect on the polar field provides a nonlinearity that could contribute to limiting the amplitude of a Babcock-Leighton type dynamo.

  3. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    SciTech Connect (OSTI)

    Thalmann, J. K.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (?100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  4. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect (OSTI)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  5. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    SciTech Connect (OSTI)

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-05-15

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity ({approx_equal}1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  6. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    SciTech Connect (OSTI)

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    2014-08-10

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.

  7. Structural and magnetic properties of a mechanochemically activated Ti-Fe{sub 2}O{sub 3} solid mixture

    SciTech Connect (OSTI)

    Cristobal, A.A.; Ramos, C.P.; Consejo Nacional de Investigaciones Cientificas y Tecnicas ; Bercoff, P.G.; Conconi, S.; Aglietti, E.F.; Botta, P.M.; Lopez, J.M. Porto

    2010-12-15

    The mechanochemical effects on the reactivity and properties of a titanium/hematite powder mixture with molar ratio of 1/2 are investigated. Crystalline-phase structure, composition, hyperfine and magnetic behaviors were analyzed as a function of activation time by means of X-ray diffraction, scanning electron microscopy, Moessbauer spectroscopy and vibrating sample magnetometry. The results showed that at relatively short activation times metallic Ti reduces part of the ferric ions, yielding a complex product formed mainly by a mix of two solid solutions Fe{sub 3-x}Ti{sub x}O{sub 4} (titanomagnetites), both with very different x values (0 < x < 1). Also metallic iron and superparamagnetic hematite particles were detected by Moessbauer spectroscopy. As the mechanical treatment extends the composition of the reactive mixture changes, prevailing in the end the solid solution with higher x value. In contrast, when these activated samples are thermally treated the fraction of the solid solution which is richer in Ti diminishes. This fact produces a significant variation of the saturation magnetization of the obtained material.

  8. Ground difference compensating system

    DOE Patents [OSTI]

    Johnson, Kris W.; Akasam, Sivaprasad

    2005-10-25

    A method of ground level compensation includes measuring a voltage of at least one signal with respect to a primary ground potential and measuring, with respect to the primary ground potential, a voltage level associated with a secondary ground potential. A difference between the voltage level associated with the secondary ground potential and an expected value is calculated. The measured voltage of the at least one signal is adjusted by an amount corresponding to the calculated difference.

  9. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  10. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. I. THE EFFECT OF INJECTION ENERGY AND REDSHIFT

    SciTech Connect (OSTI)

    Xu Hao; Li Hui; Li Shengtai; Collins, David C.; Norman, Michael L. E-mail: hli@lanl.go E-mail: dcollins@physics.ucsd.ed

    2010-12-20

    We present a series of cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus (AGN). Specifically, we investigate the influence of both the epoch of the AGN (z {approx} 3-0.5) and the AGN energy ({approx}3 x 10{sup 57}- 2 x 10{sup 60} erg) on the final magnetic field distribution in a relatively massive cluster (M{sub vir} {approx} 10{sup 15} M{sub sun}). We find that as long as the AGN magnetic fields are ejected before the major mergers in the cluster formation history, magnetic fields can be transported throughout the cluster and can be further amplified by the intracluster medium (ICM) turbulence caused by hierarchical mergers during the cluster formation process. The total magnetic energy in the cluster can reach {approx}10{sup 61} erg, with micro Gauss fields distributed over the {approx}Mpc scale. The amplification of the total magnetic energy by the ICM turbulence can be significant, up to {approx}1000 times in some cases. Therefore even weak magnetic fields from AGNs can be used to magnetize the cluster to the observed level. The final magnetic energy in the ICM is determined by the ICM turbulent energy, with a weak dependence on the AGN injection energy. We discuss the properties of magnetic fields throughout the cluster and the synthetic Faraday rotation measure maps they produce. We also show that high spatial resolution over most of the magnetic regions of the cluster is very important to capture the small-scale dynamo process and maintain the magnetic field structure in our simulations.

  11. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  12. Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; et al

    2016-05-20

    Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfv´en Eigenmodes (TAE) and Global Alf´ven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfv´en continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfv´en instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less

  13. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details...

  14. Ground Gravity Survey At Coso Geothermal Area (1990) | Open Energy...

    Open Energy Info (EERE)

    (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  15. Ground Gravity Survey At Truckhaven Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Truckhaven Area (Warpinski, Et Al., 2004) Exploration Activity...

  16. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The...

  17. Ground Gravity Survey At Raft River Geothermal Area (1978) |...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River...

  18. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    SciTech Connect (OSTI)

    Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  19. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  20. Study of magnetic activity effects on the thermospheric winds in the low ionosphere. Master`s thesis

    SciTech Connect (OSTI)

    Davila, R.C.

    1994-09-01

    The purpose of this thesis is to examine the effects of magnetic activity on the low latitude F-region thermospheric winds. The F-region (120-1600 km) is a partially ionized medium where O+ and O are the major ion and neutral species, respectively. The thermospheric winds at these altitudes are driven primarily by pressure gradient forces resulting from the solar heating during the day and cooling at night. For this study, the author used measured Fabry-Perot Interferometer (FPI) winds at Arequipa (16.5 deg S, 71.5 deg W) and measured FPI and incoherent Scatter Radar (ISR) winds at Arecibo (18.6 deg N, 66.8 deg W).

  1. Development of a He{sup 3}−He{sup 4} sub Kelvin active magnetic regenerative refrigerator (AMRR) with no moving parts

    SciTech Connect (OSTI)

    Jahromi, A. E.; Miller, F. K.

    2014-01-29

    Current state of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin cooling over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. We propose an active Magnetic Regenerative Refrigerator (AMRR) that uses a Superfluid Magnetic Pump (SMP) to circulate liquid He{sup 3}−He{sup 4} through a magnetic regenerator to provide the necessary cooling at sub-Kelvin temperatures. Such system will be capable of distributing the cooling load to a relatively large array of objects. One advantage of using a fluid for heat transfer in such systems is to isolate components such as the superconducting magnets from detectors that are sensitive to magnetic fields. Another advantage of the proposed tandem AMRR is that it does not need Gas Gap Heat Switches (GGHS) to transfer heat during various stages of the magnetic cooling. Our proposed system consists of four superconducting magnets, one superleak, and three heat exchangers. It will operate continuously with no moving parts and it will be capable of providing the necessary cooling at sub-Kelvin temperatures for future space science applications.

  2. Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002...

    Open Energy Info (EERE)

    Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove...

  3. Ground Gravity Survey At Hot Pot Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Hot Pot Area (DOE GTP)...

  4. Ground Gravity Survey At Fort Bliss Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Fort Bliss Area (DOE...

  5. Ground Gravity Survey At New River Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At New River Area (DOE...

  6. Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Glass Buttes Area...

  7. Electrical grounding prong socket

    DOE Patents [OSTI]

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  8. Ground Motion Studies at NuMI

    SciTech Connect (OSTI)

    Mayda M. Velasco; Michal Szleper

    2012-02-20

    Ground motion can cause significant deterioration in the luminosity of a linear collider. Vibration of numerous focusing magnets causes continuous misalignments, which makes the beam emittance grow. For this reason, understanding the seismic vibration of all potential LC sites is essential and related efforts in many sites are ongoing. In this document we summarize the results from the studies specific to Fermilab grounds as requested by the LC project leader at FNAL, Shekhar Mishra in FY04-FY06. The Northwestern group focused on how the ground motion effects vary with depth. Knowledge of depth dependence of the seismic activity is needed in order to decide how deep the LC tunnel should be at sites like Fermilab. The measurements were made in the NuMI tunnel, see Figure 1. We take advantage of the fact that from the beginning to the end of the tunnel there is a height difference of about 350 ft and that there are about five different types of dolomite layers. The support received allowed to pay for three months of salary of Michal Szleper. During this period he worked a 100% of his time in this project. That include one week of preparation: 2.5 months of data taking and data analysis during the full period of the project in order to guarantee that we were recording high quality data. We extended our previous work and made more systematic measurements, which included detailed studies on stability of the vibration amplitudes at different depths over long periods of time. As a consequence, a better control and more efficient averaging out of the daytime variation effects were possible, and a better study of other time dependences before the actual depth dependence was obtained. Those initial measurements were made at the surface and are summarized in Figure 2. All measurements are made with equipment that we already had (two broadband seismometers KS200 from GEOTECH and DL-24 portable data recorder). The offline data analysis took advantage of the full Fourier spectra

  9. MAGNETIC FIELDS OF AN ACTIVE REGION FILAMENT FROM FULL STOKES ANALYSIS OF Si I 1082.7 nm AND He I 1083.0 nm

    SciTech Connect (OSTI)

    Xu, Z.; Liu, Y.

    2012-04-20

    Vector magnetic fields of an active region filament in the photosphere and upper chromosphere are obtained from spectro-polarimetric observations recorded with the Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope. We apply Milne-Eddington inversions on full Stokes vectors of the photospheric Si I 1082.7 nm and the upper chromospheric He I triplet at 1083.0 nm to obtain the magnetic field vector and velocity maps in two atmosphere layers. We find that (1) a complete filament was already present in H{alpha} at the beginning of the TIP II data acquisition. Only a partially formed one, composed of multiple small threads, was present in He I. (2) The AR filament comprises two sections. One shows strong magnetic field intensities, about 600-800 G in the upper chromosphere and 800-1000 G in the photosphere. The other exhibits only comparatively weak magnetic field strengths in both layers. (3) The Stokes V signal is indicative of a dip in the magnetic field strength close to the chromospheric PIL. (4) In the chromosphere, consistent upflows are found along the PIL flanked by downflows. (5) The transversal magnetic field is nearly parallel to the PIL in the photosphere and inclined by 20 Degree-Sign -30 Degree-Sign in the chromosphere. (6) The chromospheric magnetic field around the filament is found to be in normal configuration, while the photospheric field presents a concave magnetic topology. The observations are consistent with the emergence of a flux rope with a subsequent formation of a filament.

  10. METHOD OF LOCATING GROUNDS

    DOE Patents [OSTI]

    Macleish, K.G.

    1958-02-11

    ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.

  11. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect (OSTI)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  12. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  13. Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area...

  14. Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...

    Open Energy Info (EERE)

    Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  15. Ground Gravity Survey At Newberry Caldera Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Newberry Caldera Area (DOE GTP)...

  16. Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Exploration...

  17. Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Francisco...

  18. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  19. DEEP, LOW-MASS RATIO OVERCONTACT BINARY SYSTEMS. XII. CK BOOTIS WITH POSSIBLE CYCLIC MAGNETIC ACTIVITY AND ADDITIONAL COMPANION

    SciTech Connect (OSTI)

    Yang, Y.-G.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2012-05-15

    We present precision CCD photometry, a period study, and a two-color simultaneous Wilson code solution of the short-period contact binary CK Bootis. The asymmetric light curves were modeled by a dark spot on the primary component. The result identifies that CK Boo is an A-type W UMa binary with a high fillout of f = 71.7({+-} 4.4)%. From the O - C curve, it is found that the orbital period changes in a complicated mode, i.e., a long-term increase with two sinusoidal variations. One cyclic oscillation with a period of 10.67({+-} 0.20) yr may result from magnetic activity cycles, which are identified by the variability of Max. I - Max. II. Another sinusoidal variation (i.e., A = 0.0131 days({+-} 0.0009 days) and P{sub 3} = 24.16({+-} 0.64) yr) may be attributed to the light-time effect due to a third body. This kind of additional companion can extract angular momentum from the central binary system. The orbital period secularly increases at a rate of dP/dt = +9.79 ({+-}0.80) Multiplication-Sign 10{sup -8} days yr{sup -1}, which may be interpreted by conservative mass transfer from the secondary to the primary. This kind of deep, low-mass ratio overcontact binaries may evolve into a rapid-rotating single star, only if the contact configuration do not break down at J{sub spin} > (1/3)J{sub orb}.

  20. Design and Synthesis of Novel Diluted Magnetic Semiconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and Synthesis of Novel Diluted Magnetic Semiconductors Diluted magnetic semiconductors (DMSs) are semiconductors doped with small amounts of magnetic active transition...

  1. Ground-water geochemistry and radionuclide activity in the Cambrian-Ordovician aquifer of Dodge and Fond du Lac counties, Wisconsin. Technical report

    SciTech Connect (OSTI)

    Weaver, T.R.; Bahr, J.M.; Anderson, M.P.

    1990-01-01

    Analyses of groundwater from wells in the Cambrian-Ordovician aquifer of eastern Wisconsin indicate that regions of the aquifer contain elevated concentrations of dissolved solids, chloride and sulfate. Groundwater from several wells in the area also approach or exceed the current drinking water standard for combined radium activity. Significant changes in groundwater chemistry occur where the aquifer becomes confined by the Maquoketa shale. Concentrations of Cl(-), SO4(2-) and Na(+) increase in the confined region, and the highest combined radium activities are typically observed in the area. Geochemical modeling implies that the observed changes in major ion groundwater chemistry occur in response to the presence of the confining unit which may act as a source of SO4(2-), through gypsum dissolution, and Na(+), through cation exchange. A finite difference groundwater flow model was linked to a particle tracking routine to determine groundwater flow paths and residence times in the aquifer near the boundary between unconfined and confined conditions. Results suggest that the presence of the confining unit produces a vertically stratified flow regime in the confined region.

  2. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    SciTech Connect (OSTI)

    Oh, Jae Eun; Monteiro, Paulo J.M.; Jun, Ssang Sun; Choi, Sejin; Clark, Simon M.

    2010-02-15

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 deg. C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

  3. Controlled Source Frequency-Domain Magnetics | Open Energy Information

    Open Energy Info (EERE)

    of the ground where magnetic field measurements are recorded. The locations of the field measurement stations are identified using a Global Positioning System (GPS). The measured...

  4. Substation grounding programs

    SciTech Connect (OSTI)

    Meliopoulos, A.P.S. . Electric Power Lab.)

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  5. Double hull grounding experiments

    SciTech Connect (OSTI)

    Rodd, J.L.; Sikora, J.P.

    1995-12-31

    In the last few years the public and governments of many nations have become increasingly aware of the need for improving oil tanker safety. The requirements for double hull tankers are an attempt to address this need through legislation. Even though a number of investigations on the mechanics of collisions have been done in the past, until recently very little research supported the development of structural improvements to reduce oil tanker damage during grounding and stranding accidents. An aggressive evaluation of double hull tanker crashworthiness in stranding and grounding accidents is underway at CD/NSWC (formerly the David Taylor Research Center). The ability to predict damage from grounding accidents accurately is not currently available. The objective of this paper is to present qualitatively the structural failure mechanisms associated with stranding and grounding events for candidate double hull tanker structures and to present some simple methods for comparing damage scenarios. A comparison of the structural performance of key features in several very different designs will provide useful information toward this understanding.

  6. Environmental geophysics at Beach Point, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Miller, S.F.; Mandell, W.A.; Wrobel, J.

    1994-07-01

    Geophysical studies at Beach Point Peninsula, in the Edgewood area of Aberdeen Proving Ground, Maryland, provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies permit construction of the most reasonable scenario linking dense, nonaqueous-phase liquid contaminants introduced at the surface with their pathway through the surficial aquifer. Subsurface geology and contaminant presence were identified by drilling, outcrop mapping, and groundwater sampling and analyses. Suspected sources of near-surface contaminants were defined by magnetic and conductivity measurements. Negative conductivity anomalies may be associated with unlined trenches. Positive magnetic and conductivity anomalies outline suspected tanks and pipes. The anomalies of greatest concern are those spatially associated with a concrete slab that formerly supported a mobile clothing impregnating plant. Resistivity and conductivity profiling and depth soundings were used to identify an electrical anomaly extending through the surficial aquifer to the basal pleistocene unconformity, which was mapped by using seismic reflection methods. The anomaly may be representative of a contaminant plume connected to surficial sources. Major activities in the area included liquid rocket fuel tests, rocket fuel fire suppression tests, pyrotechnic material and smoke generator tests, and the use of solvents at a mobile clothing impregnating plant.

  7. Three-dimensional magnetic restructuring in two homologous solar flares in the seismically active NOAA AR 11283

    SciTech Connect (OSTI)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin; Wiegelmann, Thomas; Jiang, Chaowei; Dennis, Brian R.; Su, Yang; Donea, Alina

    2014-11-10

    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km s{sup –1} after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km s{sup –1} after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has a weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.

  8. Method and apparatus for control of a magnetic structure

    DOE Patents [OSTI]

    Challenger, Michael P.; Valla, Arthur S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  9. Dynamic control of spin states in interacting magnetic elements

    DOE Patents [OSTI]

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  10. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  11. Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  12. Ground Gravity Survey At Cove Fort Area (Toksoz, Et Al, 2010...

    Open Energy Info (EERE)

    Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes We...

  13. Ground Gravity Survey At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Maui Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Maui Area (DOE GTP) Exploration Activity Details...

  14. Ground Gravity Survey At Raft River Geothermal Area (1957-1961...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River...

  15. Ground water hydrology report: Revision 1, Attachment 3. Final

    SciTech Connect (OSTI)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  16. STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL

    SciTech Connect (OSTI)

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2012-11-10

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  17. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back

  18. Grounded Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Grounded Renewable Energy Jump to: navigation, search Name: Grounded Renewable Energy Place: Carbondale, Colorado Zip: 81623 Sector: Renewable Energy, Solar Product: Grounded...

  19. The magnetic field of active region 11158 during the 2011 February 12-17 flares: Differences between photospheric extrapolation and coronal forward-fitting methods

    SciTech Connect (OSTI)

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang E-mail: xudongs@stanford.edu

    2014-04-10

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E{sub N} and potential energy E{sub P} but find up to a factor of 4 discrepancy in the free energy E {sub free} = E{sub N} – E{sub P} and up to a factor of 10 discrepancy in the decrease of the free energy ΔE {sub free} during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  20. Passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  1. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W.; Zevenbergen, Gary A.

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  2. Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...

    Open Energy Info (EERE)

    Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  3. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-21

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  4. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOE Patents [OSTI]

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  5. Realization of ground-state artificial skyrmion lattices at room temperature

    SciTech Connect (OSTI)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from the dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.

  6. Realization of ground-state artificial skyrmion lattices at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; Kirby, Brian J.; Fischer, Peter; Pierce, Daniel T.; Unguris, John; Borchers, Julie A.; Liu, Kai

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less

  7. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  8. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    SciTech Connect (OSTI)

    Bauer, Eric D; Booth, C H; Walter, M D; Kazhdan, D; Hu, Y - J; Lukens, Wayne; Maron, Laurent; Eisentein, Odile; Anderson, Richard

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  9. Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy...

    Open Energy Info (EERE)

    field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Additional References Retrieved from...

  10. Ground Magnetics At Neal Hot Springs Geothermal Area (Shaltry...

    Open Energy Info (EERE)

    old data faults and changes in sedimentary formations could be interpreted. References Daniel Shaltry (2012) BSU Geophysics Field Camp Report 2012 Additional References Retrieved...

  11. Ground Magnetics At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  12. Ground magnetic survey in the Coso Range, California | Open Energy...

    Open Energy Info (EERE)

    alteration along faults suggests that hot fluid filled fractures with high permeability. Authors Roquemore and G. R. Published Journal Journal of Geophysical Research, 5...

  13. Ground Magnetics At Dixie Valley Geothermal Area (Iovenitti,...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Additional...

  14. Ground Magnetics At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    of Neal Hot Springs and the surrounding areas. These studies were conducted by students and faculty in geophysics field camps from the Colorado School of Mines, Boise State...

  15. Ground Magnetics At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    show an elongated anomaly that parallels the axis of the ridge and corresponds to high density gravity anomalies recorded during the same study. The anomaly is interpreted as a...

  16. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  17. Spin-orbit coupling controlled ground state in Sr2ScOsO6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, A. E.; Morrow, R.; Fishman, R. S.; Calder, S.; Kolesnikov, A. I.; Lumsden, M. D.; Woodward, P. M.; Christianson, A. D.

    2016-06-27

    In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr2ScOsO6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d3Os5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective properties of 4d3 and 5d3more » systems and that theoretical treatments must include spin-orbit coupling.« less

  18. Interim progress report addendun - environmental geophysics: Building E5032 decommissioning, Aberdeen Proving Ground, January 1994 resurvey

    SciTech Connect (OSTI)

    Thompson, M.D.; McGinnis, L.D.; Benson, M.A.; Borden, H.M.; Padar, C.A.

    1994-12-01

    Geophysical surveying around Building E5032 using three new continuously recording geophysical instruments - two types of electromagnetic induction instruments and a cesium vapor magnetometer that were unavailable at the time of the original survey - has provided additional information for defining the location of buried debris, vaults, tanks, and the drainage/sump system near the building. The dominant geophysical signature around Building E5032 consists of a complex pattern of linear magnetic, electrical-conductivity, and electromagnetic field anomalies that appear to be associated with drainage/sewer systems, ditches, past railway activity, the location for Building T5033 (old number 99A), and the probable location of Building 91. Integrated analysis of data acquired using the three techniques, plus a review of the existing ground-penetrating-radar data, allow a more thorough definition of the sources for the observed anomalies.

  19. Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorus Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity

    SciTech Connect (OSTI)

    Du, Dan; Wang, Jun; Wang, Limin; Lu, Donglai; Smith, Jordan N.; Timchalk, Charles; Lin, Yuehe

    2011-05-15

    We report a new approach for electrochemical quantification of enzymatic inhibition and phosphorylation for biomonitoring of exposure to organophosphorus (OP) pesticides and nerve agents based on a magnetic beads (MBs) immunosensing platform. The principle of this approach is based on the combination of MBs immuno-capture based enzyme activity assay and competitive immunoassay of total amount of enzyme for simultaneous detection of enzyme inhibition and phosphorylation in biological fluids. Butyrylcholinesterase (BChE) was chosen as a model enzyme. In competitive immunoassay, the target total BChE in a sample (mixture of OP-inhibited BChE and active BChE) competes with the BChE modified on the MBs to bind to the limited anti-BChE antibody labeled with quantum dots (QDs-anti-BChE), and followed by electrochemical stripping analysis of the bound QDs conjugate on the MBs. This assay shows a linear response over the total BChE concentration range of 0.1~20 nM. Simultaneously, real time BChE activity was measured on an electrochemical carbon nanotube-based sensor coupled with microflow injection system after immuno-capture by MBs-anti-BChE conjugate. Therefore, the formed phosphorylated adduct (OP-BChE) can be estimated by the difference values of the total amount BChE (including active and OP-inhibited) and active BChE from established calibration curves. This approach not only eliminates the difficulty in screening of low-dose OP exposure (less than 20% inhibition of BChE) because of individual variation of BChE values, but also avoids the drawback of the scarce availability of OP-BChE antibody. It is sensitive enough to detect 0.5 nM OP-BChE, which is less than 2% BChE inhibition. This method offers a new method for rapid, accurate, selective and inexpensive quantification of phosphorylated adducts and enzyme inhibition for biomonitoring of OP and nerve agent exposures.

  20. Ground Gravity Survey At San Emidio Desert Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Emidio Desert Area (DOE GTP)...

  1. Ground Gravity Survey At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009) Exploration...

  2. Inverter Ground Fault Overvoltage Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Task Force on Effective Grounding, ITFEG), led by Brian Lydic of Fronius USA, for providing the test plan that served as the basis for the test procedure used in this study. ...

  3. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  4. Ground-water in Texas

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1985-01-01

    Amount 61% of the water used by Texans is ground-water. Some areas, both municipal and rural, depend entirely on ground-water. In many areas long term withdrawal is lowering the water levels, causing surface land subsidence, salt-water encroachment, and reducing future reservoir availability. The increasing probability of seepage from radioactive and toxic wastes, herbicide residues, septic systems, and oilfield brines is threatening dangerous contamination of fresh ground-water reservoirs. The Texas Department of Water Resources, the Texas Department of Health, State and private colleges and universities, the US Geological Survey, the Environmental Protection Agency, various underground water districts, among others, are cooperating with concerned hydrologists in a concentrated program to increase the efficiency of ground-water use and development, preserve the aquifer reservoirs, and decrease the pollution potential. 88 references.

  5. Document Number Q0029500 Ground Water Model 3.0 Ground Water...

    Office of Legacy Management (LM)

    Ground Water Model 3.0 Ground Water Model This section presents a steady-state ground water flow model and a coupled solute transport model (ground water model) for the alluvial ...

  6. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. Tritium Ground Water Issues ...

  7. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  8. Appendix B Ground Water Management Policy

    Office of Legacy Management (LM)

    Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas ... OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for ...

  9. Ground Source Solutions | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NG22 9GW Sector: Buildings Product: UK-based installer of ground source energy systems to domestic and commercial buildings. References: Ground Source...

  10. Transient performance of substation structures and associated grounding systems

    SciTech Connect (OSTI)

    Dawalibi, F.P.; Xiong, W.; Ma, J.

    1995-05-01

    When lightning strikes an electric substation, large currents generated by the stroke flow in the above ground structures and grounding system and dissipate in the soil. The electromagnetic fields generated by such high currents may cause damage to equipment and may be dangerous to personnel working nearby. In this paper, the frequency and time domain performance of a substation subjected to a lightning strike is described and discussed. The computed scalar potentials, electric fields, and magnetic fields are presented graphically as a function of spatial coordinates, as a function of time and as a function of both. Two cases are considered. The first case examines the substation grounding system only, while the second case includes an above-ground structure as well. It is believed that the results of the second case have not been published before. A double exponential lightning surge current is injected at one corner of the substation. The response of the grounding system to the frequency domain electromagnetic spectrum of this signal is computed by a frequency domain electromagnetic field analysis software package. The temporal and spatial distributions of the electromagnetic fields inside and near the substation are obtained by an inverse Fourier transformation of all these responses. The presence of a soil with an arbitrary resistivity and permittivity is accurately taken into account. The analysis sheds some new light on the understanding of the effects which take place at the higher frequencies.

  11. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  12. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  13. LINE-ABOVE-GROUND ATTENUATOR

    DOE Patents [OSTI]

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  14. Environmental geophysics of the Pilot Plant on the west branch of Canal Creek, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    McGinnis, L.D.; Miller, S.F.; Daudt, C.R.; Thompson, M.D.; Borden, H.; Benson, M.; Wrobel, J.

    1994-05-01

    Plans to demolish and remediate the Pilot Plant complex in the Edgewood Area of Aberdeen Proving Ground have served to initiate a series of nonintrusive, environmental-geophysical studies. The studies are assisting in the location and identification of pipes, tanks, trenches, and liquid waste in the subsurface. Multiple databases have been integrated to provide support for detection of underground utilities and to determine the stratigraphy and lithology of the subsurface. The studies were conducted within the double security fence and exterior to the double fence, down gradient toward the west branch of Canal Creek. To determine if contaminants found in the creek were associated with the Pilot Plant, both the east and west banks were included in the study area. Magnetic, conductivity, inductive emf, and ground-penetrating-radar anomalies outline buried pipes, trenches, and various pieces of hardware associated with building activities. Ground-penetrating-radar imagery also defines a paleovalley cut 30 ft into Potomac Group sediments of Cretaceous age. The paleovalley crosses the site between Building E5654 and the Pilot Plant fence. The valley is environmentally significant because it may control the pathways of contaminants. The Pilot Plant complex was used to manufacture CC2 Impregnite and incapacitating agents; it also served as a production facility for nerve agents.

  15. Apparatus and method for grounding compressed fuel fueling operator

    DOE Patents [OSTI]

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  16. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  17. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  18. Preparation of magnetic photocatalyst nanoparticlesTiO{sub 2}/SiO{sub 2}/MnZn ferriteand its photocatalytic activity influenced by silica interlayer

    SciTech Connect (OSTI)

    Laohhasurayotin, Kritapas; Pookboonmee, Sudarat; Viboonratanasri, Duangkamon; Kangwansupamonkon, Wiyong

    2012-06-15

    Highlights: ? TiO{sub 2}/SiO{sub 2}/MnZn ferrite acts as magnetic photocatalyst nanoparticle. ? SiO{sub 2} interlayer is used to prevent electron migration between photocatalyst and magnetic core. ? TiO{sub 2}/MnZn ferrite without SiO{sub 2} interlayer shows poor magnetic and photocatalytic property. -- Abstract: A magnetic photocatalyst, TiO{sub 2}/SiO{sub 2}/MnZn ferrite, was prepared by stepwise synthesis involving the co-precipitation of MnZn ferrite as a magnetic core, followed by a coating of silica as the interlayer, and titania as the top layer. The particle size and distribution of magnetic nanoparticles were found to depend on the addition rate of reagent and dispersing rate of reaction. The X-ray diffractometer and transmission electron microscope were used to examine the crystal structures and the morphologies of the prepared composites. Vibrating sample magnetometer was also used to reveal their superparamagnetic property. The UVVis spectrophotometer was employed to monitor the decomposition of methylene blue in the photocatalytic efficient study. It was found that at least a minimum thickness of the silica interlayer around 20 nm was necessary for the inhibition of electron transference initiated by TiO{sub 2} and MnZn ferrite.

  19. Magnetic order in the induced magnetic moment system Pr3In

    SciTech Connect (OSTI)

    Fanelli, V. R.; Christianson, Andrew D; Jaime, M.; Thompson, J. D.; Lawrence, J. M.; Suzuki, H. S.

    2008-01-01

    Pr3In is a single ground state compound which exhibits antiferromagnetic order below 11.4 K due to the exchange induced admixture of crystalline electric field levels. Additional information regarding the complex magnetic behavior of this compound can be gained through application of magnetic fields. We report specific heat and magnetocaloric effect measurements to 15 T and magnetization measurements to 44 T on single crystal samples of Pr3In. A new magnetic phase is revealed above 1.9 T and below 11.4 K.

  20. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  1. Mineral Magnetism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2016 Small piles of rare earth elements In the United States, rare-earth elements used in strong magnets, such as neodymium and samarium, are scarce due to limits on ...

  2. CRYOGENIC MAGNETS

    DOE Patents [OSTI]

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  3. The valence-fluctuating ground state of plutonium

    SciTech Connect (OSTI)

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; Ramos, Mike; Trouw, Frans; Zhu, Jian -Xin; Haule, Kristjan; Kotliar, Gabriel; Bauer, Eric D.

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed by valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.

  4. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    SciTech Connect (OSTI)

    Bobra, M. G.; Couvidat, S.

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

  5. Ground control for highwall mining

    SciTech Connect (OSTI)

    Zipf, R.K.; Mark, C.

    2007-09-15

    Perhaps the greatest risk to both equipment and personnel associated with highwall mining is from ground control. The two most significant ground control hazards are rock falls from highwall and equipment entrapment underground. In the central Appalachians, where the majority of highwall mining occurs in the USA, hillseams (or mountain cracks) are the most prominent structure that affects highwall stability. The article discusses measures to minimise the risk of failure associated with hillstreams. A 'stuck' or trapped highwall miner, and the ensuring retrieval or recovery operation, can be extremely disruptive to the highwall mining process. Most entrapment, are due to roof falls in the hole. The options for recovery are surface retrieval, surface excavation or underground recovery. Proper pillar design is essential to maintain highwall stability and prevent entrapments. NIOSH has developed the Analysis of Retreat Mining Pillar stability-Highwall Mining (ARMPS-HWM) computer program to help mine planners with this process. 10 figs.

  6. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  7. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detector’s coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  8. Itinerant magnetism in metallic CuFe2Ge2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shanavas, K. V.; Singh, David J.; He, Ruihua

    2015-03-25

    Theoretical calculations are performed to understand the electronic structure and magnetic properties of CuFe2Ge2. The band structure reveals large electron density N(EF) at the Fermi level suggesting a strong itinerant character of magnetism. The Fermi surface is dominated by two dimensional sheet like structures, with potentially strong nesting between them. The magnetic ground state appears to be ferromagnetic along a and antiferromagnetic in other directions. The results show that CuFe2Ge2 is an antiferromagnetic metal, with similarities to the Fe-based superconductors; such as magnetism with substantial itinerant character and coupling between magnetic order and electrons at the Fermi energy.

  9. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect (OSTI)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  10. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect (OSTI)

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  11. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet

    Office of Scientific and Technical Information (OSTI)

    interfaces: A comprehensive study of Gd/Ni (Journal Article) | SciTech Connect Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni Citation Details In-Document Search Title: Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition

  12. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    heating andor cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground. Other definitions:Wikipedia Reegle...

  13. Ground Source Heat Pump Subprogram Overview

    Broader source: Energy.gov [DOE]

    This overview of GTP's Ground Source Heat Pump subprogram was given at GTP's Program Peer Review on May 18, 2010.

  14. ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

  15. A novel magnetically separable TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber with high photocatalytic activity under UV-vis light

    SciTech Connect (OSTI)

    Li, Cong-Ju; Wang, Jiao-Na; Wang, Bin; Gong, Jian Ru; Lin, Zhang

    2012-02-15

    Graphical abstract: A novel magnetically separable composite photocatalyst TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber was prepared by sol-gel method and electrospinning technique, which can be reclaimed with a magnet, and the decolorizing efficiency of MB solution reached 95.87%. Highlights: Black-Right-Pointing-Pointer The composite TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofibers with diameter of 110 {+-} 28 nm have been successfully synthesized by the combination of sol-gel method and electrospinning technique. Black-Right-Pointing-Pointer The presence of Co{sup 2+} or/and Fe{sup 3+} ions may occupy some of the lattice sites of TiO{sub 2} to form an iron-titanium solid solution and narrow the band gap, which broadens the response region of visible light. Black-Right-Pointing-Pointer The resultant nanofibers not only have high decomposition efficiency with methylene blue (MB) under the UV irradiation, which is close to that of Degussa P25, but also can be separated with a magnet and avoid the secondary pollution of the treated water. -- Abstract: A novel magnetically separable heterogeneous photocatalyst TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofiber was prepared by sol-gel method and electrospinning technology, followed by heat treatment at 550 Degree-Sign C for 2 h. The phase structure, morphology and magnetic property of the composite nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope and vibrating sample magnetometer analysis. The photocatalytic studies of TiO{sub 2}/CoFe{sub 2}O{sub 4} fibers suggested that the presence of CoFe{sub 2}O{sub 4} not only enhanced the absorbance of UV light, but also broadened the response region to visible light. The decolorizing efficiency of methylene blue (MB) solution reaches 95.87% over TiO{sub 2}/CoFe{sub 2}O{sub 4} nanofibers under 300 W Hg lamp after 5 h, which is close to that of Degussa P25. Furthermore, these fibers can be collected with a magnet for reuse and

  16. Biofunctionalized magnetic vortex microdisks for targeted cancer cell destruction.

    SciTech Connect (OSTI)

    Kim, D.-H.; Rozhkova, E. A.; Ulasov, I. V.; Bader, S. D.; Rajh, T.; Lesniak, M. S.; Novosad, V.; Univ. of Chicago Pritzker School of Medicine

    2010-01-01

    Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve {approx}90% cancer-cell destruction in vitro.

  17. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  18. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  19. Operation greenhouse, scientific director`s report of atomic weapon tests at Eniwetok, 1951, annex 9.2, Sandia Corporation Proving Ground Group. Part 3. Fuzing and firing activities, December 1951 (sanitized version)

    SciTech Connect (OSTI)

    1996-10-29

    This report covers the activities of the Fuzing and Firing Team of Task Unit 3.1.4, the Weapons Assembly Organization. The Fuzing and Firing Team was directly responsible for the assembly and testing of the various fuzing and firing systems necessary to detonate the experimental weapons under test. Other responsibilities of this group included the supplying of fiducial signals from the firing sets for the transit-time experiments being conducted by other groups and a partial responsibility for the final arming of the weapons fired on the towers.

  20. Magnetic switch for reactor control rod. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  1. Ground Source Heat Pump Demonstration Projects | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump Demonstration Projects Ground Source Heat Pump Demonstration Projects Below are the project presentations and respective peer review results for Ground ...

  2. Appendix D Surface Water and Ground Water Time-Concentration...

    Office of Legacy Management (LM)

    Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left ...

  3. North Village Ground Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Village Ground Source Heat Pumps North Village Ground Source Heat Pumps Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with ...

  4. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  5. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  6. Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  7. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.; Hall, R.; Colina, K.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  8. Promising Technology: Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Ground source heat pumps (GSHP) use the constant temperature of the Earth as the heat exchange medium instead of the outside air temperature. During the winter, a GSHP uses the ground as a heat source to provide heating, and during the summer, a GSHP uses the ground as a heat sink to provide cooling. Although more expensive than air-source heat pumps, GSHP’s are much more efficient, especially in cold temperatures.

  9. AMS Ground Truth Measurements: Calibration and Test Lines

    SciTech Connect (OSTI)

    Wasiolek, P.

    2013-11-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  10. Ground Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    Et Al., 2000) Dixie Valley Geothermal Area 1999 2000 Precise Gravimetry and Geothermal Reservoir Management Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell, Et...

  11. Pacific Northwest National Laboratory Grounds Maintenance

    SciTech Connect (OSTI)

    2009-08-05

    FEMP Water Efficiency Best Management Practice #4 and #5: Case study overview of the grounds maintenance program for Pacific Northwest National Laboratory.

  12. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A.

    1996-11-01

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  13. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  14. Enclosed ground-flare incinerator

    DOE Patents [OSTI]

    Wiseman, Thomas R.

    2000-01-01

    An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.

  15. Sandia California breaks ground on new building | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) breaks ground on new building Monday, August 3, 2015 - 11:11am A groundbreaking ceremony was recently held in Livermore, Calif., for a building that will enable consolidation of "front door" activities for Sandia National Laboratories California. NNSA Blog Building 926 will house the site's human resources department and will be home of the training center for students and new hires. The new 20,000 square foot facility, funded by institutional investments,

  16. Magnetic switch for reactor control rod

    DOE Patents [OSTI]

    Germer, John H.

    1986-01-01

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  17. Superconducting magnet development in Japan

    SciTech Connect (OSTI)

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  18. Analysis of a magnetically trapped atom clock

    SciTech Connect (OSTI)

    Kadio, D.; Band, Y. B.

    2006-11-15

    We consider optimization of a rubidium atom clock that uses magnetically trapped Bose condensed atoms in a highly elongated trap, and determine the optimal conditions for minimum Allan variance of the clock using microwave Ramsey fringe spectroscopy. Elimination of magnetic field shifts and collisional shifts are considered. The effects of spin-dipolar relaxation are addressed in the optimization of the clock. We find that for the interstate interaction strength equal to or larger than the intrastate interaction strengths, a modulational instability results in phase separation and symmetry breaking of the two-component condensate composed of the ground and excited hyperfine clock levels, and this mechanism limits the clock accuracy.

  19. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  20. Strategic Ground Delivery Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Ground Delivery Services Strategic Ground Delivery Services Use of New Strategically Source Agreement UPS.pdf.pdf (96.79 KB) More Documents & Publications POLICY FLASH 2010-42 Use of New Strategically Sourced Blanket Purchase Agreement for Domestic Delivery Services with United Parcel Service Minutes from the Print and Mail Managers Exchange Forum Teleconferences

  1. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  2. Permanent magnet assembly

    DOE Patents [OSTI]

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  3. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect (OSTI)

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  4. Studying Altocumulus with Ice Virga Using Ground-Based Active...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system energy budget, but also the atmospheric ... composition (Rauber and Tokay 1991; Cober et al. 2001). ... The U.S. Department of Energy (DOE) Atmospheric Radiation ...

  5. Studying Altocumulus Plus Virga with Ground-based Active and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-term Cloud Microphysical Properties Dataset for Arctic Cloud Study Based on ARCF NSA ... meeting. *The algorithms are applying to multiple-year observations at the ARCF NSA site. ...

  6. Studying Altocumulus Plus Virga with Ground-based Active and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties Observed at the ARCF NSA site Zhien Wang, Ming Zhao, and Min Deng ... study cloud-aerosol interactions at the NSA site. * Further analysis of ice phase cloud ...

  7. Magnetization plateaus of dipolar spin ice on kagome lattice

    SciTech Connect (OSTI)

    Xie, Y. L.; Wang, Y. L.; Yan, Z. B.; Liu, J.-M.

    2014-05-07

    Unlike spin ice on pyrochlore lattice, the spin ice structure on kagome lattice retains net magnetic charge, indicating non-negligible dipolar interaction in modulating the spin ice states. While it is predicted that the dipolar spin ice on kagome lattice exhibits a ground state with magnetic charge order and ?3???3 spin order, our work focuses on the magnetization plateau of this system. By employing the Wang-Landau algorithm, it is revealed that the lattice exhibits the fantastic three-step magnetization in response to magnetic field h along the [10] and [01] directions, respectively. For the h//[1 0] case, an additional ?3/6M{sub s} step, where M{sub s} is the saturated magnetization, is observed in a specific temperature range, corresponding to a new state with charge order and short-range spin order.

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    1995-05-01

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  9. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  10. Try This: Household Magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get two of these magnets, they are often the size of a business card....

  11. The valence-fluctuating ground state of plutonium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; Abernathy, Douglas L.; Lumsden, Mark D.; Lawrence, John M.; Thompson, Joe D.; Lander, Gerard H.; Mitchell, Jeremy N.; Richmond, Scott; et al

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less

  12. Magnetization of neutron matter

    SciTech Connect (OSTI)

    Bigdeli, M.

    2011-09-21

    In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

  13. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  14. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect (OSTI)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  15. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  16. An itinerant antiferromagnetic metal without magnetic constituents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; et al

    2015-07-13

    The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemedmore » crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.« less

  17. An itinerant antiferromagnetic metal without magnetic constituents

    SciTech Connect (OSTI)

    Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M. C.; Uemura, Y. J.; Morosan, E.

    2015-07-13

    The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.

  18. Ground Source Heat Pump Subprogram Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Demonstration s, 51.4 Innovative Exploration Technologies, 98.1 Ground Source Heat Pumps, ... chiller, VAV air handling system, and gas-fired hot water boiler *54 GHP units, 200 ...

  19. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    efficient when cooling your home. Not only does this save energy and money, it reduces air pollution. GSHP System Ground source heat pump systems consist of three parts: the...

  20. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  1. 118-K-1 Burial Ground - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  2. MAGNETIC DENSITOMETER

    DOE Patents [OSTI]

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  3. Natural radionuclides in ground waters and cores

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  4. Correlating Size and Composition-Dependent Effects with Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Correlating Size and Composition-Dependent Effects with Magnetic, Mssbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles ...

  5. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Resonance Imaging (MRI) is used to localize brain activity during sensory or cognitive stimulation of the subject. Images of the subject's brain at rest and then during ...

  6. Controlled Source Frequency-Domain Magnetics (Montgomery, Et...

    Open Energy Info (EERE)

    (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics (Montgomery, Et Al.,...

  7. Controlled Source Frequency-Domain Magnetics At Salt Wells Area...

    Open Energy Info (EERE)

    At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics At...

  8. The Use of Small Coolers in a Magnetic Field

    SciTech Connect (OSTI)

    Green, Michael A.; Witte, Holger

    2007-07-25

    Small 4 K coolers are used to cool superconducting magnets.These coolers are usually used with high temperature suerconductor (HTS)leads. In most cases, magnet is shielded with iron or active shieldcoils. Thus the field at the cooler is low. There are instances when thecooler must be in a magnetic field. Gifford McMahon (GM) coolers or pulsetube coolers are commercially available to cool the magnets. This paperwill discuss how the two types of coolers are affected by the straymagnetic field. Strategies for using coolers on magnets that generatestray magnetic fields are discussed.

  9. Magnetic multilayer structure

    DOE Patents [OSTI]

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  10. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  11. Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays

    SciTech Connect (OSTI)

    Vieira Jnior, D. S.; Leonel, S. A. Dias, R. A. Toscano, D. Coura, P. Z. Sato, F.

    2014-09-07

    In this work, we used numerical simulations to study the magnetic ground state of the thin elongated (elliptical) ferromagnetic nano-islands made of Permalloy. In these systems, the effects of demagnetization of dipolar source generate a strong magnetic anisotropy due to particle shape, defining two fundamental magnetic ground state configurationsvortex or type C. To describe the system, we considered a model Hamiltonian in which the magnetic moments interact through exchange and dipolar potentials. We studied the competition between the vortex states and aligned statestype Cas a function of the shape of each elliptical nano-islands and constructed a phase diagram vortextype C state. Our results show that it is possible to obtain the elongated nano-islands in the C-state with aspect ratios less than 2, which is interesting from the technological point of view because it will be possible to use smaller islands in spin ice arrays. Generally, the experimental spin ice arrangements are made with quite elongated particles with aspect ratio approximately 3 to ensure the C-state.

  12. Quantitative risk of oil tanker groundings. Master`s thesis

    SciTech Connect (OSTI)

    Amrozowicz, M.D.

    1996-06-01

    The culture, design, and operation of the maritime industry all contribute to create an error-inducing system. As oil tankers have become larger, the tolerance for error has decreased as the consequences have increased. Tankers are the largest contributor by vessel type to worldwide oil spill volume. Human error has consistently been attributed to 80 percent of the marine accidents. A closer look reveals that many accidents attributed to human error are system errors. In fact, the term human error is unwarranted in many high-risk accidents and its use is a perforation of the context. The maritime industry has been identified as a high risk operation, requiring an active risk management program. A probabilistic risk assessment (PRA) provides a formal process of determining the full range of possible adverse occurrences, probabilities, and expected costs for any undesirable event. A PRA can identify those areas that offer the greatest risk-reducing potential. This thesis focuses on the first level of a proposed three-level risk model to determine the probability of a tanker grounding. The approach utilizes fault trees and event trees and incorporates The Human Error Rate Prediction data to quantify individual errors. The result allows the identification of high-leverage factors in order to determine the most effective and efficient use of resources to reduce the probability of grounding; showing that the development of the Electronic Chart Display and Information System incorporated with the International Safety Management Code can significantly reduce the probability of grounding.

  13. Microarcsecond relative astrometry from the ground with a diffractive...

    Office of Scientific and Technical Information (OSTI)

    ground with a diffractive pupil Citation Details In-Document Search Title: Microarcsecond relative astrometry from the ground with a diffractive pupil Authors: Ammons, S M ; ...

  14. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water ...

  15. Department of Veterans Affairs, FONSI - Ground mounted solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National ...

  16. Finite Volume Based Computer Program for Ground Source Heat Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finite Volume Based Computer Program for Ground Source Heat Pump Systems Finite Volume Based Computer Program for Ground Source Heat Pump Systems Project objective: Create a new ...

  17. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  18. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  19. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  20. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Energy Savers [EERE]

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after ...

  1. Category:Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Electromagnetic Techniques page? For...

  2. FIELD TEST AND EVALUATION OF RESIDENTIAL GROUND SOURCE HEAT PUMP...

    Office of Scientific and Technical Information (OSTI)

    TEST AND EVALUATION OF RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEMS USING ALTERNATIVE VERTICAL-BORE GROUND HEAT EXCHANGERS Citation Details In-Document Search Title: FIELD TEST AND ...

  3. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    Review: Ground-Based Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring ...

  4. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    Water Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197" Feedback...

  5. Recycling Magnets | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Magnets Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments, ATLAS and CMS at CERN, several tens of millions of dollars for an experiment like our GlueX experiment in Hall D, being built as part of our upgrade project. Among the expensive components of many experiments is a large magnet or sometimes more than one magnet. Sometimes the magnets have interesting

  6. Magnetic Damping For Maglev

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  7. Spin-liquid ground state in the frustrated J1?J2 zigzag chain system BaTb2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aczel, A. A.; Li, L.; Garlea, V. O.; Yan, J. -Q.; Weickert, F.; Zapf, V. S.; Movshovich, R.; Jaime, M.; Baker, P. J.; Keppens, V.; et al

    2015-07-13

    We have investigated polycrystalline samples of the zigzag chain system BaTb2O4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals the presence of low-temperature, short-range, intrachain magnetic correlations between Tb3+ ions. muSR indicates that these correlations are dynamic, as no signatures of static magnetism are detected by the technique down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb2O4.

  8. Spin-liquid ground state in the frustrated J1-J2 zigzag chain system BaTb2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aczel, A. A.; Li, L.; Garlea, V. O.; Yan, J. -Q.; Weickert, F.; Zapf, V. S.; Movshovich, R.; Jaime, M.; Baker, P. J.; Keppens, V.; et al

    2015-07-13

    We have investigated polycrystalline samples of the zigzag chain system BaTb2O4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals low-temperature, short-range, intrachain magnetic correlations between Tb3+ ions. Muon spin relaxation measurements indicate that these correlations are dynamic, as the technique detects no signatures of static magnetism down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb2O4.

  9. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  10. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  11. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W.; Kiekel, Paul

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  12. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  13. Substation grounding programs. Volume 5, Applications manual

    SciTech Connect (OSTI)

    Meliopoulos, A.P.S.

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  14. Ground Control for Emplacement Drifts for SR

    SciTech Connect (OSTI)

    Y. Sun

    2000-04-07

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k_0=0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the

  15. ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01

    Broader source: Energy.gov [DOE]

     The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

  16. Tamper resistant magnetic stripes

    DOE Patents [OSTI]

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  17. Record of Decision for Ground Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision for Ground Water Record of Decision for Ground Water Record of Decision for Ground Water (April 1997) Record of Decision for Ground Water (625.12 KB) More Documents & Publications EIS-0198: Record of Decision EIS-0170: Record of Decision (April 1997) EIS-0251: Second Record of Decision (May 1997)

  18. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect (OSTI)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  19. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    SciTech Connect (OSTI)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-03-20

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  20. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging...

  1. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in...

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1995-09-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  3. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  4. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  5. Programmatic Environmental Impact Statement for Ground Water | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Volumes I & II (October 1996) Optical character recognition has been applied to these files, but full search capabilities are not guaranteed. Programmatic Environmental Impact Statement for Ground Water-Volume I (10.79 MB) Programmatic Environmental Impact Statement for Ground Water-Volume II

  6. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less

  7. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    SciTech Connect (OSTI)

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

  8. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  9. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  10. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    SciTech Connect (OSTI)

    Wu, S.; Huang, Q.; Wang, Z.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-01-28

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  11. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  12. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  13. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  14. Hysteresis prediction inside magnetic shields and application

    SciTech Connect (OSTI)

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-15

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  15. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOE Patents [OSTI]

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  16. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an array of magnetic nano-islands along a geometry that is not found in natural magnets. ... an array of magnetic nano-islands along a geometry that is not found in natural magnets. ...

  17. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction

  18. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  19. Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text

    SciTech Connect (OSTI)

    Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

    1989-01-01

    This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

  20. Ground-water surveillance at the Hanford Site for CY 1983

    SciTech Connect (OSTI)

    Prater, L.S.; Rieger, J.T.; Cline, C.S.; Jensen, E.J.; Liikala, T.L.; Oster, K.R.

    1984-07-01

    Operations at the Hanford Site have resulted in the discharge of large volumes of process cooling water and other waste waters to the ground. These effluents contain low level of radioactive and chemical substances. During 1983, 328 monitoring wells were sampled at various times for radioactive and chemical constituents. Three of these constituents, specifically tritium, nitrate, and gross beta activity, were selected for detailed discussion in this report because they are more readily transported in the ground water than some of the other constituents. Transport of these constituents in the ground water has resulted in the formation of plumes that can be mapped by contouring the analytical data obtained from the monitoring wells. This report describes recent changes in the configuration of the tritium, nitrate and gross beta plumes. Changes or trends in contaminant levels in wells located within both the main plumes (originating from the 200 Areas) and the smaller plumes are discussed in this report. Two potential pathways for radionuclide transport from the ground water to the environmental are discussed in this report, and the radiological impacts are examined. In addition to describing the present status of the ground water beneath the Hanford Site, this report contains the results of studies conducted in support of the ground-water surveillance effort during CY 1983. 21 references, 26 figures, 5 tables.

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  2. On the increase of the non-uniform scaling of the magnetic field variations before the M{sub w}9.0 earthquake in Japan in 2011

    SciTech Connect (OSTI)

    Skordas, E. S.

    2014-06-01

    By applying Detrended Fluctuation Analysis (DFA) to the time series of the geomagnetic data recorded at three measuring stations in Japan, Rong et al. in 2012 recently reported that anomalous magnetic field variations were identified well before the occurrence of the disastrous Tohoku M{sub w}9.0 earthquake that occurred on 11 March 2011 in Japan exhibiting increased non-uniform scaling behavior. Here, we provide an explanation for the appearance of this increase of non-uniform scaling on the following grounds: These magnetic field variations are the ones that accompany the electric field variations termed Seismic Electric Signals (SES) activity which have been repeatedly reported that precede major earthquakes. DFA as well as multifractal DFA reveal that the latter electric field variations exhibit scaling behavior as shown by analyzing SES activities observed before major earthquakes in Greece. Hence, when these variations are superimposed on a background of pseudosinusoidal trend, their long range correlation propertiesquantified by DFAare affected resulting in an increase of the non-uniform scaling behavior. The same is expected to hold for the former magnetic field variations. This explanation is strengthened by recent findings showing that the fluctuations of the order parameter of seismicity exhibited an unprecedented minimum almost two months before the Tohoku earthquake occurrence which is characteristic for an almost simultaneous emission of Seismic Electric Signals activity.

  3. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  4. Pressure tuning of competing magnetic interactions in intermetallic CeFe2

    SciTech Connect (OSTI)

    Wang, Jiyang; Feng, Yejun; Jaramillo, R.; van Wezel, Jasper; Canfield, Paul C.; Rosenbaum, T.F.

    2012-07-20

    We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.

  5. Ground-Based Microwave Radiometer Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm

  6. Compression of ground-motion data

    SciTech Connect (OSTI)

    Long, J.W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  7. Grounding and shielding in the accelerator environment

    SciTech Connect (OSTI)

    Kerns, Q.

    1991-12-31

    Everyday features of the accelerator environment include long cable runs, high power and low level equipment sharing building space, stray electromagnetic fields and ground voltage differences between the sending and receiving ends of an installation. This paper pictures some Fermilab installations chosen to highlight significant features and presents practices, test methods and equipment that have been helpful in achieving successful shielding. Throughout the report are numbered statements aimed at summarizing good practices and avoiding pitfalls.

  8. Breaking New Ground The Answer Is....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Ground The Answer Is.... NSTec enters groundbreaking science partnership. CTOS leads the way at FEMA training symposium. Middle School Science Bowl hailed a success. See page 6. See page 8. Use Restriction - What does it Mean? Since 1989, the U.S. Department of Energy Environmental Management (EM) Program has been identifying and addressing areas on the Nevada National Security Site (NNSS) that have been impacted by historical nuclear testing. To date, EM has successfully closed more than

  9. Posters Ground-Based Radiometric Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters Ground-Based Radiometric Observations of Atmospheric Water for Climate Research J. B. Snider, D. A. Hazen, A. J. Francavilla, W. B. Madsen, and M. D. Jacobson National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Surface-based microwave and infrared radiometers have been employed by the National Oceanic and Atmospheric Administration's Environmental Technology Laboratory (NOAA/ETL) in climate research since 1987. The ability

  10. Mechanical interface having multiple grounded actuators

    DOE Patents [OSTI]

    Martin, Kenneth M.; Levin, Mike D.; Rosenberg, Louis B.

    1998-01-01

    An apparatus and method for interfacing the motion of a user-manipulable object with a computer system includes a user object physically contacted or grasped by a user. A 3-D spatial mechanism is coupled to the user object, such as a stylus or a medical instrument, and provides three degrees of freedom to the user object. Three grounded actuators provide forces in the three degrees of freedom. Two of the degrees of freedom are a planar workspace provided by a closed-loop linkage of members, and the third degree of freedom is rotation of the planar workspace provided by a rotatable carriage. Capstan drive mechanisms transmit forces between actuators and the user object and include drums coupled to the carriage, pulleys coupled to grounded actuators, and flexible cables transmitting force between the pulleys and the drums. The flexibility of the cable allows the drums to rotate with the carriage while the pulleys and actuators remain fixed to ground. The interface also may include a floating gimbal mechanism coupling the linkage to the user object. The floating gimbal mechanism includes rotatably coupled gimbal members that provide three degrees of freedom to the user object and capstan mechanisms coupled between sensors and the gimbal members for providing enhanced sensor resolution.

  11. Observation of ground-state Ramsey fringes

    SciTech Connect (OSTI)

    Weel, M.; Kumarakrishnan, A. [Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 (Canada)

    2003-06-01

    We have used trapped {sup 85}Rb atoms to demonstrate an atom interferometric measurement of atomic recoil in the frequency domain. The measurement uses echo techniques to generate a Ramsey fringe pattern. The pattern exhibits recoil components consistent with theoretical predictions. We find the measurement to be insensitive to magnetic field gradients and discuss the prospects for a precision measurement of the recoil frequency.

  12. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    SciTech Connect (OSTI)

    Wiebe, C. R.; Hallas, A. M.

    2015-04-01

    Pyrochlore structures, of chemical formula A{sub 2}B{sub 2}O{sub 7} (A and B are typically trivalent and tetravalent ions, respectively), have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the R{sub A}/R{sub B} cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ R{sub A}/R{sub B} ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure), metastable pyrochlores exist up to R{sub A}/R{sub B} = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  13. Transformer current sensor for superconducting magnetic coils

    DOE Patents [OSTI]

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  14. Bioinspired synthesis of magnetic nanoparticles

    SciTech Connect (OSTI)

    David, Anand

    2009-05-26

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall

  15. Conventional magnetic superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  16. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    SciTech Connect (OSTI)

    Belov, A. S. Markov, G. A.; Ryabov, A. O.; Parrot, M.

    2012-12-15

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  17. CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS June 1, 2010 - 12:00pm Addthis CONSTRUCTION OF KEY CLEANUP ...

  18. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0

  19. 5-MW Dynamometer Ground Breaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-MW Dynamometer Ground Breaking 5-MW Dynamometer Ground Breaking December 19, 2011 - 3:04pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D ...

  20. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  1. Final Environmental Assessment of Ground Water Compliance at...

    Office of Environmental Management (EM)

    458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA ... DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick ...

  2. Ground Water Compliance Action Plan for the Old Rifle, Colorado...

    Office of Legacy Management (LM)

    GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, ... GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, ...

  3. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  4. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  5. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  6. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  7. Crystal Field Disorder in the Quantum Spin Ice Ground State of Tb2Sn2 xTixO7

    SciTech Connect (OSTI)

    Gaulin, Bruce D.; Zhang, J.; Dahlberg, M. L.; Matthews, Maria J.; Bert, F.; Kermarrec, E.; Fritsch, Katharina; Granroth, Garrett E; Jiramongkolchai, P.; Amato, A.; Baines, C.; Cava, R. J.; Mendels, P.; Schiffer, P

    2015-01-01

    Spin ice physics marries that of hydrogen disorder in water ice, first discussed almost 60 years ago by Pauling, and that of low temperature magnetism on certain networks of connected tetrahedra. Recently the classical spin ice mag- nets Ho2Ti2O7 and Dy2Ti2O7 have shown an emergent artificial magneto- statics , which manifests itself as Coulombic spin correlations and excitations behaving as diffusive magnetic monopoles. The related pyrochlore magnet, Tb2Ti2O7, has been proposed as a quantum variant of spin ice, stabilized by 1 virtual excitations between the crystal field (CF) ground state doublet appro- priate to Tb3+, and its low lying excited state doublet. Isostructural Tb2Sn2O7 displays soft spin ice order, and its Tb3+ ground and excited CF eigenstates are known to differ relative to those of Tb2Ti2O7. We present a comprehensive study of Tb2Sn2 xTixO7 showing a novel, dynamic spin liquid state for all x other than the end members (0, 2). This state is the result of disorder in the low lying Tb3+ CF environments which de-stabilizes the mechanism by which quantum fluctuations contribute to ground state selection in Tb2Sn2 xTixO7.

  8. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.; Albano, Richard K.; Morrison, Jr., John L.

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  9. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  10. Pulse magnetic welder

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  11. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  12. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  13. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  14. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  15. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  16. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  17. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  18. Ferro- and antiferro-magnetism in (Np, Pu)BC

    SciTech Connect (OSTI)

    Klimczuk, T.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Wastin, F.; Falmbigl, M.; Rogl, P.

    2015-04-01

    Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of (Np,Pu)BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below T{sub N} = 44 K, whereas ferromagnetic ordering was found for NpBC below T{sub C} = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.

  19. Manufacturing the MFTF magnet

    SciTech Connect (OSTI)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-10-13

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime.

  20. Magnetically leviated superconducting bearing

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  1. Magnetic switches and circuits

    SciTech Connect (OSTI)

    Nunnally, W.C.

    1982-05-01

    This report outlines the use of saturable inductors as switches in lumped-element, magnetic-pulse compression circuits is discussed and the characteristic use of each is defined. In addition, the geometric constraints and magnetic pulse compression circuits used in short-pulse, low-inductance systems are considered. The scaling of presaturation leakage currents, magnetic energy losses, and switching times with geometrical and material parameters are developed to aid in evaluating magnetic pulse compression systems in a particular application. Finally, a scheme for increasing the couping coefficient in saturable stripline transformers is proposed to enable their use in the short-pulse, high-voltage regime.

  2. Coal mine ground control. 3rd ed.

    SciTech Connect (OSTI)

    Peng, S.S.

    2008-09-15

    The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

  3. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  4. Best Possible Strategy for Finding Ground States

    SciTech Connect (OSTI)

    Franz, Astrid; Hoffmann, Karl Heinz; Salamon, Peter

    2001-06-04

    Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.

  5. Spin-orbit driven magnetic insulating state with Jeff=1/2 character in a 4d oxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Calder, S.; Li, Ling; Okamoto, Satoshi; Choi, Yongseong; Mukherjee, Rupam; Haskel, Daniel; Mandrus, D.

    2015-11-30

    The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mottmore » iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with Jeff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with Jeff=12 character.« less

  6. Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice

    SciTech Connect (OSTI)

    Aidelsburger, M.; Atala, M.; Trotzky, S.; Chen, Y.-A.; Bloch, I.; Nascimbene, S.

    2011-12-16

    We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

  7. Hanford Site ground-water monitoring for April through June 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Mitchell, P.J.; Dennison, D.I.

    1988-01-01

    Pacific Northwest Laboratory (PNL) is conducting ground-water monitoring at the Hanford Site. Results for monitoring by PNL and Westinghouse Hanford Company (WHC) during April-June 1987 show that certain regulated hazardous materials and radionuclides exist in Hanford Site ground waters. The presence of regulated constituents in the ground water derives both from site operations and from natural sources. The major contamination problems defined by recent monitoring activities are carbon tetrachloride in the 200 West Area; cyanide in and north of the 200 East Area; hexavalent chromium contamination in the 100B, 100D, 100K, and 100H areas; chlorinated hydrocarbons in the vicinity of the Central Landfill; uranium at the 216-U-1 and 216-U-2 cribs in the 200 West Area; tritium across the site; and nitrate across the site. The distribution of hazardous materials related to site operations is more limited than the distribution of tritium and nitrate. 8 refs., 22 figs., 5 tabs.

  8. Ground-state structures of Hafnium clusters

    SciTech Connect (OSTI)

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  9. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  10. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  11. 4 Tesla Magnet Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Tesla Magnet Facility 4 Tesla Magnet Facility Argonne researchers recently acquired two decommissioned magnets from magnetic resonance imaging (MRI) scanners from hospitals in ...

  12. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  13. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.

  14. Passive magnetic bearing configurations

    DOE Patents [OSTI]

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  15. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect (OSTI)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  17. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  18. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect (OSTI)

    Casadei, Cecilia

    2012-05-09

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  19. Magnet pole tips

    DOE Patents [OSTI]

    Thorn, Craig E. (Wading River, NY); Chasman, Chellis (Setauket, NY); Baltz, Anthony J. (Coram, NY)

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  20. Magnet pole tips

    DOE Patents [OSTI]

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  1. MAGNETIC RECORDING HEAD

    DOE Patents [OSTI]

    Merrill, L.C.

    1958-06-17

    An electromagetic recording head is described for simultaneous recording of a plurality of signals within a small space on a magnetically semsitized medium. Basically the head structure comprises a non-magnetic centerpiece provided with only first and second groups of spaced cut-out slots respectively on opposite sides of the centerpiece. The two groups of slots are in parallel alignment and the slots of one group are staggered with respect to the slots of the other group so that one slot is not directly opposite another slot. Each slot has a magnet pole piece disposed therein and cooperating with a second pole and coil to provide a magnetic flux gap at the upper end of the slot. As a tape is drawn over the upper end of the centerpiece the individual magnetic circuits are disposed along its width to provide means for simultaneously recording information on separate portions, tracks. of the tape.

  2. Novel magnets and superconductors studied by high precision magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel magnets and superconductors studied by high precision magnetic susceptometer under pressure An Inductor-capacitor circuit (LC circuit) is a simple, text-book level electric...

  3. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the

  4. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  5. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  6. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect (OSTI)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  7. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect (OSTI)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  8. Ground freezing for containment of hazardous waste

    SciTech Connect (OSTI)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  9. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (OSTI)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  10. Breaking Ground in Miami-Dade

    Broader source: Energy.gov [DOE]

    Officials from Miami-Dade County and the U.S. Department of Energy were on hand Wednesday, October 13th to formally break ground on an innovative project that will help improve the energy efficiency of one of the county’s major water treatment facilities.   The project will upgrade and expand the existing power generation system at the water plant which generates electricity from digester gas produced at the plant.  Landfill gas, which is produced from the Solid Waste Department’s South Dade Landfill, will be collected and piped across a canal to the water plant where it will be mixed with digester gases.  By combining landfill and digester gases, the county will increase the amount of self-generated electricity, and reduce the county's consumption of electricity generated from fossil fuels.  

  11. Natural radionuclides in Hanford site ground waters

    SciTech Connect (OSTI)

    Smith, M.R.; Laul, J.C.; Johnson, V.G.

    1987-10-01

    Uranium, Th, Ra, Rn, Pb and Po radionuclide concentrations in ground waters from the Hanford Site indicate that U, Th, and Ra are highly sorbed. Relative to Rn, these radionuclides are low by factors of 10/sup -3/ to 10/sup -6/. Uranium sorption is likely due to its reduction from the +6 state, where it is introduced via surface waters, to the +4 state found in the confined aquifers. The distribution of radionuclides is very similar in all of the confined aquifers and significantly different from the distribution observed in the unconfined and surface waters. Barium correlates well with Ra over three orders of magnitude, indicating that stable element analogs may be useful for inferring the behavior of radioactive waste radionuclides in this candidate geologic repository. 8 refs., 7 figs., 1 tab.

  12. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    SciTech Connect (OSTI)

    Chen, La; Offenhusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 ?m superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particles position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  13. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies....

  15. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism,...

  16. PLUTONIUM OUGHT TO PRODUCE MAGNETISM.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... valence states. 1663 October 2015 5 electrical conductivity changes drastically in the presence of a magnetic field, allowing for new spintronic and magnetic- sensing devices. ...

  17. Magnetic nematicity: A debated origin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vaknin, David

    2016-01-22

    Different experimental studies based on nuclear magnetic resonance and inelastic neutron scattering reach opposing conclusions in regards to the origin of magnetic nematicity in iron chalcogenides.

  18. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nondestructive pulsed magnets up to 100 tesla Thermoacoustics and fluid dynamics ... Nanotechnologies play 2:54 World's first 100 Tesla non-destructive magnetic field NSF BES

  19. magnets | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    magnets NNSA-lab-created new magnets will power renewable technology The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to characterize and ...

  20. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. ... materials would further improve the competitiveness of magnetic refrigeration technology. ...

  1. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  2. Moment free toroidal magnet

    DOE Patents [OSTI]

    Bonanos, Peter

    1983-01-01

    A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

  3. Electric and magnetic field reduction by alternative transmission line options

    SciTech Connect (OSTI)

    Stewart, J.R. ); Dale, S.J. ); Klein, K.W. )

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  4. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    1995-11-01

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  5. Electronic and magnetic properties of small rhodium clusters

    SciTech Connect (OSTI)

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  6. Permanent magnet energy conversion machine with magnet mounting arrangement

    DOE Patents [OSTI]

    Hsu, John S.; Adams, Donald J.

    1999-01-01

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  7. Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps On Nov. 3, 2011, Dave Peterson, a Project Leader at the National Renewable Energy Laboratory, presented a Webinar about Geothermal/Ground Source Heat Pumps and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: U.S.

  8. High Frequency Ground Motion Simulation for Seismic Hazard Analysis |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Ground motion simulations reveal regions at risk Ground motion simulations reveal regions at risk of strong shaking during a possible magnitude-8 earthquake on the San Andreas fault. For the CyberShake project, reciprocal simulations of all known possible quakes are combined to estimate the total probabilistic hazard for California. Credit: Geoffrey Ely, Argonne National Laboratory High Frequency Ground Motion Simulation for Seismic Hazard Analysis PI

  9. High Frequency Ground Motion Simulation for Seismic Hazard Analysis |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Orange, yellow, and white colors on this map of California reveal regions where strong ground shaking would occur during a possible magnitude-8 earthquake on the San Andreas Fault Orange, yellow, and white colors on this map of California reveal regions where strong ground shaking would occur during a possible magnitude-8 earthquake on the San Andreas Fault. The seismograms shown on the map indicate peak velocity ground motions for selected California

  10. Cleanup Verification Package for the 618-3 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-09-12

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings.

  11. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-C: Soft X-ray Magnetic Spectroscopy This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly...

  12. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, Ross E.

    1993-01-01

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  13. Giant Controllable Magnetization ...

    Office of Scientific and Technical Information (OSTI)

    ... Figure 1(b) (red line) also shows how applying a saturation magnetic field of 1T, then ... in the nuclear scattering length density (NSLD) profiles as the red curve in Figure 2(c). ...

  14. Magnetic separation of algae

    DOE Patents [OSTI]

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  15. Modular tokamak magnetic system

    DOE Patents [OSTI]

    Yang, Tien-Fang (Wayland, MA)

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  16. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, R.E.

    1993-03-09

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  17. Magnetic fluorescent lamp

    DOE Patents [OSTI]

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  18. Magnetic coupling device

    DOE Patents [OSTI]

    Nance, Thomas A.

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  19. Renewable Energy Opportunities at Yuma Proving Ground, Arizona

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Dixon, Douglas R.

    2010-06-30

    This document provides an overview of renewable resource potential at Yuma Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations.

  20. Microsoft Word - HABAdv#243_SWBurialGrounds.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... releases. * The Board advises DOE to provide total volume estimates of plutonium, uranium, cesium, and thorium 232, which were recorded as disposed in the burial grounds. ...

  1. Pantex breaks ground on renewable energy project | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breaks ground on renewable energy project | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  2. Seismic Ground Motion Response Using SHAKE, EERA and NERA for...

    Office of Environmental Management (EM)

    Seismic Ground Motion Response Using SHAKE, EERA and NERA for SRS Soil Profile Jay Amin - Structural Mechanics, Principal Engineer Shawn Carey, PhD, PE - Structural Mechanics, ...

  3. Category:Ground Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Category Edit History Category:Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  4. Simulation of Explosion Ground Motions Using a Hydrodynamic-to...

    Office of Scientific and Technical Information (OSTI)

    Simulation of Explosion Ground Motions Using a Hydrodynamic-to-Elastic Coupling Approach in Three-Dimensions Citation Details In-Document Search Title: Simulation of Explosion ...

  5. LANL breaks ground on key sediment control project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment control project LANL breaks ground on key sediment control project Called "grade-control" structures, the approximately 2 million features are up to eight feet high and...

  6. Ground Water Management District Rules | Open Energy Information

    Open Energy Info (EERE)

    Water Management District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides...

  7. Proceedings of the 2010 Monitoring Research Review: Ground-Based...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion ...

  8. Proceedings of the 2011 Monitoring Research Review: Ground-Based...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion ...

  9. Proceedings of the 2009 Monitoring Research Review: Ground-Based...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion ...

  10. Diffusion Multilayer Sampling of Ground Water in Five Wells at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of MSE Cores Tuba City, Arizona, Site Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Vertical Distribution of ...

  11. Ground water in Animas Valley, Hidalgo County, New Mexico | Open...

    Open Energy Info (EERE)

    to library Report: Ground water in Animas Valley, Hidalgo County, New Mexico Author H. O. Reeder Published New Mexico State Engineer's Office, 1957 Report Number Technical...

  12. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  13. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  14. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  15. Closed loop control of the induction heating process using miniature magnetic sensors

    DOE Patents [OSTI]

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  16. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOE Patents [OSTI]

    Bentley, Anthony E. (Tijeras, NM); Kelley, John Bruce (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  17. Freely oriented portable superconducting magnet

    DOE Patents [OSTI]

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  18. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  19. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  20. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  1. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  2. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  3. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  4. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  5. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  6. Quantal density-functional theory in the presence of a magnetic field

    SciTech Connect (OSTI)

    Yang Tao; Pan Xiaoyin; Sahni, Viraht

    2011-04-15

    We generalize the quantal density-functional theory (QDFT) of electrons in the presence of an external electrostatic field E(r)=-{nabla}v(r) to include an external magnetostatic field B(r)={nabla}xA(r), where (v(r),A(r)) are the respective scalar and vector potentials. The generalized QDFT, valid for nondegenerate ground and excited states, is the mapping from the interacting system of electrons to a model of noninteracting fermions with the same density {rho}(r) and physical current density j(r), and from which the total energy can be obtained. The properties ({rho}(r),j(r)) constitute the basic quantum-mechanical variables because, as proved previously, for a nondegenerate ground state they uniquely determine the potentials (v(r),A(r)). The mapping to the noninteracting system is arbitrary in that the model fermions may be either in their ground or excited state. The theory is explicated by application to a ground state of the exactly solvable (two-dimensional) Hooke's atom in a magnetic field, with the mapping being to a model system also in its ground state. The majority of properties of the model are obtained in closed analytical or semianalytical form. A comparison with the corresponding mapping from a ground state of the (three-dimensional) Hooke's atom in the absence of a magnetic field is also made.

  7. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect (OSTI)

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  8. Itinerant magnetism in metallic CuFe2Ge2

    SciTech Connect (OSTI)

    Shanavas, K. V.; Singh, David J.; He, Ruihua

    2015-03-25

    Theoretical calculations are performed to understand the electronic structure and magnetic properties of CuFe2Ge2. The band structure reveals large electron density N(EF) at the Fermi level suggesting a strong itinerant character of magnetism. The Fermi surface is dominated by two dimensional sheet like structures, with potentially strong nesting between them. The magnetic ground state appears to be ferromagnetic along a and antiferromagnetic in other directions. The results show that CuFe2Ge2 is an antiferromagnetic metal, with similarities to the Fe-based superconductors; such as magnetism with substantial itinerant character and coupling between magnetic order and electrons at the Fermi energy.

  9. Transformer current sensor for superconducting magnetic coils

    DOE Patents [OSTI]

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  10. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    SciTech Connect (OSTI)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-12-31

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute.

  11. Hanford Site ground-water monitoring for January through June 1988

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Sherwood, D.R.

    1989-05-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between January and June 1988 included monitoring ground-water elevations across the Site, and monitoring hazardous chemicals and radionuclides in ground water. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Solid Waste Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. In addition, several new analytical initiatives were undertaken during this period. These include cyanide speciation in the BY Cribs plume, inductively coupled argon plasma/mass spectrometry (ICP/MS) measurements on a broad selection of samples from the 100, 200, 300, and 600 Areas, and high sensitivity gas chromatography measurements performed at the Solid Waste Landfill-Nonradioactive Dangerous Waste Landfill. 23 figs., 25 tabs.

  12. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    SciTech Connect (OSTI)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-12-31

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation`s first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities.

  13. Procedures for ground-water investigations. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  14. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  15. Surface driven effects on magnetic properties of antiferromagnetic LaFeO{sub 3} nanocrystalline ferrite

    SciTech Connect (OSTI)

    Sendil Kumar, A. E-mail: anilb42@gmail.com; Manivel Raja, M.; Bhatnagar, Anil K. E-mail: anilb42@gmail.com

    2014-09-21

    LaFeO{sub 3} nanocrystalline ferrites were synthesized through sol-gel method in different size distributions and the effect of finite size on magnetic properties is investigated. Results of magnetization and Mössbauer measurements show that superparamagnetism and weak ferromagnetic behavior in some of the size distributions. The origin of the superparamagnetism is from fine particles similar to ferromagnetic single domains and the weak ferromagnetism comes from surface spin disorder caused by Dzyaloshinskii-Moriya interaction. The magnetic ground state of LaFeO{sub 3} nanoparticles differs from that of bulk, and the ground state is dictated by the finite size effect because density of states depends on the dimensionality of the sample.

  16. Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic response

    SciTech Connect (OSTI)

    Lopes-Oliveira, V. Herval, L. K. S.; Orsi Gordo, V.; Cesar, D. F.; Godoy, M. P. F. de; Galvão Gobato, Y.; Henini, M.; Khatab, A.; Sadeghi, M.; Wang, S.; Schmidbauer, M.

    2014-12-21

    We investigated effects of localization and strain on the optical and magneto-optical properties of diluted nitrogen III–V quantum wells theoretically and experimentally. High-resolution x-ray diffraction, photoluminescence (PL), and magneto-PL measurements under high magnetic fields up to 15 T were performed at low temperatures. Bir-Pikus Hamiltonian formalism was used to study the influence of strain, confinement, and localization effects. The circularly polarized magneto-PL was interpreted considering localization aspects in the valence band ground state. An anomalous behavior of the electron-hole pair magnetic shift was observed at low magnetic fields, ascribed to the increase in the exciton reduced mass due to the negative effective mass of the valence band ground state.

  17. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, Maynard

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  18. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground

  19. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    1995-12-01

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  1. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  2. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  3. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  4. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  5. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site. Final report

    SciTech Connect (OSTI)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M{sub L} 4.5 to M{sub L} 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes.

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    1996-02-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  8. A ground state depleted laser in neodymium doped yttrium orthosilicate

    SciTech Connect (OSTI)

    Beach, R.; Albrecht, G.; Solarz, R.; Krupke, W.; Comaskey, B.; Mitchell, S.; Brandle, C.; Berkstresser, G.

    1990-01-16

    A ground state depleted (GSD){sup 1,2} laser has been demonstrated in the form of a Q-switched oscillator operating at 912 nm. Using Nd{sup 3+} as the active ion and Y{sub 2}SiO{sub 5} as the host material, the laser transition is from the lowest lying stark level of the Nd{sup 3t}F{sub 3/2} level to a stark level 355 cm{sup {minus}1} above the lowest lying one in the {sup 4}I{sub 9/2} manifold. The necessity of depleting the ground {sup 4}I{sub 9/2} manifold is evident for this level scheme as transparency requires a 10% inversion. To achieve the high excitation levels required for the efficient operation of this laser, bleach wave pumping using an alexandrite laser at 745 nm has been employed. The existence of a large absorption feature at 810 nm also allows for the possibility of AlGaAs laser diode pumping. Using KNbO{sub 3}, noncritical phase matching is possible at 140{degree}C using d{sub 32} and has been demonstrated. The results of Q-switched laser performance and harmonic generation in KNbO{sub 3} will be presented. Orthosilicate can be grown in large boules of excellent optical quality using a Czochralski technique. Because of the relatively small 912 nm emission cross section of 2-3 {times} 10{sup {minus}20} cm{sup 2} (orientation dependent) fluences of 10-20 J/cm{sup 2} must be circulated in the laser cavity for the efficient extraction of stored energy. This necessitates very aggressive laser damage thresholds. Results from the Reptile laser damage facility at Lawrence Livermore National Laboratory (LLNL) will be presented showing Y{sub 2}SiO{sub 5} bulk and AR sol-gel coated surface damage thresholds of greater than 40 J/cm{sup 2} for 10 nsec, 10 Hz, 1.06 {mu} pulses. 16 refs., 18 figs., 6 tabs.

  9. Structural and magnetic properties of the 5d2 double perovskites Sr2BReO6 (B = Y, In)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aczel, A. A.; Zhao, Z.; Calder, S.; Adroja, D. T.; Baker, P. J.; Yan, J. -Q.

    2016-06-01

    With this study, we have performed magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation experiments to investigate the magnetic ground states of the 5$d^2$ double perovskites Sr$_2$YReO$_6$ and Sr$_2$InReO$_6$. We find that Sr$_2$YReO$_6$ is a spin glass, while Sr$_2$InReO$_6$ hosts a non-magnetic singlet state. By making detailed comparisons with other 5$d^2$ double perovskites, we argue that a delicate interplay between spin-orbit coupling, non-cubic crystal fields, and exchange interactions plays a key role in the great variation of magnetic ground states observed for this family of materials.

  10. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  11. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  12. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately...

  13. Magnet Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    Magnet Motor Corp Jump to: navigation, search Name: Magnet Motor Corp. Place: Starnberg, Germany Zip: 82319 Sector: Vehicles Product: Magnet motor Corp has been developing and...

  14. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  15. Magnetic field restructuring associated with two successive solar eruptions

    SciTech Connect (OSTI)

    Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong

    2014-08-20

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  16. Applications of permeable barrier technology to ground water contamination at the Shiprock, NM, UMTRA site

    SciTech Connect (OSTI)

    Thomson, B.M.; Henry, E.J.; Thombre, M.S.

    1996-12-31

    The Shiprock uranium mill tailings pile in far northwestern New Mexico consists of approximately 1.5 million tons of uranium mill tailings from an acid leach mill which operated from 1954 to 1968. Located on land owned by the Navajo Nation, it was one of the first tailings piles stabilized under the Uranium Mill Tailings Remedial Action (UMTRA) project. Stabilization activities were completed in 1986 and consisted principally of consolidating the tailings, contouring the pile to achieve good drainage, and covering the pile with a multi-layer cap to control infiltration of water, radon emanation, and surface erosion. No ground water protection or remediation measures were implemented other than limiting infiltration of water through the pile, although a significant ground water contamination plume exists in the flood plain adjacent to the San Juan River. The major contaminants at the Shiprock site include high concentrations of sulfate, nitrate, arsenic, and uranium. One alternative for remediation may be the use of a permeable barrier in the flood plain aquifer. As proposed for the Shiprock site, the permeable barrier would be a trench constructed in the flood plain that would be backfilled with a media that is permeable to ground water, but would intercept or degrade the pollutants. Work to date has focused on use of a mixed microbial population of sulfate and nitrate reducing organisms. These organisms would produce strongly reducing conditions which would result in precipitation of the metal contaminants (i.e., Se(IV) and U(IV)) in the barrier. One of the first considerations in designing a permeable barrier is developing an understanding of ground water flow at the site. Accordingly, a steady state numerical model of the ground water flow at the site was developed using the MODFLOW code.

  17. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  18. Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic

    Office of Scientific and Technical Information (OSTI)

    quantum critical fluctuations (Journal Article) | SciTech Connect Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations Citation Details In-Document Search Title: Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations We report Knight shift experiments on the superconducting heavy electron material CeCoIn{sub 5} that allow one to track with some precision the behavior of the heavy electron

  19. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forming Magnetic Filtering Material - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Magnetic Filtration Process, Magnetic Filtering Material, and Method of Forming Magnetic Filtering Material Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process

  20. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted

  1. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    SciTech Connect (OSTI)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David; MacLaren, Donald A.; Webb, Paul B.; Tooze, Robert P.; Taylor, Jon; Ewings, Russell A.; Parker, Stewart F.

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.

  2. Magnetic resonance apparatus

    DOE Patents [OSTI]

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  3. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  4. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  5. Nuclear magnetic resonance imaging

    SciTech Connect (OSTI)

    Young, I.R.

    1984-07-03

    A method of imaging a body by nuclear magnetic resonance wherein volume scanning of a region of the body is achieved by scanning a first planar slice of the region and at least one further slice of the region in the relaxation time for the scan of the first slice.

  6. SB Electronics Breaks Ground on New Factory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SB Electronics Breaks Ground on New Factory SB Electronics Breaks Ground on New Factory April 29, 2010 - 5:22pm Addthis U.S. Rep. Peter Welch (from left), Vermont Lt. Gov. Brian Dubie, SBE board member Win Hunter, SBE board chair Stan Fishkin, Assi U.S. Rep. Peter Welch (from left), Vermont Lt. Gov. Brian Dubie, SBE board member Win Hunter, SBE board chair Stan Fishkin, Assi Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A Vermont company broke ground on a new

  7. Ground plane insulating coating for proximity focused devices

    DOE Patents [OSTI]

    Power, Gary D.

    1998-01-01

    A thin layer of alumina (aluminum oxide) is coated onto the ground plane of a microchannel plate (MCP) without covering the pores of the MCP so it does not effect the performance. The coating is sputtered onto the ground plane at a very steep angle. The addition of the thin dielectric coating of alumina greatly improves the spatial resolution of proximity focused image intensifiers using a narrow gap between the phosphor screen and the MCP. With the coating on the ground plane and the same gap the phosphor screen can be ran at 9000 volts, as compared to 3 kV without the coating.

  8. Ground plane insulating coating for proximity focused devices

    DOE Patents [OSTI]

    Power, G.D.

    1998-07-14

    A thin layer of alumina (aluminum oxide) is coated onto the ground plane of a microchannel plate (MCP) without covering the pores of the MCP so it does not effect the performance. The coating is sputtered onto the ground plane at a very steep angle. The addition of the thin dielectric coating of alumina greatly improves the spatial resolution of proximity focused image intensifiers using a narrow gap between the phosphor screen and the MCP. With the coating on the ground plane and the same gap the phosphor screen can be ran at 9000 volts, as compared to 3 kV without the coating. 3 figs.

  9. Environmental geophysics at the Southern Bush River Peninsula, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.

    1995-05-01

    Geophysical studies have been conducted at five sites in the southern Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland. The goals of the studies were to identify areas containing buried metallic objects and to provide diagnostic signatures of the hydrogeologic framework of the site. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low sea level resulted in a complex pattern of channel-fill deposits. Paleochannels of various sizes and orientations have been mapped throughout the study area by means of ground-penetrating radar and EM-31 techniques. The EM-31 paleochannel signatures are represented onshore either by conductivity highs or lows, depending on the depths and facies of the fill sequences. A companion study shows the features as conductivity highs where they extend offshore. This erosional and depositional system is environmentally significant because of the role it plays in the shallow groundwater flow regime beneath the site. Magnetic and electromagnetic anomalies outline surficial and buried debris throughout the areas surveyed. On the basis of geophysical measurements, large-scale (i.e., tens of feet) landfilling has not been found in the southern Bush River Peninsula, though smaller-scale dumping of metallic debris and/or munitions cannot be ruled out.

  10. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  11. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  12. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  13. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  14. Magnet Cooldown and Warmup Model

    Energy Science and Technology Software Center (OSTI)

    1995-07-11

    This program evaluates cooldown/warmup performance of an SSC magnet or magnet strings, But can be applied to any other iron coldmass which is cooled or warmed by helium.

  15. Magnetic moment of {sup 43m}S

    SciTech Connect (OSTI)

    Daugas, J. M.; Gaudefroy, L.; Meot, V.; Morel, P.; Rosse, B.; Hass, M.; Kumar, V.; Angelique, J. C.; Simpson, G. S.; Balabanski, D. L.; Fiori, E.; Georgiev, G.; Lozeva, R.; Force, C.; Grevy, S.; Stodel, Ch.; Thomas, J. C.; Kameda, D.; Matea, I.; Singh, B. S. Nara

    2008-11-11

    The gyromagnetic factor of the isomeric state of {sup 43}S has been measured using the Time Dependent Perturbed Angular Distribution (TDPAD) technique. The isomer was produced and spin aligned via the fragmentation of a 60 AMeV {sup 48}Ca beam at the GANIL facility. The deduced magnetic moment confirms the 7/2{sup -} spin/parity of the isomeric state and shows, for the first time, the intruder nature of the ground state. Comparison of the experimental values with Shell Model and mean-field based calculations were performed revealing a pronounced ground state deformation and a quasi-spherical isomeric state. A new isomeric state has been observed in the {sup 42}P.

  16. Magnetic dipole moments of {sup 57,58,59}Cu

    SciTech Connect (OSTI)

    Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Bergh, P. Van den; Van Duppen, P.; Sonoda, T.

    2010-01-15

    In-gas-cell laser spectroscopy of the isotopes {sup 57,58,59,63,65}Cu has been performed at the LISOL facility using the 244.164-nm optical transition from the atomic ground state of copper. A detailed discussion on the hyperfine structure of {sup 63}Cu is presented. The magnetic dipole moments of the isotopes {sup 57,58,59,65}Cu are extracted based on that of {sup 63}Cu. The new value mu=+0.479(13)mu{sub N} is proposed for {sup 58}Cu, consistent with that of a pip{sub 3/2} x nup{sub 3/2} ground-state configuration. Spin assignments for the radioactive isotopes {sup 57,58,59}Cu are confirmed. The isotope shifts between the different isotopes are also given and discussed.

  17. Magnetic pipeline for coal and oil

    SciTech Connect (OSTI)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the cost of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.

  18. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, M.

    1987-04-06

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

  19. International magnetic pulse compression

    SciTech Connect (OSTI)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12--14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card -- its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  20. Ground Gravity Survey At Lightning Dock Geothermal Area (Swanberg...

    Open Energy Info (EERE)

    Basis Examination of geothermal resources of New Mexico Notes detailed gravity and magnetics survey of Lightning Dock to identify burried structures as a source of the thermal...

  1. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  2. Magnetic interactions in manganese oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese oxide Magnetic interactions in manganese oxide Revealing the mechanism of 'superexchange' May 24, 2016 manganese oxide Manganese oxide Revealing the Nature of Magnetic Interactions in Manganese Oxide For nearly 60 years, scientists have been trying to determine how manganese oxide (MnO) achieves its long-range magnetic order of alternating up and down electron spins. Now, a team of scientists has used their recently developed mathematical approach to study the short-range magnetic

  3. Carbon Joins the Magnetic Club

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic

  4. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  5. Evolution of twisted magnetic fields

    SciTech Connect (OSTI)

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  6. Magnet design considerations for Fusion Nuclear Science Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  7. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  8. Low field magnetic resonance imaging

    DOE Patents [OSTI]

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  9. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  10. Magnetic manipulation of self-assembled colloidal asters.

    SciTech Connect (OSTI)

    Snezhko, A.; Aranson, I. S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  11. Case Study of Anomalies Encountered During Remediation of Mixed Low-Level Waste Burial Grounds in the 100 and 300 Areas of the Hanford Site

    SciTech Connect (OSTI)

    Haass, M.J.; Zacharias, P.E.; Zacharias, A.E.

    2007-07-01

    Under the U.S. Department of Energy's River Corridor Closure Project, Washington Closure Hanford has completed remediation of more than 10 mixed low-level waste burial grounds in the 100 and 300 Areas of the Hanford Site. The records of decision for the burial grounds required excavation, characterization, and transport of contaminated material to a Resource Conservation and Recovery Act of 1976-compliant hazardous waste landfill. This paper discusses a sample of the anomalous waste found during remediation and provides an overview of the waste excavation activities. The 100 Area burial grounds received plutonium production reactor waste and waste associated with various test programs. Examples of 100 Area anomalies include spent nuclear fuel, elemental mercury, reactor hardware, and the remains of animals used in testing the effects of radionuclides on living organisms. The 300 Area burial grounds received waste from research and development laboratories and fuel manufacturing operations. Of the seven 300 Area burial grounds remediated to date, the most challenging has been the 618-2 Burial Ground. It presented significant challenges because of the potential for airborne alpha contamination and the discovery of plutonium in an isotopically pure form. Anomalies encountered in the 618-2 Burial Ground included a combination safe that contained gram quantities of plutonium, miscellaneous containers of unknown liquids, and numerous types of shielded shipping casks. Information presented in this paper will be an aid to those involved in remediation activities throughout the U.S. Department of Energy complex and at other nuclear waste disposal sites. (authors)

  12. Mk12A/W78 ground test project (u)

    SciTech Connect (OSTI)

    Stokes, Kyle R

    2010-12-01

    The slides present the scope, objectives and status of the Mk12A1W78 Ground Test Project for the purpose of updating the ICBM Project Officers Group. In addition, project constraints and risks are discussed.

  13. Tennessee: Ground-Source Heat Pump Receives Innovation Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new Trilogy 40 Q-Mode(tm) series, a highly efficient ground-source heat pump that has the capability of providing all the space heating, cooling, and water heating requirements ...

  14. SARA Cadets and Midshipmen Hit the Ground Running | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SARA Cadets and Midshipmen Hit the Ground Running As the U.S. military grows in ... and midshipmen from the military academies at West Point, Annapolis, and Colorado Springs. ...

  15. EPA Final Ground Water Rule Available Online, 3/07

    Office of Energy Efficiency and Renewable Energy (EERE)

    On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in...

  16. New Carlsbad Field Office Manager Hits the Ground Running | Department...

    Office of Environmental Management (EM)

    Carlsbad Field Office Manager Hits the Ground Running New Carlsbad Field Office Manager ... In fact, his first weeks in his new job have looked like a sprint. Franco's last six years ...

  17. Helping from the Ground Up | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helping from the Ground Up Researchers used Argonne's Materials Engineering Research Facility to analyze and develop lithium carbonate to meet lithium specifications for battery applications. PDF icon lithium_carbonate

  18. Ground Breaking of Blythe Solar Power Project | Department of...

    Energy Savers [EERE]

    Breaking of Blythe Solar Power Project Ground Breaking of Blythe Solar Power Project June 20, 2011 - 2:16pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What will ...

  19. A law intern's proving ground | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A law intern's proving ... A law intern's proving ground Posted: May 7, 2014 - 5:31pm | Y-12 Report | Volume 10, Issue 2 | 2014 Eliza Scott almost didn't apply for the Y-12UT Law ...

  20. Development of mine explosion ground truth smart sensors

    SciTech Connect (OSTI)

    Taylor, Steven R.; Harben, Phillip E.; Jarpe, Steve; Harris, David B.

    2015-09-14

    Accurate seismo-acoustic source location is one of the fundamental aspects of nuclear explosion monitoring. Critical to improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the National Laboratories and other seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location efforts (e.g. Sweeney, 1998; Bergmann et al., 2009; Waldhauser and Richards, 2004). In particular, more GT1 (Ground Truth 1 km) events are required to improve three-dimensional velocity models that are currently under development. Mine seismicity can form the basis of accurate ground truth datasets. Although the location of mining explosions can often be accurately determined using array methods (e.g. Harris, 1991) and from overhead observations (e.g. MacCarthy et al., 2008), accurate origin time estimation can be difficult. Occasionally, mine operators will share shot time, location, explosion size and even shot configuration, but this is rarely done, especially in foreign countries. Additionally, shot times provided by mine operators are often inaccurate. An inexpensive, ground truth event detector that could be mailed to a contact, placed in close proximity (< 5 km) to mining regions or earthquake aftershock regions that automatically transmits back ground-truth parameters, would greatly aid in development of ground truth datasets that could be used to improve nuclear explosion monitoring capabilities. We are developing an inexpensive, compact, lightweight smart sensor unit (or units) that could be used in the development of ground truth datasets for the purpose of improving nuclear explosion monitoring capabilities. The units must be easy to deploy, be able to operate autonomously for a significant period of time (> 6 months) and inexpensive enough to be discarded after useful operations have expired (although this may not be part of our business