National Library of Energy BETA

Sample records for activity critical materials

  1. Critical Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  2. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

  3. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, Arlington, VA April 3, 2012, 8 am - 5 pm Time (EDT) Activity Speaker 8:00 am - 9:00 am Registration ...

  4. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  5. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov 2332 Pammel Drive, 134 Wilhelm Hall, Iowa State University, Ames, IA 50011-1025 The Critical Materials Institute focuses on technologies that make better use of

  6. My Account | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    My Account Primary tabs Log in(active tab) Request new password Username * Enter your Critical Materials Institute username. Password * Enter the password that accompanies your ...

  7. Timelines | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A listing of timelines about various materials of interest to rare earths and critical materials, organized by those specific to rare earth elements, general chemistry and uses. ...

  8. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  9. Critical Dimensions of Water-tamped Slabs and Spheres of Active Material

    DOE R&D Accomplishments [OSTI]

    Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.

    1946-08-06

    The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.

  10. CRITICAL MATERIALS MUSEUM DISPLAY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    critical materials, rare earth elements (REE), and the national purpose of the CMI. The CSM Geology Museum is the second most visited geology museum at an American university. ...

  11. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories Links to national laboratories and other facilities with research related to rare earth elements or critical materials. National Energy Technology Laboratory ...

  12. Careers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers The Critical Materials Institute at the The Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University, offers a variety of career ...

  13. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  14. Critical Materials Hub

    Office of Energy Efficiency and Renewable Energy (EERE)

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  15. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique facilities CMI recent presentations Photographs via Flick'r: Critical Materials Institute, The Ames Laboratory Videos from The Ames Laboratory Webinars from Colorado School of Mines To offer comments on the CMI website or to ask questions, please contact us via e-mail at CMIdirector@ameslab.gov or call 515-296-4500.

  16. Human Resources at Critical Materials Institute | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources at Critical Materials Institute Each partner within the Critical Materials Institute manages its own hiring. Use these links to find key contacts for CMI partners ...

  17. About Critical Materials | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory channel on YouTube Timelines related to rare earth elements and materials Other sources of information about rare earths: GE: Understanding rare earth metals, ...

  18. CMI Social Media | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Social Media Facebook: Critical Materials Institute Twitter: CMI_hub LinkedIn: Critical Materials Institute Flickr: Critical Materials Institute

  19. CMI Develops Critical Materials Museum Exhibit | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Develops Critical Materials Museum Exhibit People view CMI exhibit at Colorado School of Mines Geology Museum The Critical Materials Institute developed a museum exhibit at the Colorado School of Mines Geology Museum. The Critical Materials Museum Exhibit is a prototype exhibit for education professionals interested in building a similar exhibit. A series of "how to" reports is being generated at key stages of the design-build process: First report: Critical Materials

  20. CMI Factsheet | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Factsheet 3D printer uses laser and metals to build new combinations of materials What is the Energy Innovation Hub for Critical Materials? Created by the U.S. Department of Energy, the Energy Innovation Hub is operated under the name the Critical Materials Institute. CMI is led by the DOE's Ames Laboratory, and managed by DOE's Advanced Manufacturing Office. It brings together the expertise of DOE national laboratories, universities, and industry partners to eliminate materials criticality

  1. 2011 Critical Materials Strategy

    Broader source: Energy.gov [DOE]

    This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting.

  2. 2010 Critical Materials Strategy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010.

  3. Latest News | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News releases CMI in the news News archive CMI social media Latest News News about CMI: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives, August 16, 2016 Solar panels power materials exhibit at Geology Museum, August 2, 2016 New alloy promises to boost rare earth production while improving energy efficiency of engines, June 3, 2016 Critical Materials Institute gains ten industrial and research affiliates, April 11, 2016 On

  4. Critical Materials Institute |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    The Ames Laboratory | U.S. Department of Energy Search form Search Search Home Home CMI Materials Research Inventions Projects Researchers Webinars News Resources Success Stories US RE Magnet Patents Table Webinars Education Resources for K-12 Outreach in 2016 Courses Exhibit Webinars Working with CMI Affiliates Associates Team ORNL, Oddello sign CRADA for work on pulling magnets from used hard disk drives signing ceremony for CMI and Oddello to work together to recover rare earth magnets from

  5. CMI Grand Challenge Problems | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Grand Challenge Problems Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or

  6. invention disclosures | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    invention disclosures CMI Invention Disclosures Success for the Critical Materials Institute will be defined by how well it meets its mission to assure supply chains of materials critical to clean energy technologies. To enable innovation in U.S. manufacturing and to enhance U.S. energy security, CMI must develop, demonstrate, and deploy clean energy technology. To direct research in a way to minimize the time to discovery and the time between discovery and deployment, the CMI team includes both

  7. News Archive | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive CMI in the news 2016 Oak Ridge National Laboratory: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives, August 16, 2016 Colorado School of Mines: Solar panels power materials exhibit at Geology Museum, August 2, 2016 The White House: The Materials Genome Initiative: The First Five Years, August 2, 2016 Oak Ridge National Laboratory: Mirzadeh, Moyer, Wesolowski named ORNL Corporate Fellows, June 30, 2016 newswise: CMI taps the

  8. Critical Materials Workshop Plenary Session Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Plenary Session Videos Critical Materials Workshop Plenary Session Videos Welcome and Overview of Workshop and Energy Innovation Hubs Speakers * Dr. Leo ...

  9. DOE and Critical Materials Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "DOE and Critical Materials" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  10. News Releases | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases CMI taps the power of supercomputing to find rare-earth refining alternatives, June 20, 2016 Mr. Rare Earth, Karl Gschneidner passes away on April 27, April 29, 2016 Ames Laboratory scientist inducted into National Academy of Inventors, April 15, 2016 Critical Materials Institute gains ten industrial and research affiliates, April 11, 2016 How true is conventional wisdom about price volatility of tech metals?, Feb. 11, 2016 Ames Laboratory scientist named to National Academy of

  11. CMI Webinar: Energy Materials and Criticality, 2015-2030 | Critical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Webinar: Energy Materials and Criticality, 2015-2030 The CMI Webinar series includes a CMI-only presentation "CMI Webinar: Energy Materials and Criticality, 2015-2030" by Rod...

  12. Critical Materials Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  13. Critical Materials Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshops » Critical Materials Workshop Critical Materials Workshop April 3, 2012 AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE. Questions or suggestions may

  14. Critical Materials Institute Affiliates Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Critical Materials Institute Affiliates Program MEMBER AGREEMENT ("Agreement") WHEREAS, The Ames Laboratory ("AMES"), a U.S. Department of Energy ("DOE") National Laboratory operated by Iowa State University of Science and Technology ("ISU") under the authority of its Contract DE-AC02-07CH11358, with administrative offices at 311 TASF, 2408 Pammel Dr,. Ames, IA 50011-1015, is the recipient of funding from the U.S. Department of Energy's Office of Energy

  15. Critical Materials Institute UPDATE | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute UPDATE An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. The Critical Materials...

  16. CMI Course Inventory: Mining Engineering | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Metallurgical EngineeringMaterials Science Chemistry...

  17. Critical Materials Workshop Final Participant List

    Broader source: Energy.gov [DOE]

    List of participants who attended the Critical Materials Workshop held on April 3, 2012 in Arlington, VA

  18. Critical_Materials_Summary.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CriticalMaterialsSummary.pdf CriticalMaterialsSummary.pdf PDF icon CriticalMaterialsSummary.pdf More Documents & Publications RFI U.S. Department of Energy - Critical...

  19. CMI Offers Webinars on Critical Materials and Rare Earths | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Offers Webinars on Critical Materials and Rare Earths CMI at Mines offers webinars about critical materials at no charge. Registration is required to obtain a link to the webinar. September 21: Parans Paranthaman, Oak Ridge National Laboratory, "Additive Manufacturing of NdFeB Magnets" Registration is open August 23: CMI Director Alex King, "CMI Director's Perspective." A recording of the webinar is available. July 20: Corby Anderson, Colorado School

  20. My Account | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    My Account Primary tabs Log in Request new password(active tab) Username or e-mail address * E-mail new password

  1. Critical Materials Institute uses the Materials Genome approach to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  2. What CMI Does | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare-earth elements, with essential roles in high-efficiency motors and advanced lighting, are the most prominent of the critical materials today. Rare-earth metals and alloys are ...

  3. 2016 Annual Meeting | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Annual Meeting people attending CMI annual meeting 2016 The Critical Materials Institute held its annual meeting August 16-18, 2016, at Oak Ridge National Laboratory. signing ceremony for CRADA between CMI and Oddello Ceremony for signing new CRADA: Critical Materials Institute, Oddello Industries pursue recovery of rare-earth magnets from used hard drives Pictured Standing: Tim McIntyre, ORNL, Energy and Environmental Sciences Directorate; Alex King, CMI Director, Ames Laboratory; Mike

  4. CMI Education and Outreach | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach The Critical Materials Institute offers a variety of educational opportunities through several partners, including the Colorado School of Mines and Iowa State University. In addition, CMI experts are available to speak at research conferences, as well as to students of all ages. CMI Educational Opportunities: The following educational opportunities are offered by CMI TEAM members: Colorado School of Mines CMI at Mines offers webinars about critical materials at no charge. Recordings are

  5. CMI Invention Disclosures | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Invention Disclosures Success for the Critical Materials Institute will be defined by how well it meets its mission to assure supply chains of materials critical to clean energy technologies. To enable innovation in U.S. manufacturing and to enhance U.S. energy security, CMI must develop, demonstrate, and deploy clean energy technology. To direct research in a way to minimize the time to discovery and the time between discovery and deployment, the CMI team includes both research and

  6. Complete Project List | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Project List Researchers at the Critical Materials Institute work to find ways to diversify supplies of critical materials, develop substitutes, improve reuse and recycling, enable research, sustain the environment, study the supply chain and analyze economics. The institute started with more than 30 projects. Over time, some have merged or ended and others have been added. This page provides a list of the current CMI projects, which can be sorted by clicking on a column header. Project

  7. CMI Industry Survey | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Industry Survey Thank you for your interest in Critical Materials Institute Education, Training and Outreach. CMI is interested in supporting you in your company and/or personal professional development. To help us better serve you, we'd like to know how you would like to receive professional development; who you are hiring and what skills sets are needed in your current and future hiring. Please share how you are interested in education and training about critical materials. There are

  8. News About CMI | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About CMI 2016 How true is conventional wisdom about price volatility of tech metals?, Feb. 11, 2016 2015 Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research, Dec. 1, 2015 Get schooled in rare-earth metals, Nov. 30, 2015 Speciality Metal Recycling Firm Teams Up with US Critical Materials Institute, Nov. 17, 2015 American Manganese Inc. Enters NDA with U.S. Government's Ames Laboratory on Lithium Ion Battery Recycling, Nov. 12, 2015 Rare

  9. CMI Unique Facilities | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Unique Facilities The Critical Materials Institute has created unique facilities that are available for additional research and collaboration. These include the following. There are hotlinks for some of the infrastructure and equipment listed. Those links provide information about the unique facility, where it was developed within CMI and who to contact for more information. Pilot-Scale Separations Test Bed Facility Filtration Test Facility Bulk Combinatoric Materials Synthesis Facility

  10. The Department of Energy Releases Strategy on Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department...

  11. Department of Energy Critical Materials Strategy Video (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a text version of the "Department of Energy Critical Materials Strategy" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  12. Critical Materials Research in DOE Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  13. Older Public Presentations | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Older Public Presentations CMI leaders and scientists have given public presentations about rare earths and critical materials. Here are a few of their older presentations. CMI Kickoff Meeting Plenary Sessions, September 2013: Alex King, director: CMI Welcome Karl Gschneidner, chief science officer: CMI Overview Bruce Moyer, leader for Diversifying Supply Adam Schwartz, leader for Developing Substitutes Eric Peterson, leader for Improving Reuse and Recycling Tom Lograsso, leader for Crosscutting

  14. Critical Materials Institute An Energy Innovation Hub Alexander King, Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  15. Request for Information (RFI) for Updated Critical Materials Strategy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Request for Information (RFI) for Updated Critical Materials Strategy Request for Information (RFI) for Updated Critical Materials Strategy Request for Information (RFI) for Updated Critical Materials Strategy (55.44 KB) More Documents & Publications RFI U.S. Department of Energy - Critical Materials Strategy Request for Information RFI: DOE Materials Strategy Microsoft Word - FINAL Materials Strategy Request for Information May 5 2010

  16. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  17. FA 4: Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Crosscutting Research Focus Area 4 - Lograsso, Schwegler CMI Org Chart with Hotlinks: Focus Area 4 File: Read more about CMI Org Chart with Hotlinks: Focus Area 4 CMI Org Chart with Hotlinks: Research Overview File: Read more about CMI Org Chart with Hotlinks: Research Overview CMI org chart for FA4 File: Read more about CMI org chart for FA4 CMI org chart for research with hotlinks (pdf) File: Read more about CMI org chart for research with hotlinks (pdf) Critical Materials Institute

  18. CMI Webinar: Critical Elements in Phosphate | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Elements in Phosphate The CMI Webinar series began with a presentation on Critical Elements in Phosphate by Patrick Zhang, Florida Industrial and Phosphate Research Institute (FIPR), on March 24, 2015. The recording of the webinar runs nearly 38 minutes (37:54

  19. Additive Manufacturing Meets the Critical Materials Shortage | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Additive Manufacturing Meets the Critical Materials Shortage Additive Manufacturing Meets the Critical Materials Shortage April 9, 2014 - 11:15am Addthis Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames

  20. Meet CMI Researcher Bob Fox | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bob Fox Image of Bob Fox, researcher with Critical Materials Institute CMI researcher Robert V. Fox, Ph.D., a distinguished senior chemical research scientist, joined INL in 1989 and is active in performing and directing innovative scientific research in the areas of supercritical fluid chemistry, metal complexation reactions, nanomaterials, alternative fuels, laser surface cleaning, and laser spectroscopy. Dr. Fox has a broad level of experience in the areas of radionuclide interaction with

  1. The Department of Energy Releases Strategy on Critical Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department of Energy today released its Critical Materials Strategy. The strategy examines the role of rare earth metals and other materials in the clean energy economy, based on extensive research by the Department during the past year. The report focuses on materials used in four technologies - wind

  2. Activated carbon material

    DOE Patents [OSTI]

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  3. Meet CMI Researcher Patrice Turchi | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrice Turchi Image of Patrice Turchi, researcher at Critical Materials Institute For the Critical Materials Institute, Patrice Turchi is leading a project entitled "Materials Design Simulator - Efficient Prototyping of Rare Earth-Based Alloys from ab initio Electronic Structure and Thermodynamics." That is about the development of a Materials Design Simulator (MDS) for guiding the search for solute replacements to Rare Earth Elements that provide materials stability and performance.

  4. Critical Materials Institute Gains Ten Industrial and Research Affiliates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  5. DOE Releases Request for Information on Critical Materials, Including Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Platinum Group Metal Catalysts | Department of Energy Releases Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts DOE Releases Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts February 17, 2016 - 3:03pm Addthis The U.S. Department of Energy (DOE) has released a Request for Information (RFI) on critical materials in the energy sector, including fuel cell platinum group metal catalysts. The RFI

  6. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-EU-Japan Working Group on Critical Materials 4 th Annual Meeting Iowa State University Hosted by The Critical Materials Institute The Ames Laboratory September 8, 2014 AGENDA 8:30 Registration 9:00 Welcome Alex King, Director, Critical Materials Institute Opening Remarks 9:10 Akito Tani, Deputy Director-General, Manufacturing Industries Bureau, MET 9:20 Gwenole Cozigou, Director, DG Enterprise and Industry 9:30 Mark Johnson, Director, Advanced Manufacturing Office, DOE Session 1: Anticipating

  7. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics ...

  8. Critical Materials Institute signs new member United Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs new member United Technologies Research Center Contacts: For release: Aug. 18, 2015 Alex King, Director, Critical Materials Institute, (515) 296-4505 Laura Millsaps, Ames...

  9. Mines Welcomes Middle School Students | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science and Technology. The students spent the day at Mines to learn about Earth, energy, the environment, critical materials and mining. The students enjoyed a chemistry show ...

  10. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect (OSTI)

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  11. Microsoft Word - TRILATERAL CRITICAL MATERIALS WORKSHOP Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... magnetic mechanisms (for nanocomposites, non-rare-earth materials, and neodymium-iron-boron magnets). * Techniques to enhance the stability and texture of nanocomposite structures ...

  12. Energy Department Releases New Critical Materials Strategy |...

    Broader source: Energy.gov (indexed) [DOE]

    The report examines the role of rare earth metals and other materials used in four clean ... The strategy analyzes 14 elements and identifies five specific rare earth metals, ...

  13. Chief Research Scientist | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both scientific and general audiences. These include: Material Matters: The Rare Earth Crisis -- The SupplyDemand Situation for 2010-2015, Vol. 6, Article 2 U.S. Atomic Energy...

  14. Increasing Access to Materials Critical to the Clean Energy Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness

  15. CMI at Mines Hosts 160 Sixth Graders | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI at Mines Hosts 160 Sixth Graders Colorado School of Mines graduate student Mandi Hutchinson shows a compact fluorescent light bulb as she discusses the use of critical materials and rare earths in current technologies. The Denver School of Science and Technology's (DSST) College View sixth graders visited the Colorado School of Mines campus on Wednesday, July 8, for their fourth annual visit. More than 160 students enjoyed critical materials and energy presentations delivered by the Critical

  16. CMI hosts EU, Japan to discuss global critical materials strategy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute CMI hosts EU, Japan to discuss global critical materials strategy mlthach's picture Submitted by mlthach on Wed, 09/10/2014 - 18:00 Finding ways to ensure the planet's supply of rare earths and other materials necessary for clean energy technologies is a global challenge, and experts from around the world gathered to meet it at the fourth annual EU-US-Japan Trilateral Conference on Critical Materials on Monday (September 8, 2014). The U.S. Department of Energy's

  17. Critical Materials for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese

  18. Critical parameters of superconducting materials and structures

    SciTech Connect (OSTI)

    Fluss, M.J.; Howell, R.H.; Sterne, P.A.; Dykes, J.W.; Mosley, W.D.; Chaiken, A.; Ralls, K.; Radousky, H.

    1995-02-01

    We report here the completion of a one year project to investigate the synthesis, electronic structure, defect structure, and physical transport properties of high temperature superconducting oxide materials. During the course of this project we produced some of the finest samples of single crystal detwinned YBa{sub 2}Cu{sub 3}O{sub 7}, and stoichiometrically perfect (Ba,K)BiO{sub 3}. We deduced the Fermi surface of YBa{sub 2}Cu{sub 3}O{sub 7}, (La,Sr){sub 2}CuO{sub 4}, and (Ba,K)BiO{sub 3} through the recording of the electron momentum density in these materials as measured by positron annihilation spectroscopy and angle resolved photoemission. We also performed extensive studies on Pr substituted (Y,Pr)Ba{sub 2}Cu{sub 3}O{sub 7} so as to further understand the origin of the electron pairing leading to superconductivity.

  19. Critical Materials and Rare Futures: Ames Laboratory Signs a...

    Energy Savers [EERE]

    Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is ...

  20. EERE Announces Up to $4 Million for Critical Materials Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo courtesy of Geothermal Technologies Office, U.S. Department of Energy Critical materials like rare-earth elements and lithium play a vital role in many clean-energy ...

  1. Meet CMI Leaders and Administrators | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leaders and Administrators The Critical Materials Institute leaders and administrators include: Director Alex King Deputy Director Rod Eggert Operations Cynthia Feller Finance Carol Bergman Education & Outreach Barry Martin and Cynthia Howell Commercialization Deb Covey Technology Deployment Iver Anderson

  2. CMI Webinar: Corby Anderson, July 2016, part 2 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute 2 Corby Anderson, Colorado School of Mines, presented on The Critical Aspect of Critical Materials" on July 20, 2016. The full webinar ran nearly an hour; the archive is available in four files of 10 to 12 minutes each. This second part runs 11:29. Here are links to the first part, third part

  3. CMI Webinar: Corby Anderson, July 2016, part 3 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute 3 Corby Anderson, Colorado School of Mines, presented on The Critical Aspect of Critical Materials" on July 20, 2016. The full webinar ran nearly an hour; the archive is available in four files of 10 to 12 minutes each. This third part runs 11:20. Here are links to the first part, second part,

  4. CMI Webinar: Corby Anderson, July 2016, part 4 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute 4 Corby Anderson, Colorado School of Mines, presented on The Critical Aspect of Critical Materials" on July 20, 2016. The full webinar ran nearly an hour; the archive is available in four files of 10 to 12 minutes each. This fourth part runs 10:30. Here are links to the first part, second part, and third

  5. Meet CMI Researcher Rod Eggert | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rod Eggert Image of Rod Eggert, researcher at Critical Materials Institute CMI researcher Rod Eggert is a geochemist turned economist. More formally, he is professor and former director of the Division of Economics and Business at the Colorado School of Mines, where he has taught since 1986. As deputy director of the Critical Materials Institute, he works with the director and the rest of the leadership team to guide and manage CMI, oversee the supply-chain and economic analysis that provides

  6. Meet CMI Researcher Lynn Boatner | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lynn Boatner Image of Lynn Boatner, researcher with Critical Materials Institute CMI researcher Lynn A. Boatner, an ORNL Corporate Fellow and Battelle Distinguished Inventor, is currently the Director of the ORNL Center for Radiation Detection Materials and Systems, and he leads the Synthesis and Properties of Novel Materials Group in the ORNL Materials Science and Technology Division. He holds a Ph.D. degree in Physics from Vanderbilt University. Lynn is a Fellow of the following societies: The

  7. CMI Webinar: Corby Anderson, July 2016, part 1 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Corby Anderson, July 2016, part 1 Corby Anderson, Colorado School of Mines, presented on The Critical Aspect of Critical Materials" on July 20, 2016. The full webinar ran nearly an hour; the archive is available in four files of 10 to 12 minutes each. This first part runs 10:26. Here are links to the second part, third part and the fourth

  8. Top 10 Things You Didn't Know About Critical Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Critical Materials Top 10 Things You Didn't Know About Critical Materials January 18, 2013 - 10:15am Addthis Miss the Google+ Hangout on Critical Materials? Watch the video of it now. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs More about critical materials: Check out the Department's 2011 Critical Materials Strategy report. Learn how the new Critical Materials Hub will address challenges across the entire lifecycle of materials

  9. What is a CriticalMaterial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A N E N E R G Y I N N O V A T I O N H U B This presentation does not contain any proprietary, confidential, or otherwise restricted information. What is a "Critical Material?" * Any substance used in technology that is subject to supply risks, and for which there are no easy substitutes. * Or, in plain English - stuff you really need but can't always get. * The list of materials that are considered critical depends on who, where and when you ask. * CMI focuses on clean energy

  10. CMI Education Partners Offer Courses | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners Offer Courses The CMI Team includes six education members. The CMI Education and Outreach staff reviewed the courses these colleges and universities offer, and created an inventory of those related to critical materials and rare earth elements. The list of courses taught by CMI Team members is available by university and grouped by topic: Geology Engineering/ Geochemistry Mining Engineering Metallurgical Engineering/ Material Science Chemistry Engineering Mineral Economics and Business

  11. CMI Unique Facility: Filtration Test Facility | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Filtration Test Facility filtration set up for CMI unique facility at Idaho National Laboratory The Filtration Test Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. The chemical separation of materials is often water-intensive. It is important to establish filtration methods that are both efficient and environmentally sound. Mineral processing streams are particularly

  12. Meet CMI Leader Iver Anderson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leader Iver Anderson Iver Anderson Iver E. Anderson leads the Critical Materials Institute Industry Council and efforts in Technology Deployment. Iver is a Senior Metallurgist at Ames Laboratory (USDOE) and Adjunct Professor in the Materials Science and Engineering department at Iowa State University. He is a Fellow of both the American Powder Metallurgy Institute and ASM International. Currently, he is serving on the Board of Trustees of ASM International. Iver earned a Ph.D. in Metallurgical

  13. Meet CMI Researcher Brian Sales | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brian Sales CMI focus area deputy leader Brian Sales CMI researcher Brian Sales is the Deputy Lead for Focus Area 2, Developing Substitutes. In this role, he assists Adam Schwartz in overseeing projects that reduce the usage of critical rare earth elements by developing substitute materials with equivalent or superior properties. Dr. Sales' research has focused on the discovery, synthesis, and development of new materials with potential to impact advanced energy technologies. He has made

  14. Meet CMI Researcher Eric Peterson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peterson CMI focus area leader Eric Peterson CMI researcher Eric Peterson leads Focus Area 3, Improving Reuse and Recycling, for the Critical Materials Institute. At Idaho National Laboratory, Eric leads the Process Science and Technology Business Area and is also a Consulting Scientist at the Laboratory, where he has spent the past 23 years performing research on polymeric and related materials. His research has varied from the most fundamental understanding of molecular interactions to

  15. ARPA-E Workshop on Rare Earth and Critical Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials, December 6, 2010 PDF...

  16. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong; Hirano, Fumio

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  17. U.S. Department of Energy Critical Materials Strategy

    SciTech Connect (OSTI)

    Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B.

    2010-12-01

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010. Its main conclusions include: (a) Several clean energy technologies -- including wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting -- use materials at risk of supply disruptions in the short term. Those risks will generally decrease in the medium and long term. (b) Clean energy technologies currently constitute about 20 percent of global consumption of critical materials. As clean energy technologies are deployed more widely in the decades ahead, their share of global consumption of critical materials will likely grow. (c) Of the materials analyzed, five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium), as well as indium, are assessed as most critical in the short term. For this purpose, 'criticality' is a measure that combines importance to the clean energy economy and risk of supply disruption. (d) Sound policies and strategic investments can reduce the risk of supply disruptions, especially in the medium and long term. (e) Data with respect to many of the issues considered in this report are sparse. In the report, DOE describes plans to (i) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the Department during November and December 2010; (ii) strengthen its capacity for information-gathering on this topic; and (iii) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. DOE will work with other stakeholders -- including interagency colleagues, Congress and the public -- to shape policy tools that strengthen the United States' strategic capabilities. DOE also announces its plan to develop an updated critical materials strategy

  18. U.S. Department of Energy - Critical Materials Strategy

    SciTech Connect (OSTI)

    2010-12-01

    The Critical Materials Strategy builds on the Department’s previous work in this area and provides a foundation for future action. This Strategy is a first step toward a comprehensive response to the challenges before us. We hope it will also encourage others to engage in a dialogue about these issues and work together to achieve our Nation’s clean energy goals.

  19. CMI Webinar: Eric Peterson, April 2016, part 2 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute 2 Eric Peterson, Idaho National Laboratory, presented on Recycling and Reuse of Critical Materials on April 27, 2016. The full webinar ran nearly an hour; the archive is available in three files of 15 to 18 minutes each. This second part runs 17:02. Here are links to the first part and the third

  20. CMI Webinar: Eric Peterson, April 2016, part 3 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute 3 Eric Peterson, Idaho National Laboratory, presented on Recycling and Reuse of Critical Materials on April 27, 2016. The full webinar ran nearly an hour; the archive is available in three files of 15 to 18 minutes each. This third part runs 18:06. Here are links to the first part and the second

  1. CMI Webinar: Eric Peterson, April 2016, part 1 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Eric Peterson, April 2016, part 1 Eric Peterson, Idaho National Laboratory, presented on Recycling and Reuse of Critical Materials on April 27, 2016. The full webinar ran nearly an hour; the archive is available in three files of 15 to 18 minutes each. This first part runs 15:45. Here are links to the second part and the third

  2. Meet CMI Researcher Anja Mudring | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anja Mudring CMI researcher Anja Mudring CMI researcher Anja Mudring is a materials chemist who is harmessing the promising qualities of ionic liquids, salts in a liquid state, to optimize processes for critical materials. "Ionic liquids have a lot of useful qualities, but most useful for materials processing is that ionic liquids are made up of two parts: the cation and the anion. We can play around with the chemical identities of each of those components and that opens the doors to huge

  3. 3-D Printer Speeds Metals Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-D Printer Speeds Metals Research The Critical Materials Institute has a new 3D printer for metals research. Ryan Ott, principal investigator at the Ames Laboratory and the CMI, is using 3D printing technology to discover new materials. He uses the printer to produce a large variety of alloys in less time than needed in traditional casting methods. "Metal 3D printers are slowly becoming more commonplace," Ott said. "They can be costly, and are often limited to small-scale

  4. Meet CMI Leader Deb Covey | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deb Covey Deb Covey Ames Lab Director Adam Schwartz (left) and Associate Director for Sponsored Research Administration Deb Covey (right) explain BAM, a low-friction, high-wear coating, to State Senator Jerry Behn (center) during ISU Day at the State Capital on Feb. 23, 2015. Deb Covey leads the Critical Materials Institute efforts in commercialization. She started working for The Ames Laboratory in 1989 in its Fossil Energy Program. In 1992, she accepted a position managing the Intellectual

  5. Meet CMI Researcher Bruce Moyer | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bruce Moyer CMI focus area leader Bruce Moyer plays a saxaphone. CMI researcher Bruce Moyer is the lead of Focus Area 1, Diversifying Supply. In this role, he oversees projects that will expand the variety of source materials, increase processing efficiency, and find new uses for the abundant non-critical rare earths. To accomplish this task, Bruce draws upon his 34 years of experience in the field of separation science and technology, specializing in both fundamental and applied aspects of

  6. Meet CMI Researcher Corby Anderson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corby Anderson Image of Corby Anderson, researcher at Critical Materials Institute CMI researcher Dr. Corby Anderson has more than 34 years of global experience in industrial operations, management, engineering, design, consulting, teaching, research and professional service. His career includes positions with Morton Thiokol, Key Tronic Corporation, Sunshine Mining and Refining Company, H. A Simons Ltd. and at Montana Tech. He holds a BSc in Chemical Engineering and an MSc and PhD in

  7. Meet CMI Researcher Scott Herbst | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scott Herbst CMI researcher Scott Herbst is the deputy lead of Focus Area 1 Diversifying Supply. In this role, he assists Dr. Moyer with these important projects that will expand the variety of source materials, increase processing efficiency, and find new uses for the abundant non-critical rare earths. Dr. Herbst is a Chemical Engineer at the Idaho National Laboratory (INL) and has well over 20 years experience in nuclear fuel reprocessing, separation process chemistry and engineering, and

  8. Meet CMI Researcher Theresa Windus | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theresa Windus Image of Theresa Windus, researcher at Critical Materials Institute CMI researcher Theresa Windus joined Iowa State University as a full professor and an associate researcher with DOE's Ames Laboratory in August of 2006. She develops new methods and algorithms for high performance computational chemistry as well as applying those techniques to both basic and applied research. Her current interests are rare earth and heavy element chemistry, catalysis, aerosol formation, cellulose

  9. Active nondestructive assay of nuclear materials: principles...

    Office of Scientific and Technical Information (OSTI)

    Active nondestructive assay of nuclear materials: principles and applications Citation Details In-Document Search Title: Active nondestructive assay of nuclear materials: ...

  10. Meet CMI Researcher Paul Canfield | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paul Canfield Image of Paul Canfield, researcher at Critical Materials Institute CMI researcher Dr. Paul C Canfield graduated, Suma Cum Laude, with a BS in Physics from the University of Virginia in 1983. He then performed his Master and Ph.D. work at UCLA with Professor George Gruner and received his Ph.D. in Experimental Condensed Matter physics in 1990. From 1990 - 1993 Dr. Canfield was a post-doctoral researcher in Los Alamos National Laboratory working with Drs. Joe Thompson and Zachary

  11. A new neutron absorber material for criticality control

    SciTech Connect (OSTI)

    Wells, Alan H.

    2007-07-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  12. RFI U.S. Department of Energy - Critical Materials Strategy Request...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI U.S. Department of Energy - Critical Materials Strategy Request for Information RFI U.S. Department of Energy - Critical Materials Strategy Request for Information U.S....

  13. Join Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Materials

    Broader source: Energy.gov [DOE]

    What are critical materials? We will be answering that question and more during our first Google+ Hangout.

  14. Coating Active Materials for Applications in Electrochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon precursor on the electro-active material to form a carbon-coated electro-active material Process reduces manufacturing cost Coating process produces carbon-coated metal...

  15. News about Rare Earths, New or Critical Materials, and Their Uses: |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Rare Earths, New or Critical Materials, and Their Uses: 2016 Rare earth materials: Developing a comprehensive approach could help DOD better manage national security risks in the supply chain, Feb. 11, 2016 New request for information to inform Department of Energy Critical Materials Strategy, Feb. 10, 2016 2015 UK gets federal funds to research coal-based rare earth elements, Dec. 20, 2015 Salvage neodymium magnets from an old hard drive, Dec. 10, 2015 Battery

  16. FA 3: Improving Reuse and Recycling | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Area 3 - Peterson, Jones Electronic Waste: DOD is Recovering Materials but Several ... Read more about Electronic Waste: DOD is Recovering Materials but Several Factors May ...

  17. Need rare-earths know-how? The Critical Materials Institute offers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research Contacts: For release: Dec. 1, 2015 Alex King, Director, Critical...

  18. The Department of Energy's Critical Materials Strategy | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The U.S. Department of Energy (DOE) supports a proactive and comprehensive approach to address the challenges associated with the use of rare earth elements and other critical ...

  19. EERE Announces Up to $4 Million for Critical Materials Recovery from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Fluids | Department of Energy Announces Up to $4 Million for Critical Materials Recovery from Geothermal Fluids EERE Announces Up to $4 Million for Critical Materials Recovery from Geothermal Fluids December 1, 2015 - 1:56pm Addthis EERE Announces Up to $4 Million for Critical Materials Recovery from Geothermal Fluids Timothy Patrick Reinhardt Program Manager, Systems Analysis & Low Temperature and Coproduced Resources Program, Geothermal Technologies Program Extracting and

  20. Contacts: Alex King, Director, Critical Materials Institute, (515) 296-4505

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five Critical Materials Institute researchers named Most Influential Scientific Minds of 2014 Contacts: Alex King, Director, Critical Materials Institute, (515) 296-4505 Laura Millsaps, Public Affairs, Ames Laboratory, (515) 294-3474 Five physicists who conduct research for the Critical Materials Institute, a U.S. Department of Energy Innovation Hub, have been named to the Thomson Reuters Most Influential Scientific Minds of 2014. They are:  Sergey Bud'ko, Ames Laboratory and Iowa State

  1. CMI Education Partner: Iowa State University | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partner: Iowa State University Iowa State University offers courses in several areas: Materials Engineering Materials Science and Engineering Recycling/Industrial Engineering Geology Chemistry http://catalog.iastate.edu/collegescurricula/ Course could be changed semester by semester. The list below is based on general information of Iowa State University. Materials Engineering Courses primarily for undergraduates: MAT E 214. Structural Characterization of Materials. (2-2) Cr. 3. F.S. Prereq: MAT

  2. CMI Education Partner: University of California, Davis | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute University of California, Davis The University of California, Davis offers courses in several areas: Chemical and Materials Science Engineering Chemistry Geology http://catalog.ucdavis.edu/programs.html course list Chemical and Materials Science Engineering , Chemistry, Chemical Physics(website cannot be opened) Courses in Engineering: Chemical and Materials Science (ECM) Lower Division 51. Material Balances (4) Lecture-4 hours. Prerequisite: Mathematics 21D with C- or better, and

  3. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 | Department of Energy ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 Agenda from the fourth meeting of the Annual Trilateral U.S. - EU - Japan Conference on Critical Materials for a Clean Energy Future US-EU-Japan Working Group on Critical Materials.pdf (120.49

  4. ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS...

    Broader source: Energy.gov (indexed) [DOE]

    November 4, 2014 LAB COMMISSION MEETING MINUTES Microsoft Word - USJapanREEagendaver7.doc Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a ...

  5. Meet CMI Researcher Ryan Ott | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ryan Ott CMI researcher Ryan Ott leads the CMI project on rapid assessment methodologies. This includes using 3d printing for discovering new materials, which he describes in this CMI Success Story and this video on The Ames Laboratory's YouTube channel. He's also The Ames Laboratory's lead researcher on a project to help improve the processing techniques to reclaim rare-earth materials. The project harnesses fundamental materials science to help address possible shortages in rare earths, which

  6. Die Materials for Critical Applications and Increased Production...

    Office of Scientific and Technical Information (OSTI)

    To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, ...

  7. US-EU-Japan Working Group on Critical Materials

    Office of Environmental Management (EM)

    Materials Institute - Colorado School of Mines 12:20 Buffet Lunch 12:30 Canadian Rare Earth Elements - feeding the global supply chain Janice Zinck, Manager, Natural Resources ...

  8. Department of Energy Releases its 2011 Critical Materials Strategy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It will help us seize opportunities, using American innovation to find substitutes, promote recycling and help secure supplies of rare earth elements and other materials used in ...

  9. Meet CMI Leader Barry Martin | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute's education and outreach could be, beginning with the proposal writing team and Nigel Middleton. Beginning in May 2014, Martin leads the education and...

  10. CMI Education and Outreach in 2013 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2013: Hardin Valley Academy in Knoxville, Tennessee, December: CMI Director Alex King talked to sophomores Materials Research Society, Dec. 2: Karl Gschneidner, chief...

  11. Meet CMI Researcher Patrick Zhang | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Zhang CMI Researcher Patrick Zhang is at the Florida Industrial and Phosphate Research Institute (FIPR). In March 2015, he offered the first CMI Webinar: Critical Elements in Phosphate Ore: Recovery of Rare Earths and Uranium from Florida Phosphate Ore Processing. A recording of the webinar is available

  12. Activation of porous MOF materials

    DOE Patents [OSTI]

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  13. Activation of porous MOF materials

    DOE Patents [OSTI]

    Hupp, Joseph T; Farha, Omar K

    2014-04-01

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  14. Materials of Criticality Safety Concern in Waste Packages

    SciTech Connect (OSTI)

    Larson, S.L.; Day, B.A.

    2006-07-01

    10 CFR 71.55 requires in part that the fissile material package remain subcritical when considering 'the most reactive credible configuration consistent with the chemical and physical form of the material'. As waste drums and packages may contain unlimited types of materials, determination of the appropriately bounding moderator and reflector materials to ensure compliance with 71.55 requires a comprehensive analysis. Such an analysis was performed to determine the materials or elements that produce the most reactive configuration with regards to both moderation and reflection of a Pu-239 system. The study was originally performed for the TRUPACT-II shipping package and thus the historical fissile mass limit for the package, 325 g Pu-239, was used [1]. Reactivity calculations were performed with the SCALE package to numerically assess the moderation or reflection merits of the materials [2]. Additional details and results are given in SAIC-1322-001 [3]. The development of payload controls utilizing process knowledge to determine the classification of special moderator and/or reflector materials and the associated fissile mass limit is also addressed. (authors)

  15. CMI Education and Outreach in 2015 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 CMI education and outreach staff talk to some of the hundreds of middle and high school students at the Colorado Energy Expo. CMI education and outreach in 2015: CMI webinar: Alex King, CMI, and Stacy Joiner, Ames Laboratory, discussed updates to the CMI Affiliates Membership Program. A recording of the webinar is available, Dec. 9 CMI Director Alex King presented a guest lecture entitled "Critical information for your career (or: megatrends that you need to watch)" for 100

  16. Die Materials for Critical Applications and Increased Production...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. Die materials for aluminum ...

  17. Critical Materials Institute Gains Ten Industrial and Research...

    Energy Savers [EERE]

    ... Today he looks back at over 60 years of studying rare earth metals. At 85, Mr. Rare Earth is Retiring The plasma torch in the Retech plasma furnace is one tool used in Materials ...

  18. Meet CMI Researcher Tom Lograsso | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Lograsso CMI focus area leader Tom Lograsso CMI Researcher Thomas Lograsso leads Focus Area 2, Developing Substitutes. He started this role in May 2014. Previously he led Focus Area 4, Crosscutting Research while serving as the interim director of The Ames Laboratory. Also at Ames Lab, Tom leads a BES Synthesis & Processing effort on Novel Materials Preparation and Processing Methodology, whose goal is to develop synthesis protocols for new materials including quasicrystals,

  19. Meet CMI Researcher David Reed | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Reed CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI Researcher David Reed is the PI for project 3.2.5 Bioleaching for Recovery of Recycled REE. The objective of this project is to develop and deploy a biological strategy for recovery of rare earth elements from recyclable materials. His collaborators include Vicki Thompson, Dayna Daubaras, and Debra Bruhn at Idaho National Laboratory and Yongqin Jiao

  20. Meet CMI Researcher Ed Jones | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Jones CMI focus area deputy leader Ed Jones CMI researcher Ed Jones has been at Lawrence Livermore National Laboratory (LLNL) for 22 years, where his work has centered on the analysis, engineering, reliability and performance of energy, environmental, and national asset systems, including infrastructure and materials. He has developed extensive capabilities in the application of probabilistic methods and models to complex performance problems. Recent innovations have been applied to carbon

  1. Meet CMI Researcher Ikenna Nlebedim | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet CMI Researcher Ikenna Nlebedim Image: left, CMI researcher Ikenna Nlebedim, and right, Summer 2015 SULI student Gavin Hester CMI researcher Ikenna Nlebedim researches magnets. His research led to a new method for recycling rare earth magnetic material from manufacturing waste. This Ames Laboratory news release describes the process. Also, in this Ames Lab 101 video file, Nlebedim describes recycling rare earths from magnet scraps on the factory floor. Nlebedim led a student researcher for

  2. Meet CMI Researcher Vitalij Pecharsky | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vitalij Pecharsky Vitalij Pecharsky teaches Chemical and Physical Metallurgy of Rare Earths at Iowa State University. Vitalij Pecharsky, Ames Lab senior metallurgist and ISU Distinguished Professor in materials science and engineering, teaches a course at Iowa State University on the chemical and physical metallurgy of rare earths. The course offered at Iowa State University is available as a distance education course for researchers and industry representatives. It is offered every other spring

  3. CMI Education Partner: Colorado School of Mines | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Education Partner: Colorado School of Mines Colorado School of Mines offers courses in several areas: Geology Engineering/Geochemistry Mining Engineering Metallurgical Engineering/Materials Science Chemistry Engineering Mineral Economics and Business Geology Engineering/Geochemistry GEGN101. EARTH AND ENVIRONMENTAL SYSTEMS. 4.0 Hours. (I, II, S) Fundamental concepts concerning the nature, composition and evolution of the lithosphere, hydrosphere, atmosphere and biosphere of the

  4. Meet CMI Director Alex King | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Alex King CMI Director Alex King CMI Director Alex King was born and raised in London. He attended the University of Sheffield as an undergraduate and earned his doctorate from Oxford. He was a postdoc at Oxford and then M.I.T. before joining the faculty at the State University of New York at Stony Brook, where he also served as the Vice Provost for Graduate Studies (Dean of the Graduate School). He was appointed as Professor and Head of the School of Materials Engineering at Purdue in

  5. CMI Education and Outreach in 2014 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 CMI education and outreach in 2014: Denver students visit geology museum at Colorado School of Mines. Colorado School of Mines, October 18: 14 members of the Owen Branch of the Boys & Girls Clubs of Metro Denver visited Colorado School of Mines for a museum tour to see minerals, phosphors and metals and to discuss the materials people use daily. Colorado School of Mines, July 17: 150 underserved sixth graders visited Colorado School of Mines. Colorado School of Mines, July 9: 180 6th and

  6. Critical and strategic materials proceedings of the laboratory study group meeting

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

  7. CMI Education Resources for K-12 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources for K-12 CMI Education Resources for Elementary School There are a lot of recipes for the cornstarch/water mixture sometimes called oobleck. CMI recommends the one in the activity guide for PBS NOVA "Making Stuff with David Pogue," which includes a smart glove idea. Hooked on Science: Mystery Pipe example in Southeast Missourian; additional ideas from Jason Lindsey, science outreach educator with Hooked on Science, online at hookedonscience.org. American Chemical Society

  8. Critical materials research needed to secure U.S. manufacturing, officials say

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Department officials said yesterday that developing alternatives to critical materials, like rare earth metals used in solar panels and wind turbines, is crucial to American manufacturing stability and can help the United States circumvent global market pressures.

  9. Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material...

    Office of Scientific and Technical Information (OSTI)

    by NMR Citation Details In-Document Search Title: Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material CeRhIn5 at High Magnetic Fields Studied by NMR Authors: ...

  10. Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material...

    Office of Scientific and Technical Information (OSTI)

    by NMR Citation Details In-Document Search Title: Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material CeRhIn5 at High Magnetic Fields Studied by NMR You ...

  11. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  12. Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future

  13. Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Rare-Earth Research | Department of Energy Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of

  14. Critical Materials:

    Office of Environmental Management (EM)

    ... Notably, Tesla 141 employs induction motors, rather than motors using rare earth permanent ... using rare earth permanent 143 magnets, Tesla may have chosen this technology in part ...

  15. Coating Active Materials for Applications in Electrochemical Devices |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Coating Active Materials for Applications in Electrochemical Devices Technology available for licensing: A process that includes suspending/dissolving an electro-active material and a carbon precursor in a solvent; and then depositing the carbon precursor on the electro-active material to form a carbon-coated electro-active material Process reduces manufacturing cost Coating process produces carbon-coated metal oxides without the problems associated with

  16. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    SciTech Connect (OSTI)

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; Lin, Li-Chiang; Reimer, Jeffrey A.; Smit, Berend

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the ability to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.

  17. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; Lin, Li-Chiang; Reimer, Jeffrey A.; Smit, Berend

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the abilitymore » to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.« less

  18. Energy Department Announces $3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced $3 million for research and development to help grow U.S. low-to-moderate-temperature geothermal resources and support a domestic supply of critical materials, such as lithium carbonate and rare earth elements.

  19. Critically safe vacuum pickup for use in wet or dry cleanup of radioactive materials

    DOE Patents [OSTI]

    Zeren, Joseph D.

    1994-01-01

    A vacuum pickup of critically safe quantity and geometric shape is used in cleanup of radioactive materials. Collected radioactive material is accumulated in four vertical, parallel, equally spaced canisters arranged in a cylinder configuration. Each canister contains a filter bag. An upper intake manifold includes four 90 degree spaced, downward facing nipples. Each nipple communicates with the top of a canister. The bottom of each canister communicates with an exhaust manifold comprising four radially extending tubes that meet at the bottom of a centrally located vertical cylinder. The top of the central cylinder terminates at a motor/fan power head. A removable HEPA filter is located intermediate the top of the central cylinder and the power head. Four horizontal bypass tubes connect the top of the central cylinder to the top of each of the canisters. Air enters the vacuum cleaner via a hose connected to the intake manifold. Air then travels down the canisters, where particulate material is accumulated in generally equal quantities in each filter bag. Four air paths of bag filtered air then pass radially inward to the bottom of the central cylinder. Air moves up the central cylinder, through the HEPA filter, through a vacuum fan compartment, and exits the vacuum cleaner. A float air flow valve is mounted at the top of the central cylinder. When liquid accumulates to a given level within the central cylinder, the four bypass tubes, and the four canisters, suction is terminated by operation of the float valve.

  20. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    SciTech Connect (OSTI)

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  1. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    SciTech Connect (OSTI)

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  2. Review of activities in USA on HTS materials

    SciTech Connect (OSTI)

    Peterson, D.E.

    1995-02-01

    Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

  3. Surface-Modified Active Materials for Lithium Ion Battery Electrodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Active Materials for Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability. Description The innovative process evaporates a thin polymer coating on the active materials' particles and mixes these coated particles

  4. Calcium alloy as active material in secondary electrochemical cell

    DOE Patents [OSTI]

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  5. Long-lived activation products in reactor materials

    SciTech Connect (OSTI)

    Evans, J.C.; Lepel, E.L.; Sanders, R.W.; Wilkerson, C.L.; Silker, W.; Thomas, C.W.; Abel, K.H.; Robertson, D.R.

    1984-08-01

    The purpose of this program was to assess the problems posed to reactor decommissioning by long-lived activation products in reactor construction materials. Samples of stainless steel, vessel steel, concrete, and concrete ingredients were analyzed for up to 52 elements in order to develop a data base of activatable major, minor, and trace elements. Large compositional variations were noted for some elements. Cobalt and niobium concentrations in stainless steel, for example, were found to vary by more than an order of magnitude. A thorough evaluation was made of all possible nuclear reactions that could lead to long lived activation products. It was concluded that all major activation products have been satisfactorily accounted for in decommissioning planning studies completed to date. A detailed series of calculations was carried out using average values of the measured compositions of the appropriate materials to predict the levels of activation products expected in reactor internals, vessel walls, and bioshield materials for PWR and BWR geometries. A comparison is made between calculated activation levels and regulatory guidelines for shallow land disposal according to 10 CFR 61. This analysis shows that PWR and BWR shroud material exceeds the Class C limits and is, therefore, generally unsuitable for near-surface disposal. The PWR core barrel material approaches the Class C limits. Most of the remaining massive components qualify as either Class A or B waste with the bioshield clearly Class A, even at the highest point of activation. Selected samples of activated steel and concrete were subjected to a limited radiochemical analysis program as a verification of the computer model. Reasonably good agreement with the calculations was obtained where comparison was possible. In particular, the presence of /sup 94/Nb in activated stainless steel at or somewhat above expected levels was confirmed.

  6. Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Agenda from the first meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

  7. (Critical topics of plasma facing materials/plasma facing component data for the next step fusion devices)

    SciTech Connect (OSTI)

    Burchell, T.D.

    1991-01-04

    The Unites States-Japan Workshop P-165 brought together approximately 60 scientists and engineers to discuss critical topics of plasma facing materials and components for the next-step fusion device. In addition to the United States and Japanese participants, there were several guest attendees from Europe. The international makeup of the participants greatly enhanced the success of the workshop. The author jointly chaired a workshop session entitled Impact of Neutron Effects to Plasma Facing Materials and Plasma Facing Component (PFC) Feasibilities for the International Thermonuclear Experimental Reactor (ITER),'' and presented an overview paper on neutron effects and materials selection for the next-step plasma facing devices. The author presented his work on the effects of neutron irradiation on graphites and carbon-carbon (c/c) composite materials, which are strong candidate materials for PFC's in ITER. The workshop addressed many issues of current concern to the PFC/PFM community including: plasma erosion of PFM's; trapping/detrapping of hydrogen isotopes; large machine operating experience; and extent of the materials database.

  8. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOE Patents [OSTI]

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  9. Using DFT Methods to Study Activators in Optical Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  10. Using DFT Methods to Study Activators in Optical Materials

    SciTech Connect (OSTI)

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.

  11. Materials for Consideration in Standardized Canister Design Activities.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  12. Heavy fermions, quantum criticality, and unconventional superconductivity in filled skutterudites and related materials

    SciTech Connect (OSTI)

    Andraka, Bohdan

    2015-05-14

    The main goal of this program was to explore the possibility of novel states and behaviors in Pr-based system exhibiting quantum critical behavior, PrOs?Sb??. Upon small changes of external parameter, such as magnetic field, physical properties of PrOs?Sb?? are drastically altered from those corresponding to a superconductor, to heavy fermion, to field-induced ordered phase with primary quadrupolar order parameter. All these states are highly unconventional and not understood in terms of current theories thus offer an opportunity to expand our knowledge and understanding of condensed matter. At the same time, these novel states and behaviors are subjects to intense international controversies. In particular, two superconducting phases with different transition temperatures were observed in some samples and not observed in others leading to speculations that sample defects might be partially responsible for these exotic behaviors. This work clearly established that crystal disorder is important consideration, but contrary to current consensus this disorder suppresses exotic behavior. Superconducting properties imply unconventional inhomogeneous state that emerges from unconventional homogeneous normal state. Comprehensive structural investigations demonstrated that upper superconducting transition is intrinsic, bulk, and unconventional. The high quality of in-house synthesized single crystals was indirectly confirmed by de Haas-van Alphen quantum oscillation measurements. These measurements, for the first time ever reported, spanned several different phases, offering unprecedented possibility of studying quantum oscillations across phase boundaries.

  13. Enhancing activated-peroxide formulations for porous materials :

    SciTech Connect (OSTI)

    Krauter, Paula; Tucker, Mark D.; Tezak, Matthew S.; Boucher, Raymond

    2012-12-01

    During an urban wide-area incident involving the release of a biological warfare agent, the recovery/restoration effort will require extensive resources and will tax the current capabilities of the government and private contractors. In fact, resources may be so limited that decontamination by facility owners/occupants may become necessary and a simple decontamination process and material should be available for this use. One potential process for use by facility owners/occupants would be a liquid sporicidal decontaminant, such as pHamended bleach or activated-peroxide, and simple application devices. While pH-amended bleach is currently the recommended low-tech decontamination solution, a less corrosive and toxic decontaminant is desirable. The objective of this project is to provide an operational assessment of an alternative to chlorine bleach for low-tech decontamination applications activated hydrogen peroxide. This report provides the methods and results for activatedperoxide evaluation experiments. The results suggest that the efficacy of an activated-peroxide decontaminant is similar to pH-amended bleach on many common materials.

  14. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; Artyushkova, Kateryna; Purdy, Geraldine M.; Singh, Akhilesh; Mack, Nathan H.; Atanassov, Plamen; Cullen, David A.; More, Karren L.; et al

    2016-03-18

    Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E½ retention >95% in N2- and O2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less

  15. Breckinridge Project, initial effort. Report XI, Volume III. Critical design areas. [Identification of critical design areas; design or materials problems, trade-off areas, items affecting operability and reliability

    SciTech Connect (OSTI)

    1982-01-01

    Several meetings have been held with representatives from Ashland Synthetic Fuels, Inc.; Airco Energy Company, Inc.; Bechtel Group, Inc.; and HRI Engineering, Inc. to identify critical design areas in the Phase Zero work. (Critical design areas are defined as those requiring additional data or further work to finalize design or material selection, to optimize the trade-off between capital investment and operating cost, or to enhance system operability and reliability.) The critical design areas so identified are summarized by plant in this volume of Report XI. Items of a proprietary nature have been omitted from this report, but are included in the limited access version.

  16. Surface modification of active material structures in battery electrodes

    DOE Patents [OSTI]

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  17. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term Irradiation at Elevated Temperature: Critical Experiments

    SciTech Connect (OSTI)

    Was, Gary; Jiao, Zhijie; Allen, Todd; Yang, Yong

    2013-12-20

    radiation on these important materials. The objective of this project is to conduct critical experiments to understand the evolution of microstructural and microchemical features (loops, voids, precipitates, and segregation) and mechanical properties (hardening and creep) under high temperature and full dose range radiation, including the effect of differences in the initial material composition and microstructure on the microstructural response, including key questions related to saturation of the microstructure at high doses and temperatures.

  18. Critical Materials Strategy Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... November and December 2010; (ii) strengthen its capacity for ... including Japan and Europe, to reduce vulnerability ... as well as encouraging additional supplies around the world. ...

  19. Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Four Research Thrusts organizational chart of four research thrusts (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses for leaders.) CMI has more than 30 projects focused in four areas. Project titles are available in a table, which can be sorted by project leader, location of project leader, project title or project number. CMI research is conducted at partner institutions, including national laboratories, universities and

  20. Critical Materials Institute

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Bonded Magnets 19. Procedure for Concentrating Rare-earth Elements in Ne odymium Iron Boron- based Permanent Magnets for Efficient RecyclingRecovery 20. Enhancing Consumer ...

  1. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Example-Copper Vertical axis: Composite, weighted impact of supply restriction ... main suppliers -small number of mining, smelting, refining companies in those countries ...

  2. Disclaimers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability or responsibility for the...

  3. Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in neo magnets * Co in Li ion batteries * Steel from enclosure Approach to Recycling ... and base metals, rare earth oxides and steel Recovery Flowsheet: 1. Shred and separate ...

  4. Solar Energy Educational Material, Activities and Science Projects

    Office of Scientific and Technical Information (OSTI)

    DOE Documents with ActivitiesProjects: Web Pages Solar Energy Education. Renewable Energy Activities for Junior HighMiddle School Science Solar Energy Education. Renewable Energy ...

  5. Solar Energy Educational Material, Activities and Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Educational Materials Solar with glasses "The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy ...

  6. Criticality safety basics, a study guide

    SciTech Connect (OSTI)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  7. Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate

    SciTech Connect (OSTI)

    Warren, R.N.

    1998-09-29

    In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

  8. High-Activity Radioactive Materials Removed From Mexico | National...

    National Nuclear Security Administration (NNSA)

    of our long-standing partnership with Mexico to prevent proliferation and secure the materials that can be used by terrorists in an improvised nuclear device or dirty bomb." ...

  9. Electron-beam activated thermal sputtering of thermoelectric materials

    SciTech Connect (OSTI)

    Wu Jinsong; Dravid, Vinayak P.; He Jiaqing; Han, Mi-Kyung; Sootsman, Joseph R.; Girard, Steven; Arachchige, Indika U.; Kanatzidis, Mercouri G.

    2011-08-15

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 deg. C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  10. Electron-beam activated thermal sputtering of thermoelectric materials.

    SciTech Connect (OSTI)

    Wu, J.; He, J.; Han, M-K.; Sootsman, J. R.; Girard, S.; Arachchige, I. U.; Kanatzidis, M. G.; Dravid, V. P.

    2011-08-01

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  11. Geek-Up[3.18.2011]: Catalytically Active Material and BELLA

    Broader source: Energy.gov [DOE]

    PNL scientists are making catyltically active material that may help advance fuel cell and solar energy storage applications and Berkeley is "boosting" their BELLA accelerator.

  12. Material and Chemical Processing (Concentrated Solar) (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to detoxify hazardous wastes, to drive chemical reactions, and to treat materials for increased hardness and resistance to corrosion.

  13. Criticality Model

    SciTech Connect (OSTI)

    A. Alsaed

    2004-09-14

    computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

  14. Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity

    Broader source: Energy.gov [DOE]

    Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

  15. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  16. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  17. Recovery of Rare Earths, Precious Metals and Other Critical Materials from Geothermal Waters with Advanced Sorbent Structures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Pamela M. Kinsey

    2015-09-30

    The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemsitry analysis, and rare earth removal efficiency from select sorbents.

  18. Exploratory research on mutagenic activity of coal-related materials

    SciTech Connect (OSTI)

    Warshawsky, D.; Schoeny, R. S.

    1980-01-01

    The following samples were found to be mutagenic for strains TA1538, TA98 and TA100 Salmonella typhimurium: ETTM-10, ETTM-11, ETTM-15, ETTM-16, and ETTM-17. ETTM-13 was marginally mutagenic for TA1537. ETTM-14 was slightly mutagenic for TA1537, TA1538, and TA98. Mutagenicity by all samples was demonstrated only in the presence of hepatic enzyme extracts (S9) which provided metabolic activation. ETTM-11 was shown to be the most mutagenic sample assayed thus far; specific activity was 2.79 x 10/sup 4/ TA98 revertants/mg sample. Fractionation by serial extractions with increasingly polar organic solvents was done at least 2 x with ETTM-10, ETTM-11, ETTM-15, ETTM-16 and ETTM-17. For some samples highly mutagenic fractions were observed.

  19. Application of neutron-activation analysis to geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1980-12-01

    Neutron activation analysis (NAA) is an extremely sensitive, selective, and precise method, which yields a wealth of elemental information from even a small-sized sample. By varying neutron fluxes, irradiation times, decay and counting intervals in instrumental NAA, it is possible to accurately determine about 35 elements in a geological aliquot. When INAA is coupled with coincidence-noncoincidence Ge(Li)-Na(Tl) counting, it enhances the sensitivities of various elements by order of magnitude. The attractive features of INAA are that it is fast, nondestructive and economical.

  20. Active nondestructive assay of nuclear materials: principles and applications

    SciTech Connect (OSTI)

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  1. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  2. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    SciTech Connect (OSTI)

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2015-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  3. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  4. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  5. Rattling Nucleons: New Developments in Active Interrogation of Special Nuclear Material

    SciTech Connect (OSTI)

    Robert C. Runkle; David L. Chichester; Scott J. Thompson

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  6. Electrode-active material for electrochemical batteries and method of preparation

    DOE Patents [OSTI]

    Varma, Ravi

    1987-01-01

    A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  7. Electrode-active material for electrochemical batteries and method of preparation

    DOE Patents [OSTI]

    Varma, R.

    1983-11-07

    A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  8. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    SciTech Connect (OSTI)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  9. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOE Patents [OSTI]

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  10. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect (OSTI)

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  11. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Zhang, Z. F.; Meyer, Philip D.; Thomle, Jonathan N.

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parameters for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.

  12. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Activities at DOE: Efficiency, Manufacturing, Process & Materials R&D Joe Cresko David Hardy Advanced Manufacturing Office Metrology Workshop December 9, 2013 NREL Industrial Energy Use 2 Source: Manufacturing Energy and Carbon Footprint, derived from 2006 MECS AMO programs target: * Research, Development and Demonstration of new, advanced processes and materials technologies that reduce energy consumption for manufactured products and enable life-cycle energy savings *

  13. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOE Patents [OSTI]

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  14. Method of preparing porous, active material for use in electrodes of secondary electrochemical cells

    DOE Patents [OSTI]

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1977-01-01

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure.The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  15. GUIDANCE FOR THE PROPER CHARACTERIZATION AND CLASSIFICATION OF LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS FOR DISPOSAL

    SciTech Connect (OSTI)

    PORTSMOUTH JH; BLACKFORD LT

    2012-02-13

    Regulatory concerns over the proper characterization of certain waste streams led CH2M HILL Plateau Remediation Company (CHPRC) to develop written guidance for personnel involved in Decontamination & Decommissioning (D&D) activities, facility management and Waste Management Representatives (WMRs) involved in the designation of wastes for disposal on and off the Hanford Site. It is essential that these waste streams regularly encountered in D&D operations are properly designated, characterized and classified prior to shipment to a Treatment, Storage or Disposal Facility (TSDF). Shipments of waste determined by the classification process as Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) must also be compliant with all applicable U.S. Department of Transportation (DOE) regulations as well as Department of Energy (DOE) orders. The compliant shipment of these waste commodities is critical to the Hanford Central Plateau cleanup mission. Due to previous problems and concerns from DOE assessments, CHPRC internal critiques as well as DOT, a management decision was made to develop written guidance and procedures to assist CHPRC shippers and facility personnel in the proper classification of D&D waste materials as either LSA or SCO. The guidance provides a uniform methodology for the collection and documentation required to effectively characterize, classify and identify candidate materials for shipping operations. A primary focus is to ensure that waste materials generated from D&D and facility operations are compliant with the DOT regulations when packaged for shipment. At times this can be difficult as the current DOT regulations relative to the shipment of LSA and SCO materials are often not clear to waste generators. Guidance is often sought from NUREG 1608/RAMREG-003 [3]: a guidance document that was jointly developed by the DOT and the Nuclear Regulatory Commission (NRC) and published in 1998. However, NUREG 1608 [3] is now thirteen years old and

  16. Progress and goals for INMM ASC N15 consensus standard ""Administrative practices for the determination and reporting of results of non-destructive assay measurements of nuclear material in situ for safeguards nuclear criticality safety and other purposes

    SciTech Connect (OSTI)

    Bracken, David S; Lamb, Frank W

    2009-01-01

    This paper will discuss the goals and progress to date on the development of INMM Accredited Standard Committee (ASC) N15 consensus standard Administrative Practices for the Determination and Reporting of Results of Non-Destructive Assay Measurements of Nuclear Material in situ for Safeguards, Nuclear Criticality Safety, and Other Purposes. This standard will define administrative practices in the areas of data generation and reporting of NDA assay of holdup deposits with consideration of the stakeholders of the reported results. These stakeholders may include nuclear material accounting and safeguards, nuclear criticality safety, waste management, health physics, facility characterization, authorization basis, radiation safety, and site licensing authorities. Stakeholder input will be solicited from interested parties and incorporated during the development of the document. Currently only one consensus standard exists that explicitly deals with NDA holdup measurements: ASTM C1455 Standard Test Method for Nondestructive Assay of Special Nuclear Material Holdup Using Gamma-Ray Spectroscopic Methods. The ASTM International standard emphasizes the activities involved in actually making measurements, and was developed by safeguards and NDA experts. This new INMM ASC N15 standard will complement the existing ASTM international standard. One of the largest driving factors for writing this new standard was the recent emphasis on in situ NDA measurements by the safeguards community due to the Defense Nuclear Facility Safety Board (DNFSB) recommendation 2007-1 on in situ NDA measurements. Specifically, DNFSB recommendation 2007-1 referenced the lack of programmatic requirements for accurate in situ measurements and the use of measurement results for compliance with safety based requirements. That being the case, this paper will also discuss the progress made on the Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2007-1 Safety-Related In Situ

  17. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  18. Critical Materials Institute - invention disclosures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a>

  19. High Command Fidelity Electromagnetically Driven Calorimeter (High-CoFi EleDriCal)
    Patent...

  20. Organizational Leadership | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Leadership organizational chart for CMI leadership More details on the research organizational structure are available on the research home page. The CMI Advisory Board met March 7, 2014, at The Ames Laboratory.

  21. Critical Materials Institute Affiliates Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of its Contract DE-AC02-07CH11358, with administrative offices at 311 TASF, Ames, IA 50011-3020, is the recipient of funding from the U.S. Department of Energy's Office of...

  1. Diversifying Supply | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diversifying Supply diagram for focus area 1 diversifying supply (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.)

  2. Electric Motors and Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ranges) Barriers Interfering with Reaching the Targets * Rare earth magnet costs * Copper plus high-temperature insulation costs * Temperature dependence of demagnetization * ...

  3. Critical Materials Institute - course inventory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimations and limitations of reserves, and their sociological, political, and economic effects. Offered in alternate years. GE credit: SciEng | SE, SL.-I. (I.) Verosub

  4. ...

  5. Privacy Notice | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    certain information automatically. What we collect and store automatically is: the Internet Protocol (IP) address of the domain from which you access the Internet (i.e....

  6. Security Notice | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User login Username * Password * Request new password Log in Forgot Your Password? Security Notice This computer system is operated on a U.S. Federal Government network ...

  7. Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Research diagram for focus area four, crosscutting research (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Ames Laboratory offers more information about the rapid assessment project in this news release and video

  8. Developing Substitutes | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substitutes diagram for focus area 2, developing substitutes (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the...

  9. Electric Motors and Critical Materials

    Broader source: Energy.gov [DOE]

    Presentation given at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  10. CMI Affiliates | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CIO Blog Archive CIO Blog Archive RSS June 24, 2016 DOE FITARA Implementation Plan The Office of the Chief Information Officer is pleased to announce publication of the U.S. Department of Energy (DOE) Federal Information Technology Acquisition Reform Act (FITARA) Implementation Plan. June 12, 2015 The National Maker Faire aims to celebrate all things science, technology, engineering, art, and math through do-it-yourself and do-it-with-others projects and fun. 3D Cobra, Renewable Energy, and

  11. CMI Values | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Values CMI Values -- we listen, we are safe, we collaborate, we respect, we move fast, we are agile, we are responsible, and we deliver. We Listen: We are driven by the needs of technology and our best information comes from our industry partners. We Are Safe: We conduct all of our work in a manner that protects our workers, the public and the environment. We Collaborate: We bring together the best available expertise to solve the problems at hand. We Respect: We treat each other well and value

  12. course inventory | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read more about CMI Education Partner: Colorado School of Mines CMI Course Inventory: Mineral Economics and Business Mineral Economics and Business Of the six CMI Team members that ...

  13. Effect of packing material on methane activation in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-12-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using ?-Al{sub 2}O{sub 3} (sphere), ?-Al{sub 2}O{sub 3} (sphere), and ?-Al{sub 2}O{sub 3} (1620 mesh). Investigations on the surface properties and shape of the three packing materials clearly indicate that methane activation is considerably affected by the material used. Capacitances inside the discharge gap are estimated from chargevoltage plots, and a comparison of the generated and transferred charges for different packing conditions show that the difference in surface properties between ?- and ?-phase Al{sub 2}O{sub 3} affects the discharge characteristics. Moreover, all packing conditions show different charge characteristics that are related to the electron density. Finally, the packing material's shape affects the local electron temperature, which is strongly related to methane conversion. The combined results indicate that both microscale and macroscale variations in a packing material affect the discharge characteristics, and a packing material should be considered carefully for effective methane activation.

  14. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  15. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  16. Push for new materials, chemicals from biomass sparks active R and D

    SciTech Connect (OSTI)

    Borman, S. )

    1990-09-01

    This paper discusses how a resurgence of interest in the production of new materials, chemicals, and fuels from biomass resources such as wood, cellulose, lignin, starch, and chitin is sparking active R and D efforts in these areas. Biobased materials and chemicals currently under development include composites of conventional plastics with lignocellulosics (chemicals from wood and other plant sources); lignocellulosic nonwoven mates that can be pressed into rigid shapes to form doors, walls, and even auto body parts; phenolic chemicals produced from wood waste and bark; membranes made from chitosan (a substance derived from crustacean shells); and biodegradable plastics containing starch.

  17. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect (OSTI)

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  18. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect (OSTI)

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  19. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOE Patents [OSTI]

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  20. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    SciTech Connect (OSTI)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  21. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  1. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  2. M-transfer activity of MCM-41 materials in 1-hexene isomerization reactions

    SciTech Connect (OSTI)

    Dominguez, J.M.; Hernandez, F.; Terres, E.; Toledo, A.; Navarrete, J.

    1996-10-01

    The gasoline reformulation scheme includes the use of oxygenated additives MTBE (methyl-ter-butyl-ether), TAME (ter-amyl-methyl-ether), ETBE (ethyl-ter-butyl-ether) and DIPE (di-isopropyl-ether), which have the iso-olefins (i-C{sub 3}{sup =}, i-C{sub 4}{sup =}, i-C{sub 5}{sup =}) as precursors. In this respect, olefin production from FCC units must be enhanced to cover the demand. A series of new catalytic materials with lower hydrogen transfer activity could enhance the olefin yield from the FCC reactors.

  3. Activated barrier for protection of special nuclear materials in vital areas

    SciTech Connect (OSTI)

    Timm, R.E.; Miranda, J.E.; Reigle, D.L.; Valente, A.D.

    1984-07-15

    The Argonne National Laboratory and Sandia National Laboratory have recently installed an activated barrier, the Access Denial System (ADS) for the upgrade of safeguards of special nuclear materials. The technology of this system was developed in the late 70's by Sandia National Laboratory-Albuquerque. The installation was the first for the Department of Energy. Subsequently, two additional installations have been completed. The Access Denial System, combined with physical restraints, provide the system delay. The principal advantages of the activated barrier are: (1) it provides an order of magnitude improvement in delay over that of a fixed barrier, (2) it can be added to existing vital areas with a minimum of renovations, (3) existing operations are minimally impacted, and (4) health and safety risks are virtually nonexistent. Hardening of the vital areas using the ADS was accomplished in a cost-effective manner. 3 references, 1 figure, 1 table.

  4. SEQUESTRATION OF METALS IN ACTIVE CAP MATERIALS: A LABORATORY AND NUMERICAL EVALUATION

    SciTech Connect (OSTI)

    Dixon, K.; Knox, A.

    2012-02-13

    Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long-term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short-term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a non-reactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the non-reactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1-D, numerical model was created to qualitatively predict the long-term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities.

  5. Special Form Testing of Sealed Source Encapsulation for High-Alpha-Activity Actinide Materials

    SciTech Connect (OSTI)

    Martinez, Oscar A

    2016-01-01

    In the United States all transportation of radioactive material is regulated by the U.S. Department of Transportation (DOT). Beginning in 2008 a new type of sealed-source encapsulation package was developed and tested by Oak Ridge National Laboratory (ORNL). These packages contain high-alpha-activity actinides and are regulated and transported in accordance with the requirements for DOT Class 7 hazardous material. The DOT provides specific regulations pertaining to special form encapsulation designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural events. The special form designs have been shown to simplify the delivery, transport, acceptance, and receipt processes. It is intended for these sealed-source encapsulations to be shipped to various facilities making it very advantageous for them to be certified as special form. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of the high-alpha-activity material encapsulated within a triangular zirconia canister, referred to as a ZipCan, tile that is then enclosed by a spherical shell. The spherical shell design, with ZipCan tile inside, was tested for compliance with the special form regulations found in 49 CFR 173.469. The spherical enclosure was subjected to 9-m impact, 1 m percussion, and 10-minute thermal tests at the Packaging Evaluation Facility located at the National Transportation Research Center in Knoxville, TN USA and operated by ORNL. Before and after each test, the test units were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were also subjected to the tests required for ISO 2919:2012(E), including a Class IV impact test and heat test and subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact

  6. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    SciTech Connect (OSTI)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike; Matthews, Brian

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to

  7. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    SciTech Connect (OSTI)

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination.

  8. Processes for making dense, spherical active materials for lithium-ion cells

    DOE Patents [OSTI]

    Kang, Sun-Ho; Amine, Khalil

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  9. Criticality Model Report

    SciTech Connect (OSTI)

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  10. Process for forming a homogeneous oxide solid phase of catalytically active material

    DOE Patents [OSTI]

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  11. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding).  This...

  12. Gamma/neutron time-correlation for special nuclear material detection – Active stimulation of highly enriched uranium

    SciTech Connect (OSTI)

    Paff, Marc G.; Monterial, Mateusz; Marleau, Peter; Kiff, Scott; Nowack, Aaron; Clarke, Shaun D.; Pozzi, Sara A.

    2014-06-21

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highly Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.

  13. Gamma/neutron time-correlation for special nuclear material detection – Active stimulation of highly enriched uranium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paff, Marc G.; Monterial, Mateusz; Marleau, Peter; Kiff, Scott; Nowack, Aaron; Clarke, Shaun D.; Pozzi, Sara A.

    2014-06-21

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highlymore » Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.« less

  14. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    SciTech Connect (OSTI)

    Rennich, M.J. [comp.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  15. Critical Oxidation Reactions Optimized with Solvent Swap | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Critical Oxidation Reactions Optimized with Solvent Swap By simply changing the solvent, organic reactions vital for producing the starting materials for many major industrial processes have been found to be faster and able to yield the desired product with close to 100% selectivity. In solution, the critical reaction between an iron(II) catalyst with ozone in the presence of one of a number of alcohols and ethers generates various useful products. Importantly, the active species

  16. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  17. Vehicle Technologies Office Merit Review 2015: Materials Benchmarking Activities for CAMP Facility

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  18. An in situ electron microscopy technique for the study of thermally activated reactions in multilayered materials

    SciTech Connect (OSTI)

    Wall, M.A.; Barbee, T.W. Jr.; Weihs, T.P.

    1995-04-14

    A novel in situ transmission electron microscopy technique for the observation of reaction processes in multilayered materials is reported. The technique involves constant heating rate experiments of multilayered materials in image and diffraction modes. Because the fine scale microstructure of multilayered materials is typically a small fraction of the TEM specimen thickness, realistic comparison of the microstructural evolution with that of similarly processed thick foil samples is possible. Such experiments, when well designed, can provide rapid characterization of phase transformations and stability of nano-structured materials. The results of these experiments can be recorded in both video and micrograph format. The results and limitations of this technique will be shown for the Al/Zr and Al/Monel multilayered systems.

  19. Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development

    Broader source: Energy.gov [DOE]

    Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology.

  20. Vehicle Technologies Office Merit Review 2014: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Active, tailorable...

  1. Vehicle Technologies Office Merit Review 2015: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about active, tailorable...

  2. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  3. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  4. SOLIDIFICATION TESTING FOR A HIGH ACTIVITY WASTESTREAM FROM THE SAVANNAH RIVER SITE USING GROUT AND GAMMA RADIATION SHEILDING MATERIALS - 10017

    SciTech Connect (OSTI)

    Burns, H.

    2009-11-10

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) with evaluating grouts that include gamma radiation shielding materials to solidify surrogates of liquid aqueous radioactive wastes from across the DOE Complex. The Savannah River Site (SRS) identified a High Activity Waste (HAW) that will be treated and solidified at the Waste Solidification Building (WSB) for surrogate grout testing. The HAW, which is produced at the Mixed Oxide Fuel Fabrication Facility (MFFF), is an acidic aqueous wastestream generated by the alkaline treatment process and the aqueous purification process. The HAW surrogate was solidified using Portland cement with and without the inclusion of different gamma radiation shielding materials to determine the shielding material that is the most effective to attenuate gamma radiation for this application.

  5. Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT

  6. National Academies Criticality Methodology and Assessment Video (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a text version of the "National Academies Criticality Methodology and Assessment" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  7. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Broader source: Energy.gov [DOE]

    Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  8. Material protection control and accounting program activities at the electrochemical plant

    SciTech Connect (OSTI)

    McAllister, S.

    1997-11-14

    The Electrochemical Plant (ECP) is the one of the Russian Federation`s four uranium enrichment plants and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. ECP is located approximately 200 km east of Krasnoyarsk in the closed city of Zelenogorsk (formerly Krasnoyarsk- 45). DOE`s MPC&A program first met with ECP in September of 1996. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with ECP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at ECP is expected to be completed during fiscal year 2001.

  9. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    SciTech Connect (OSTI)

    McAllister, S.

    1997-11-14

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation`s largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE`s MPC&A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at UEIP is expected to be completed during fiscal year 2001.

  10. AVLIS Criticality risk assessment

    SciTech Connect (OSTI)

    Brereton, S.J., LLNL

    1998-04-29

    Evaluation of criticality safety has become an important task in preparing for the Atomic Vapor Laser Isotope Separation (AVLIS) uranium enrichment runs that will take place during the Integrated Process Demonstration (IPD) at Lawrence Livermore National Laboratory (LLNL). This integrated operation of AVLIS systems under plant-like conditions will be used to verify the performance of process equipment and to demonstrate the sustained integrated enrichment performance of these systems using operating parameters that are similar to production plant specifications. Because of the potential criticality concerns associated with enriched uranium, substantial effort has been aimed towards understanding the potential system failures of interest from a criticality standpoint, and evaluating them in detail. The AVLIS process is based on selective photoionization of uranium atoms of atomic weight 235 (U-235) in a vapor stream, followed by electrostatic extraction. The process is illustrated in Figure 1. Two major subsystems are involved: the uranium separator and the laser system. In the separator, metallic uranium is fed into a crucible where it is heated and vaporized by an electron beam. The atomic U-235/U-238 vapor stream moves away from the molten uranium and is illuminated by precisely tuned beams of dye laser light. Upon absorption of the tuned dye laser light, the U-235 atoms become excited and eject electrons (become photoionized), giving them a net positive charge. The ions of U-235 are moved preferentially by an electrostatic field to condense on the product collector, forming the enriched uranium product. The remaining vapor, which is depleted in U-235 (tails), passes unaffected through the photoionization/extractor zone and accumulates on collectors in the top of the separator. Tails and product collector surfaces operate at elevated temperatures so that deposited materials flow as segregated liquid streams. The separated uranium condensates (uranium enriched in

  11. Active investigation of material damage under load using micro-CT

    SciTech Connect (OSTI)

    Navalgund, Megha Mishra, Debasish; Manoharan, V.; Zunjarrao, Suraj

    2015-03-31

    Due the growth of composite materials across multiple industries such as Aviation, Wind there is an increasing need to not just standardize and improve manufacturing processes but also to design these materials for the specific applications. One of the things that this translates to is understanding how failure initiates and grows in these materials and at what loads, especially around internal flaws such as voids or features such as ply drops. Traditional methods of investigating internal damage such as CT lack the resolution to resolve ply level damage in composites. Interrupted testing with layer removal can be used to investigate internal damage using microscopy; however this is a destructive method. Advanced techniques such as such as DIC are useful for in-situ damage detection, however are limited to surface information and would not enable interrogating the volume. Computed tomography has become a state of the art technique for metrology and complete volumetric investigation especially for metallic components. However, its application to the composite world is still nascent. This paper demonstrates micro-CT’s capability as a gauge to quantitatively estimate the extent of damage and understand the propagation of damage in PMC composites while the component is under stress.

  12. Upper critical fields and thermally-activated transport of Nd(0.7Fe0.3) FeAs single crystal

    SciTech Connect (OSTI)

    Balakirev, Fedor F; Jaroszynski, J; Hunte, F; Balicas, L; Jo, Youn - Jung; Raicevic, I; Gurevich, A; Larbalestier, D C; Fang, L; Cheng, P; Jia, Y; Wen, H H

    2008-01-01

    We present measurements of the resistivity and the upper critical field H{sub c2} of Nd(O{sub 0.7}F{sub 0.3})FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H{sub c2} is comparable to {approx}100 T of high T{sub c} cuprates. H{sub c2}(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H{sub c2} shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T{sub c} but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4--5 decades. The activation energy has very different field dependencies for H{parallel}ab and H{perpendicular}ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H{sub c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H{sub c2}(T), which may significantly reduce H{sub c2}(0) as compared to H{sub c2}(0) {approx}200--300 T based on extrapolations of H{sub c2}(T) near T{sub c} down to low temperatures.

  13. Critical Amounts of Uranium Compounds

    DOE R&D Accomplishments [OSTI]

    Konopinski, E.; Metropolis, N.; Teller, E.; Woods, L.

    1943-03-19

    The method of calculation of critical masses of oxides and fluorides of U is given. The geometry assumed is a sphere and the calculations hold only in the absence of hydrogenous materials. Calculations are carried out which are applicable to materials containing form 20 to 100% U{sup 235}. (T.R.H.)

  14. Ion-exchange sorption and preparative chromatography of biologically active materials

    SciTech Connect (OSTI)

    Samsonov, G.V.

    1986-01-01

    This book presents information on the following topics: the problems of fine physico-chemical biotechnology; types of highly permeable network polyelectrolytes; methods for studying the permeability and porosity of network polyelectrolytes; the conformation state and flexibility of the structural elements of network polyelectrolytes; ion-exchange processes without the sorption of physiologically active substances; ion exchange, hydration, and swelling; nucleosides, nucleotides, alkaloids, sulfonamides, and miscellaneous physiologically active subtances; sharp front formation for the exchange of ions with the same valences; standard quasi-equilibrium frontal chromatography on ionites; sorption kinetics in ionites with structural heterogeneity; experimental investigations of the diffusivities of organic and physiologically active ions in ionite beads; and increasing the efficiency of low-pressure chromatography by using surface-layer and bidispersed ionites.

  15. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  16. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect (OSTI)

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  17. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  18. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  19. SU-E-T-590: An Activation Study of Materials and Devices Present in a Proton Treatment Room

    SciTech Connect (OSTI)

    Spitznagel, D

    2014-06-01

    Purpose: The use of protons for radiation therapy is growing rapidly. One consequence of protons interacting with different media is activation. These nuclear reactions induced by the protons, scattered neutrons, and gamma rays, activate different materials encountered, particularly by the therapists. The purpose of this study was to examine the derived nuclides from the activation, and also the decay rate. Methods: The study was conducted in our proton therapy facility. Protons are derived from a synchrocyclotron and pass through field shipping systems, apertures, and range compensators to define the beam within the patient.Included materials of concerns measured; the patient support couch, sheet rock in the wall, solid plastics used for quality assurance and dosimetry, and the passive scattering system itself, which includes brass apertures, and Lucite or blue wax compensators. All devices were studied post irradiation using gamma spectroscopy to determine the nuclides, and a sodium iodine scintillation detector to measure decay, particularly when the dose rate fell to background levels. Results: We have also determined from the measurements we will maintain brass apertures for three months before sending them for scrap. Some of the radionuclides arrived from these measurements included Na-22 for the blue wax compensator, C1-34m for the sheetrock, and Sc-44 and Co-60 for the brass apertures. We found compensators made out of Lucite or wax decayed to background in 2 hours. The patient support couch decayed to background in approximately 40 minutes, and sheet rock decayed in 80 minutes. In terms of the aperture layers, the most proximal aperture slab had much higher activity than the distal slab. Also the proximal sides of the slabs were much more activate than the distal. Conclusion: We have given proper instruction to therapists performing quality assurance in terms of the handled plastics, and to handle apertures rapidly as possible.

  20. CMI in the News | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Manganese Inc. Enters NDA with U.S. Government's Ames Laboratory on Lithium Ion Battery Recycling The Ames Laboratory: Rare earths for life: an 85th birthday visit...

  1. News about CMI Partners | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners 2016 energy.gov: Dr. Sanjiv Malhotra to lead Energy Department's Clean Energy Investment Center, Jan. 5, 2016 BloombergBusiness: Molycorp bids said to top miner's own price amid sales feud, Jan. 5, 2016 New elements on periodic table: Oak Ridge National Laboratory: ORNL on team officially recognized for elements 115, 117 discovery, Jan. 5, 2016 National Public Radio: The periodic table gets update with 4 new elements, Jan. 4, 2016 Washington Post: Periodic table gains four new

  2. News about CMI People | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People 2016 ORNL's Davidson, DePaoli elected AlChE fellows, March 21, 2016 Alexandra Navrotsky named 2016 V.M. Goldschmidt medalist, Feb. 22, 2016 Ames Laboratory scientist named to National Academy of Inventors, Jan. 11, 2016 Ames Laboratory scientist's calculation featured on cover of Physical Review Letters, Jan. 4, 2016 2015 Michael Chance is Wigner Fellow at ORNL who conducts CMI research on fluorescent lighting, Nov. 30, 2015 ORNL's Zacharia, Paranthaman named AAAS fellows, Nov. 23, 2015

  3. Meet the CMI Researchers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet the CMI Researchers CMI researchers create new phosphors At left, Nerine Cherepy of Lawrence Livermore National Laboratory displays commercial phosphors (six samples from bottom left of semi-circle) and phosphors being developed by LLNL and collaborators as replacements (five on right). LLNL, Oak Ridge National Laboratory and GE are working to improve the efficiency of the new phosphors to replace commercial phosphors. Inset: The CMI phosphor team members include (from left) Paul Martinez,

  4. One Integrated Team | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One Integrated Team These were the Team Members in 2013, when CMI launched. Use this link to see a list of current Team Members or learn more about partnering with CMI. map of CMI partner locations in the United States

  5. Papers by CMI Researchers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Richard E. Riman, Alexandra Navrotsky, and Yongqin Jiao, "Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags," Environmental Science ...

  6. Government Agency Contacts | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Wisdom Energy Efficiency and Renewable Energy (EERE) Advanced Manufacturing Office (AMO) Canada Rare Earth Elements and Chromite (REEChromite) Research and Development Program

  7. Iowa lab gets critical materials research center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals.

  8. FA 1: Diversifying Supply | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Diversifying Supply Focus Area 1 - Moyer, Herbst CMI pilot-scale separations test bed (image) File: Read more about CMI pilot-scale separations test bed (image) CMI Org Chart with Hotlinks: Focus Area 1 File: Read more about CMI Org Chart with Hotlinks: Focus Area 1 CMI Org Chart with Hotlinks: Research Overview File: Read more about CMI Org Chart with Hotlinks: Research Overview CMI org chart for research with hotlinks (pdf) File: Read more about CMI org chart for research with hotlinks

  9. FA 2: Developing Substitutes | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Developing Substitutes Focus Area 2 - Schwatrz, Sales U.S. Rare Earth Magnet Patents Table pdf file August 29, 2016 File: Publication Year: 2016 Read more about U.S. Rare Earth Magnet Patents Table pdf file August 29, 2016 U.S. Rare Earth Magnet Patents Table pdf file August 8, 2016 File: Publication Year: 2016 Read more about U.S. Rare Earth Magnet Patents Table pdf file August 8, 2016 U.S. Rare Earth Magnet Patents Table pdf file June 2016 File: Publication Year: 2016 Read more about U.S.

  10. CMI Organizational Interactions | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Organizational Interactions CMI Affiliates: CMI Affiliates will be informed about CMI research outcomes and provide input to CMI. Affiliates pay an annual fee based on the organization type, and sign a Membership Agreement. CMI Affiliates may become Team members or sponsor research in other ways with different levels of financial commitment and ownership of intellectual property. CMI Associates: CMI Associates may use the unique capabilities and expertise of CMI via DOE-approved contractual

  11. CMI Success Stories | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Success Stories signing ceremony for first license of CMI technology Update: The license agreement was announced in August, and the official signing at Oak Ridge National Laboratory was November 19. Shown, front row: Kevin M. Cassidy, president and CEO of U.S. Rare Earths, and Dr. Thom Mason, Director of Oak Ridge National Laboratory (ORNL). Back row: Nestor Franco, ORNL Tech Transfer; Preston Bryant, U.S. Rare Earths; Dr. Ramesh Bhave, ORNL; and Dr. Daejin Kim, ORNL. collage image for first

  12. Comments/Questions | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments/Questions To offer comments on the CMI website or to ask questions, please contact us: CMIdirector@ameslab.gov 515-296-4500 or use this web form for comments. Thanks!

  13. CMI Guidance Documents | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Guidance Documents This page has links to pdf versions of CMI Guidance Documents for CMI staff: Publication process flow chart Acknowledgement text Foreign travel Press releases IP protection The Microsoft Word versions of these, and additional guidance documents, are available in the data storage server. Tags: guidance document

  14. Webinars Highlight CMI Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinars Highlight CMI Research CMI research is the topic of most of the CMI webinars, created by the CMI education/outreach team at Colorado School of Mines. Future topics are listed, and people can register for these with no charge. Archive files for past webinars are available online. September 21: Parans Paranthaman, Oak Ridge National Laboratory, "Additive Manufacturing of NdFeB Magnets" Registration is open August 23: CMI Director Alex King, "CMI Director's

  15. Working with CMI: Affiliates | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affiliates CMI Affiliates are companies and organizations interested in being informed about CMI research outcomes and providing input to CMI on a continuing basis. Each Affiliate pays an annual membership fee, based on the organization size and type, and signs a Membership Agreement. Link to a list of current CMI Affiliates. Foreign entitites must be approved for membership by the U.S. Department of Energy. For more details, contact CMIaffiliates@ameslab.gov. Affiliates Fees The annual

  16. Working with CMI: Associates | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Associates CMI Associates work with CMI researchers to define a scope of work, budget and timeline for the work. Once internally approved, the entity must execute either a CRADA or SPP with Ames or another Team national laboratory before work may begin. For more information: CMIaffiliates@ameslab.gov CMI Affiliates Membership, The Ames Laboratory, 306 TASF, 2408 Pammel Drive, Ames, IA, 50011-1015

  17. Working with CMI: Team | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with CMI: Team Some Affiliates may eventually be asked to become a CMI Team member. At that time, the Affiliate will be required to provide cost share, either in-kind or actual funds into the CMI. Dependent upon the research projects they are involved in, they may be asked to enter into a research subcontracts from CMI, with CMI funds sent to their organization. Team member requirements include research deliverables as approved by the CMI Advisory Board and Director and full execution of

  18. rare earth recycling | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rap Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... NNSA Administrator visits Brookhaven National Laboratory On Friday, May 6, DOE Under Secretary

  19. Critical Materials Institute Affiliates Program MEMBER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be in accordance to the DOE Work for Others (WFO) Class Patent Waiver and corresponding Master WFO agreement for work to be performed by the CMI with affiliate funds. Foreign...

  20. CMI Membership Program | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Advisory Board and Director. This level of participation is required to sign CMI's Master Non-disclosure Agreement and the Intellectual Property Management Plan (IPMP)....

  1. CMI Affiliate Members | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tech Montana Tech (http:mtech.educamp) logo for CMI affiliate NAMS Native American Mining Solutions (NAMS) Native American Mining Solutions, of Kennewick, Washington, is a...

  2. Critical Materials Workshop Final Participant List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Andrew Day Ocean7 Water Purification Corporation Peter Dent Electron Energy Corporation Jordan Doria Ingersoll Rand Matt Douglas National Nuclear Security Administration Glen ...

  3. CMI Membership Benefits | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects related to the Affiliates' needs Three month non-exclusive R&D use license option to Affiliate Fund Research Six month option1 for commercial license2 to...

  4. CMI Program Benefits | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Benefits CMI Participation Benefits Affiliate Associate Team Provides cost share or has a contract for CMI project work optional required ● CMI bi-weekly newsletters and CMI monthly webinars ● ● ● Opportunities to expand engagement under appropriate contractual terms ● ● ● Representation on Industry Council ● ● Priority notification of inventions available for licensing, to the extent allowed by Fairness of Opportunity requirements ● ● CMI Annual Meetings and

  5. CMI Recent Presentations | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Recent Presentations Recent public presentations by CMI leaders and researchers are available on this page as pdf files. Additional versions of these presentations are available to TEAM members and Affiliates. CMI Annual Meeting, August 16-18, 2016: Alex King, CMI Director Deb Covey, CMI Commercialization Wayne Rifert, Green Electronics Council Tim McIntyre, Oak Ridge National Laboratory Corby Anderson, Colorado School of Mines CMI first annual meeting Plenary sessions, September 9, 2014:

  6. CMI Team Members | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Team Members CMI is a public/private partnership that brings together the best and brightest research minds from universities, national laboratories and the private sector to find innovative technology solutions that will help avoid a supply shortage that would threaten our clean energy industry as well as our security interests. CMI Team Members have research subcontracts from CMI or are providing cost sharing funds. Requirements include specific research project deliverables within the

  7. CMI Education Partner: Purdue University | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Typically offered Fall. EAS 38500 - Principles Of Engineering Geology: Credit Hours: 3.00. Application ... Isotope geology, geo- and cosmo-chronology with particular emphasis upon the ...

  8. Improving Reuse & Recycling | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Reuse & Recycling series of images of recycling: trash heap, light bulbs, circuit boards diagram for focus area three, improving reuse and recycling (A click on the org...

  9. The Use of Catalysts in Near-Critical Water Processing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2005-06-26

    The use of heterogeneous catalysts in near-critical water processing provides many challenges of material stability in addition to the normal questions of chemical activity. Conventional catalyst materials developed in traditional organic chemistry or petroleum chemistry applications provide a source of information of materials with the required activities but often without the required stability when used in hot liquid water. The importance of the use of catalysts in near-critical water processing plays a particularly crucial role for the development of renewable fuels and chemicals based on biomass feedstocks. Stability issues include both those related to the catalytic metal and also to the catalyst support material. In fact, the stability of the support is the most likely concern when using conventional catalyst formulations in near-critical water processing. Processing test results are used to show important design parameters for catalyst formulations for use in wet biomass gasification in high-pressure water and in catalytic hydrogenations in water for production of value-added chemical products from biomass in the biorefinery concept. Analytical methods including powder x-ray diffraction for crystallite size and composition determination, surface area and porosity measurements, and elemental analysis have all been used to quantify differences in catalyst materials before and after use. By these methods both the chemical and physical stability of heterogeneous catalysts can be verified.

  10. Materials reliability. Technical activities, 1990. (NAS-NRC Assessment Panel, January 31-February 1, 1991)

    SciTech Connect (OSTI)

    McHenry, H.I.

    1990-12-01

    Selected Highlights of the Materials Reliability Division are as follows: Composites NDE: A high resolution ultrasonic system has been developed for inspecting thick polymer-matrix composites; NDE Instruments: Field trials were conducted on two prototype ultrasonic NDE instruments. A formability sensor system was delivered to the Ford Motor Company for evaluation at their Dearborn stamping plant. An ultrasonic system for roll-by inspection of railroad wheels is being evaluated at the American Association of Railroads test track in Pueblo, Colorado; Elastic Waves in Composites: A powerful technique using a time-dependent Green's function method has been developed for studying propagation of elastic waves and their scattering from discontinuities in anisotropic solids; Electronic Packaging: Computer programs have been developed to convert coordinate points on solder joint surfaces obtained by x-ray laminography and optical inspection into finite element meshes for stress analysis; Thermomechanical Processing: The continuous cooling transformation (CCT) characteristics and the high-temperature, high strain-rate flow properties were measured for microalloyed SAE 1141 forging steel; Charpy Standards: Over 1000 industrial customers were supplied with Charpy V-notch reference specimens and calibration services for certification of Charpy impact test machines to ASTM Standard E23; Cryogenic Testing: A 5 MN (1 million pound-force) servohydraulic testing machine was refurbished and equipped with a cryostat and dewar capable of testing specimens 2 m long and 50 cm in diameter in liquid helium; Aluminum-Lithium Alloys: A cooperative program with NASA indicated that aluminum-lithium alloys have sufficient oxygen compatibility for use in cryogenic tankage for the Advanced Launch System; Automated Welding: An intelligent welding program was initiated for the U.S. Navy in conjunction with Babcock and Wilcox and INEL.

  11. The structure of Ni(OH){sub 2}: From the ideal material to the electrochemically active one

    SciTech Connect (OSTI)

    Tessier, C. ||; Haumesser, P.H.; Delmas, C. |; Bernard, P.

    1999-06-01

    A structural model is proposed to explain the abnormal broadening of the (10{ell}) and (20{ell}) lines in the X-ray diffraction pattern of nickel hydroxide. This model, based on a hypothesis of the presence of stacking faults, allows one to rationalize the empirically established relationship between the presence of such peculiarities in X-ray diffraction patterns and the good electrochemical behavior of the material. Two types of stacking faults, i.e., growth and deformation faults, corresponding to the existence within the hexagonal oxygen packing of one or two face-centered cubic oxygen sequences, respectively, have been identified. The simulation, with the DIFFaX program, of the X-ray diffraction patterns of nickel hydroxide samples has allowed the authors to determine in a general way the nature and the amount of stacking faults. It is shown that the stability of protons in tetrahedral sites depends on whether they are in the vicinity of a stacking fault or not, and this explains the improvement of both the chargeability of the material and its electronic conductivity in the presence of defects. It is shown as well that stacking faults in the electrochemically active material lead to a more facile transition to the {gamma} phase during overcharge in concentrated electrolyte.

  12. CMI Course Inventory: Recycling/Industrial Engineering | Critical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Mining Engineering Metallurgical EngineeringMaterials...

  13. GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012

    SciTech Connect (OSTI)

    Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr; Gavrilyuk-Burakova, Anna; Diakov, Oleksii; Drapey, Sergiy; Proskurin, Dmitry; Dickman, Deborah A.; Ferguson, Ken

    2011-10-01

    The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed training needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly

  14. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  15. Energy Materials Network Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Materials Network (EMN) is a national lab-led initiative that aims to dramatically decrease the time-to-market for advanced materials innovations critical to many clean energy technologies. Through targeted consortia offering accessible suites of advanced research and development capabilities, EMN is accelerating materials development to address U.S. manufacturers' most pressing materials challenges.

  16. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  17. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  18. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    SciTech Connect (OSTI)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin Liu, Lu; Wang, Yi

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. The combination of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.

  19. Nuclear criticality safety guide

    SciTech Connect (OSTI)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  20. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  1. 10 Things You Didn't Know About Critical Materials | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Things I Love About My Electric Vehicle 10 Things I Love About My Electric Vehicle September 14, 2015 - 3:37pm Addthis If your employer offers it, charging your car at work is just one benefit of driving a plug-in electric vehicle. | Photo courtesy of Erik Nelsen, NREL. If your employer offers it, charging your car at work is just one benefit of driving a plug-in electric vehicle. | Photo courtesy of Erik Nelsen, NREL. Erik Nelsen Project Leader, NREL Clean Cities Team How can I participate?

  2. New Request for Information to Inform Department of Energy Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Strategy | Department of Energy New Request for Information to Inform Department of Energy Critical Materials Strategy New Request for Information to Inform Department of Energy Critical Materials Strategy February 10, 2016 - 12:00pm Addthis Diana Bauer Office Director for Energy Systems Analysis and Integration In today's energy economy, many advanced technologies rely on high performing materials with unique chemical and physical properties. In some cases, these materials are at

  3. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  4. Critical Point Finder

    Energy Science and Technology Software Center (OSTI)

    2007-03-15

    The program robustly finds the critical points in the electric field generated by a specified collection of point charges.

  5. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    SciTech Connect (OSTI)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  6. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  7. Investigation of criticality safety control infraction data at a nuclear facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  8. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  9. Transformational, Large Area Fabrication of Nanostructured Materials Using Plasma Arc Lamps

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study that will address critical additional steps over large areas of as-synthesized nanostructured materials, such as annealing, phase transformation, or activation of dopants, dramatically reducing the processing costs of the solid-state lighting and photovoltaic materials.

  10. PRECLOSURE CRITICALITY ANALYSIS PROCESS REPORT

    SciTech Connect (OSTI)

    A.E. Danise

    2004-10-25

    This report describes a process for performing preclosure criticality analyses for a repository at Yucca Mountain, Nevada. These analyses will be performed from the time of receipt of fissile material until permanent closure of the repository (preclosure period). The process describes how criticality safety analyses will be performed for various configurations of waste in or out of waste packages that could occur during preclosure as a result of normal operations or event sequences. The criticality safety analysis considers those event sequences resulting in unanticipated moderation, loss of neutron absorber, geometric changes, or administrative errors in waste form placement (loading) of the waste package. The report proposes a criticality analyses process for preclosure to allow a consistent transition from preclosure to postclosure, thereby possibly reducing potential cost increases and delays in licensing of Yucca Mountain. The proposed approach provides the advantage of using a parallel regulatory framework for evaluation of preclosure and postclosure performance and is consistent with the U.S. Nuclear Regulatory Commission's approach of supporting risk-informed, performance-based regulation for fuel cycle facilities, ''Yucca Mountain Review Plan, Final Report'', and 10 CFR Part 63. The criticality-related criteria for ensuring subcriticality are also described as well as which guidance documents will be utilized. Preclosure operations and facilities have significant similarities to existing facilities and operations currently regulated by the U.S. Nuclear Regulatory Commission; therefore, the design approach for preclosure criticality safety will be dictated by existing regulatory requirements while using a risk-informed approach with burnup credit for in-package operations.

  11. Architecture for high critical current superconducting tapes

    DOE Patents [OSTI]

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  12. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOE Patents [OSTI]

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  13. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOE Patents [OSTI]

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  14. CMI Unique Facility: Ferromagnetic Materials Characterization Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Ferromagnetic Materials Characterization Facility The Ferromagnetic Materials Characterization Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI ferromagnetic materials characterization facility at The Ames Laboratory. In the search for substitute materials to replace rare earths in permanent magnets, whenever promising materials are identified,

  15. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect (OSTI)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  16. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  17. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  18. Apparatus and method for critical current measurements

    DOE Patents [OSTI]

    Martin, Joe A.; Dye, Robert C.

    1992-01-01

    An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.

  19. SILENE Benchmark Critical Experiments for Criticality Accident Alarm Systems

    SciTech Connect (OSTI)

    Miller, Thomas Martin; Reynolds, Kevin H.

    2011-01-01

    In October 2010 a series of benchmark experiments was conducted at the Commissariat a Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE [1] facility. These experiments were a joint effort between the US Department of Energy (DOE) and the French CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems (CAASs). This presentation will discuss the geometric configuration of these experiments and the quantities that were measured and will present some preliminary comparisons between the measured data and calculations. This series consisted of three single-pulsed experiments with the SILENE reactor. During the first experiment the reactor was bare (unshielded), but during the second and third experiments it was shielded by lead and polyethylene, respectively. During each experiment several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor, and some of these detectors were themselves shielded from the reactor by high-density magnetite and barite concrete, standard concrete, and/or BoroBond. All the concrete was provided by CEA Saclay, and the BoroBond was provided by Y-12 National Security Complex. Figure 1 is a picture of the SILENE reactor cell configured for pulse 1. Also included in these experiments were measurements of the neutron and photon spectra with two BICRON BC-501A liquid scintillators. These two detectors were provided and operated by CEA Valduc. They were set up just outside the SILENE reactor cell with additional lead shielding to prevent the detectors from being saturated. The final detectors involved in the experiments were two different types of CAAS detectors. The Babcock International Group provided three CIDAS CAAS detectors, which measured photon dose and dose rate with a Geiger-Mueller tube. CIDAS detectors are currently in

  20. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  1. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    SciTech Connect (OSTI)

    Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging

  2. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel

  3. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    SciTech Connect (OSTI)

    Potirakis, S. M.; Karadimitrakis, A.; Eftaxias, K.

    2013-06-15

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  4. Activation detector

    DOE Patents [OSTI]

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-12-08

    A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.

  5. Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility

    SciTech Connect (OSTI)

    Cherkas, Dmytro

    2011-10-01

    As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay

  6. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    SciTech Connect (OSTI)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David; Hankins, Matthew Granholm

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to

  7. Catalyst material and method of making

    DOE Patents [OSTI]

    Matson, D.W.; Fulton, J.L.; Linehan, J.C.; Bean, R.M.; Brewer, T.D.; Werpy, T.A.; Darab, J.G.

    1997-07-29

    The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation. 7 figs.

  8. Catalyst material and method of making

    DOE Patents [OSTI]

    Matson, Dean W.; Fulton, John L.; Linehan, John C.; Bean, Roger M.; Brewer, Thomas D.; Werpy, Todd A.; Darab, John G.

    1997-01-01

    The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.

  9. Criticality Safety Lessons Learned in a Deactivation and Decommissioning Environment [A Guide for Facility and Project Managers

    SciTech Connect (OSTI)

    NIRIDER, L.T.

    2003-08-06

    This document was designed as a reference and a primer for facility and project managers responsible for Deactivation and Decommissioning (D&D) processes in facilities containing significant inventories of fissionable materials. The document contains lessons learned and guidance for the development and management of criticality safety programs. It also contains information gleaned from occurrence reports, assessment reports, facility operations and management, NDA program reviews, criticality safety experts, and criticality safety evaluations. This information is designed to assist in the planning process and operational activities. Sufficient details are provided to allow the reader to understand the events, the lessons learned, and how to apply the information to present or planned D&D processes. Information is also provided on general lessons learned including criticality safety evaluations and criticality safety program requirements during D&D activities. The document also explores recent and past criticality accidents in operating facilities, and it extracts lessons learned pertinent to D&D activities. A reference section is included to provide additional information. This document does not address D&D lessons learned that are not pertinent to criticality safety.

  10. Energy Department Announces Launch of Energy Innovation Hub for Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Research | Department of Energy Launch of Energy Innovation Hub for Critical Materials Research Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research May 31, 2012 - 5:56pm Addthis WASHINGTON - U.S. Secretary of Energy Steven Chu today announced plans to invest up to $120 million over five years to launch a new Energy Innovation Hub, establishing a multidisciplinary and sustained effort to identify problems and develop solutions across the

  11. Materials characterization activities for %E2%80%9CTake Our Sons&Daughters to Work Day%E2%80%9D 2013.

    SciTech Connect (OSTI)

    Mowry, Curtis Dale; Pimentel, Adam S.; Sparks, Elizabeth Schares; Hanlon, Brittany Paula

    2013-09-01

    We created interactive demonstration activities for Take Our Daughters&Sons to Work Day (TODSTWD) 2013 in order to promote general interest in chemistry and also generate awareness of the type of work our laboratories can perform. %E2%80%9CCurious about Mars Rover Curiosity?%E2%80%9D performed an elemental analysis on rocks brought to our lab using the same technique utilized on the planet Mars by the NASA robotic explorer Curiosity. %E2%80%9CFood is Chemistry?%E2%80%9D utilized a mass spectrometer to measure, in seconds, each participant's breath in order to identify the food item consumed for the activity. A total of over 130 children participated in these activities over a 3 hour block, and feedback was positive. This document reports the materials (including handouts), experimental procedures, and lessons learned so that future demonstrations can benefit from the baseline work performed. We also present example results used to prepare the Food activity and example results collected during the Curiosity demo.

  12. The Future of Absorption Technology in America: A Critical Look...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Absorption Technology in America: A Critical Look at the Impact of Building, ... for CHP Applications, April 2005 Review of Thermally Activated Technologies, July ...

  13. Criticality Safety Controls Implementation, May 31, 2013 (HSS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The following provides a set of criteria and typical activities with representative lines of inquiry to assess criticality control implementation as an integral part of the review ...

  14. Review of Nevada Site Office Criticality Safety Assessments at the Criticality Experiments Facility and Training Assembly for Criticality Safety and Appraisal of the Criticality Experiments Facility Startup Plan, October 2011

    Broader source: Energy.gov [DOE]

    This report provides the results of an independent oversight review of criticality safety assessment activities conducted by the Department of Energy's (DOE) Nevada Site Office

  15. Institute for Multiscale Materials Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and mechanics of soft, responsive, engineered materials. Activities combine theory, experiment, and numerical simulation of phenomena in soft materials spanning 7-14...

  16. Nuclear Material Control and Accountability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... can be established for waste accounts, material under ... decay, fission transmutation, adjustments for ... inventory. 6.4.4.4 Nuclear material activities shall ...

  17. Nuclear Materials Control and Accountability

    Broader source: Energy.gov (indexed) [DOE]

    ... can be established for waste accounts, material under ... decay, fission transmutation, adjustments for ... inventory. 6.4.4.4 Nuclear material activities shall ...

  18. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  19. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  20. Radiation Safety Training Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  1. Criticality Safety Training

    Energy Science and Technology Software Center (OSTI)

    2002-12-01

    CST is a web-based training program designed to help the user to safely access and work in areas where fissionable nuclear materials may be present.

  2. FY2014 Propulsion Materials R&D Annual Progress Report

    SciTech Connect (OSTI)

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  3. Multiparticle Monte Carlo Code System for Shielding and Criticality Use.

    Energy Science and Technology Software Center (OSTI)

    2015-06-01

    Version 00 COG is a modern, full-featured Monte Carlo radiation transport code that provides accurate answers to complex shielding, criticality, and activation problems.COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computingmore » Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://cog.llnl.gov. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. A lattice feature simplifies the specification of regular arrays of parts. Parallel processing under MPI is supported for multi-CPU systems. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, pathlength stretching, point detectors, scattered direction biasing, and forced collisions. Criticality – For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation – COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems – COG can solve coupled problems involving neutrons, photons, and electrons. COG 11.1 is an updated version of COG11.1 BETA 2 (RSICC C00777MNYCP02

  4. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    SciTech Connect (OSTI)

    Ming LI

    2007-12-01

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  5. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    SciTech Connect (OSTI)

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  6. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  7. Critical Skills Master's Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skills Master's Program (CSMP): The Critical Skills Master's Program (CSMP) provides exceptional bachelor's-level candidates with the opportunity to pursue a fully funded Master's of Science degree. Successful applicants will become regular full-time Sandia employees and join multidisciplinary teams that are advancing the frontiers of science and technology to solve the world's greatest challenges. Program Requirements: * Apply to a minimum of 3 nationally accredited universities. * Successfully

  8. Only critical information was scanned

    Office of Legacy Management (LM)

    Only critical information was scanned. Entire document is available upon request - Click here to email a

  9. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect (OSTI)

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  10. Applicability of reactor code WIMS for nuclear criticality safety studies

    SciTech Connect (OSTI)

    Matausek, M.V.; Marinkovic, N.

    1995-12-31

    The purpose of this paper is to examine applicability of the reactor code WIMS for calculating criticality parameters of nonreactor configurations containing fissile materials. Results are given and discussed for some typical configurations containing {sup 235}U.

  11. Fullerene materials

    SciTech Connect (OSTI)

    Malhotra, R.; Ruoff, R.S.; Lorents, D.C.

    1995-04-01

    Fullerenes are all-carbon cage molecules. The most celebrated fullerene is the soccer-ball shaped C{sub 60}, which is composed of twenty hexagons and twelve pentagons. Because its structure is reminiscent of the geodesic domes of architect R. Buckminster Fuller, C{sub 60} is called buckminsterfullerene, and all the materials in the family are designated fullerenes. Huffman and Kraetschmer`s discovery unleashed activity around the world as scientists explored production methods, properties, and potential uses of fullerenes. Within a short period, methods for their production in electric arcs, plasmas, and flames were discovered, and several companies began selling fullerenes to the research market. What is remarkable is that in all these methods, carbon atoms assemble themselves into cage structures. The capability for self-assembly points to some inherent stability of these structures that allows their formation. The unusual structure naturally leads to unusual properties. Among them are ready solubility in solvents and a relatively high vapor pressure for a pure carbon material. The young fullerene field has already produced a surprising array of structures for the development of carbon-base materials having completely new and different properties from any that were previously possible.

  12. Sandia National Laboratories: Careers: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials science worker Sandia materials scientists are creating scientifically tailored materials for U.S. energy applications and critical defense needs. Sandia's focus on scientifically tailored materials capitalizes on our expertise in solid-state sciences, advanced atomic-level diagnostics, and materials synthesis and processing science. Our research uses Sandia's experimental, theoretical, and computational capabilities to establish the state of the art in materials

  13. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical and biological agents and explosives. Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical and biological agents and explosives. Our goal is to develop critical security technologies to prevent and manage events

  14. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  15. Calculated critical parameters for uranium-beryllium-water mixtures

    SciTech Connect (OSTI)

    Wetzel, L.L.

    1996-12-31

    Babcock & Wilcox recovers uranium from Sapphire material through chemical processing. Sapphire material consists of highly enriched uranium that contains various amounts of beryllium. Prior to the processing of Sapphire material, criticality safety analyses conservatively used uranium and water mixtures to model the solutions in the chemical processing operations. In the processing of Sapphire material, the presence of beryllium could change the safety limits. To determine the impact of the beryllium in the solution, critical parameters (mass or radius) for mixtures of uranium, beryllium, and water were calculated.

  16. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect (OSTI)

    Hayes, David K.; Myers, William L.

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  17. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  18. Reversibility and criticality in amorphous solids

    SciTech Connect (OSTI)

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.

  19. Reversibility and criticality in amorphous solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaoticmore » behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.« less

  20. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  1. Spent Fuel Criticality Benchmark Experiments

    SciTech Connect (OSTI)

    J.M. Scaglione

    2001-07-23

    Characteristics between commercial spent fuel waste packages (WP), Laboratory Critical Experiments (LCEs), and commercial reactor critical (CRC) evaluations are compared in this work. Emphasis is placed upon comparisons of CRC benchmark results and the relative neutron flux spectra in each system. Benchmark evaluations were performed for four different pressurized water reactors using four different sets of isotopes. As expected, as the number of fission products used to represent the burned fuel inventory approached reality, the closer to unity k{sub eff} became. Examination of material and geometry characteristics indicate several fundamental similarities between the WP and CRC systems. In addition, spectral evaluations were performed on a representative pressurized water reactor CRC, a 21-assembly area of the core modeled in a potential WP configuration, and three LCEs considered applicable benchmarks for storage packages. Fission and absorption reaction spectra as well as relative neutron flux spectra are generated and compared for each system. The energy dependent reaction rates are the product of the neutron flux spectrum and the energy dependent total macroscopic cross section. With constant source distribution functions, and the total macroscopic cross sections for the fuel region in the CRCs and WP being composed of nearly the same isotopics, the resulting relative flux spectra in the CRCs and WP are very nearly the same. Differences in the relative neutron flux spectra between WPs and CRCs are evident in the thermal energy range as expected. However, the relative energy distribution of the absorption, fission, and scattering reaction rates in both the CRCs and the WP are essentially the same.

  2. Testing Subgroup Workshop on Critical Property Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Subgroup Workshop on Critical Property Needs Tim Armstrong September, 2007 Presented at AMSE/PWG Joint Meeting Participants Kevin Klug, David Moyer - CTC Paul Bakke - DOE David McColskey, Richard Ricker - NIST Zhili Feng, Steve Pawel, Govindarajan Muralidharan - ORNL Brian Somerday - SNL Andrew Duncan - SRNL Petros Safronis - U. Illinois Objectives Develop an action plan that: * details the necessary tests to measure and compare the physical properties of metallic materials relevant to

  3. First License for a CMI Invention | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First License for a CMI Invention diagram of membrane solvent extraction system developed by CMI researchers Diagram of membrane solvent extraction system developed by CMI researchers at ORNL and INL. The first license for a CMI invention was granted for a recycling process developed by CMI researchers at Oak Ridge National Laboratory and Idaho National Laboratory. They have applied for a patent for "Membrane Solvent Extraction for Rare Earth Separations." Official news release from

  4. Meet CMI Researcher Karl Gschneidner | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center from 1966 to 1996. Gschneidner received a B.S. degree from the University of Detroit in 1952 and his Ph.D. from Iowa State University in 1957. He was at the Los Alamos...

  5. Critical Materials Institute gains new member Eck Industries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which utilize byproducts of rare-earth mining as alloying elements to improve aluminum casting alloys," Weiss said. "We are devoting significant resources to this partnership,...

  6. Meet CMI Leader Cynthia Howell | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Howell Dr. Cynthia Howell CMI education, training and outreach program manager is Dr. Cynthia Howell. She works at Colorado School of Mines half-time in this position for CMI and half-time for the Colorado Energy Research Institute. She brings a national perspective and knowledge of energy, education, industry and workforce issues with expertise in partnership development, collaborative project design, education reform and tool development. She has unique multidisciplinary experience working and

  7. Post-Doc Researchers Needed | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Department of Energy national laboratory ... Large scale density functional calculations applied to ... on recovery of rare earth (RE) metals from scrap sources. ...

  8. Other Education and Outreach Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Other Academic Alliances NNSA's Defense Science University Programs has academic alliances with three other universities: Washington State University off site link University of Nevada Las Vegas (UNLV) off site link University of Nevada Reno (UNR) off site link The current awards for other academic alliances are as follows: Title Organization; State Investigator Total Budget* Project Period Science Based Stockpile Stewardship Collaborative Research Development University of Nevada,

  9. U.S. Department of Energy - Critical Materials Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This latest set of export quotas were non-element specific and applied to all exports of REEs, which in turn led to price spikes for the lower valued light rare earth elements ...

  10. What would we do without rare earths? | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an Energy Innovation Hub created by the U.S. Department of Energy, has a big problem to solve -- what would we do without rare earths? Rare earths are a big part of our modern...

  11. Rare Earths -- The Fraternal Fifteen | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For an up-to-date review of the rare earth elements, which is more technical, see the 2012 articles by Karl A. Gschneidner, Jr. and Vitalij K. Pecharsky in the Encyclopedia ...

  12. DOE Releases Request for Information on Critical Materials, Including...

    Broader source: Energy.gov (indexed) [DOE]

    including fuel cell platinum group metal catalysts. ... on issues related to the demand, supply, opportunities for ... Announces Second RFI on Rare Earth Metals DOE Announces RFI ...

  13. Exascale Supercomputing and Materials DARHT: A Critical Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A linear- induction accelerator uses magnetic cores to ... such as NNSA's LANSCE Linac Risk Mitigation Effort ... MaRIE's proposed x-ray free-electron laser and proton radiography ...

  14. Leave your comment about CMI website | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leave your comment about CMI website We've made some changes to cmi.ameslab.gov. Please tell us your experience, and updates you'd like to see in the future. If you're have trouble accessing the site, or if something just doesn't look right, then please let us know. Including what browser and operating system you're using could help us. Thank you for your comments. Comments: *

  15. CMI Education and Outreach in 2016 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach in 2016 CMI outreach with inner city youth CMI education and outreach offered inner city sixth graders an introduction to college. CMI education and outreach in 2016: Colorado School of Mines offered inner city sixth graders an introduction to college on July 7. The 160 sixth graders and 20 teachers and parents joined 10 REU student volunteers and six presenters at Mines. The tour included a welcome from CMI, chemistry show by Dr. Jim Horan and three 30-minute rotations to the museum

  16. Meet CMI Leader Carol Bergman | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet CMI Leader Carol Bergman Carol Bergman worked in the Ames Laboratory Budget Office for several years before joining CMI in January 2015. She ensures that CMI operates in a...

  17. Meet CMI Leader Cynthia Feller | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feller Cynthia Feller has been with Ames Lab for 22 years, beginning her career in Public Affairs and spending nine years in the Directors' office before joining the CMI team as...

  18. U.S. Department of Energy - Critical Materials Strategy

    Broader source: Energy.gov (indexed) [DOE]

    ... as these vehicles enter the market in larger ... GE In the short and medium terms, the demand for LFL and CFL ... also is informing the search for compounds that are ...

  19. Meet CMI Researcher Eric Schwegler | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schwegler Eric Schwegler, FA4 Deputy CMI researcher Eric Schwegler is the leader for Focus Area 4, Crosscutting Research, and the Thrust Lead for Enabling Science. Previously he served as Deputy Lead for Focus Area 4. Eric received his Ph.D. in Physical Chemistry in 1998 from the University of Minnesota, following undergraduate degrees in computer science and chemistry from Southwestern University in Georgetown, Texas. His thesis research was focused on the development of linear scaling

  20. Meet CMI Researcher Parans Paranthaman | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parans Paranthaman Image of Parans Paranthaman, CMI researcher at Oak Ridge National Laboratory Parans Paranthaman at Oak Ridge National Laboratory is a CMI researcher focused on additive manufacturing of permanent magnets, lithium separation from geothermal brine and lithium and sodium ion battery development. In February 2016, the AAAS inducted Paranthaman as an AAAS Fellow for chemistry. AAAS Fellows are recognized for meritorious efforts to advance science or its applications. In 2015,

  1. Meet CMI Researcher Tim McIntyre | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tim McIntyre Meet CMI researcher Tim McIntyre of Oak Ridge National Laboratory. CMI Researcher Tim McIntyre leads the design and development of a low-cost, high-throughput magnet recycling system in focus area 3, improving reuse and recycling. Tim has 25 years experience in sensors and controls research covering areas such as fiber optics, optical spectrometers, ultra-precision actuators and measurement systems, wireless sensor networks and sensor design. He currently manages a research and

  2. Meet CMI Student Lisa Savagian | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet CMI Student Lisa Savagian poster of Lisa Savagian, an Oak Ridge Science Semester participant from Hope College in Holland, Michigan. Lisa Savagian worked in the Lynn Boatner laboratory at Oak Ridge National Laboratory during Fall 2015 as a participant in the Oak Ridge Science Semester (ORSS) Program. Also, she won the ORNL Story Fall Photo Contest. For more information on the program Savagian did, see the Oak Ridge National Laboratory web page on Science Education Programs at ORNL. For

  3. Ideas for Transatlantic Cooperation on Critical Materials,Chairs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Animateurs: Jeff Skeer, DOE Office of Policy and International Affairs and Renzo Tomellini, EC Directorate General for Research and Innovation Ideas for Transatlantic Cooperation ...

  4. Anne de Guibert, SAFT, Critical Materials and Alternatives for...

    Broader source: Energy.gov (indexed) [DOE]

    B6AnnedeGuibert.ppt More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Vehicle Technologies Office Merit Review...

  5. Patrice Turchi Installed as 2015 TMS President | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Patrice Turchi Installed as 2015 TMS President mlthach's picture Submitted by mlthach on Tue, 03/31/2015 - 13:41 TMS installed Patrice Turchi as its 2015 President on March 17, 2015. Publish Date: Sunday, March 22, 2015 - 13:45 Article URL: http://www.newswise.com/articles/view/631506/?sc=rsla&utm_content=bufferf46a7&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer Article Source: Newswise

  6. CRITICAL MATERIALS MUSEUM DISPLAY STATUS AND "HOW-TO" REPORT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI as an entity to those yet unaware, and explain the mission of CMI. The exhibit design aims to inspire students and all audiences to take action and to ask questions...

  7. 2014 CMI Plenary: CMI Education and Outreach Programs | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute 2014 CMI Plenary: CMI Education and Outreach Programs File: PDF icon 2014-cmi-plenary-education.pdf

  8. CMI Celebrates National Engineers Week | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrates National Engineers Week CMI members and industry contacts will celebrate the DiscoverE National Engineers Week in a variety of ways. These include: Colorado School of Mines: Mines will offer outreach for Denver high school students on Feb. 26, 2015 Open this pdf file to see an agenda for the 2015 event. 2014: DiscoverE Engineering Week, Feb. 20: Colorado School of Mines hosted more than 100 high school students Purdue University: Introduce a Girl to Engineering Day, Feb. 28

  9. CMI Course Inventory: Chemistry Engineering | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Engineering Chemistry Engineering Of the six CMI Team members that are educational institutions, five offer courses in Chemistry and Chemical Engineering. These are Colorado School of Mines, Iowa State University, Purdue University, University of California-Davis and Rutgers. The following links go to the class list on the CMI page for that school. Colorado School of Mines Iowa State University Purdue University University of California-Davis Rutgers University CMI Education and

  10. CMI Education Partner: Brown University | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Partner: Brown University Brown University offers courses in several areas: Engineering School Institute of Environment and Study Brown University: Engineering School http://www.brown.edu/academics/engineering/undergraduate-study/courses ENGN 0030 - Introduction to Engineering: An introduction to various engineering disciplines, thought processes, and issues. Topics include computing in engineering, engineering design, optimization, and estimation. Case studies in engineering are used

  11. CMI Webinar: Vitalij Pecharsky, September 2015 | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Vitalij Pecharsky, September 2015 The CMI webinar on September 30 featured Vitalij Pecharsky, discussing his upcoming online course "Chemical and Physical Metallurgy of Rare Earth Metals," which will be offered at Iowa State University in Spring 2016.

  12. Resources Available with CMI Login | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of several public webinars also are available, including a CMI review by Alex King in August 2015 and review of the updated Affiliates program in December 2015) CMI...

  13. Human Resources at Ames Laboratory | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Contact information for Human Resources staff within The Ames Laboratory. Human Resources Office 105 TASF 515-294-2680 Diane Muncrief Manager Labor Relations - ...

  14. Human Resources at Oak Ridge National Laboratory | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Contact Information The main contact for human resources for CMI at Oak Ridge National Laboratory: David Lett Phone: 865-576-5675 Email: ...

  15. Human Resources at Colorado School of Mines | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment at Colorado School of Mines Office of Human Resources: 1500 Illinois St., Suite ... Assistant Director (303)-273-3056 Link to Office of Human Resources Link to Job Openings

  16. Human Resources at Idaho National Laboratory | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory Link to Office of Human Resources INL Staffing (208) 526-5888 Link to infographic on reasons to work at INL

  17. Colorado School of Mines Researchers Win Patent | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute News News releases CMI in the news News archive CMI social media Colorado School of Mines Researchers Win Patent The Coloroado School of Mines 2013 highlights include news that Prof. Corby Anderson along with co-inventors Dr. Paul Miranda of Thompson Creek minerals and Dr. Ed Rosenberg of University of Montana were granted a US patent for styrene based ion exchange resins with oxine functionalized groups. The original work was focused on separating iron and gallium, but the

  18. The Critical Mass Laboratory at Rocky Flats

    SciTech Connect (OSTI)

    Rothe, Robert E

    2003-10-15

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988. These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.

  19. FY2009 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  20. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  1. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  2. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  3. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at the Electron Microscopy Laboratory managed by Los

  4. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in ...

  5. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  6. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  7. Criticality Safety Basics for INL FMHs and CSOs

    SciTech Connect (OSTI)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information

  8. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory...

    Office of Scientific and Technical Information (OSTI)

    Study of critical phenomenon in such materials has received increased experimental and theoretical attention for better understanding of the magnetic phase transition behavior as ...

  9. FY2011 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  10. EXTERNAL CRITICALITY CALCULATION FOR DOE SNF CODISPOSAL WASTE PACKAGES

    SciTech Connect (OSTI)

    H. Radulescu

    2002-10-18

    The purpose of this document is to evaluate the potential for criticality for the fissile material that could accumulate in the near-field (invert) and in the far-field (host rock) beneath the U.S. Department of Energy (DOE) spent nuclear fuel (SNF) codisposal waste packages (WPs) as they degrade in the proposed monitored geologic repository at Yucca Mountain. The scope of this calculation is limited to the following DOE SNF types: Shippingport Pressurized Water Reactor (PWR), Enrico Fermi, Fast Flux Test Facility (FFTF), Fort St. Vrain, Melt and Dilute, Shippingport Light Water Breeder Reactor (LWBR), N-Reactor, and Training, Research, Isotope, General Atomics reactor (TRIGA). The results of this calculation are intended to be used for estimating the probability of criticality in the near-field and in the far-field. There are no limitations on use of the results of this calculation. The calculation is associated with the waste package design and was developed in accordance with the technical work plan, ''Technical Work Plan for: Department of Energy Spent Nuclear Fuel and Plutonium Disposition Work Packages'' (Bechtel SAIC Company, LLC [BSC], 2002a). This calculation is subject to the Quality Assurance Requirements and Description (QARD) per the activity evaluation under work package number P6212310Ml in the technical work plan TWP-MGR-MD-0000 10 REV 01 (BSC 2002a).

  11. Heavy Vehicle Propulsion Materials Program

    SciTech Connect (OSTI)

    Diamond, S.; Johnson, D.R.

    1999-04-26

    The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

  12. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  13. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  14. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  15. A primer for criticality calculations with DANTSYS

    SciTech Connect (OSTI)

    Busch, R.D.

    1997-08-01

    With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.

  16. Criticality Safety Basics for INL Emergency Responders

    SciTech Connect (OSTI)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  17. Next Generation Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview ....................................................................................................................................... 1 5 1.2 Public and private roles and activities .......................................................................................... 3 6 2.

  18. CMI Unique Facility: Thermal Analysis in High Magnetic Fields | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Thermal Analysis in High Magnetic Fields The ability to measure Thermal Analysis in High Magnetic Fields is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI researchers at Oak Ridge National Laboratory are able to measure materials over a wider range of conditions because they adapted commercial thermal analysis components to be compatible with high magnetic fields and

  19. Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    Contact Garrett Smith 301-903-7440 DOE Employee Concerns Program Environment Worker Health & Safety Facility Safety Nuclear Safety Criticality Safety Quality Assurance Risk ...

  20. Breckinridge Project, initial effort. Report XI, Volume V. Critical review of the design basis. [Critical review

    SciTech Connect (OSTI)

    1982-01-01

    Report XI, Technical Audit, is a compendium of research material used during the Initial Effort in making engineering comparisons and decisions. Volumes 4 and 5 of Report XI present those studies which provide a Critical Review of the Design Basis. The Critical Review Report, prepared by Intercontinental Econergy Associates, Inc., summarizes findings from an extensive review of the data base for the H-Coal process design. Volume 4 presents this review and assessment, and includes supporting material; specifically, Design Data Tabulation (Appendix A), Process Flow Sheets (Appendix B), and References (Appendix C). Volume 5 is a continuation of the references of Appendix C. Studies of a proprietary nature are noted and referenced, but are not included in these volumes. They are included in the Limited Access versions of these reports and may be reviewed by properly cleared personnel in the offices of Ashland Synthetic Fuels, Inc.

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  2. : The Resumption of Criticality Experiments Facility Operations...

    Broader source: Energy.gov (indexed) [DOE]

    nuclear criticality experiments and hands-on training in nuclear safeguards, criticality safety and emergency response in support of the National Criticality Safety Program. ...

  3. Materials Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Researchers in the Materials Characterization Research competency conduct studies of both natural and engineered materials from the micropore (nanometers) to macropore (meters) scale. Research includes, but is not limited to, thermal, chemical, mechanical, and structural (nano to macro) interactions and processes with regard to natural and engineered materials. The primary research investigation tools include SEM, XRD, micro XRD, core logging, medical CT, industrial

  4. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. ...

  5. Electronic & Magnetic Materials & Devices | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser spectroscopy, molecular beam epitaxy, and novel approaches for hybrid, organic and nanoparticle materials synthesis. Research activities include: Low-dimensional materials...

  6. Screen Electrode Materials & Cell Chemistries and Streamlining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Screening of Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrodes Vehicle Technologies Office Merit Review 2015: Materials Benchmarking Activities for ...

  7. Roadmap for Process Equipment Materials Technology

    SciTech Connect (OSTI)

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  8. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  9. Audit on Subcritical Experiment Activities

    Broader source: Energy.gov (indexed) [DOE]

    of nuclear weapon materials, such as plutonium, with the use of complex, high-speed diagnostic instruments. The experiments are subcritical because no critical mass is formed and...

  10. CMI Unique Facility: Bulk Combinatoric Materials Synthesis Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Bulk Combinatoric Materials Synthesis Facility The Bulk Combinatoric Materials Synthesis Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. Combinatoric studies of materials involve the creation of samples with varying composition, allowing the researcher to find the optimum combination of elements to produce a desired set of properties. The method has

  11. Microsoft Word - Critical Infrastructure Security and Resilience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013 - - - - - - - BY THE ...

  12. Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area

    SciTech Connect (OSTI)

    Slate, L.J.; Taylor, J.T.

    2000-08-31

    A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

  13. Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area

    SciTech Connect (OSTI)

    Slate, Lawrence J; Taylor, Joseph Todd

    2000-08-01

    A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

  14. Microsoft PowerPoint - 2015-8-26 AMO - OE Workshop on Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Technology Review (DOE Science ... etc.) (6) Critical Materials (7) Advanced Composites & Lightweight Materials (8) 3D ... Solar PV Cell Carbon Fibers Light Emitting ...

  15. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  17. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  19. Innovative Materials, Processes, and Tools Improve Performance, Quality of White LEDs

    Broader source: Energy.gov [DOE]

    Lumileds Lighting joined forces with Sandia National Laboratories to investigate critical materials issues related to solid-state lighting technology.

  20. Production of battery grade materials via an oxalate method ...

    Office of Scientific and Technical Information (OSTI)

    Production of battery grade materials via an oxalate method Title: Production of battery grade materials via an oxalate method An active electrode material for electrochemical ...

  1. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  2. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing of materials under ideal and realistic process conditions such as those found in coal-fired power plant and integrated gasification combined cycle fuel gas. Performance ...

  3. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M; Wagner, John C

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  4. Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development. ...

  5. CMI Course Inventory: Metallurgical Engineering/Materials Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Mining Engineering Chemistry Engineering Mineral...

  6. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 42 ENGINEERING; RADIOACTIVE MATERIALS; PACKAGING; RADIATION DOSES; PERFORMANCE; CONTAINERS; CRITICALITY; DESIGN; CASKS; SHIELDING Word Cloud More Like This Full Text ...

  7. Commercialization of Bulk Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

  8. Autoclave nuclear criticality safety analysis

    SciTech Connect (OSTI)

    D`Aquila, D.M.; Tayloe, R.W. Jr.

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  9. CRAD, NNSA- Criticality Safety (CS)

    Broader source: Energy.gov [DOE]

    CRAD for Criticality Safety (CS). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  10. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  11. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  12. Aqueous cutting fluid for machining fissionable materials

    DOE Patents [OSTI]

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  13. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  14. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  15. Ultra Thin Quantum Well Materials

    SciTech Connect (OSTI)

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would

  16. Energy Department Awards Up to $4 Million for Projects to Recover Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials from Geothermal Fluids | Department of Energy Awards Up to $4 Million for Projects to Recover Critical Materials from Geothermal Fluids Energy Department Awards Up to $4 Million for Projects to Recover Critical Materials from Geothermal Fluids May 24, 2016 - 10:30am Addthis The Energy Department today announced four research and development (R&D) projects in California, Utah, Washington, and Wyoming that will receive up to $4 million in total funding to assess the occurrence of

  17. An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989

    SciTech Connect (OSTI)

    Mattson, Roger J.

    1989-09-01

    This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

  18. FY2008 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    none,

    2009-01-01

    This program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines providing enabling materials support for combustion, hybrid, and power electronics development.

  19. FY2012 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    None

    2013-01-01

    FY2012 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  20. Computer-aided manufacturing of laminated engineering materials

    SciTech Connect (OSTI)

    Cawley, J.D.; Heuer, A.H.; Newman, W.S.; Mathewson, B.B.

    1996-05-01

    The high cost of tooling is often an obstacle to the implementation of design changes or material substitutions. The advent of rapid prototyping (RP), or solid freeform fabrication (SFF), has, to a large degree, eliminated this problem for design changes by allowing rapid fabrication of form-and-fit models without the need for tooling or extensive machining. Although a new class of technology--3D Systems Inc. introduced the first commercial machine, based on stereolithography, in 1987--RP has assumed a critical role in the activities of technologically advanced corporations, and it has become increasingly available to small businesses through service bureaus.

  1. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  2. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  3. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  4. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  5. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  6. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  7. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader (Acting) Kimberly Obrey Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  8. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  9. NNSA lab stops bad guys from weaseling into critical infrastructure |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) lab stops bad guys from weaseling into critical infrastructure Tuesday, March 15, 2016 - 11:39am Sandia's John Mulder puts the WeaselBoard through its paces on a test apparatus. Weasels are adaptable, active predators known for being aggressive despite their small size, often threatening animals much larger than themselves. WeaselBoard, the latest technology from NNSA for protecting critical infrastructure, is thus aptly named. Charged with

  10. 2014 Annual Merit Review Results Report - Materials Technologies:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials | Department of Energy Review Results Report - Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies research activities 2014_amr_07.pdf (3.63 MB) More Documents & Publications 2013 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials 2014 Annual Merit review Results Report - Materials Technologies 2013

  11. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    -1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and

  12. Managing Critical Management Improvement Initiatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-01

    Provides requirements and responsibilities for planning, executing and assessing critical management improvement initiatives within DOE. DOE N 251.59, dated 9/27/2004, extends this Notice until 10/01/2005. Archived 11-8-10. Does not cancel other directives.

  13. Criticality assessment of LLRWDF closure

    SciTech Connect (OSTI)

    Sarrack, A.G.; Weber, J.H.; Woody, N.D.

    1992-10-06

    During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of the LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.

  14. First Responders and Criticality Accidents

    SciTech Connect (OSTI)

    Valerie L. Putman; Douglas M. Minnema

    2005-11-01

    Nuclear criticality accident descriptions typically include, but do not focus on, information useful to first responders. We studied these accidents, noting characteristics to help (1) first responders prepare for such an event and (2) emergency drill planners develop appropriate simulations for training. We also provide recommendations to help people prepare for such events in the future.

  15. High critical current superconducting tapes

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  16. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J.

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  17. Nuclear criticality safety: 2-day training course

    SciTech Connect (OSTI)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  18. A Review of Criticality Accidents 2000 Revision

    SciTech Connect (OSTI)

    Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

    2000-05-01

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

  19. Use of a Web Site to Enhance Criticality Safety Training

    SciTech Connect (OSTI)

    Huang, S T; Morman, J

    2003-08-04

    Currently, a website dedicated to enhancing communication and dissemination of criticality safety information is sponsored by the U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP). This website was developed as part of the DOE response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The website is the focal point for DOE nuclear criticality safety (NCS) activities, resources and references, including hyperlinks to other sites actively involved in the collection and dissemination of criticality safety information. The website is maintained by the Lawrence Livermore National Laboratory (LLNL) under auspices of the NCSP management. One area of the website contains a series of Nuclear Criticality Safety Engineer Training (NCSET) modules. During the past few years, many users worldwide have accessed the NCSET section of the NCSP website and have downloaded the training modules as an aid for their training programs. This trend was remarkable in that it points out a continuing need of the criticality safety community across the globe. It has long been recognized that training of criticality safety professionals is a continuing process involving both knowledge-based training and experience-based operations floor training. As more of the experienced criticality safety professionals reach retirement age, the opportunities for mentoring programs are reduced. It is essential that some method be provided to assist the training of young criticality safety professionals to replenish this limited human expert resource to support on-going and future nuclear operations. The main objective of this paper is to present the features of the NCSP website, including its mission, contents, and most importantly its use for the dissemination of training modules to the criticality safety community. We will discuss lessons learned and several ideas

  20. Training Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Materials Training Materials The following tutorials are produced by NERSC staff and are intended to provide basic instruction on NERSC systems. Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category Introduction to Hybrid OpenMP/MPI Programming June 24, 2004 | Author(s): Helen He | Download File: hybridTalk.pdf | pdf | 1005 KB sample managed list Using OpenMP October 20, 2010 | Author(s): Helen He | Introduction to MPI January 11, 2010 | Author(s): Richard