National Library of Energy BETA

Sample records for activity flow test

  1. Flow Test At Raft River Geothermal Area (2006) | Open Energy...

    Open Energy Info (EERE)

    Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006)...

  2. Flow Test | Open Energy Information

    Open Energy Info (EERE)

    borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Flow Test At Raft River Geothermal Area (2004) Raft River Geothermal Area...

  3. Category:Flow Test | Open Energy Information

    Open Energy Info (EERE)

    Flow Test Jump to: navigation, search Geothermalpower.jpg Looking for the Flow Test page? For detailed information on Flow Test, click here. Category:Flow Test Add.png Add a new...

  4. Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) Exploration Activity Details...

  5. Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location...

  6. Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) Exploration Activity Details Location...

  7. Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) Exploration Activity Details Location...

  8. Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

  9. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) Exploration Activity Details Location...

  10. Flow Test At Raft River Geothermal Area (1979) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  11. Flow Test At Coso Geothermal Area (1978) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal...

  12. Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996) Exploration Activity Details...

  13. Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity...

  14. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

  15. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) Exploration Activity Details Location...

  16. Flow Test At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area...

  17. Flow Test At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Wister Area (DOE GTP) Exploration Activity Details Location Wister Area Exploration...

  18. Flow Test At Raft River Geothermal Area (2008) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River...

  19. Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity Details...

  20. Flow Test At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Alum Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area...

  1. Flow Test At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration...

  2. Flow Test At Raft River Geothermal Area (2004) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River...

  3. Flow Test At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et Al., 1989)...

  4. Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

  5. Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area...

  6. Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Black Warrior Area (DOE GTP) Exploration Activity Details Location Black Warrior...

  7. Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area...

  8. Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry...

  9. Flow Test At San Emidio Desert Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At San Emidio Desert Area (DOE GTP) Exploration Activity Details Location San Emidio...

  10. Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details...

  11. Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area...

  12. Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy...

  13. Flow Test At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details...

  14. Flow Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Steamboat Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  15. Flow Test At Coso Geothermal Area (1985-1986) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Coso Geothermal Area (1985-1986) Exploration Activity Details Location Coso...

  16. Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area...

  17. Flow Test At Chena Area (Benoit, Et Al., 2007) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Chena Area (Benoit, Et Al., 2007) Exploration Activity Details Location Chena Area...

  18. Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details...

  19. Flow Test At Flint Geothermal Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Flint Geothermal Area (DOE GTP) Exploration Activity Details Location Flint...

  20. Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2008) Exploration Activity...

  1. Flow Test At Fenton Hill HDR Geothermal Area (Grigsby, Et Al...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

  2. Flow Test At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

  3. Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details Location Crump's Hot...

  4. Flow Test At Fenton Hill HDR Geothermal Area (Dash, 1989) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Dash, 1989) Exploration Activity Details Location...

  5. Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain...

  6. Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area...

  7. Flow Test At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area...

  8. Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot...

  9. Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity Details Location Hot Pot Area...

  10. Flow Test At Snake River Plain Region (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River...

  11. Flow Test At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At New River Area (DOE GTP) Exploration Activity Details Location New River Area...

  12. Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake Area...

  13. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  14. Dixie Valley Six Well Flow Test | Open Energy Information

    Open Energy Info (EERE)

    Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted...

  15. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  16. Active combustion flow modulation valve

    DOE Patents [OSTI]

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  17. Final report for the flow excursion follow-on testing

    SciTech Connect (OSTI)

    Nash, C.A.; Walters, T.W.

    1992-08-05

    The purpose of the Mark 22 Flow Excursion Follow-On testing was to investigate the theory that approximately 15% of the flow bypassed the primary flow channels in previous testing, whereas the design called for only a 3% bypass. The results of the follow-on tests clearly confirmed this theory. The testing was performed in two phases. During the first phase, characterization tests performed during the earlier test program were repeated.

  18. Nevada National Security Site Underground Test Area (UGTA) Flow...

    Office of Environmental Management (EM)

    Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling - ... Video Presentation PDF icon Nevada National Security Site Underground Test Area (UGTA) ...

  19. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  20. Results of no-flow rotary drill bit comparison testing

    SciTech Connect (OSTI)

    WITWER, K.S.

    1998-11-30

    This document describes the results of testing of a newer rotary sampling bit and sampler insert called the No-Flow System. This No-Flow System was tested side by side against the currently used rotary bit and sampler insert, called the Standard System. The two systems were tested using several ''hard to sample'' granular non-hazardous simulants to determine which could provide greater sample recovery. The No-Flow System measurably outperformed the Standard System in each of the tested simulants.

  1. Boron-10 ABUNCL Active Testing

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  2. Flow tests of the Gladys McCall well

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A. )

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  3. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  4. Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling – Approach and Example

    Broader source: Energy.gov [DOE]

    Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling – Approach and Example

  5. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  6. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect (OSTI)

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  7. Long-Term Flow Test No. 1, Roosevelt Hot Springs, Utah | Open...

    Open Energy Info (EERE)

    Flow Test No. 1, Roosevelt Hot Springs, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Long-Term Flow Test No. 1, Roosevelt Hot Springs,...

  8. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    SciTech Connect (OSTI)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  9. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique ...

  10. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing AVTA PHEV Demonstrations and Testing Advanced Vehicle Benchmarking of HEVs and PHEVs

  11. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  12. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  13. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  14. Oscillating flow loss test results in Stirling engine heat exchangers. Final Report

    SciTech Connect (OSTI)

    Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.

    1990-05-01

    The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.

  15. Webinar: Testing Oxygen Reduction Reaction Activity with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Above is the video recording for the webinar, "Testing Oxygen Reduction Reaction ...

  16. Pre-test CFD Calculations for a Bypass Flow Standard Problem

    SciTech Connect (OSTI)

    Rich Johnson

    2011-11-01

    The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

  17. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced technology

  18. Three Principal Results from Recent Fenton Hill Flow Testing...

    Open Energy Info (EERE)

    future HDR development than the two-well system tested at Fenton Hill. Authors Donald Brown and Robert DuTeaux Conference 21st Workshop on Geothermal Reservoir Engineering;...

  19. Test report, air flow control device for 241-SY waste tankventilation

    SciTech Connect (OSTI)

    Tuck, J.A.

    1997-06-03

    This documents the testing of a passively operated, constant air flow control device for in-duct applications on waste tank ventilation systems in the 50-1000 SCFM range.

  20. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  1. Two-phase flow in a chemically active porous medium

    SciTech Connect (OSTI)

    Darmon, Alexandre Dauchot, Olivier; Benzaquen, Michael; Salez, Thomas

    2014-12-28

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species, in a one-dimensional macroscopic description, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcys law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor.

  2. Active diffraction gratings: Development and tests

    SciTech Connect (OSTI)

    Bonora, S.; Frassetto, F.; Poletto, L. [Institute of Photonics and Nanotechnologies, National Council for Research of Italy, via Trasea, 7, Padova 35131 (Italy); Zanchetta, E.; Della Giustina, G.; Brusatin, G. [Industrial Engineering Department, University of Padova, Via Marzolo 9, 35131 Padova (Italy)

    2012-12-15

    We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UV lithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

  3. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  4. Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrode Technique | Department of Energy Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Above is the video recording for the webinar, "Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique," originally held on March 12, 2013. In addition to this recording, you can access the presentation slides. A text version of

  5. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Date: Tuesday, March 12, 2013 Innovation for Our Energy Future Shyam S. Kocha: NREL Yannick ...

  6. Comparison of two activity analyses : context-sensitive flow-insensitive vs. context-insensitive flow-sensitive.

    SciTech Connect (OSTI)

    Shin, J.; Hovland, P. D.; Mathematics and Computer Science

    2007-01-01

    Automatic differentiation (AD) is a family of techniques to generate derivative code from a mathematical model expressed in a programming language. AD computes partial derivatives for each operation in the input code and combines them to produce the desired derivative by applying the chain rule. Activity analysis is a compiler analysis used to find active variables in automatic differentiation. By lifting the burden of computing partial derivatives for passive variables, activity analysis can reduce the memory requirement and run time of the generated derivative code. This paper compares a new context-sensitive flow-insensitive (CSFI) activity analysis with an existing context-insensitive flow-sensitive (CIFS) activity analysis in terms of execution time and the quality of the analysis results. Our experiments with eight benchmarks show that the new CSFI activity analysis runs up to 583 times faster and overestimates up to 18.5 times fewer active variables than does the existing CIFS activity analysis.

  7. Report on the testing of the no-flow push bit

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-10-09

    Testing was carried out in the Engineering Testing Laboratory, 305 Building- 300 Area, during June, July and August of 1996. This testing was to develop and proof test a new sampler insert which would prevent purge gas from flowing through a push-mode core drilling bit - and subsequently prevent rotation of the Rotary Mode Core Sampling System (RMCSS) when the push bit was used. The testing involved push-mode sampling with both a new push mode insert and a rotary insert in a push mode bit into two simulants. A total of sixty final test runs showed that the inserts are sucessful in preventing purge flow and hence in preventing rotation with a push-mode bit installed.

  8. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    SciTech Connect (OSTI)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

  9. Severe Accident Test Station Activity Report

    SciTech Connect (OSTI)

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000C compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  10. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect (OSTI)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  11. Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Robinson, M.

    2007-08-01

    This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

  12. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. M.; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests are met for all configurations: one, two, or three fans (normal).

  13. Solar Energy Education. Industrial arts: student activities. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition (Technical Report) | SciTech Connect Industrial arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  14. Solar Energy Education. Home economics: student activities. Field test

    Office of Scientific and Technical Information (OSTI)

    edition (Technical Report) | SciTech Connect Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  15. Active test of separation facility at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Iseki, Tadahiro; Inaba, Makoto; Takahashi, Naoki

    2007-07-01

    During the second and third steps of Active Test at Rokkasho Reprocessing Plant (RRP), the performances of the Separation Facility have been checked; (A) diluent washing efficiency, (B) plutonium stripping efficiency, (C) decontamination factor of fission products and (D) plutonium and uranium leakage into raffinate and spent solvent. Test results were equivalent to or better than expected. (authors)

  16. Benchmarking of flowtran with Mark-22 mockup flow excursion test data from Babcock & Wilcox

    SciTech Connect (OSTI)

    Chen, Juo-Fu

    1990-06-01

    Version 16.2 of the FLOWTRAN code with a Savannah River Site (SRS) working criterion (St=0.00455) for the onset of significant void (OSV) was benchmarked against power and flow excursion data derived from tests at the Babcock & Wilcox Alliance Research Center test facility. This document presents analyses which show that FLOWTRAN accurately predicts the mockup test assembly thermal-hydraulic behavior during the steady state and LOCA transient conditions, and that FLOWTRAN with a Savannah River Site (SRS) working limits criterion (St=0.00455) conservatively predicts the OFI power.

  17. Benchmarking of flowtran with Mark-22 mockup flow excursion test data from Babcock Wilcox

    SciTech Connect (OSTI)

    Chen, Juo-Fu.

    1990-06-01

    Version 16.2 of the FLOWTRAN code with a Savannah River Site (SRS) working criterion (St=0.00455) for the onset of significant void (OSV) was benchmarked against power and flow excursion data derived from tests at the Babcock Wilcox Alliance Research Center test facility. This document presents analyses which show that FLOWTRAN accurately predicts the mockup test assembly thermal-hydraulic behavior during the steady state and LOCA transient conditions, and that FLOWTRAN with a Savannah River Site (SRS) working limits criterion (St=0.00455) conservatively predicts the OFI power.

  18. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    SciTech Connect (OSTI)

    Shiu, Henry; van Dam, Cornelis P.

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn family also had higher c{sub p,min} than equivalently thick ellipses, indicating less susceptibility to cavitation. Microtabs applied on yy foils demonstrated improved energy capture. A series of variable speed and constant speed rotors were developed with the yyb07cn family of hydrofoils. The constant speed yyb07cn rotor (yy-B02-Rcs,opt) captured 0.45% more energy than the equivalent rotor with ellipses (e-B02-Rcs,opt). With microtabs deployed (yyμt-B02-Rcs,opt), the energy capture increase over the rotor with ellipses was 1.05%. Note, however, that microtabs must be applied judiciously to bidirectional foils. On the 18% thick ellipse, performance decreased with the addition of microtabs. Details of hydrofoil performance, microtab sizing and positioning, rotor configurations, and revenue impacts are presented herein.

  19. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  20. Current status of active tests at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Nago, Toshihide; Ishihara, Noriyuki; Ohtou, Yoshihiro

    2007-07-01

    At Rokkasho Reprocessing Plant (RRP), the first commercial reprocessing plant in Japan, the test operation has been carried out step by step with 'water and steam', 'chemical products', 'depleted uranium' and 'spent fuels' toward the planned start of the commercial operation. Water Test was performed as the final stage of plant construction work and functioning of each equipment was tested with water and steam. In Chemical Test the performance of each equipment and unit was verified with chemical products such as nitric acid. In Uranium Test with depleted uranium, function and performance of equipment such as the sharing machine and the dissolver was verified. All its tests were completed by 22 January 2006. Active Test has been performed with spent fuels for the verification of safety functions and performances of equipment and facilities related to the processing of fission products and of plutonium, which had not been tested previously. Active Test which has been in progress since 31 March 2006 is divided into 5 steps, and Step 1, Step 2 and Step 3 are already completed. (authors)

  1. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect (OSTI)

    Kruger, Paul; Robinson, Bruce

    1994-01-20

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  2. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect (OSTI)

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki [Department of Mechanical Engineering, The University of Sakarya, Esentepe Campus, 54187 Sakarya (Turkey)

    2009-11-15

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  3. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  4. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect (OSTI)

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

    2013-02-24

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as Saltstone. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a mega vault and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water) were designed to simulate slurry with the reference saltstone rheology and a saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0, 2.4, and 0.72. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 to 0.9. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch.

  5. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    SciTech Connect (OSTI)

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  6. Active Test of Purification Facility at Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Iseki, Tadahiro; Tsujimura, Akino; Nitta, Takeshi; Matsuda, Takashi

    2007-07-01

    During the second and third steps of Active Test of the Plutonium Purification unit, the extraction and reextraction performances of pulsed columns and mixer-settlers have been checked. Plutonium losses into wastes have been also checked. As a result, it was confirmed that the expected performances had been achieved. (authors)

  7. Active hopper for promoting flow of bulk granular or powdered solids

    Office of Scientific and Technical Information (OSTI)

    (Patent) | DOEPatents Data Explorer Search Results Active hopper for promoting flow of bulk granular or powdered solids Title: Active hopper for promoting flow of bulk granular or powdered solids An apparatus that promotes the flow of materials has a body having an inner shape for holding the materials, a wall having a shape that approximates a portion of the inner shape of the body, and a vibrator attached to the wall. The wall may be disposed vertically within the body close to the body's

  8. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect (OSTI)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  9. Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans

    SciTech Connect (OSTI)

    Tyner, C.E.

    1989-03-01

    The Panel Research Experiment (PRE) is the first large-scale solar test of the molten nitrate salt direct absorption receiver (DAR) concept. The purpose of the PRE is to demonstrate the engineering feasibility and practicality of the DAR. We will conduct the test at the Central Receiver Test Facility in Albuquerque in two phases: salt flow testing and solar testing. This is a working document to define PRE test objectives and requirements, document the test hardware design, and define test plans. 13 refs., 12 figs., 1 tab.

  10. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect (OSTI)

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

  11. Boron-10 ABUNCL Prototype Models And Initial Active Testing

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-04-23

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.

  12. Uranium Adsorption on Granular Activated Carbon Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 ?g/g for the two Tusaar materials.

  13. Evaluation of flow oscillation during long-term cooling experiments in the APEX integral test facility

    SciTech Connect (OSTI)

    Bessette, D.; Marzo, M. di

    1996-12-31

    The Westinghouse Electric Corporation has developed a new, advanced light water reactor, the AP600, and has submitted the design for U.S. Nuclear Regulatory Commission certification. Westinghouse conducted supporting testing programs to provide experimental data to validate its computer codes used to analyze the performance of the AP600 design. One of these facilities was a reduced-pressure, reduced-height (1:4) integral system test facility located at Oregon State University-the Advanced Plant Experiment (APEX). The governing objective of the testing program was to evaluate system depressurization, transition to in-containment refueling water storage tank (IRWST) injection, and long-term cooling. A key feature in the long-term cooling data from some of the APEX experiments is flow oscillations that begin upon return to saturated conditions at the core exit. In this paper, the mechanism for these oscillations is explained, their relevance to the AP600 is discussed, and conclusions about their safety significance are drawn.

  14. Active flow control for maximizing performance of spark ignited stratified charge engines. Final report

    SciTech Connect (OSTI)

    Fedewa, Andrew; Stuecken, Tom; Timm, Edward; Schock, Harold J.; Shih, Tom-I.P.; Koochesfahani, Manooch; Brereton, Giles

    2002-10-15

    Reducing the cycle-to-cycle variability present in stratified-charge engines is an important step in the process of increasing their efficiency. As a result of this cycle-to-cycle variability, fuel injection systems are calibrated to inject more fuel than necessary, in an attempt to ensure that the engines fire on every cycle. When the cycle-to-cycle variability is lowered, the variation of work per cycle is reduced and the lean operating limit decreases, resulting in increased fuel economy. In this study an active flow control device is used to excite the intake flow of an engine at various frequencies. The goal of this excitation is to control the way in which vortices shed off of the intake valve, thus lowering the cycle-to-cycle variability in the flow field. This method of controlling flow is investigated through the use of three engines. The results of this study show that the active flow control device did help to lower the cycle-to-cycle variability of the in-cylinder flow field; however, the reduction did not translate directly into improved engine performance.

  15. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 g/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 C, 27 C, and 32 C there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

  16. New concepts in Redox Flow: "Impact of Redox-Active Polymer Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents" - Joint Center for Energy Storage Research October 17, 2014, Research Highlights New concepts in Redox Flow: "Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents" Simple porous Celgard separators allow ionic transport while rejecting redox-active polymer (RAP), thus avoiding

  17. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect (OSTI)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  18. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect (OSTI)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  19. Summary of Recent Flow Testing of the Fenton Hill HDR Reservoir...

    Open Energy Info (EERE)

    a viable commercial reality. Of most significance is the demonstrated self-regulating nature of the flow through such a reservoir. Both temperature and tracer data indicate that...

  20. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  1. Glen Canyon Dam beach/habitat-building test flow: An `ex post` analysis of hydropower cost. Final report

    SciTech Connect (OSTI)

    Harpman, D.A.

    1997-04-01

    A 7-day controlled flood was conducted in late March and early April of 1996 for research purposes. This short-duration high release was designed to rebuild high elevation sandbars, deposit nutrients, restore backwater channels, and provide some of the dynamics of a natural system. The goal was to test hypotheses about sediment movements and the response of aquatic and terrestial habitats to flood events. This report describes the resultant economic and financial impact of the test flow on the hydropower system. There were two sources of economic and financial impact associated with the beach/habitat-building test flow--changes in the timing and amount of hydropower produced and the costs of the research. The purpose of this report is to describe the economic and financial impacts on the hydropower system.

  2. Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation

    DOE Patents [OSTI]

    Hall, Aaron C.; Hosking, F. Michael ,; Reece, Mark

    2003-06-24

    A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.

  3. Advanced Vehicle Testing Activity Benchmark Testing of the Chevrolet Volt Onboard Charger

    SciTech Connect (OSTI)

    Richard Carlson

    2012-04-01

    This is a report for public consumption, for the AVTA website, detailing the testing and analysis of the benchmark testing conducted on the Chevrolet Volt on-board charger.

  4. Columbia University flow instability experimental program: Volume 2. Single tube uniformly heated tests -- Part 2: Uncertainty analysis and data

    SciTech Connect (OSTI)

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-05-01

    In June 1988, Savannah River Laboratory requested that the Heat Transfer Research Facility modify the flow excursion program, which had been in progress since November 1987, to include testing of single tubes in vertical down-flow over a range of length to diameter (L/D) ratios of 100 to 500. The impetus for the request was the desire to obtain experimental data as quickly as possible for code development work. In July 1988, HTRF submitted a proposal to SRL indicating that by modifying a facility already under construction the data could be obtained within three to four months. In January 1990, HTFR issued report CU-HTRF-T4, part 1. This report contained the technical discussion of the results from the single tube uniformly heated tests. The present report is part 2 of CU-HTRF-T4 which contains further discussion of the uncertainty analysis and the complete set of data.

  5. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    SciTech Connect (OSTI)

    Abramowitz, Howard; Brandys, Marek; Cecil, Richard; D'Angelo, Nicholas; Matlack, Keith S.; Muller, Isabelle S.; Pegg, Ian L.; Callow, Richard A.; Joseph, Innocent

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

  6. Risk-informed inservice test activities at the NRC

    SciTech Connect (OSTI)

    Fischer, D.; Cheok, M.; Hsia, A.

    1996-12-01

    The operational readiness of certain safety-related components is vital to the safe operation of nuclear power plants. Inservice testing (IST) is one of the mechanisms used by licensees to ensure this readiness. In the past, the type and frequency of IST have been based on the collective best judgment of the NRC and industry in an ASME Code consensus process and NRC rulemaking process. Furthermore, IST requirements have not explicitly considered unique component and system designs and contribution to overall plant risk. Because of the general nature of ASME Code test requirements and non-reliance on risk estimates, current IST requirements may not adequately emphasize testing those components that are most important to safety and may overly emphasize testing of less safety significant components. Nuclear power plant licensees are currently interested in optimizing testing by applying resources in more safety significant areas and, where appropriate, reducing measures in less safety-significant areas. They are interested in maintaining system availability and reducing overall maintenance costs in ways that do not adversely affect safety. The NRC has been interested in using probabilistic, as an adjunct to deterministic, techniques to help define the scope, type and frequency of IST. The development of risk-informed IST programs has the potential to optimize the use of NRC and industry resources without adverse affect on safety.

  7. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    SciTech Connect (OSTI)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for subsequent modeling studies at Climax. The objectives of the Climax Mine sub-CAU work are to (1) provide simulated heads and groundwater flows for the northern boundaries of the Yucca Flat-Climax Mine CAU model, while incorporating alternative conceptualizations of the hydrogeologic system with their associated uncertainty, and (2) provide radionuclide fluxes from the three tests in the Climax stock using modeling techniques that account for groundwater flow in fractured granite. Meeting these two objectives required two different model scales. The northern boundary groundwater fluxes were addressed using the Death Valley Regional Flow System (DVRFS) model (Belcher, 2004) developed by the U.S. Geological Survey as a modeling framework, with refined hydrostratigraphy in a zone north of Yucca Flat and including Climax stock. Radionuclide transport was simulated using a separate model confined to the granite stock itself, but linked to regional groundwater flow through boundary conditions and calibration targets.

  8. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect (OSTI)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will load heavily onto activated carbon and should be removed from groundwater upstream of the activated carbon pre-treatment system. Unless removed upstream, the adsorbed loadings of these organic constituents could exceed the land disposal criteria for carbon.

  9. Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar, Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique, held March 12, 2013.

  10. Recovery Efficiency Test Project Phase 2 activity report, Volume 1

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  11. Artificial lift with coiled tubing for flow testing the Monterey formation, offshore California

    SciTech Connect (OSTI)

    Peavy, M.A.; Fahel, R.A. )

    1991-05-01

    This paper provides a technical comparison of jet-pump and nitrogen lift during the drillstem tests (DST's) of a low-gravity, high-viscosity crude on a semisubmersible drilling vessel. Eight DST testing sequences are presented to demonstrate that jet-pump-lift operations are better suited than nitrogen-lift techniques for obtaining reservoir data during Monterey DST's.

  12. Results of flow and vibration testing of supercell target elements in support of the N Reactor Alternate Mission Program

    SciTech Connect (OSTI)

    Crowe, R.D.; Samuel, T.J.

    1989-09-01

    The purpose of the Alternate Missions Program Design Tasks is to provide an alternate fuel/target design for producing tritium in the N Reactor. The planning for the program must be consistent with the following production requirements: (1) minimize changes to the reactor for implementation, (2) minimize implementation and production costs, and (3) maximize tritium production within these constraints. To evaluate the structural performance of the fuel/target and supercell target elements to be used in tritium production at the N Reactor, flow and vibration tests on the new supercell target design were conducted as described in WHC-IP-0552, (Crowe and Samuel 1989). Because the new fuel/target and supercell target elements weigh much less than fuel previously used in the N Reactor, testing was necessary to demonstrate that the elements would not vibrate when subjected to prototypical reactor flow conditions. This testing was essential to establish the new fuel and supercell target vibration and hydraulic behavior before actual use in the N Reactor. 5 refs., 10 figs., 11 tabs.

  13. A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site

    SciTech Connect (OSTI)

    Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO

    2010-11-10

    A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

  14. Advanced Vehicle Testing Activity Cold Weather On-road Testing of the Chevrolet Volt

    SciTech Connect (OSTI)

    Smart, John

    2015-03-01

    This report details cold weather on-road testing of a Chevrolet Volt. It quantifies changes in efficiency and electric range as ambient temperature changes. It will be published to INL's AVTA website as an INL technical report and will be accessible to the general public.

  15. Recovery efficiency test project, Phase 2 activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  16. Modeling hot gas flow in the low-luminosity active galactic nucleus of NGC 3115

    SciTech Connect (OSTI)

    Shcherbakov, Roman V.; Reynolds, Christopher S.; Wong, Ka-Wah; Irwin, Jimmy A.

    2014-02-20

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with ?{sup 2}/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 10{sup 9} M {sub ?}. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r {sub st} ? 1'', so that most of the gas, including the gas at a Bondi radius r{sub B} = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 10{sup 3} M {sub ?} yr{sup 1}. We find a shallow density profile n?r {sup ?} with ? ? 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r ? 1'', and (4) the outflow at r ? 1''. The gas temperature is close to the virial temperature T{sub v} at any radius.

  17. Summary Report on FY12 Small-Scale Test Activities High Temperature Electrolysis Program

    SciTech Connect (OSTI)

    James O'Brien

    2012-09-01

    This report provides a description of the apparatus and the single cell testing results performed at Idaho National Laboratory during JanuaryAugust 2012. It is an addendum to the Small-Scale Test Report issued in January 2012. The primary program objectives during this time period were associated with design, assembly, and operation of two large experiments: a pressurized test, and a 4 kW test. Consequently, the activities described in this report represent a much smaller effort.

  18. Water and gas chemistry from HGP-A geothermal well: January 1980 flow test

    SciTech Connect (OSTI)

    Thomas, D.M.

    1980-09-01

    A two-week production test was conducted on the geothermal well HGP-A. Brine chemistry indicates that approximately six percent of the well fluids are presently derived from seawater and that this fraction will probably increase during continued production. Reservoir production is indicated to be from two chemically distinct aquifers: one having relatively high salinity and low production and the other having lower salinity and producing the bulk of the discharge.

  19. Results of Active Test of Uranium-Plutonium Co-denitration Facility at Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Numao, Teruhiko; Nakayashiki, Hiroshi; Arai, Nobuyuki; Miura, Susumu; Takahashi, Yoshiharu; Nakamura, Hironobu; Tanaka, Izumi

    2007-07-01

    In the U-Pu co-denitration facility at Rokkasho Reprocessing Plant (RRP), Active Test which composes of 5 steps was performed by using uranium-plutonium nitrate solution that was extracted from spent fuels. During Active Test, two kinds of tests were performed in parallel. One was denitration performance test in denitration ovens, and expected results were successfully obtained. The other was validation and calibration of non-destructive assay (NDA) systems, and expected performances were obtained and their effectiveness as material accountancy and safeguards system was validated. (authors)

  20. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  1. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  2. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  3. Petrography, age, and paleomagnetism of basaltic lava flows in coreholes at Test Area North (TAN), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Lanphere, M.A.; Champion, D.E.; Kuntz, M.A.

    1994-12-31

    The petrography, age, and paleomagnetism were determined on basalt from 21 lava flows comprising about 1,700 feet of core from two coreholes (TAN CH No. 1 and TAN CH No. 2) in the Test Area North (TAN) area of the Idaho National Engineering Laboratory (INEL). Paleomagnetic studies were made on two additional cores from shallow coreholes in the TAN area. K-Ar ages and paleomagnetism also were determined on nearby surface outcrops of Circular Butte. Paleomagnetic measurements were made on 416 samples from four coreholes and on a single site in surface lava flows of Circular Butte. K-Ar ages were measured on 9 basalt samples from TAN CH No. 1 and TAN CH No. 2 and one sample from Circular Butte. K-Ar ages ranged from 1.044 Ma to 2.56 Ma. All of the samples have reversed magnetic polarity and were erupted during the Matuyama Reversed Polarity Epoch. The purpose of investigations was to develop a three-dimensional stratigraphic framework for geologic and hydrologic studies including potential volcanic hazards to facilities at the INEL and movement of radionuclides in the Snake River Plain aquifer.

  4. 16th intersociety energy conversion engineering conference. CDIF - activation completion and initial MHD test results

    SciTech Connect (OSTI)

    Staats, G.E.; DeJong, V.J.; Karvinen, R.J.; Carrington, R.A.; Bauman, L.E.

    1981-01-01

    The Component Development and Integration Facility (CDIF) is one of the Department of Energy's (DOE) Magnetohydrodynamics (MHD) experimental test facilities. The scope of this paper is limited to a brief description of the facility activation and results from the initial MHD testing using an oil fired ash injected combustor (AIC) and a supersonic channel. 1 ref.

  5. Flow tests of the Gladys McCall well. Appendix A, Gladys McCall Site (Cameron Parish, LA): Final report, October 1985--October 1990

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

  6. ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C

    SciTech Connect (OSTI)

    Alexander, Caroline E.; Walsh, Robert W.; Rgnier, Stphane; Cirtain, Jonathan; Winebarger, Amy R.; Golub, Leon; Korreck, Kelly; Weber, Mark; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; DePontieu, Bart; Title, Alan; DeForest, Craig; Kuzin, Sergey

    2013-09-20

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from H? and cool extreme-ultraviolet (EUV) lines (e.g., 304 ) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of 'counter-steaming' flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 ). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s{sup 1}) and gives an indication of the resolvable thickness of the individual strands (0.''8 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

  7. Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu; Hu, Jian Z.; Vijayakumar, M.; Feng, Ju; Hu, Mary Y.; Deng, Xuchu; Xiao, Jie; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-01-01

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a modified ferrocene catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  8. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming

    SciTech Connect (OSTI)

    Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination of fluid streaming. These findings support the hypothesis that a history of PD for a certain period could serve as a trigger of EPS after stoppage of PD.

  9. Active hopper for promoting flow of bulk granular or powdered solids

    DOE Patents [OSTI]

    Saunders, Timothy; Brady, John D.

    2013-04-02

    An apparatus that promotes the flow of materials has a body having an inner shape for holding the materials, a wall having a shape that approximates a portion of the inner shape of the body, and a vibrator attached to the wall. The wall may be disposed vertically within the body close to the body's inner shape. The vibrator transfers vibrations to the wall to agitate the material and encourage material flow.

  10. Adaptive Detached Eddy Simulation of a High Lift Wing with Active Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control | Argonne Leadership Computing Facility Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift. Slat, flap and complex supporting structures (right sub figures) that create complex vorticity wakes are resolved in the adaptive, unstructured grid simulation (third subfigure is zoom on

  11. The deep hydrogeologic flow system underlying the Oak Ridge Reservation -- Assessing the potential for active groundwater flow and origin of the brine

    SciTech Connect (OSTI)

    Nativ, R.; Halleran, A.; Hunley, A.

    1997-08-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation (ORR) contains contaminants such as radionuclides, heavy metals, nitrates, and organic compounds. The groundwater in the deep system is saline and has been considered to be stagnant in previous studies. This study was designed to address the following questions: is groundwater in the deep system stagnant; is contaminant migration controlled by diffusion only or is advection a viable mechanism; where are the potential outlet points? On the basis of existing and newly collected data, the nature of saline groundwater flow and potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial and temporal temperature variations at depth, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. The observations suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active, freshwater-bearing units. Influx of recent water does occur. Groundwater volumes involved in this flow are likely to be small. The origin of the saline groundwater was assessed by using existing and newly acquired chemical and isotopic data. The proposed model that best fits the data is modification of residual brine from which halite has been precipitated. Other models, such as ultrafiltration and halite dissolution, were also evaluated.

  12. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOE Patents [OSTI]

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  13. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    SciTech Connect (OSTI)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  14. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component conceptual models (e.g., geology, boundary flux, and recharge).

  15. Active test of head-end facility at Rokkasho reprocessing plant

    SciTech Connect (OSTI)

    Yamamoto, Yoshiro; Tanaka, Satoshi; Kawabe, Shuji; Kamada, Yoshiaki

    2007-07-01

    During the first step, the second and the third step of Active Test (AT) at Rokkasho Reprocessing Plant (RRP), the performances of the Head-end Facility were checked, mainly for shearing and dissolution: shearing force and shearing time were the values as expected and concentration of U and Pu in dissolution solution were the values as expected. And safety requirement for acidity in dissolution solution was satisfied. (authors)

  16. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. Furthermore, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  17. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. In conclusion, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  18. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  19. Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model

    SciTech Connect (OSTI)

    Brian A. Ebel; John R. Nimmo

    2009-09-11

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

  20. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect (OSTI)

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.

  1. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.

  2. Advanced Vehicle Testing Activity: Dodge Ram Wagon Van - Hydrogen/CNG Operations Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-16

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.

  3. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  4. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  5. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  6. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect (OSTI)

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  7. Active and passive acoustic imaging inside a large-scale polyaxial hydraulic fracture test

    SciTech Connect (OSTI)

    Glaser, S.D.; Dudley, J.W. II; Shlyapobersky, J.

    1999-07-01

    An automated laboratory hydraulic fracture experiment has been assembled to determine what rock and treatment parameters are crucial to improving the efficiency and effectiveness of field hydraulic fractures. To this end a large (460 mm cubic sample) polyaxial cell, with servo-controlled X,Y,Z, pore pressure, crack-mouth-opening-displacement, and bottom hole pressure, was built. Active imaging with embedded seismic diffraction arrays images the geometry of the fracture. Preliminary tests indicate fracture extent can be imaged to within 5%. Unique embeddible high-fidelity particle velocity AE sensors were designed and calibrated to allow determination of fracture source kinematics.

  8. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect (OSTI)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

  9. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

  10. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  11. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.

  12. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  13. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    SciTech Connect (OSTI)

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.; Gurai, Sheena; Ponomarev, Artem; Cucinotta, Francis A.; Pluth, Janice M.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dose and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.

  14. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2006-06-30

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  15. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N.; Baum, Steven R.; Reed, Lunde R.; Crum, Jarrod V.; Schaef, Herbert T.

    2005-03-31

    The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.

  16. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  17. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the radionuclides that is volatile in the melter and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 (99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentrations in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and 241Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. At this time, these scoping tests did not evaluate the partitioning of the radionuclides to the evaporator condensate, since ample data are available separately from other experience in the DOE complex. Results from the evaporation testing show that the neutral SBS simulant first forms turbidity at ~7.5X concentration, while the alkaline-adjusted simulant became turbid at ~3X concentration. The major solid in both cases was Kogarkoite, Na3FSO4. Sodium and lithium fluorides were also detected. Minimal solids were formed in the evaporator bottoms until a substantial fraction of liquid was removed, indicating that evaporation could minimize storage volume issues. Achievable concentration factors without significant insoluble solids were 17X at alkaline pH, and 23X at neutral pH. In both runs, significant ammonia carried over and was captured in the condenser with the water condensate. Results also indicate that with low insoluble solids formation in the initial testing at neutral pH, the use of Reverse Osmosis is a potential alternate method for concentrating the solution, although an evaluation is needed to identify equipment that can tolerate insoluble solids. Most of the ammonia remains in the evaporator bottoms during the neutral pH evaporation, but partitions to the condensate during alkaline evaporation. Disposition of both streams needs to consider the management of ammonia vapor and its release. Since this is an initial phase of testing, additional tasks related to evaporation methods are expected to be identified for development. These tasks likely include evaluation and testing of composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and evaporator condensate disposition.

  18. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect (OSTI)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  19. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine sorption.

  20. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    SciTech Connect (OSTI)

    Krenzien, Susan; Farnham, Irene

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  1. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    SciTech Connect (OSTI)

    Farnham, Irene; Krenzien, Susan

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  2. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  3. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  4. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.

  5. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  6. Excess flow shutoff valve

    DOE Patents [OSTI]

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  7. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2006deerdepetrillo.pdf More Documents & Publications Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles RYPOS Trap ...

  8. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rocks ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rocks primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

  9. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  10. Passive Active Multi-Junction 3, 7 GHZ launcher for Tore-Supra Long Pulse Experiments. Manufacturing Process and Tests

    SciTech Connect (OSTI)

    Guilhem, D.; Achard, J.; Bertrand, B.; Bej, Z.; Bibet, Ph.; Brun, C.; Chantant, M.; Delmas, E.; Delpech, L.; Doceul, Y.; Ekedahl, A.; Goletto, C.; Goniche, M.; Hatchressian, J. C.; Hillairet, J.; Houry, M.; Joubert, P.; Lipa, M.; Madeleine, S.; Martinez, A.

    2009-11-26

    The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and will be installed and commissioned on plasma during the fall of 2009.

  11. Engine Tests of an Active PM Filter Regeneration System | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_nickolas.pdf More Documents & Publications Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Development of an Active Regeneration Diesel Particulate Filter System Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions

  12. Recovery Efficiency Test Project Phase 2 activity report, Volume 1. Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  13. Geopressured-geothermal well activities in Louisiana

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  14. Investigating {sup 13}C+{sup 12}C reaction by the activation method. Sensitivity tests

    SciTech Connect (OSTI)

    Chesneanu, Daniela Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-24

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the “Horia Hulubei” National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the {sup 12}C+{sup 13}C reaction at beam energies E{sub lab}= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of {sup 12}C+{sup 12}C over a wide energy range. A {sup 13}C beam with intensities 0.5–2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with {sup 24}Na from the {sup 12}C({sup 13}C,p) reaction. The 1369 and 2754 keV gamma-rays from {sup 24}Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for E{sub lab} = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1–3 nb. This demonstrates that it is possible to measure {sup 12}C targets irradiated at lower energies for at least 10 times lower cross sections than before β–γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  15. Addendum for the Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, NevadaTest Site, Nye County, Nevada, Revision 0 (page changes)

    SciTech Connect (OSTI)

    John McCord

    2007-05-01

    This document, which makes changes to Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, S-N/99205--074, Revision 0 (May 2006) was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated June 20, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made: Section 6.0 Conceptual Model Uncertainty Analyses. Please note that in this section figures showing the observed versus simulated well head (Figures 6-1, 6-5, 6-7, 6-16, 6-28, 6-30, 6-32, 6-34, 6-37, 6-42, 6-47, 6-52, 6-57, 6-62, 6-71, and 6-86) have a vertical break in scale on the y axis. Section 7.0 Parameter Sensitivity Analysis. In Section 7.2, the parameter perturbation analysis defines two components of the objective function PHI. These two components include the WELL component that represents the head portion of the objective function as measured in wells and the FLUX component that represents the lateral boundary flux portion of the objective function. In the text and figures in Section 7.2, the phrases well portion of the objective function and head portion of the objective function are used interchangeably in discussions of the WELL component of the objective function.

  16. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  17. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  18. Recovery efficiency test project, Phase 2 activity report. Volume 2, Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for ``data frac`` stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  19. Activities to support the liquefied gaseous fuels spill test facility program. Final report

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.; Routh, T.

    1997-03-01

    Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

  20. Flow Coefficient

    Office of Scientific and Technical Information (OSTI)

    this type of flow in porous and fractured rocks, including flow in geothermal reservoirs. ... and Renewable Energy, Office of Geothermal and Wind Technologies of the U.S. ...

  1. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    SciTech Connect (OSTI)

    Rothschmitt, Stefan; Graf, Anja; Bauer, Stefan; Klute, Stefan; Koselowski, Eiko

    2013-07-01

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  2. SOLIDIFICATION TESTING FOR A HIGH ACTIVITY WASTESTREAM FROM THE SAVANNAH RIVER SITE USING GROUT AND GAMMA RADIATION SHEILDING MATERIALS - 10017

    SciTech Connect (OSTI)

    Burns, H.

    2009-11-10

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) with evaluating grouts that include gamma radiation shielding materials to solidify surrogates of liquid aqueous radioactive wastes from across the DOE Complex. The Savannah River Site (SRS) identified a High Activity Waste (HAW) that will be treated and solidified at the Waste Solidification Building (WSB) for surrogate grout testing. The HAW, which is produced at the Mixed Oxide Fuel Fabrication Facility (MFFF), is an acidic aqueous wastestream generated by the alkaline treatment process and the aqueous purification process. The HAW surrogate was solidified using Portland cement with and without the inclusion of different gamma radiation shielding materials to determine the shielding material that is the most effective to attenuate gamma radiation for this application.

  3. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    SciTech Connect (OSTI)

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell; Woloshun, Keith Albert; Dale, Gregory E.

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  4. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alkaline pH, with a DF of 17.9. As anticipated, ammonium ion probably interfered with the Ionsiv®a IE-95 zeolite uptake of {sup 137}Cs. Although this DF of {sup 137}Cs was moderate, additional testing is expected to identify more effective conditions. Similarly, Monosodium Titanate (MST) was more effective at alkaline pH at removing Sr, Pu, and U, with a DF of 319, 11.6, and 10.5, respectively, within 24 hours. Actually, the Ionsiv® IE-95, which was targeting removal of Cs, was also moderately effective for Sr, and highly effective for Pu and U at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}Tc during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Results of this separation testing indicate that sorption/precipitation was a viable concept and has the potential to decontaminate the stream. All radionuclides were at least partially removed by one or more of the materials tested. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) and sorbent at neutral pH to remove the Tc, followed by pH adjustment and the addition of zeolite (Ionsiv® IE-95) to remove the Cs, Sr, and actinides. Addition of MST to remove Sr and actinides may not be needed. Since this was an initial phase of testing, additional tasks to improve separation methods were expected to be identified. Primarily, further testing is needed to identify the conditions for the decontamination process. Once these conditions are established, follow-on tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated LAW Off-Gas Condensate evaporation and solidification.

  5. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.

    SciTech Connect (OSTI)

    Dionne, B.; Tzanos, C. P.

    2011-05-23

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  6. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents. The sorbents, hydroxyapatite and sodium oxalate, were expected to sorb the precipitated technetium dioxide and facilitate removal. The Phase 1 tests examined a broad range of conditions and used the initial baseline simulant. The Phase 2 tests narrowed the conditions based on Phase 1 results, and used a slightly modified simulant. Test results indicate that excellent removal of {sup 99}Tc was achieved using SnCl{sub 2} as a reductant, and was effective with or without sorption onto hydroxyapatite. This reaction worked even in the presence of air (which could oxidize the stannous ion) and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >199 in one hour with only 1 g/L of SnCl{sub 2}. Prior work had shown that it was much less effective at alkaline pH. The only deleterious effect observed was that the chromium co-precipitates with the {sup 99}c during the SnCl{sub 2} reduction. This effect was anticipated, and would have to be considered when managing disposition paths of this stream. Reduction using FeSO{sub 4} was not effective at removing {sup 99}Tc, but did remove the Cr. Chromium is present due to partial volatility and entrainment in the off-gas, and is highly oxidizing, so would be expected to react with reducing agents more quickly than pertechnetate. Testing showed that sufficient reducing agent must be added to completely reduce the chromium before the technetium is reduced and removed. Other radionuclides are also present in this off-gas condensate stream. To enable sending this stream to the Hanford ETF, and thereby divert it from the recycle where it impacts the LAW glass volume, several of these also need to be removed. Samples from optimized conditions were also measured for actinide removal in order to examine the effect of the Tc-removal process on the actinides. Plutonium was also removed by the SnCl{sub 2} precipitation process. Results of this separation testing indicate that sorption/precipitation is a viable concept and has the potential to decontaminate the {sup 99}Tc from the stream, allowing it to be diverted away from WTP and thus eliminating the impact of the recycled halides and sulfate on the LAW glass volume. Based on the results, a possible treatment scenario could involve the use of a reductive precipitation agent (SnCl{sub 2}) with or without sorbent at neutral pH to remove the Tc. Although hydroxyapatite was not necessary to effect the {sup 99}Tc removal, it may be beneficial in solid-liquid separations. Other testing will examine removal of the other radionuclides. This testing was the second phase of testing, which aimed at optimizing the process by examining the minimum amount of reductant needed and the minimum reaction time. Although results indicated that SnCl{sub 2} was effective, further work on a pH-adjusted Fe(SO{sub 4}) mixture are needed. Additional tasks are needed to examine removal of the other radionuclides, solid-liquid separation technologies, slurry rheology measurements, composition variability impacts, corrosion and erosion, and slurry storage and immobilization.

  7. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  8. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  9. Solderability test system

    DOE Patents [OSTI]

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

    1998-10-27

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  10. Solderability test system

    DOE Patents [OSTI]

    Yost, Fred; Hosking, Floyd M.; Jellison, James L.; Short, Bruce; Giversen, Terri; Reed, Jimmy R.

    1998-01-01

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  11. Control of Test Conduct

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revision 1 Effective June 2008 Control of Test Conduct Prepared by Electric ......... 4 6.1 Test Activities ......

  12. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  13. Activities

    Broader source: Energy.gov [DOE]

    Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

  14. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  15. The Influence of Electrode and Channel Configurations on Flow Battery Performance

    SciTech Connect (OSTI)

    Darling, RM; Perry, ML

    2014-05-21

    Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society. All rights reserved.

  16. Summary of activities at the Engineered Barriers Test Facility, October 1, 1995 to January 31, 1997, and initial data

    SciTech Connect (OSTI)

    Porro, I.; Keck, K.N.

    1997-03-01

    Replicates of two engineered barrier designs (a thick soil barrier and a bio/capillary barrier) were constructed in the test plots of the facility. Prior to placement of any soil in the test plots, instruments were calibrated and attached to plot instrument towers, which were then installed in the test plots. Soil from Spreading Area B was installed in the test plots in lifts and compacted. Instruments attached to the instrument tower were placed in shallow trenches dug in the lifts and buried. Each instrument was checked to make sure it functioned prior to installation of the next lift. Soil samples were collected from each lift in one plot during construction for later determination of physical and hydraulic properties. After completion of the test plots, the data acquisition system was finalized, and data collection began. Appropriate instrument calibration equations and equation coefficients are presented, and data reduction techniques are described. Initial data show test plot soils drying throughout the summer and early fall. This corresponds to low rainfall during this period. Infiltration of water into the test plots was first detected around mid-November with several subsequent episodes in December. Infiltration was verified by corresponding measurements from several different instruments [time domain reflectometry (TDR), neutron probe, thermocouple psychrometers, and heat dissipation sensors]. Tensiometer data does not appear to corroborate data from the other instruments. Test plots were warmer on the side closest to the access trench indicating a temperature effect from the trench. This resulted in greater soil moisture freezing with less and shallower infiltration on the far side of the plots than on the side closest to the trench. At the end of this monitoring period, infiltration in all but two of the test plots has reached the 155-cm depth. Infiltration in test plots B2 and S3 has reached only the 140-cm depth. The monitored infiltration events have not resulted in drainage from the bottom of the test plots.

  17. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  18. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  19. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  20. New treatability tests

    SciTech Connect (OSTI)

    Roy, K.A.

    1993-01-01

    EPA, under its Superfund Innovative Technology Evaluation (SITE) program, recently announced results from treatability tests on Thorneco Inc.'s (Payson, Ariz.) Enzyme-Activated Cellulose Technology. The technology relies on cellulose coated with a proprietary enzyme to remove metals and organic compounds from aqueous solutions. Following enzyme treatment, cellulose is placed in one or more towers that operate in series. Contaminated water enters the towers from the bottom and flows upward through the enzyme-activated cellulose to a discharge pipe at the top. The technology can remove metals and organic compounds from aqueous solutions in the form of ions, particulates or colloidal compounds. The treatability study was conducted between Aug. 26 and Sept. 30, 1991, at the Engineering Science treatability lab in Atlanta. Contaminated groundwater came from Stream A at the Stringfellow Superfund site in Glen Avon, Calif. A bench-scale treatability study was performed because of a lack of complete background data and uncertainty concerning the technology's removal mechanisms.

  1. Flowing Electrical Conductivity At Jemez Pueblo Area (DOE GTP...

    Open Energy Info (EERE)

    Flowing Electrical Conductivity At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flowing Electrical Conductivity At...

  2. The Magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  3. Geopressured-geothermal well activities in Louisiana. Annual report, 1 January 1991--31 December 1991

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  4. Precision Flow Table | Open Energy Information

    Open Energy Info (EERE)

    Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility...

  5. Flow cytometer

    DOE Patents [OSTI]

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  6. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  7. Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004. Award-winning accomplishments included KAT's increase in annual ridership

  8. UZ Flow Models and Submodels

    SciTech Connect (OSTI)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  9. HARD X-RAY LAGS IN ACTIVE GALACTIC NUCLEI: TESTING THE DISTANT REVERBERATION HYPOTHESIS WITH NGC 6814

    SciTech Connect (OSTI)

    Walton, D. J.; Harrison, F. A.; Zoghbi, A.; Reynolds, C. S.; Cackett, E. M.; Uttley, P.; Fabian, A. C.; Kara, E.; Miller, J. M.; Reis, R. C.

    2013-11-10

    We present an X-ray spectral and temporal analysis of the variable active galaxy NGC 6814, observed with Suzaku during 2011 November. Remarkably, the X-ray spectrum shows no evidence for the soft excess commonly observed amongst other active galaxies, despite its relatively low level of obscuration, and is dominated across the whole Suzaku bandpass by the intrinsic powerlaw-like continuum. Despite this, we clearly detect the presence of a low-frequency hard lag of ∼1600 s between the 0.5-2.0 and 2.0-5.0 keV energy bands at greater than 6σ significance, similar to those reported in the literature for a variety of other active galactic nuclei (AGNs). At these energies, any additional emission from, e.g., a very weak, undetected soft excess, or from distant reflection must contribute less than 3% of the observed countrates (at 90% confidence). Given the lack of any significant continuum emission component other than the powerlaw, we can rule out models that invoke distant reprocessing for the observed lag behavior, which must instead be associated with this continuum emission. These results are fully consistent with a propagating fluctuation origin for the low-frequency hard lags, and with the interpretation of the high-frequency soft lags—a common feature seen in the highest quality AGN data with strong soft excesses—as reverberation from the inner accretion disk.

  10. Underground Flow Measurement and Particle Release Test

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  11. Review and selection of unsaturated flow models

    SciTech Connect (OSTI)

    Reeves, M.; Baker, N.A.; Duguid, J.O.

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  12. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  13. Irrigation Pump Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the pump's operating performance including lift, discharge pressure, power input, and water flow. The results of the pump test provide a value for the overall efficiency of the...

  14. Addendum for the Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0 (page changes)

    SciTech Connect (OSTI)

    John McCord

    2007-05-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: Plate 4: Disregard the repeat of legend text Drill Hole Name and Drill Hole Location in the lower left corner of the map. Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.

  15. Finite element model to predict the flow of underground contaminants due to leakage of chemical and/or radio active material from a buried containment. Final technical report

    SciTech Connect (OSTI)

    Anand, S.C.; Pandit, A.

    1983-06-01

    In the investigation, a Galerkin finite element model in two dimensions is developed to study the phenomena of mass transfer in porous media. In particular, the problems of the saltwater encroachment in coastal aquifers and the transport of hazardous wastes in groundwater environment are studied for a wide range of aquifer parameters. The coupled governing partial differential equations are nondimensionalized and solved for a two-dimensional, saturated aquifer in the vertical plane for both steady state and transient conditions using an iterative solution procedure. The flow transport is represented either in terms of the stream function or the freshwater hydraulic head.

  16. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Flow Model of CAUs 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada Appendix A A-59 Table A.11-3 CPU Times in Minutes for FEHM Test Problem Simulations Model Faults Radionuclides Source Location Matrix Diffusion Simulation Time (Yrs) CPU Time (min) Flow No - - - - 19 Flow Yes - - - - 15 F-E Transport No Tritium SCOTCH/SERENA* No 200 71 F-E Transport No Tritium SCOTCH CHVTA** No 200 82 F-E Transport Yes Tritium SCOTCH/SERENA No 200 77 F-E Transport Yes Tritium SCOTCH

  17. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  18. Advanced Vehicle Testing Activity (AVTA)- Vehicle Testing and Demonstration Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. Siemens SOFC Test Article and Module Design

    SciTech Connect (OSTI)

    2011-03-31

    Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

  20. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect (OSTI)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

  1. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  2. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  3. Development, Testing and Validation of a Waste Assay System for the Measurement and Characterisation of Active Spent Fuel Element Debris From UK Magnox Reactors - 12533

    SciTech Connect (OSTI)

    Mason, John A.; Burke, Kevin J.; Looman, Marc R.; Towner, Antony C.N.; Phillips, Martin E.

    2012-07-01

    This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part of the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to simulate the geometry of the sorting cell and the distribution of radioactive sources has helped to ensure that all of the detector shielding requirements are addressed and suitable Cs-137 and Co-60 discrimination can be achieved. The WTAS in its present form or in other configurations has relevance to the measurement of other active ILW and highly active RH waste. Examples include high activity RH LLW and RH TRU (Transuranic) waste as defined in the United States arising from both commercial nuclear and Department of Energy (DOE) operations. The analysis is able to analyse a range of radionuclides beyong those expected in the Magnox FED cases. (authors)

  4. DECORRELATION TIMES OF PHOTOSPHERIC FIELDS AND FLOWS

    SciTech Connect (OSTI)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-03-10

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier local correlation tracking (FLCT) to a sequence of high-resolution (0.''3), high-cadence ({approx_equal} 2 minute) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the narrowband filter imager of the Solar Optical Telescope aboard the Hinode satellite over 2006 December 12 and 13. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval {Delta}t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter {sigma} used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, {tau}. For {Delta}t > {tau}, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and {Delta}t.

  5. IN SITU FIELD TESTING OF PROCESSES

    SciTech Connect (OSTI)

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

  6. Entry/Exit Port testing, test report

    SciTech Connect (OSTI)

    Winkelman, R.H.

    1993-05-01

    The Waste Receiving and Processing Module I (WRAP-1) facility must have the ability to allow 55-gallon drums to enter and exit glovebox enclosures. An Entry/Exit Port (Appendix 1, Figure 1), designed by United Engineers and Constructors (UE&C), is one method chosen for drum transfer. The Entry/Exit Port is to be used for entry of 55-gallon drums into both process entry gloveboxes, exit of 55-gallon drum waste pucks from the low-level waste (LLW) glovebox, and loadout of waste from the restricted waste management glovebox. The Entry/Exit Port relies on capture velocity air flow and a neoprene seal to provide alpha confinement when the Port is in the open and closed positions, respectively. Since the glovebox is in a slight vacuum, air flow is directed into the glovebox through the space between the overpack drum and glovebox floor. The air flow is to direct any airborne contamination into the glovebox. A neoprene seal is used to seal the Port door to the glovebox floor, thus maintaining confinement in the closed position. Entry/Exit Port testing took place February 17, 1993, through April 14, 1993, in the 305 building of Westinghouse Hanford Company. Testing was performed in accordance with the Entry/Exit Port Testing Test Plan, document number WHC-SD-WO26-TP-005. A prototype Entry/Exit Port built at the Hanford Site was tested using fluorescent paint pigment and smoke candles as simulant contaminants. This test report is an interim test report. Further developmental testing is required to test modifications made to the Port as the original design of the Port did not provide complete confinement during all stages of operation.

  7. Uranyl Nitrate Flow Loop

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

  8. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels You are ...

  9. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  10. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  11. Stress Test | Open Energy Information

    Open Energy Info (EERE)

    Stress Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Stress Test Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration...

  12. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  13. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  14. Counter-current flow limitation in thin rectangular channels...

    Office of Scientific and Technical Information (OSTI)

    AND INFORMATION SCIENCE; CORE FLOODING SYSTEMS; COUNTERFLOW SYSTEMS; TWO-PHASE FLOW; RESEARCH AND TEST REACTORS; COMPARATIVE EVALUATIONS; COUNTER CURRENT; CRITICALITY; FILMS; ...

  15. CoreFlow Scientific Solutions Ltd | Open Energy Information

    Open Energy Info (EERE)

    of non-contact substrate processing, handling, and testing equipments for Flat Panel Display (FPD), semiconductor, and solar industries. References: CoreFlow Scientific...

  16. Property:FirstWellFlowComments | Open Energy Information

    Open Energy Info (EERE)

    Showing 3 pages using this property. C Chena Geothermal Area + Flow test enabled estimation of drawdown of 148 ft in the production well at the required...

  17. CFD analysis of laminar oscillating flows

    SciTech Connect (OSTI)

    Booten, C. W. Charles W.); Konecni, S.; Smith, B. L.; Martin, R. A.

    2001-01-01

    This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

  18. Hefty tests buoy Philippine oil sector

    SciTech Connect (OSTI)

    Not Available

    1992-04-13

    This paper reports that Alcorn International Inc., Houston, has disclosed a test of another hefty oil flow off Philippines. Alcorn last month completed its third high flowing delineation well in the West Linapacan area off Palawan Island. Development of West Linapacan field will help boost lagging Philippines oil production, which fell 31% in 1991 from 1990 levels. Philippines Office of Energy Affairs (OEA) also outlined other aspects of the country's oil and gas activity in 1991. Recent drilling successes have redirected the country's focus north to the West Linapacan area from older Northwest Palawan oil fields. Meantime, two geophysical survey and exploration contracts (GSECs) were awarded in 1991, and two service contracts (SCs) were relinquished during the year. Several seismic program were completed last year, and in agreement between Australia and Philippines will yield added seismic data during the next 3 years.

  19. Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and integrating imaging into modeling.

  20. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  1. Pressure Testing of a High Temperature Naturally Fractured Reservoir...

    Office of Scientific and Technical Information (OSTI)

    and flow-through tests at the Hot Dry rock (HDR) test site at Fenton Hill, New Mexico. ... FRACTURING; FRESH WATER; GRANITES; NEW MEXICO; PERMEABILITY; POROSITY; PUMPING; ...

  2. October 29 ESTAP Webinar: Flow Battery Basics (Part 2)

    Broader source: Energy.gov [DOE]

    On Wednesday, October 29, 2014 from 1 - 2:30 p.m. ET, Clean Energy State Alliance will host the second in a series of webinars on flow batteries. OE's Imre Gyuk, Energy Storage Program Manager, will present an introduction to flow battery technology, and Dan Borneo of Sandia National Laboratories will discuss flow battery testing and technological readiness.

  3. Category:Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    this category, out of 9 total. D Downhole Fluid Sampling E Earth Tidal Analysis F Flow Test I Injectivity Test S Static Temperature Survey Stress Test T Tracer Testing V Vertical...

  4. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-05-15

    This report provides the resluts of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, verticla flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  5. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 1999

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-01-19

    This report provides the results of detailed hydrologic characterization tests conducted within newly constructed Hanford Site wells during FY 1999. Detailed characterization tests performed during FY 1999 included: groundwater flow characterization, barometric response evaluation, slug tests, single-well tracer tests, constant-rate pumping tests, and in-well vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include: transmissivity, hydraulic conductivity, specific yield, effective porosity, in-well lateral flow velocity, aquifer flow velocity, vertical distribution of hydraulic conductivity (within the well-screen section) and in-well vertical flow velocity. In addition, local groundwater flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  6. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL...

    Office of Scientific and Technical Information (OSTI)

    tools used by contractors in the field to test air flows may not be accurate enough to ... The team developed guidance on performance of current diagnostics as well as a draft test ...

  7. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  8. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  9. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  10. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  11. Low flow fume hood

    DOE Patents [OSTI]

    Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  12. Operation greenhouse, scientific director`s report of atomic weapon tests at Eniwetok, 1951, annex 9.2, Sandia Corporation Proving Ground Group. Part 3. Fuzing and firing activities, December 1951 (sanitized version)

    SciTech Connect (OSTI)

    1996-10-29

    This report covers the activities of the Fuzing and Firing Team of Task Unit 3.1.4, the Weapons Assembly Organization. The Fuzing and Firing Team was directly responsible for the assembly and testing of the various fuzing and firing systems necessary to detonate the experimental weapons under test. Other responsibilities of this group included the supplying of fiducial signals from the firing sets for the transit-time experiments being conducted by other groups and a partial responsibility for the final arming of the weapons fired on the towers.

  13. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  14. Crane Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ... A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty ...

  15. Project W320 heel jet secondary catch mechanism lateral load test - test report

    SciTech Connect (OSTI)

    Bellomy, J.R.

    1994-12-01

    This test report summarizes testing activities and documents the results of the lateral load test performed on the Heel Jet Secondary Catch Mechanism.

  16. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  17. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  18. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  19. Lustre Tests

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    Lustre-tests is a package of regression tests for the Lustre file system containing I/O workloads representative of problems discovered on production systems.

  20. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  1. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  2. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and ... Testing Overview and Progress of the Battery Testing, Analysis, and Design Activity ...

  3. PORFLOW TESTING AND VERIFICATION DOCUMENT

    SciTech Connect (OSTI)

    Aleman, S

    2007-06-18

    The PORFLOW software package is a comprehensive mathematical model for simulation of multi-phase fluid flow, heat transfer and mass transport in variably saturated porous and fractured media. PORFLOW can simulate transient or steady-state problems in Cartesian or cylindrical geometry. The porous medium may be anisotropic and heterogeneous and may contain discrete fractures or boreholes with the porous matrix. The theoretical models within the code provide a unified treatment of concepts relevant to fluid flow and transport. The main features of PORFLOW that are relevant to Performance Assessment modeling at the Savannah River National Laboratory (SRNL) include variably saturated flow and transport of parent and progeny radionuclides. This document involves testing a relevant sample of problems in PORFLOW and comparing the outcome of the simulations to analytical solutions or other commercial codes. The testing consists of the following four groups. Group 1: Groundwater Flow; Group 2: Contaminant Transport; Group 3: Numerical Dispersion; and Group 4: Keyword Commands.

  4. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  5. Inhomogeneity of fluid flow in Stirling engine regenerators

    SciTech Connect (OSTI)

    Jones, J.D. )

    1989-10-01

    The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

  6. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    SciTech Connect (OSTI)

    Dougal, R.A.

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  7. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  8. Instream Flow Project

    Broader source: Energy.gov [DOE]

    As a part of the Department of Energy’s Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations.

  9. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  10. Microelectromechanical flow control apparatus

    DOE Patents [OSTI]

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  11. Prematurely terminated slug tests

    SciTech Connect (OSTI)

    Karasaki, K. )

    1990-07-01

    A solution of the well response to a prematurely terminated slug test (PTST) is presented. The advantages of a PTST over conventional slug tests are discussed. A systematized procedure of a PTST is proposed, where a slug test is terminated in the midpoint of the flow point, and the subsequent shut-in data is recorded and analyzed. This method requires a downhole shut-in device and a pressure transducer, which is no more than the conventional deep-well slug testing. As opposed to slug tests, which are ineffective when a skin is present, more accurate estimate of formation permeability can be made using a PTST. Premature termination also shortens the test duration considerably. Because in most cases no more information is gained by completing a slug test to the end, the author recommends that conventional slug tests be replaced by the premature termination technique. This study is part of an investigation of the feasibility of geologic isolation of nuclear wastes being carried out by the US Department of Energy and the National Cooperative for the Storage of Radioactive Waste of Switzerland.

  12. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect (OSTI)

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.

  13. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOE Patents [OSTI]

    Armstrong, William D.; Naughton, Jonathan; Lindberg, William R.

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  14. Redox Flow - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Flow March 10, 2016, Research Highlights A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR A symmetric nonaqueous flow battery based on the highly soluble, ambipolar PTIO achieved a cell voltage of ~1.7V and decent cyclability. We demonstrated FTIR as an effective method to monitor the state of charge (SOC) of this flow battery. Read More Redox Flow December 10, 2015, Research Highlights In-Situ XANES and EXAFS Analysis of Redox Active Fe

  15. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  16. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect (OSTI)

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  17. Shroud leakage flow discouragers

    DOE Patents [OSTI]

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  18. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  19. Generic air sampler probe tests

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-11-01

    Tests were conducted to determine the best nozzle and probe designs for new air sampling systems to be installed in the ventilation systems of some of the waste tanks at the Hanford Site in Richland, Washington. Isokinetic nozzle probes and shrouded probes were tested. The test aerosol was sodium-fluorescein-tagged oleic acid. The test parameters involved particle sizes from 1 to 15 {mu}m, air velocities from 3 to 15 m/s. The results of the tests show that shrouded probes can deliver samples with significantly less particle-size bias then the isokinetic nozzle probes tested. Tests were also conducted on two sample flow splitters to determine particle loss as a function of aerodynamic particle size. The particle size range covered in these tests was 5 to 15 {mu}m. The results showed little particle loss, but did show a bias in particle concentration between the two outlets of each splitter for the larger particle sizes.

  20. Bypass flow computations on the LOFA transient in a VHTR

    SciTech Connect (OSTI)

    Tung, Yu-Hsin; Johnson, Richard W.; Ferng, Yuh-Ming; Chieng, Ching-Chang

    2014-01-01

    Bypass flow in the prismatic gas-cooled very high temperature reactor (VHTR) is not intentionally designed to occur, but is present in the gaps between graphite blocks. Previous studies of the bypass flow in the core indicated that the cooling provided by flow in the bypass gaps had a significant effect on temperature and flow distributions for normal operating conditions. However, the flow and heat transports in the core are changed significantly after a Loss of Flow Accident (LOFA). This study aims to study the effect and role of the bypass flow after a LOFA in terms of the temperature and flow distributions and for the heat transport out of the core by natural convection of the coolant for a 1/12 symmetric section of the active core which is composed of images and mirror images of two sub-region models. The two sub-region models, 9 x 1/12 and 15 x 1/12 symmetric sectors of the active core, are employed as the CFD flow models using computational grid systems of 70.2 million and 117 million nodes, respectively. It is concluded that the effect of bypass flow is significant for the initial conditions and the beginning of LOFA, but the bypass flow has little effect after a long period of time in the transient computation of natural circulation.

  1. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  2. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  3. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  4. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    SciTech Connect (OSTI)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  5. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0)...

  6. Vertical Flowmeter Test | Open Energy Information

    Open Energy Info (EERE)

    Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Flowmeter Test Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration...

  7. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  8. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  9. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  10. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  11. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  12. Experimental Investigation of Two-Phase Flow in Rock Salt

    SciTech Connect (OSTI)

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  13. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  14. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to...

  15. Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  16. Battery Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  17. Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  18. Redox Flow - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 5, 2015, Research Highlights Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow We created biphasic electrode suspensions composed of dispersed active particles and uniformly percolated conductive particles, different from the clustered suspensions using traditional suspension preparation procedures. Read More Chemical Transformation Redox Flow May 28, 2015, Research Highlights Complexes Containing Redox

  19. TESTING THE UNIFICATION MODEL FOR ACTIVE GALACTIC NUCLEI IN THE INFRARED: ARE THE OBSCURING TORI OF TYPE 1 AND 2 SEYFERTS DIFFERENT?

    SciTech Connect (OSTI)

    Ramos Almeida, C.; Levenson, N. A.; Radomski, J. T.; Alonso-Herrero, A.; Asensio Ramos, A.; Rodriguez Espinosa, J. M.; Perez Garcia, A. M.; Mason, R.; DIaz-Santos, T.

    2011-04-20

    We present new mid-infrared imaging data for three Type-1 Seyfert galaxies obtained with T-ReCS on the Gemini-South Telescope at subarcsecond resolution. Our aim is to enlarge the sample studied in a previous work to compare the properties of Type-1 and Type-2 Seyfert tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear spectral energy distributions. Thus, the sample considered here comprises 7 Type-1, 11 Type-2, and 3 intermediate-type Seyferts. The unresolved IR emission of the Seyfert 1 galaxies can be reproduced by a combination of dust heated by the central engine and direct active galactic nucleus (AGN) emission, while for the Seyfert 2 nuclei only dust emission is considered. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Unification schemes of AGN account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold and that the immediate dusty surroundings of Type-1 and Type-2 Seyfert nuclei are intrinsically different. The Type-2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type-1 tori. The larger the covering factor of the torus, the smaller the probability of having a direct view of the AGN, and vice versa. In our sample, Seyfert 2 tori have larger covering factors (C{sub T} = 0.95 {+-} 0.02) and smaller escape probabilities (P{sub esc} = 0.05% {+-} {sup 0.08}{sub 0.03}%) than those of Seyfert 1 (C{sub T} = 0.5 {+-} 0.1; P{sub esc} = 18% {+-} 3%). All the previous differences are significant according to the Kullback-Leibler divergence. Thus, on the basis of the results presented here, the classification of a Seyfert galaxy as a Type-1 or Type-2 depends more on the intrinsic properties of the torus rather than on its mere inclination toward us, in contradiction with the simplest unification model.

  20. Constant pressure high throughput membrane permeation testing...

    Office of Scientific and Technical Information (OSTI)

    membrane testing cell is ported by a permeate multiport valve for sampling or venting. ... pressures and flow rates on each side of the planar membrane throughout a sampling cycle. ...

  1. Overview and Progress of the Battery Testing, Analysis, and Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  2. Piezoelectric axial flow microvalve

    DOE Patents [OSTI]

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  3. Flow distribution channels to control flow in process channels (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels. Authors: Tonkovich, Anna Lee ; Arora, Ravi ; Kilanowski, David Publication Date: 2014-10-28 OSTI Identifier:

  4. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  5. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  6. KJRR-FAI Hydraulic Flow Testing Input Package

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATRs Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

  7. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  8. Flow line sampler

    DOE Patents [OSTI]

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  9. AVTA: Transit Vehicle Specifications and Test Procedures | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transit Vehicle Specifications and Test Procedures AVTA: Transit Vehicle Specifications and Test Procedures All Advanced Vehicle Testing Activity transit projects follow a rigorous ...

  10. AVTA: Aerovironment AC Level 2 Charging System Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  11. AVTA: Clipper Creek AC Level 2 Charging System Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  12. Activity report

    SciTech Connect (OSTI)

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  13. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  14. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  15. Patch-clamp array with on-chip electronics, optics, flow control and mechanical actuation.

    SciTech Connect (OSTI)

    James, Conrad D.; Okandan, Murat; Draper, Bruce Leroy; Mani, Seethambal S.

    2003-07-01

    Fast and quantitative analysis of cellular activity, signaling and responses to external stimuli is a crucial capability and it has been the goal of several projects focusing on patch clamp measurements. To provide the maximum functionality and measurement options, we have developed a patch clamp array device that incorporates on-chip electronics, mechanical, optical and microfluidic coupling as well as cell localization through fluid flow. The preliminary design, which integrated microfluidics, electrodes and optical access, was fabricated and tested. In addition, new designs which further combine mechanical actuation, on-chip electronics and various electrode materials with the previous designs are currently being fabricated.

  16. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS

    SciTech Connect (OSTI)

    Jennifer L. Sinclair

    2001-09-30

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal & oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems.

  17. US energy flow, 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1992-06-01

    Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

  18. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  19. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA)

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  20. ISDSN Sensor System Phase One Test Report

    SciTech Connect (OSTI)

    Gail Heath

    2011-09-01

    This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

  1. Experimental Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  2. Mechanical Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  3. Redox Flow - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 17, 2014, Research Highlights New concepts in Redox Flow: "Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents" Sized-based selective transport of supporting electrolyte across commercial Celgard porous separators is attainable by controlling the size of highly soluble (>2M) redox active polymers (RAPs) as storage material ... Read More Redox Flow September 30, 2014, Research

  4. Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan,...

    Open Energy Info (EERE)

    the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Donald Brown, Robert DuTeaux (1997) Three Principal Results from Recent Fenton Hill Flow Testing...

  5. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  6. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Office of Environmental Management (EM)

    (all-electric, compressed natural gas, diesel, hybrid-electric, neighborhood-electric, plug-in hybrid electric, and stop-start vehicles) as well as medium- and heavy-duty vehicles. ...

  7. The New Test Site 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site 1 Energetic staff supports Northrop Grumman tour 2 Educational outreach 2 DAF and seismic activity 3 Pollution prevention 4 Emergency training 6 collaborative effort among both federal and contractor staff is designed to transform the way business is conducted at the Nevada Test Site (NTS). Dubbed the New Test Site, this ongoing initiative will transform operations in numerous ways. One key element of the New Test Site is the proposed transition of large scale hydrodynamic (hydro)

  8. Underground Test Area Subproject Phase I Data Analysis Task. Volume II - Potentiometric Data Document Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume II of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the potentiometric data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  9. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  10. Oahu Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  11. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  12. TEP process flow diagram

    SciTech Connect (OSTI)

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  13. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  14. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  15. Binary fish passage models for uniform and nonuniform flows

    SciTech Connect (OSTI)

    Neary, Vincent S

    2011-01-01

    Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow prediction of the percentage 43 of fish passing would be particularly useful near flow speed thresholds where binary 44 passage models are clearly limited.

  16. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the ...

  17. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  18. Spectral Content and Spatial Scales in Unsteady Rotationally Augmented Flow Fields: Preprint

    SciTech Connect (OSTI)

    Schreck, S. J.

    2007-08-01

    This paper describes wind turbine flow fields that effect load predictions for design and analysis and the active aerodynamic control methodologies being considered for wind turbine applications.

  19. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  20. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOE Patents [OSTI]

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  1. ETA-HAC02 - Control of Test Conduct

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control of Test Conduct Prepared by Electric Transportation Applications Prepared by: ... 5 6.0 Activity Requirements 5 6.1 Test Activities 5 6.2 Test Exceptions 6 7.0 ...

  2. Flowing effects in gas lasers

    SciTech Connect (OSTI)

    Zhi, G.

    1984-05-01

    Currently accepted theory states that saturation intensity and gain (or optical power density) increase without limit with the increase of the flow speed. These conclusions are not true. It is shown instead that they tend to be limiting values with the increase of flow speed. The variations of the parameters mentioned above with flow speed are presented.

  3. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  4. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect (OSTI)

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  5. Forklift Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest Products (2010 MECS) Forest Products (2010 MECS) Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Forest Products More Documents & Publications MECS 2006 - Forest Products Cement (2010 MECS) Transportation

    Forklift Safety Test Instructions: All Training and

  6. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  7. Project W320 52-inch diameter equipment container load test: Test report

    SciTech Connect (OSTI)

    Bellomy, J.R.

    1995-02-22

    This test report summarizes testing activities and documents the results of the load tests performed on-site and off-site to structural qualify the 52-inch equipment containers designed and fabricated under Project W-320.

  8. Pulse testing in the presence of wellbore storage and skin effects

    SciTech Connect (OSTI)

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  9. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  10. Incompressible Flows Free Surfaces

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    NASA-VOF3D is a three-dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slipmore » wall, continuative, periodic, and specified pressure outflow boundary.« less

  11. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  12. Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

    2007-12-15

    We propose a new conceptual model of fracture-flow-enhanced matrix diffusion, which correlates with fracture-flow velocity, i.e., matrix diffusion enhancement induced by rapid fluid flow within fractures. According to the boundary-layer or film theory, fracture flow enhanced matrix diffusion may dominate mass-transfer processes at fracture-matrix interfaces, because rapid flow along fractures results in large velocity and concentration gradients at and near fracture-matrix interfaces, enhancing matrix diffusion at matrix surfaces. In this paper, we present a new formulation of the conceptual model for enhanced fracture-matrix diffusion, and its implementation is discussed using existing analytical solutions and numerical models. In addition, we use the enhanced matrix diffusion concept to analyze laboratory experimental results from nonreactive and reactive tracer breakthrough tests, in an effort to validate the new conceptual model.

  13. Annular flow diverter valve

    DOE Patents [OSTI]

    Rider, Robert L.

    1980-01-01

    A valve for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle, the servomotor thereby being adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube.

  14. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  15. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  16. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  17. Monitoring electrolyte concentrations in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  18. n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator

    Energy Science and Technology Software Center (OSTI)

    2012-09-12

    nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) is a comprehensive well test analysis software package. It provides a user-interface, a well test analysis model and many tools to analyze both field and simulated data. The well test analysis model simulates a single-phase, one-dimensional, radial/non-radial flow regime, with a borehole at the center of the modeled flow system. nSIGHTS solves the radially symmetric n-dimensional forward flow problem using a solver based on a graph-theoretic approach.more » The results of the forward simulation are pressure, and flow rate, given all the input parameters. The parameter estimation portion of nSIGHTS uses a perturbation-based approach to interpret the best-fit well and reservoir parameters, given an observed dataset of pressure and flow rate.« less

  19. Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chromatography - Energy Innovation Portal Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow Chromatography Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention looks at method to detect targeted analytes. DescriptionThe method most often used now is Lateral Flow Chromatography (LFC) which has many drawbacks including: the need for extensive optimization, sensitivity, specificity, lack of quantitative data and extensive

  20. SHINE Vacuum Pump Test Verification

    SciTech Connect (OSTI)

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ''booster pump'' is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of 3/4 inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.

  1. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  2. Flow-controlled magnetic particle manipulation

    DOE Patents [OSTI]

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  3. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report Volume IV Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  4. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  5. Full waveform inversion of solar interior flows

    SciTech Connect (OSTI)

    Hanasoge, Shravan M.

    2014-12-10

    The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L {sub 2} norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p {sub 1} and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ({sup c}ross talk{sup )}. In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).

  6. ETA-HTP06 - Braking Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTP06 Revision 2 Effective October 1, 2007 Braking Test Prepared by Electric ... Activity Requirements 3 5.3 Dry Controlled Test 4 6. Glossary 5 7. References 7 Appendices ...

  7. Financing Program Implementation Process Flow

    Broader source: Energy.gov [DOE]

    The implementation process flow for financing with two models: a generic option for primary markets and a conceptual option for secondary markets.

  8. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that, due to excessive wastage, certain tube samples needed to be removed and replaced in order to ensure that Test Sections B and C would have a chance of remaining in the boiler for their intended exposure period. These suspect tube samples were replaced and the two remaining test sections were put back into service. The tube samples that were removed from Test Sections B and C were set aside for later analysis at the end of the planned exposure period. Test Sections B and C were again examined approximately six months later. At that time, measured wall thickness losses raised concerns about additional tube samples. These suspect samples were also removed, set aside for later analysis, and replaced. The test sections then went back into service until the end of the second exposure period, which was concluded in May 2003 when, due to evidence of excessive wastage, the valves were opened increasing cooling steam flow and thereby effectively stopping corrosion. In August 2003, Test Sections B and C were removed for closer examination. Section C had experienced about 42 months of service at the desired team temperature set point with 28.5 months at temperature at full temperature. Additional suspect samples were removed from Test Section B, then, it was re-installed into the boiler (at the location originally occupied by Section C), where it remained in service until the end of the program. Due to this removal history, the samples from Test Section B had a total service duration that varied from a minimum of 15.5 months (for samples that performed poorly) to 37 months for samples the survived for the full intended service exposure for Section B. The figure below shows a schematic of Test Section B and indicates the length of service exposure for different locations. This report provides the results of the evaluation of Test Section B, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. This report also is intended to compare and summarize the results for all three test sections. The analysis of Test Section B followed much the same protocol that was employed in the assessment of the other two test sections. The focus was on determining and documenting the relative corrosion rates of the candidate materials; however, additional investigations were undertaken to better understand the wastage mechanism, and to characterize how selected candidate materials performed either well, or poorly, in the severe coal ash corrosion environment in the convection pass of Niles Unit No.1. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials in all three test sections. The body of this report compares these for all of the samples in the test section.

  9. Underground Test Area Subproject Phase I Data Analysis Task. Volume III - Groundwater Recharge and Discharge Data Documentation Package

    SciTech Connect (OSTI)

    1996-10-01

    Volume III of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the data covering groundwater recharge and discharge. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  10. Underground Test Area Subproject Phase I Data Analysis Task. Volume V - Transport Parameter and Source Term Data Documentation Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume V of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the transport parameter and source term data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  11. Hydrogen recombiner catalyst test supporting data

    SciTech Connect (OSTI)

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  12. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Air Force Research Laboratory in Albuquerque utilized the site at the National Solar Thermal Test Facility to evaluate seismic and optical activity from explosives set...

  13. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Air Force Research Laboratory (AFRL) in Albuquerque utilized the site at the National Solar Thermal Test Facility (NSTTF) to evaluate seismic and optical activity from...

  14. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  15. Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site

    SciTech Connect (OSTI)

    Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E.

    1997-09-01

    The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

  16. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Donald M. McEligot; Richard Skifton; Hugh McIlroy

    2014-11-01

    Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early laminarization of the flow (Refs. 2 and 3) (laminarization is caused when the coolant velocity is theoretically in the turbulent regime, but the heat transfer properties are indicative of the coolant velocity being in the laminar regime). Such studies are complicated enough that computational fluid dynamics (CFD) models may not converge to the same conclusion. Thus, experimentally scaled thermal hydraulic data with uncertainties should be developed to support modeling and simulation for verification and validation activities. The fluid/solid index of refraction matching technique allows optical access in and around geometries that would otherwise be impossible while the large test section of the INL system provides better spatial and temporal resolution than comparable facilities. Benchmark data for assessing computational fluid dynamics can be acquired for external flows, internal flows, and coupled internal/external flows for better understanding of physical phenomena of interest. The core objective of this study is to describe MIR and its capabilities, and mention current development areas for uncertainty quantification, mainly the uncertainty surface method and cross-correlation method. Using these methods, it is anticipated to establish a suitable approach to quantify PIV uncertainty for experiments performed in the MIR.

  17. Customized Well Test Methods for a Non-Customary Geothermal Well

    SciTech Connect (OSTI)

    Burr, Myron

    1986-01-21

    Recent testing of Thermal 4, The Geysers blowout well, has shown that the flow has two different components: a low enthalpy, mineral-laden flow from a well drilled within the existing wellhead and a high flowrate, high enthalpy annular flow. The commingled flows were mechanically separated and individually tested. The results of the test show that the flows are from two very different sources that are in weak hydraulic communication. Work is in progress to apply this information to bring Thermal 4 within compliance of the 1986 air quality regulations.

  18. test | Department of Energy

    Office of Environmental Management (EM)

    test test test PDF icon test More Documents & Publications 2009 ECR FINAL REPORT 2010 Final ECR 2008 Report Environmental Conflict Resolution

  19. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  20. Apparatus for measuring fluid flow

    DOE Patents [OSTI]

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  1. Direct flow crystal growth system

    DOE Patents [OSTI]

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  2. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D. Galindo, V.; Eckert, S.

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  3. Hydrogen Storage Testing and Analysis Research and Development

    Broader source: Energy.gov [DOE]

    DOE's hydrogen storage R&D activities include testing, analysis, and developing recommended best practices. The status of hydrogen storage testing and analysis projects is detailed in the...

  4. Geodetic Survey At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nevada Test And...

  5. Geothermometry At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...

  6. Aerial Photography At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And...

  7. Stress Test At Coso Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    Test At Coso Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stress Test At Coso Geothermal Area (2004) Exploration...

  8. Trip Report-Produced-Water Field Testing

    SciTech Connect (OSTI)

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  9. Review of air flow measurement techniques

    SciTech Connect (OSTI)

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  10. Lateral flow devices

    DOE Patents [OSTI]

    Mazumdar, Debapriya; Liu, Juewen; Lu, Yi

    2010-09-21

    An analytical test for an analyte comprises (a) a base, having a reaction area and a visualization area, (b) a capture species, on the base in the visualization area, comprising nucleic acid, and (c) analysis chemistry reagents, on the base in the reaction area. The analysis chemistry reagents comprise (i) a substrate comprising nucleic acid and a first label, and (ii) a reactor comprising nucleic acid. The analysis chemistry reagents can react with a sample comprising the analyte and water, to produce a visualization species comprising nucleic acid and the first label, and the capture species can bind the visualization species.

  11. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    SciTech Connect (OSTI)

    Lucas, Dan Kerswell, Rich R.

    2015-04-15

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2?]{sup 2} torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow, J. Fluid Mech. 722, 554595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida [Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst, J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  12. Inhibition of slug front corrosion in multiphase flow conditions

    SciTech Connect (OSTI)

    Chen, H.J.; Jepson, W.P.

    1998-12-31

    Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

  13. Constant pressure high throughput membrane permeation testing system

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Constant pressure high throughput membrane permeation testing system Citation Details In-Document Search Title: Constant pressure high throughput membrane permeation testing system The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing

  14. Report on Hydrologic Flow in Low-Permeability Media

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Birkholzer, Jens

    2013-11-13

    We demonstrate that under normal conditions (under which there are no intersections between tunnels/drifts and conductive geological structures, such as faults), the water flow velocity in the damage zone, as a result of non-Darcian flow behavior, is extremely small such that solute transport is dominated by diffusion, rather than advection. We show that unless non-Darcian flow behavior is considered, significant errors can occur in the measured relative-permeability values. We propose a hypothesis to consider the temperature impact based on limited test results from the petroleum literature. To consider the bedding effects, we present an empirical relationship between water flux and hydraulic gradient for non-Darcian water flow in anisotropic cases.

  15. Long-term corrosion testing pan.

    SciTech Connect (OSTI)

    Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

    2008-08-01

    This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing needs. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to meet all future testing needs, given that all testing is consolidated to a single location. This report is a revision to SAND2007-7027 to address DOE comments and add a series of tests to address NWTRB recommendations.

  16. Laboratory Evaluation of EGS Shear Stimulation-Test 001

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    2014-07-29

    this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

  17. Laboratory Evaluation of EGS Shear Stimulation-Test 001

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

  18. Activity-Level Work Planning and Control Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... misalignments; * Operational testing of the component, including checks such as valve stroke time; measurement of vibration, flow, pressure, and temperature; operation of ...

  19. Tracer Testing At Coso Geothermal Area (1993) | Open Energy Informatio...

    Open Energy Info (EERE)

    Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine...

  20. Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

  1. Injectivity Test At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  2. Injectivity Test At Chena Geothermal Area (Holdmann, Et Al.,...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Chena Geothermal Area (Holdmann, Et Al., 2006) Exploration Activity Details Location...

  3. Injectivity Test At Reese River Area (Henkle & Ronne, 2008) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese...

  4. Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  5. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

  6. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  7. Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  8. Evaluation of a Partial Flow Dilution System for Transient Particulate

    Broader source: Energy.gov (indexed) [DOE]

    Matter Emissions | Department of Energy A commercially available partial flow dilution system was evaluated against a constant volume sampling system over a suite of transient engine dynamometer tests. PDF icon deer08_shade.pdf More Documents & Publications Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of Heavy-duty Vehicles Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Real-Time Particulate Mass Measurements Pre and Post

  9. The stability and visualized flame and flow structures of a combusting jet in cross flow

    SciTech Connect (OSTI)

    Huang, R.F.; Chang, J.M. . Dept. of Mechanical Engineering)

    1994-08-01

    The blowoff stability and flame behavior of a combusting propane gas jet issuing from a well-contoured burner perpendicularly to a cross air stream in a wind tunnel test section is studied experimentally. A category of never-lift flames was found to have different stability characteristics and behavior from the conventionally reported liftable flames. The stability domain of the never-lift flames covers higher cross-flow velocities and lower fuel jet velocities compared with the liftable flames. The flame configurations in the stability domain are identified by characteristic modes: down-washed flame, flashing flame, developing flame, dual-flame, flickering flame, and pre-blowoff flame. The schlieren photographs are presented in order to discuss the effects of the flow structures on the general behavior of the flames in each characteristic mode and on the flame stability characteristics. The bisector of the eddy travelling avenue reasonably depicts the trajectory of the combusting jet in cross flow. Correlations for the trajectories of cold and combusting jets in cross flow are obtained.

  10. Turbine blade tip flow discouragers

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  11. Fluid Flow Phenomena during Welding

    SciTech Connect (OSTI)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  12. Flow distribution channels to control flow in process channels

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Arora, Ravi; Kilanowski, David

    2014-10-28

    The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels.

  13. Pressure and flow characteristics of restrictive flow orifice...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Service, Springfield, VA at www.ntis.gov. A Restrictive Flow Orifice (RFO) can be used to enhance the safe design of a pressure system in several ways. ...

  14. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  15. Simulation of water flow in terrestrial systems

    Energy Science and Technology Software Center (OSTI)

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less

  16. Wavy flow cooling concept for turbine airfoils

    DOE Patents [OSTI]

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  17. Evaluation of flow redistribution due to flow blockage in rod bundles using COBRA code simulation. Final report. [PWR

    SciTech Connect (OSTI)

    Prelewicz, D.A.; Caruso, M.A.

    1981-01-01

    During a Loss-of-Coolant Accident, fuel rod cladding may reach temperatures approaching 2200/sup 0/F. At these temperatures, swelling and rupture of the cladding may occur. The resulting flow blockage will affect steam flow and heat transfer in the bundle during the period of reflooding. The COBRA-IV-I subchannel computer code was used to simulate flow redistribution due to sleeve blockages in the FLECHT-SEASET 21-rod bundle and plate blockages in the JAERI Slab Core Test Facility. Sensitivity studies were conducted to determine the effects of spacer grid and blockage interaction, sleeve shape effects, sleeve length effects, blockage magnitude and distribution, thermally induced mixing and bundle average velocity on flow redistribution. Pressure drop due to sleeve blockages was also calculated for several blockage configurations.

  18. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  19. SATURATED ZONE IN-SITU TESTING

    SciTech Connect (OSTI)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from ATC well NC-EWDP-19D. These estimates will allow a comparison of laboratory- and field-derived sorption parameters to be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

  20. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 8.3 Flow Model Sensitivity to Steady-State Temperature Distribution 8.3.1 Introduction The Pahute Mesa CAU flow model spans an area 50 by 53 km with elevations between 3.5 km bmsl to 1.5 km amsl. Within the domain, there are three volcanic caldera complexes and extensive extra-caldera zones as well. Temperatures are not the same everywhere in this model domain. In the flow model, spatial variations in temperature are set by specifying a steady-state, 3-D temperature distribution. The FEHM code

  1. Pressure Change Measurement Leak Testing Errors

    SciTech Connect (OSTI)

    Pryor, Jeff M; Walker, William C

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  2. Constant pressure high throughput membrane permeation testing system

    DOE Patents [OSTI]

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  3. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    SciTech Connect (OSTI)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.

  4. Active hopper for promoting flow of bulk granular or powdered...

    Office of Scientific and Technical Information (OSTI)

    The wall may be disposed vertically within the body close to the body's inner shape. The ... Sponsoring Org: USDOE Country of Publication: United States Language: English Full Text ...

  5. Class 2 Permit Modification Request Active Room Ventilation Flow Rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clarence T. Bishop Associate Administrator for External Affairs Clarence T. Bishop Clarence T. Bishop serves as Associate Administrator for External Affairs. In this role, he is responsible for managing NNSA's Congressional Affairs, Public Affairs, and Intergovernmental Affairs efforts to effectively communicate, promote and defend the NNSA's mission, goals and budget. He most recently served as Deputy Secretary of the Maryland Department of Business and Economic Development under Gov. Martin

  6. Long-term corrosion testing plan.

    SciTech Connect (OSTI)

    Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

    2009-02-01

    This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments.

  7. 2007 Estimated International Energy Flows

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  8. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  9. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  10. Thermal-hydraulic analysis of TFE verification test UFAC-1

    SciTech Connect (OSTI)

    McWethy, L.M.; Pearce, K.L.; Rector, D.R.

    1988-09-01

    The Experimental Breeder Reactor No. II (EBR-II) irradiation test Uninstrumented Fueled Accelerated (UFAC)-1 of seven encapsulated thermionic test pins was analyzed with the code COBRA-SFS. The model predicted coolant and material temperatures for three conditions of interest: steady state full power, response to the unlikely loss of flow transient, and decay heat cooling by forced down flow of argon. Modeling assumptions and a summary of results are included. 1 ref., 12 figs., 3 tabs.

  11. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 THERMAL SENSITIVITY AND VERIFICATION 8.1 Introduction The flow model calibration described in earlier sections utilizes a thermal field based upon calibration of the heat flux at the base of the model domain (Appendix C). In calibrating the heat fluxes with a conduction-only model to minimize residuals between observed and simulated temperatures in boreholes, certain anomalies were identified indicating convective flow. These anomalies indicate that cooler water from near the water table is

  12. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  13. AVTA: 2010 Quantum Escape PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Quantum Escape PHEV, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  14. AVTA: 2011 Chevrolet Volt Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Chevrolet Volt 2011. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  15. AVTA: 2011 Honda CRZ HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Honda CRZ hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  16. AVTA: 2010 Mercedes Benz HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Mercedes Benz hybrid-electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  17. Evaluation of LLTR Series II tests A-1A and A-1B test results. [Large Leak Test Rig

    SciTech Connect (OSTI)

    Shoopak, B F; Amos, J C; Norvell, T J

    1980-03-01

    The standard methodology, with minor modifications provides conservative yet realistic predictions of leaksite and other sodium system pressures in the LLTR Series II vessel and piping. The good agreement between predicted and measured pressures indicates that the TRANSWRAP/RELAP modeling developed from the Series I tests is applicable to larger scale units prototypical of the Clinch River steam generator design. Calculated sodium system pressures are sensitive to several modeling parameters including rupture disc modeling, acoustic velocity in the test vessel, and flow rate from the rupture tube. The acoustic velocity which produced best agreement with leaksite pressures was calculated based on the shroud diameter and shroud wall thickness. The corresponding rupture tube discharge coefficient was that of the standard design methodology developed from Series I testing. As found in Series I testing, the Series II data suggests that the leading edge of the flow in the relief line is two phase for a single, doubled-ended guillotine tube rupture. The steam generator shroud acts as if it is relatively transparent to the transmission of radial pressures to the vessel wall. Slightly lower sodium system maximum pressures measured during Test A-1b compared to Test A-1a are attributed to premature failure (failure at a lower pressure) of the rupture disc in contact with the sodium for test A-1b. The delay in failure of the second disc in Test A-1b, which was successfully modeled with TRANSWRAP, is attributed to the limited energy in the nitrogen injection.

  18. Solar Energy Education. Humanities: activities and teacher's...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Humanities: activities and teacher's guide. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Humanities: activities and teacher's guide. Field ...

  19. Active-R filter

    DOE Patents [OSTI]

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  20. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  1. Wind is Energy (17 activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    A nonfiction test to be read with primary student with basic information about wind as an energy source and hands-on, wind-related activities including

  2. Performance Characterization of the Production Facility Prototype Helium Flow System

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 ?A on each side of the target, 5.72 ?A total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  3. AVTA: 2014 Chevrolet Cruze Diesel Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  4. AVTA: 2013 Ford C-Max Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road....

  5. AVTA: 2013 Ford Fusion Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  6. AVTA: 2013 Ford Focus All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  7. AVTA: 2012 Nissan Leaf All-Electric Vehicle Testing Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  8. Comparative flow measurements: Grand Coulee pumping-generating plant unit P/G9. Final report

    SciTech Connect (OSTI)

    Heigel, L.; Lewey, A.B.; Greenwood, J.B.

    1986-10-01

    In extensive testing, two acoustic flow measurement systems compared well in accuracy and repeatability with conventional methods at a power plant at Grand Coulee Dam. Acoustic flow measurement systems offer utilities an inexpensive, real-time method for optimizing hydro plant efficiency.

  9. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; John P. Hurley

    2003-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

  10. AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  11. AVTA: ChargePoint AC Level 2 Charging System Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  12. AVTA: GE Energy WattStation AC Level 2 Charging System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  13. AVTA Voltec AC Level 1 and Level 2 Charging Systems Testing Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  14. Towards High-Performance Nonaqueous Redox Flow Electrolyte via Ionic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of Active Species - Joint Center for Energy Storage Research 14, 2014, Research Highlights Towards High-Performance Nonaqueous Redox Flow Electrolyte via Ionic Modification of Active Species (Top) Material Synthesis for Highly Soluble Ferrocene Derivative (Left) NMR Decoding Solvation (Right) Li-Graphite Hybrid Anode Decent cyclability at high conc. Scientific Achievement Material tailoring led to a significant increase in the solubility of the ferrocene redox material. NMR

  15. CONTENTS Chemical Control of Fluid Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Control of Fluid Flow and Contaminant Release in Shale Microfractures ... Oil & Natural Gas Program Newsletter Fall 2015 1 Chemical Control of Fluid Flow and ...

  16. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  17. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make ...

  18. Redox Flow Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Redox Flow Batteries Pacific Northwest National ... most promising of them is redox flow batteries because of the relatively low cost of ...

  19. Phononic Crystals: Engineering the Flow of Heat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phononic Crystals: Engineering the Flow of Heat - Sandia Energy Energy Search Icon Sandia ... Phononic Crystals: Engineering the Flow of Heat HomeAnalysis, Capabilities, Energy, ...

  20. Enviro Hurdles: Instream Flow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enviro Hurdles: Instream Flow File 76enviornlbevelhimer4.pptx More Documents & Publications Instream Flow Project Development and Demonstration of Advanced Forecasting, Power ...

  1. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  2. CNP_TEST_SUITE

    Energy Science and Technology Software Center (OSTI)

    002854MLTPL00 Automated Nuclear Data Test Suite file:///usr/gapps/CNP_src/us/RR/test_suite_cz/cnp_test_suite

  3. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  4. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-04-01

    This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

  5. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C.; Springer, E.P.

    1992-05-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  6. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C. ); Springer, E.P. )

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  7. Microporous Separators for Fe/V Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Liyu; Luo, Qingtao; Nie, Zimin; Wang, Wei; Li, Bin; Xia, Guanguang; Miller, Eric; Chambers, Jeff; Yang, Zhenguo

    2012-06-28

    The Fe/V redox flow battery has demonstrated promising performance that is advantageous over other redox flow battery systems. The less oxidative nature of the Fe(III) species enables use of hydrocarbon - based ion exchange membranes or separators. Daramic(reg. sign) microporous polyethylene separators were tested on Fe/V flow cells using the sulphuric/chloric mixed acid - supporting electrolytes. Among them, Daramic(reg. sign) C exhibited good flow cell cycling performance with satisfactory repeatability over a broad temperature range of 5 - 50 degrees C. Energy efficiency (EE) of C remains above 67% at current densities of 50 - 80 cm{sup -2} in the temperature range from room temperature to 50 degrees C. The capacity decay problem could be circumvented through hydraulic pressure balancing by applying different pump rates to the positive and negative electrolytes. Stable capacity and energy were obtained over 40 cycles at room temperature and 40 degrees C. These results manifest that the extremely low-cost separators ($10/cm2) are applicable in the Fe/V flow battery system at an acceptable sacrifice of energy efficiency. This stands for a remarkable breakthrough in significant reduction of the capital cost of the Fe/V flow battery system, and is promising to promote its market penetration in grid stabilization and renewable integration.

  8. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  9. Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Density, Fast Charge Transport, and Low-Dissipation Flow - Joint Center for Energy Storage Research June 5, 2015, Research Highlights Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow Images for Biphasic Electrode Suspensions Scientific Achievement We created biphasic electrode suspensions composed of dispersed active particles and uniformly percolated conductive particles, different from the

  10. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.

  11. Observing and modeling Earths energy flows

    SciTech Connect (OSTI)

    Stevens B.; Schwartz S.

    2012-05-11

    This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

  12. Width effects in transonic flow over a rectangular cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-07-24

    A previous experiment by the present authors studied the flow over a finite-width rectangular cavity at freestream Mach numbers 1.5–2.5. In addition, this investigation considered the influence of three-dimensional geometry that is not replicated by simplified cavities that extend across the entire wind-tunnel test section. The latter configurations have the attraction of easy optical access into the depths of the cavity, but they do not reproduce effects upon the turbulent structures and acoustic modes due to the length-to-width ratio, which is becoming recognized as an important parameter describing the nature of the flow within narrower cavities.

  13. Saturated Zone In-Situ Testing

    SciTech Connect (OSTI)

    P. W. Reimus; M. J. Umari

    2003-12-23

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from both the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from NC-EWDP-19D1 (one of the wells at the ATC) so that a comparison of laboratory- and field-derived sorption parameters can be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

  14. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  15. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  16. CASL Test Stand Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Test Stand Experience Stephen Hess, EPRI Heather Feldman, EPRI Brenden Mervin, .........1 2. Westinghouse Test Stand ......

  17. Pratt Whitney Rocketdyne Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Abuse Testing Laboratory Cylindrical Boiling Facility Distributed Energy Technology Lab Microsystems and Engineering Sciences Applications National Solar Thermal Test ...

  18. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M. Daniel (Idaho Falls, ID)

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  19. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  20. Stream flow and analysis study

    SciTech Connect (OSTI)

    Jackson, D.G.

    1983-11-04

    Lockwood Greene Engineers, Inc. (LGE) was retained by E.I. duPont de Nemours and Co., Inc., Savannah River Plant, Aiken, South Carolina, to conduct on-site flow measurements and sampling of tributaries and outfalls flowing into a portion of Tim`s Branch Creek. Water samples were analyzed for chemical characteristics. This report presents the results of the flow and analytical data collected during the 24 hour monitoring period, October 5 and 6, 1983. Tim`s Branch Creek is a tributary of the Upper Three Runs Creek which in turn is a tributary of the Savannah River. A map outlining the drainage area within the Savannah River Plant is included in this report.