Powered by Deep Web Technologies
Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Critical Materials:  

Office of Environmental Management (EM)

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

2

Critical Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

3

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

4

Critical Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE.

5

Critical Dimensions of Water-tamped Slabs and Spheres of Active Material  

DOE R&D Accomplishments (OSTI)

The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.

Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.

1946-08-06T23:59:59.000Z

6

Timelines | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

of interest to rare earths and critical materials, organized by those specific to rare earth elements, general chemistry and uses. Timelines of rare earth discovery: Discovery and...

7

Critical Materials Hub  

Energy.gov (U.S. Department of Energy (DOE))

Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

8

News Releases | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Releases CMI hosts EU, Japan to discuss global critical materials strategy, September 10, 2014 Five Critical Materials Institute researchers named Most Influential Scientific Minds...

9

Electric Motors and Critical Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV, materials, and motor designers is missing * Achieving high volume July 24, 2012 Electric Motors and Critical Materials Breakout Session 2 - Discussion of Breakthroughs and...

10

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

11

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

12

The Critical Materials Research Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEMBER 2012 NOVEMBER 2012 The Critical Materials Research Alliance About the Critical Materials Research Alliance The recent surge of interest in critical materials, including rare earth elements (REEs), stems from supply shortages and escalating prices of some REEs. In 2010, the United States' sole REE supplier was China-previously responsible for 97% of global REE production-but the Chinese government curtailed their export. Because REEs and other critical elements are used in renewable energy resources, energy storage, energy efficiency technologies, and national defense, a shortage in their supply impedes development of energy technologies and hinders U.S. defense industries. To address the challenges faced in revitalizing the rare earth industry, the National Energy Technology

13

Critical Materials Workshop Final Participant List  

Energy.gov (U.S. Department of Energy (DOE))

List of participants who attended the Critical Materials Workshop held on April 3, 2012 in Arlington, VA

14

2011 Critical Materials Strategy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Critical Materials Strategy 1 Critical Materials Strategy 2011 Critical Materials Strategy This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead. DOE_CMS2011_FINAL_Full.pdf DOE_CMS_2011_Summary.pdf More Documents & Publications 2010 Critical Materials Strategy ARPA-E Workshop on Rare Earth and Critical Materials

15

Critical Materials Hub | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010...

16

Critical Materials For Sustainable Energy Applications  

E-Print Network (OSTI)

Critical Materials For Sustainable Energy Applications September 2011 Resnick Institute Report C in the generation, storage, transmission, conversion and conservation of energy. + Institute Leadership Harry://resnick.caltech.edu Pasadena, CA. USA + #12;Critical Materials For Sustainable Energy Applications California Institute

17

Critical Materials Institute List of Projects | Critical Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Lithium Extraction 1.1.3 Herbst, Scott INL Enhanced Separation of Adjacent Rare Earth Elements 1.2.1 Mishra, Brajendra CSM Conversion to Metal, Alloys, and Materials 1.2.2...

18

Iowa lab gets critical materials research center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals. T he newly created Critical Materials Institute at the Ames Laboratory has the...

19

CMI Industry Survey | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

in professional development or continuing education courses in these areas: Yes No Rare earth elements Yes No Other critical materials Yes No Converting rare earth ore to metal Yes...

20

CMI Grand Challenge Problems | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

are among the most difficult elements to process, and the hardest to do without. Rare earth elements rank at the top of all lists of critical materials today, and the difficulty...

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Critical Materials Research in DOE Video (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

22

Electric Motors and Critical Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motors and Critical Materials Electric Motors and Critical Materials Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric...

23

EV Everywhere Workshop: Electric Motors and Critical Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Motors and Critical Materials Breakout Group Report EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV...

24

Department of Energy Critical Materials Strategy Video (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This is a text version of the "Department of Energy Critical Materials Strategy" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

25

Ideas for Transatlantic Cooperation on Critical Materials,Chairs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nCriticalMaterials.pptx More Documents & Publications Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Renzo Tomellini, EC...

26

Anne de Guibert, SAFT, Critical Materials and Alternatives for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anne de Guibert, SAFT, Critical Materials and Alternatives for Storage Batteries Anne de Guibert, SAFT, Critical Materials and Alternatives for Storage Batteries...

27

REACT: Alternatives to Critical Materials in Magnets  

SciTech Connect

REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

None

2012-01-01T23:59:59.000Z

28

ORNL partners on critical materials hub | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL partners on critical materials hub ORNL partners on critical materials hub January 01, 2013 The Critical Materials Institute builds on the Department of Energy's Critical Materials Strategy report, which addresses the use of rare earths and other critical materials in clean energy components, products, and processes. December 2011. Credit: U.S. DOE. ORNL wins big as part of a team led by Ames Labora-tory, which was selected for an Energy Innovation Hub to address shortages of critical materials, including rare earth metals. The award of up to $120 million over five years for the Critical Materials Institute involves four national labs, academia, and industrial partners. ORNL will play a key role in conducting the CMI's mis-sion to eliminate materials criticality as an impediment to the commercialization of clean

29

CMI hosts EU, Japan discuss global critical materials strategy...  

NLE Websites -- All DOE Office Websites (Extended Search)

CMI hosts EU, Japan discuss global critical materials strategy Insider Finding ways to ensure the planet's supply of rare earths and other materials necessary for clean energy...

30

The Department of Energy's Critical Materials Strategy | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

The Department of Energy's Critical Materials The Department of Energy's Critical Materials Strategy The Department of Energy's Critical Materials Strategy The U.S. Department of Energy (DOE) supports a proactive and comprehensive approach to address the challenges associated with the use of rare earth elements and other critical materials in clean energy technologies. In 2010 the Department developed its first-ever Critical Materials Strategy based on three strategic pillars: 1) diversifying global supply chains to mitigate supply risk; 2) developing material and technology substitutes; and 3) promoting recycling, reuse and more efficient use to significantly lower global demand for critical materials. In 2011 DOE updated its criticality assessments and provided in-depth market and technology analyses in response to important developments during the year. DOE will

31

CMI Affiliate Members | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

mineral exploration and development company focused on critical metals including Rare Earth Elements (REE's) and tungsten (W) in Scandinavia. Tasman is listed on the TSX Venture...

32

Mines Welcomes Middle School Students | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

of Science and Technology. The students spent the day at Mines to learn about Earth, energy, the environment, critical materials and mining. The students enjoyed a chemistry show...

33

Critical Materials for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

34

Critical Materials for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

35

2011 Critical Materials Strategy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found...

36

News about CMI Partners | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

mining: Scientists extract rare earth materials from consumer products, March 7, 2013 UCDavis: Navrotsky Participates in DOE-funded Research Project, Led by Ames Lab,...

37

Department of Energy Releases its 2011 Critical Materials Strategy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its 2011 Critical Materials Strategy its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy December 22, 2011 - 12:33pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today released the 2011 Critical Materials Strategy. The report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead.

38

The Department of Energy Releases Strategy on Critical Materials |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department of Energy today released its Critical Materials Strategy. The strategy examines the role of rare earth metals and other materials in the clean energy economy, based on extensive research by the Department during the past year. The report focuses on materials used in four technologies - wind turbines, electric vehicles, solar cells and energy-efficient lighting. "Each day, researchers and entrepreneurs across the United States are working to develop and deploy clean energy technologies that will enhance our security, reduce carbon pollution and promote economic prosperity. This

39

Department of Energy Releases its 2011 Critical Materials Strategy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Releases its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy December 22, 2011 - 12:33pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today released the 2011 Critical Materials Strategy. The report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead.

40

Microsoft Word - TRILATERAL CRITICAL MATERIALS WORKSHOP Summary Report final 20111129  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRILATERAL EU-JAPAN-U.S. CONFERENCE ON TRILATERAL EU-JAPAN-U.S. CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE Washington DC, 4-5 October 2011 Summary Report Introduction The conference convened officials and experts from the European Union, Japan and the United States, as well as guests from Australia and Canada, to discuss how best to ensure an adequate supply of critical materials for a clean energy future and how best to cooperate toward this end. A plenary seminar focused on strategic approaches to assuring critical materials supply. Two parallel technical workshops then examined opportunities for technology cooperation. Seminar on the Strategic Implications of Global Shortages in Critical Materials The seminar focused on a variety of strategic challenges that we face with respect to critical

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Department Releases New Critical Materials Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials Strategy Critical Materials Strategy Energy Department Releases New Critical Materials Strategy December 15, 2010 - 1:30pm Addthis | Department of Energy Illustration | | Department of Energy Illustration | David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs The Department of Energy released a strategy on critical materials at an event this morning at the Center for Strategic & International Studies. The report examines the role of rare earth metals and other materials used in four clean energy technologies: wind turbines, electric vehicles, solar cells and energy-efficient lighting. You can download the full 171-page report and a 4-page executive summary here. The strategy analyzes 14 elements and identifies five specific rare earth

42

Critical challenges for EUV resist materials Patrick P. Naulleau,1  

E-Print Network (OSTI)

Critical challenges for EUV resist materials Patrick P. Naulleau,1 Christopher N. Anderson,1 Lorie of EUV resist materials. The major issue for the 22-nm half-pitch node remains simultaneously meeting photoresists. 2. STATUS OF RESIST MATERIALS FOR 22-NM HALF-PITCH Over the past few years, several chemically

43

Increasing Access to Materials Critical to the Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access to Materials Critical to the Clean Energy Economy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Who will be partners?

44

Increasing Access to Materials Critical to the Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Increasing Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Who will be partners?

45

Polyanionic Cathode-Active Materials  

Science Journals Connector (OSTI)

In the 1980s, the layered rock salt types LiCoO2 1 and LiNiO2 2 and spinel-type LiMn2O4 3 were successively proposed as 4-V class cathode-active materials by Goodenough's group...

Shigeto Okada; Jun-ichi Yamaki

2009-01-01T23:59:59.000Z

46

Top 10 Things You Didn't Know About Critical Materials | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials January 18, 2013 - 10:15am Addthis Miss the Google+ Hangout on Critical Materials? Watch the video of it now. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More about critical materials: Check out the Department's 2011 Critical Materials Strategy report. Learn how the new Critical Materials Hub will address challenges across the entire lifecycle of materials critical to clean energy technologies. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. What are critical materials? Many clean energy technologies -- from

47

Top 10 Things You Didn't Know About Critical Materials | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials January 18, 2013 - 10:15am Addthis Miss the Google+ Hangout on Critical Materials? Watch the video of it now. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More about critical materials: Check out the Department's 2011 Critical Materials Strategy report. Learn how the new Critical Materials Hub will address challenges across the entire lifecycle of materials critical to clean energy technologies. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. What are critical materials? Many clean energy technologies -- from

48

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

49

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future December 3, 2010 Session A: Setting the Scene - Critical Materials for a Clean Energy Future Diana Bauer, Office of Policy and International Affairs, U.S. Department of Energy, Highlights of the DOE Critical Materials Strategy Antje Wittenberg, Directorate General for Enterprise and Industry, The EU Raw Materials Initiative and the Report of the Ad-hoc Group (tbc) Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research: Critical Materials for 21st Century Industry Derk Bol, Materials Innovation Institute M2i (Netherlands) M2i, Material

50

ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL...

51

Activation of porous MOF materials  

DOE Patents (OSTI)

A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

Hupp, Joseph T; Farha, Omar K

2014-04-01T23:59:59.000Z

52

Activation of porous MOF materials  

DOE Patents (OSTI)

A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

Hupp, Joseph T; Farha, Omar K

2013-04-23T23:59:59.000Z

53

Positive active material for an electrical cell  

SciTech Connect

The invention relates to a positive active material for an electric cell. Such an active material is constituted by a vitreous compound which results from the addition of a small quantity of silica to at least one electrochemically reducible metal oxide. Application to electric cells with non-aqueous electrolyte, the negative electrodes of these cells being based on an alkali or alkali-earth metal.

Baudry, S.; Broussely, M.

1981-06-02T23:59:59.000Z

54

Die Materials for Critical Applications and Increased Production Rates  

SciTech Connect

Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

David Schwam; John Wallace; Sebastian Birceanu

2002-11-30T23:59:59.000Z

55

CMI Education Resources for K-12 | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

in the activity guide available online. David Pogue also did a PBS NOVA video "Rare Earth Elements" howtosmile.org claims to have all the best science and math activities. Try...

56

Join Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Materials |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Materials Join Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Materials January 14, 2013 - 3:23pm Addthis What are critical materials? We will be answering that question and more tomorrow during our first Google+ Hangout. | Infographic by Sarah Gerrity, Energy Department. What are critical materials? We will be answering that question and more tomorrow during our first Google+ Hangout. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet questions to @ENERGY with the hashtag #AskEnergy. Ask us on the Energy Department's Facebook and Google+ pages. Email questions to newmedia@hq.doe.gov.

57

Organic solar cells: Structure, materials, critical characteristics, and outlook  

Science Journals Connector (OSTI)

This review surveys recent advances in the field of photovoltaic devices based on organic photoactive materials and used for converting solar energy into electricity. Different architectures of organic photovolta...

P. A. Troshin; R. N. Lyubovskaya; V. F. Razumov

2008-06-01T23:59:59.000Z

58

Critical and strategic materials proceedings of the laboratory study group meeting  

SciTech Connect

These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

Not Available

1983-06-01T23:59:59.000Z

59

Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials and Rare Futures: Ames Laboratory Signs a New Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science

60

Evaluation of critical materials in five additional advance design photovoltaic cells  

SciTech Connect

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analyses of Oxyanion Materials by Prompt Gamma Activation Analysis  

SciTech Connect

Prompt gamma activation analysis (PGAA) has been used to analyze metal ion oxyanion materials that have multiple applications, including medicine, materials, catalysts, and electronics. The significance for the need for accurate, highly sensitive analyses for the materials is discussed in the context of quality control of end products containing the parent element in each material. Applications of the analytical data for input to models and theoretical calculations related to the electronic and other properties of the materials are discussed.

Firestone, Richard B; Perry, D.L.; English, G.A.; Firestone, R.B.; Leung, K.-N.; Garabedian, G.; Molnar, G.L.; Revay, Zs.

2008-03-24T23:59:59.000Z

62

Energy Department Announces $3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $3 million for research and development to help grow U.S. low-to-moderate-temperature geothermal resources and support a domestic supply of critical materials, such as lithium carbonate and rare earth elements.

63

Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues  

E-Print Network (OSTI)

Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical the deflagration-to-detonation transition DDT in granular explosives is critically reviewed. The continuum, analysis and numerical simulation of deflagration- to-detonation transition DDT in porous energetic

Kapila, Ashwani K.

64

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT/PHMSA DOT/PHMSA A ti iti Activities Michael Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Radioactive Materials U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Overview * Harmonization with International Regulations * Update on Revisions to International Regulations * Recent Letters of Interpretation * Update on Rulemakings * PHMSA Information Resources - 2 - * PHMSA Information Resources 2 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration HM-230 Harmonized with 2000 Version of IAEA's 1996 Edition - 3 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

65

Early detection of critical material degradation by means of electromagnetic multi-parametric NDE  

SciTech Connect

With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany and Saarland University, Chair of NDT and Quality Assurance, Campus E3 1, 66123 Saarbrücken (Germany)

2014-02-18T23:59:59.000Z

66

High-Activity Radioactive Materials Removed From Mexico | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Activity Radioactive Materials Removed From Mexico | National Nuclear High-Activity Radioactive Materials Removed From Mexico | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > High-Activity Radioactive Materials Removed From Mexico Press Release High-Activity Radioactive Materials Removed From Mexico Nov 15, 2013 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA)

67

High-Activity Radioactive Materials Removed From Mexico | National Nuclear  

National Nuclear Security Administration (NNSA)

High-Activity Radioactive Materials Removed From Mexico | National Nuclear High-Activity Radioactive Materials Removed From Mexico | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > High-Activity Radioactive Materials Removed From Mexico Press Release High-Activity Radioactive Materials Removed From Mexico Nov 15, 2013 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA)

68

Active Printed Materials for Complex Self-Evolving Deformations  

E-Print Network (OSTI)

We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated ...

Zhao, Wei

69

NNSA Removes High-Activity Radioactive Materials from Boston | National  

National Nuclear Security Administration (NNSA)

Removes High-Activity Radioactive Materials from Boston | National Removes High-Activity Radioactive Materials from Boston | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Removes High-Activity Radioactive Materials from Boston Press Release NNSA Removes High-Activity Radioactive Materials from Boston Nov 22, 2013

70

Review of activities in USA on HTS materials  

SciTech Connect

Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

Peterson, D.E.

1995-02-01T23:59:59.000Z

71

Hysteresis During Cycling of Nickel Hydroxide Active Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Hysteresis During Cycling of Nickel Hydroxide Active Material Hysteresis During Cycling of Nickel Hydroxide Active Material Title Hysteresis During Cycling of Nickel Hydroxide Active Material Publication Type Journal Article Year of Publication 2001 Authors Srinivasan, Venkat, John W. Weidner, and John S. Newman Journal Electrochemical Society Volume 148 Start Page A969 Issue 9 Pagination A969-A980 Date Published 04/2001 Abstract The nickel hydroxide electrode is known to exhibit a stable hysteresis loop, with the potential on charge being higher than that on discharge at every state-of-charge ~SOC!.What we show here is that this loop created during a complete charge and discharge ~i.e., boundary curves! is not sufficient to define the state of the system. Rather, internal paths within the boundary curves ~i.e., scanning

72

The Activities of the International Criticality Safety Benchmark Evaluation Project (ICSBEP)  

SciTech Connect

The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) – Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Spain, and Israel are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled “International Handbook of Evaluated Criticality Safety Benchmark Experiments”. The 2001 Edition of the Handbook contains benchmark specifications for 2642 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data.

Briggs, Joseph Blair

2001-10-01T23:59:59.000Z

73

ANNUAL TRILATERAL U.S. – EU – JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014  

Energy.gov (U.S. Department of Energy (DOE))

Agenda from the fourth meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

74

Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011  

Energy.gov (U.S. Department of Energy (DOE))

Agenda from the first meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

75

Soft Autonomous Materials --Using Active Elasticity and Embedded Distributed  

E-Print Network (OSTI)

Soft Autonomous Materials -- Using Active Elasticity and Embedded Distributed Computation Nikolaus and demonstrate shape changing, and autonomous, sensor-based locomotion using distributed control. We show elasticity in their designs [23]. Here we show soft robots that can autonomously undergo shape-change and gen

Liang, Haiyi

76

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2011 August 15, 2011 Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity PIKETON, Ohio - Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and Reinvestment Act. Proceeds from recycling that metal through the unique program will add to the more than $2.8 million already generated from recycling more than 5.2 million pounds of material from site demolition efforts. "This metal represents economic opportunity for the surround- ing community, as proceeds from this material will create local jobs, utilize surrounding area facilities and generate money to be reinvested back into the community," said Pete Mingus, who

77

Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity  

SciTech Connect

Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

2007-05-01T23:59:59.000Z

78

Critical Role of Magnesium Ions in DNA Polymerase 's Closing and Active Site Assembly  

E-Print Network (OSTI)

Critical Role of Magnesium Ions in DNA Polymerase 's Closing and Active Site Assembly Linjing Yang nucleotide with conserved catalytic residues (Asp190, Asp192, Asp256) and the two functional magnesium ions adjustments of the nucleotide-binding and catalytic magnesium ions help guide polymerase selection

Schlick, Tamar

79

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001 583 Critical Area Computation for Missing Material  

E-Print Network (OSTI)

diagrams was given in [16]. This paper extends the framework introduced in [16] with the ability to handle 2001 583 Critical Area Computation for Missing Material Defects in VLSI Circuits Evanthia Papadopoulou Abstract--We address the problem of computing critical area for missing material defects in a circuit

Papadopoulou, Evanthia

80

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

SciTech Connect

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable  

E-Print Network (OSTI)

The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris properties that make them excellent candidates for photovoltaic module encapsulants and other materials

Crawford, T. Daniel

82

Materials for Consideration in Standardized Canister Design Activities  

SciTech Connect

This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosionallowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and superduplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to establish corrosion rates and component lifetimes. Finally, it is unlikely that the aluminum-based neutron absorber materials that are commonly used in existing DPCs would survive for 10,000 years in disposal environments, because the aluminum will act as a sacrificial anode for the steel. We recommend additional testing of borated and Gd-bearing stainless steels, to establish general and localized corrosion resistance in repository-relevant environmental conditions.

Bryan, Charles R.; Ilgen, Anastasia G.; David Enos; Stephanie Teich-McGoldrick; Ernest Hardin

2014-10-01T23:59:59.000Z

83

Positive active material for an electric cell, a method of preparing the positive active material and a cell which uses it  

SciTech Connect

A positive active material is disclosed for an electric cell, said material being constituted by anhydrous copper borate whose formula is Cu/sub 3/B/sub 2/O/sub 6/. A method of making such an active material. An electric cell whose positive active material is anhydrous copper borate Cu/sub 3/B/sub 2/O/sub 6/, whose negative active material is lithium and whose electrolyte is a solution which is liquid at ambient temperature and whose solvent is an aprotic compound.

Broussely, M.; Lecerf, A.

1981-09-29T23:59:59.000Z

84

Center for Nanophase Materials Sciences (CNMS) - Active CNMS User Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTIVE USER PROJECTS ACTIVE USER PROJECTS Proposal Cycle 2013B: expire July 31, 2014 Proposal Cycle 2013A: expire January 31, 2014 Proposal Cycle 2012B (extended): expire July 31, 2014 Proposal Cycle 2012A: (extended): expire January 31, 2014 Proposal Cycle 2013B: expire January 31, 2014 X-ray diffraction and scattering techniques for the study of interfacial phenomena in energy storage materials Gabriel Veith, ORNL [CNMS2013-201] Atomic scale study of the reduction of metal oxides Guangwen Zhou, State University of New York at Binghamton [CNMS2013-210] Local Switching Studies in PbZr0.2Ti0.8O3 (001), (101), and (111) Films Lane Martin, University of Illinois, Urbana-Champaign [CNMS2013-211] Direct Observation of Domain Structure and Switching Process in Strained

85

Managing Critical Materials with a Technology-Specific Stocks and Flows Model  

Science Journals Connector (OSTI)

The scenarios detail the fleets of internal combustion engine vehicles (ICEVs), plug-in hybrid electric vehicles (PHEVs), and fully electric vehicles (EVs). ... The trade-off between higher efficiency component remanufacturing and reuse and the lower efficiency, more flexible material recycling, that allows materials to be recycled between different technologies and infrastructures, could be extended in such a study to the reuse of components between different infrastructures, such as EV batteries reused for grid-attached storage. ... Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. ...

Jonathan Busch; Julia K. Steinberger; David A. Dawson; Phil Purnell; Katy Roelich

2013-12-11T23:59:59.000Z

86

Toughness Governs the Rupture of the Interfacial H-Bond Assemblies at a Critical Length Scale in Hybrid Materials  

Science Journals Connector (OSTI)

Toughness Governs the Rupture of the Interfacial H-Bond Assemblies at a Critical Length Scale in Hybrid Materials ... The supercomputer machines utilized in this work were supported in part by NIH award NCRR S10RR02950 and an IBM Shared University Research (SUR) Award in partnership with CISCO, Qlogic and Adaptive Computing, and in part by the Data Analysis and Visualization Cyber infrastructure funded by NSF under grant OCI-0959097. ... Minet, J.; Abramson, S.; Bresson, B.; Franceschini, A.; Van Damme, H.; Lequeux, N.Organic calcium silicate hydrate hybrids: a new approach to cement based nanocomposites J. Mater. ...

Navid Sakhavand; Prakash Muthuramalingam; Rouzbeh Shahsavari

2013-05-28T23:59:59.000Z

87

Overview of Indian activities on fusion reactor materials  

Science Journals Connector (OSTI)

Abstract This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V–4Cr–4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu–1 wt%Cr–0.1 wt%Zr – an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall – was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead–lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb–Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box are briefly described. India has also initiated the development of fusion grade superconductors. Success achieved in the fabrication of Nb3Sn based multi-filamentary wires using the internal tin process and cable-in-conduit-conductors is also briefly presented.

Srikumar Banerjee

2014-01-01T23:59:59.000Z

88

Critical Material and Process Issues for CO2 Separation from Coal-Powered Plants  

SciTech Connect

Concentrating CO2 from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO2 emissions by capture and sequestration schemes. This paper provides a short review of CO2 capture incentives, current separation processes, and research progress of various new technologies. Technically, CO2 can be separated out of a gas mixture by all the methods discussed in this work, such as distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in determining which approach is the most practical or feasible, and ultimately the most cost-efficient. Important material issues and their impacts on the process viability will be discussed.

Liu, Wei; King, David L.; Liu, Jun; Johnson , Brad R.; Wang, Yong; Yang, Zhenguo

2009-04-30T23:59:59.000Z

89

Critical material and process issues for CO{sub 2} separation from coal-powered plants  

SciTech Connect

Concentrating CO{sub 2} from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO{sub 2} emissions by capture and sequestration. This paper provides a short review of CO{sub 2} capture incentives, current separation processes, and research progress of various new technologies. Scientifically, CO{sub 2} can be separated from a gas mixture by all the methods reviewed in this work: distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in practical feasibility and ultimately the cost. Important material issues and their impacts to the process viability will be discussed.

Liu, W.; King, D.; Liu, J.; Johnson, B.; Wang, Y.; Yang, Z.G. [Pacific North West National Laboratory, Richland, WA (United States)

2009-04-15T23:59:59.000Z

90

Evaluation of critical materials for five advanced design photovoltaic cells with an assessment of indium and gallium  

SciTech Connect

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. This report presents the results of the screening of the five following advanced PV cell designs: polycrystalline silicon, amorphous silicon, cadmium sulfide/copper sulfide frontwall, polycrystalline gallium arsenide MIS, and advanced concentrator-500X. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 GWe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has 5 GWe of peak capacity by the year 2000, so that the total online cpacity for the five cells is 25 GWe. Based on a review of the preliminary basline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. Earlier DOE sponsored work on the assessment of critical materials in PV cells conclusively identtified indium and gallium as warranting further investigation as to their availability. Therefore, this report includes a discussion of the future availability of gallium and indium. (WHK)

Watts, R.L.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Pawlewicz, W.T.; Smith, S.A.; Teeter, R.R.

1980-05-01T23:59:59.000Z

91

Synthesis and characterization of activated carbo-aluminosilicate material from oil shale  

E-Print Network (OSTI)

Synthesis and characterization of activated carbo-aluminosilicate material from oil shale Reyad activated carbo-aluminosilicate materials were prepared from oil shale by chemical activation. The chemical Published by Elsevier Inc. Keywords: Synthesis; Activated carbo-aluminosilicate; Adsorption; Oil shale

Shawabkeh, Reyad A.

92

Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages  

SciTech Connect

The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

DeClue, J. F.

2011-06-28T23:59:59.000Z

93

The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

Meissner, Torsten B. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States) [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States); Li, Amy; Liu, Yuen-Joyce [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States)] [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Gagnon, Etienne [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States) [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Institut de Recherche en Immunologie et Cancerologie, Departement de Microbiologie et Immunologie, Universite de Montreal, Montreal, Canada H3T1J4 (Canada); Kobayashi, Koichi S., E-mail: Koichi_Kobayashi@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States)

2012-02-24T23:59:59.000Z

94

CRITICAL MATERIALS INSTITUTE PROJECTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Anisotropy in REE Systems and d -Impurities in Phosphors 4 4-1 4.1.2 Harrison, Stephen Simbol Improved Methods for Lithium Extraction 1 1-1 1.1.3 Herbst, Scott INL Enhanced...

95

CRITICAL MATERIALS INSTITUTE PROJECTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separations 3 3-2 3.2.2 Riman, Richard Rutgers Fundamental Properties and Phase Diagrams 4 4-1 4.1.3 Harrison, Stephen Simbol Improved Methods for Lithium Extraction 1 1-1 1.1.3...

96

Research | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Four Research Thrusts organizational chart of four research thrusts CMI has more than 30 projects focused in four areas. Project titles are available sorted by project...

97

Disclaimers | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

of the United States Government or Iowa State University, and shall not be used for advertising or product endorsements purposes. COPYRIGHT STATUS: Ames Laboratory authored...

98

CRITICAL MATERIALS INSTITUTE PROJECTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Opportunities 3 3-1 3.1.6 Herbst, Scott INL Enhanced Separation of Adjacent Rare Earth Elements 1 1-2 1.2.1 Fox, Bob INL Supercritical Fluid Beneficiation of Waste Streams 3...

99

E-Print Network 3.0 - active nuclear material Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: active nuclear material Page: << < 1 2 3 4 5 > >> 1 Contact Info: Pavel Oblozinsky Summary: physics...

100

Charge–discharge characteristics of polythiopheneas a cathode active material in a rechargeable battery  

Science Journals Connector (OSTI)

Polythiophene films were electrochemically deposited on glassy carbon substrates under potentiostatic control and used as cathode active material together with a Zn anode in a...

G. C´iric´-Marjanovic´; S. Mentus

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The electrochemistry of activated carbonaceous materials: past, present, and future  

Science Journals Connector (OSTI)

Carbonaceous materials are widely used in electrochemistry. All allotropic forms of carbons—graphite, glassy carbon, amorphous carbon, fullerenes, nanotubes, and doped diamond—are used as important electrode m...

Malachi Noked; Abraham Soffer; Doron Aurbach

2011-07-01T23:59:59.000Z

102

Characterization of Nanoscale Reinforced Polymer Composites as Active Materials  

E-Print Network (OSTI)

Single walled carbon nanotube (SWNT)-based polymer nanocomposites have generated a lot of interest as potential multifunctional materials due to the exceptional physical properties of SWNTs. To date, investigations into the electromechanical...

Deshmukh, Sujay

2012-02-14T23:59:59.000Z

103

Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials  

SciTech Connect

Using a beam of tagged 14.1 MeV neutrons to probe for the presence of fissionable materials, we have measured n-?-? coincidences from depleted uranium (DU). The multiple coincidence rate is substantially above that measured from lead, tungsten, and iron. The presence of coincidences involving delayed gammas in the DU time spectra provides a signature for fissionable materials that is distinct from non-fissionable ones. In addition, the information from the tagged neutron involved in the coincidence gives the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is more compact and that produces much less radiation than other solutions.

J.P. Hurley, R.P. Keegan, J.R. Tinsley, R. Trainham, and S.C. Wilde

2008-08-06T23:59:59.000Z

104

Site-Dependent Activity of Atomic Ti Catalysts in Al-Based Hydrogen Storage Materials  

E-Print Network (OSTI)

Site-Dependent Activity of Atomic Ti Catalysts in Al-Based Hydrogen Storage Materials Abdullah Al storage processes. Here we analyze the role of atomic Ti catalysts in the hydrogenation of Al-based hydrogen storage materials. We show that Ti atoms near the Al surface activate gas-phase H2, a key step

Ciobanu, Cristian

105

Active, polymer-based composite material implementing simple shear  

E-Print Network (OSTI)

Relationship..63 V ANALYSIS AND RESULTS OF SHEAR ACTUATOR ...................................64 5.1 Material Property of Hyperelastic Matrix ...............................................64 5.1.1 Simple... 5.3.1 Behavior of shear actuator when pressurized..........................135 5.3.2 Pressure vs. free strain relationship.........................................135 5.4 Numerical Analysis...

Lee, Sang Jin

2009-05-15T23:59:59.000Z

106

Material and Chemical Processing (Concentrated Solar) (4 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to detoxify hazardous wastes, to drive chemical reactions, and to treat materials for increased hardness and resistance to corrosion.

107

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE))

Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

108

Mechanical counter-pressure space suit design using active materials  

E-Print Network (OSTI)

Mechanical counter-pressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities; however, the underlying technologies required to provide ...

Holschuh, Bradley Thomas

2014-01-01T23:59:59.000Z

109

Influence of FFA Activities on Critical Thinking Skills in Texas Three-star Chapters  

E-Print Network (OSTI)

programs throughout Texas. Seniors within each agricultural education program were selected to complete a demographic survey and the Watson-Glaser Critical Thinking Appraisal (WGCTA). A response rate of 43% was achieved, with 65 students completing...

Latham, Lindsey Elizabeth

2013-12-04T23:59:59.000Z

110

Activated carbon fiber composite material and method of making  

DOE Patents (OSTI)

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2001-01-01T23:59:59.000Z

111

Activated carbon fiber composite material and method of making  

DOE Patents (OSTI)

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2000-01-01T23:59:59.000Z

112

Impact of active material surface area on thermal stability of LiCoO2 cathode  

Science Journals Connector (OSTI)

Abstract Thermal stability of charged LiCoO2 cathodes with various surface areas of active material is investigated in order to quantify the effect of LiCoO2 surface area on thermal stability of cathode. Thermogravimetric analyses and calorimetry have been conducted on charged cathodes with different active material surface areas. Besides reduced thermal stability, high surface area also changes the active material decomposition reaction and induces side reactions with additives. Thermal analyses of LiCoO2 delithiated chemically without any additives or with a single additive have been conducted to elaborate the effect of particle size on side reactions. Stability of cathode–electrolyte system has been investigated by accelerating rate calorimetry (ARC). Arrhenius activation energy of cathode decomposition has been calculated as function of conversion at different surface area of active material.

Jan Geder; Harry E. Hoster; Andreas Jossen; Jürgen Garche; Denis Y.W. Yu

2014-01-01T23:59:59.000Z

113

Criticality Model  

SciTech Connect

The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

A. Alsaed

2004-09-14T23:59:59.000Z

114

Geek-Up[3.18.2011]: Catalytically Active Material and BELLA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.2011]: Catalytically Active Material and BELLA 8.2011]: Catalytically Active Material and BELLA Geek-Up[3.18.2011]: Catalytically Active Material and BELLA March 18, 2011 - 3:54pm Addthis PNNL scientists Grant Johnson and Julia Laskin | Photo Courtesy of the Pacific Northwest National Laboratory PNNL scientists Grant Johnson and Julia Laskin | Photo Courtesy of the Pacific Northwest National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? PNL researchers produced catalytically active material that may help advance fuel cell and solar energy storage applications. In just one meter a single BELLA stage -- with a "boosted-frame" method -- will accelerate an electron beam to 10 billion electron volts. Thanks to an innovative approach from Pacific Northwest National Laboratory

115

Adsorption capacity of hydrophobic SiO2 aerogel/activated carbon composite materials for TNT  

Science Journals Connector (OSTI)

The adsorption properties of TNT from wastewater by hydrophobic silica aerogel/activated carbon composite materials were investigated. The effects of adsorption time, pH value, adsorption temperature, and the ...

XiaoFang Zhou; Sheng Cui; Yu Liu; XueYong Liu…

2013-07-01T23:59:59.000Z

116

Polyaniline: characterization as a cathode active material in rechargeable batteries in aqueous electrolytes  

Science Journals Connector (OSTI)

An analytically pure form of chemically synthesized polyaniline having the emeraldine oxidation state has been used as a cathode active material together with a Zn anode in the...2 electrolyte (pH?4). The experim...

N. L. D. Somasiri; A. G. Macdiarmid

1988-01-01T23:59:59.000Z

117

Electrochemical cell with negative active material based on an alkali or alkaline earth metal  

SciTech Connect

In an electrochemical cell the negative active material is an alkali or alkaline earth metal, such as lithium, and the electrolyte comprises a solute and at least one solvent selected from the liquid oxyhalides and which serves also as the positive active material. The electrolyte further comprises a mineral substance the effect of which is to significantly reduce the voltage rise delay of the cell.

Vallin, D.; Chenebault, P.; Grassien, J.-V.; Kerouanton, A.

1985-10-15T23:59:59.000Z

118

Active vibration suppression of a exible structure using smart material and a modular control patch  

E-Print Network (OSTI)

Active vibration suppression of a ¯exible structure using smart material and a modular control of vibration suppression of a ¯exible structure using smart materials and a miniaturized digital controller and was developed by TRW for the United States Air Force for future space vibration control. In this research

119

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

2012-01-01T23:59:59.000Z

120

Electrode-active material for electrochemical batteries and method of preparation  

DOE Patents (OSTI)

A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

Varma, R.

1983-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials  

DOE Patents (OSTI)

A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

2014-05-06T23:59:59.000Z

122

Predicting the unpredictable: critical analysis and practical implications of predictive anticipatory activity  

E-Print Network (OSTI)

OF THE EVIDENCE FOR PAA p-Hacking One QRP that appears to beThis activity, dubbed“p-hacking”because it involves cuttingques- tion is whether p-hacking can explain the signi?cant

Mossbridge, Julia A; Tressoldi, Patrizio; Utts, Jessica; Ives, John A; Radin, Dean; Jonas, Wayne B

2014-01-01T23:59:59.000Z

123

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

124

S-PRIME/TI-SNPS program activities in FY94 critical components testing  

SciTech Connect

A conceptual design for a 40-kWe thermionic space nuclear power system (TI-SNPS) known as the S-PRIME system is being developed by Rockwell and its subcontractors for the U.S. Department of Energy (DOE), United States Air Force (USAF), and Ballistic Missile Defense Organization (BMDO) under the TI-SNPS Program. Phase 1 of this program includes developing a conceptual design of a 5- to 40-kWe range TI-SNPS and validating key technologies that support the design. All key technologies for the S-PRIME design have been identified along with six critical component demonstrations, which will be used to validate the S-PRIME design features. {copyright}American Institute of Physics 1995

Brown, C. [U.S. Department of Energy, Office of Nuclear Energy Space Reactor Power Systems Division, 19901 Germantown Road, Germantown, Maryland 20874 (United States); Dale Rogers, R.; Determan, W.R. [Rockwell International Corporation, Rocketdyne Division, 6633 Canoga Avenue, Canoga Park, California 91303-7922 (United States); Van Hagan, T. [General Atomics, Post Office Box 85608, San Diego, California 92186-9784 (United States)

1995-01-20T23:59:59.000Z

125

Transgenic Evaluation of Activated Mutant Alleles of SOS2 Reveals a Critical Requirement for Its Kinase Activity and  

E-Print Network (OSTI)

, Sevilla 41080, Spain In Arabidopsis thaliana, the calcium binding protein Salt Overly Sensitive3 (SOS3 of SOS2 can be constructed in vitro by changing Thr168 to Asp in the activation loop of the kinase is known to elicit a rapid increase in the free calcium concentration in the cytoplasm (Knight et al., 1997

Schumaker, Karen

126

Dual active material composite cathode structures for Li-ion batteries  

Science Journals Connector (OSTI)

The efficacy of composite Li-ion battery cathodes made by mixing active materials that possessed either high-rate capability or high specific energy was examined. The cathode structures studied contained carbon-coated LiFePO4 and either Li[Li0.17Mn0.58Ni0.25]O2 or LiCoO2. These active materials were arranged using three different electrode geometries: fully intermixed, fully separated, or layered. Discharge rate studies, cycle-life evaluation, and electrochemical impedance spectroscopy studies were conducted using coin cell test structures containing Li-metal anodes. Results indicated that electrode configuration was correlated to rate capability and degree of polarization if there was a large differential between the rate capabilities of the two active material species.

J.F. Whitacre; K. Zaghib; W.C. West; B.V. Ratnakumar

2008-01-01T23:59:59.000Z

127

PEDOT: Cathode active material with high specific capacity in novel electrolyte system  

Science Journals Connector (OSTI)

Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically synthesized and characterized by FT-IR, XRD, XPS, TGA and organic elemental analysis (EA). The polymer was tested as cathode active material for rechargeable lithium batteries. The cyclic voltammetry (CV) and charge–discharge tests of PEDOT as the cathode active material was investigated in an electrolyte system of LiN(CF3SO2)2/1,2-dimethoxyethane/1,3-dioxopentane (1:2 by weight). The peak discharge capacity of up to 691 mAh/g was obtained during the 1st cycle, and remained above 330 mAh/g after 44 cycles. These results indicate that PEDOT can afford a high specific capacity as a cathode active material. A redox mechanism is tentatively proposed.

Lizhi Zhan; Zhiping Song; Jingyu Zhang; Jing Tang; Hui Zhan; Yunhong Zhou; Caimao Zhan

2008-01-01T23:59:59.000Z

128

CRITICALITY SAFETY (CS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OBJECTIVE CS.1 The LANL criticality safety program provides the required technical guidance and oversight capabilities to ensure a comprehensive criticality safety program for the storage of nuclear materials in SSTs. (Core Requirements 3, 4, 8) Criteria * The Criticality Safety Program is an administrative TSR and meets the General and * Specific Requirements of DOE O 420.1A, Section 4.3 Nuclear Criticality Safety. * All processes and operations involving significant quantities of fissile materials are * described in current procedures approved by line management. * Procedures contain approved criticality controls and limits, based on HSR-6 evaluations and recommendations. * Supervisors, operations personnel, and criticality safety officers have received

129

Chitosancellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility  

E-Print Network (OSTI)

Chitosan­cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood. In this study, the novel composites containing CS and cellulose (CEL) (i.e., [CEL 1 CS]), which we have previ fibroblasts. The [CEL 1 CS] composites were found to inhibit the growth of both Gram positive and negative

Reid, Scott A.

130

Manganese-Containing Cathode-Active Materials for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Manganese, which has a Clarke number of 0.06%,1...is the tenth-most abundant element in the earth’s crust, and has been utilized as a cathode-active material for manganese, alkaline-manganese, and lithium ... , f...

Koichi Numata

2009-01-01T23:59:59.000Z

131

NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)  

SciTech Connect

This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

Not Available

2010-12-01T23:59:59.000Z

132

Materializing Energy  

E-Print Network (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

133

IMPACT OF TARGET MATERIAL ACTIVATION ON PERSONNEL EXPOSURE AND RADIOACTIVE CONTAMINATION IN THE NATIONAL IGNITION FACILITY  

SciTech Connect

Detailed activation analyses are performed for the different materials under consideration for use in the target capsules and hohlraums used during the ignition campaign on the National Ignition Facility. Results of the target material activation were additionally used to estimate the levels of contamination within the NIF target chamber and the workplace controls necessary for safe operation. The analysis examined the impact of using Be-Cu and Ge-doped CH capsules on the external dose received by workers during maintenance activities. Five days following a 20 MJ shot, dose rates inside the Target Chamber (TC) due to the two proposed capsule materials are small ({approx} 1 {micro}rem/h). Gold and depleted-uranium (DU) are considered as potential hohlraum materials. Following a shot, gold will most probably get deposited on the TC first wall. On the other hand, while noble-gas precursors from the DU are expected to stay in the TC, most of the noble gases are pumped out of the chamber and end up on the cryopumps. The dose rates inside the TC due to activated gold or DU, at 5 days following a 20 MJ shot, are about 1 mrem/h. Dose rates in the vicinity of the cryo-pumps (containing noble 'fission' gases) drop-off to about 1 mrem/h during the first 12 hours following the shot. Contamination from activation of NIF targets will result in the NIF target chamber exceeding DOE surface contamination limits. Objects removed from the TC will need to be managed as radioactive material. However, the results suggest that airborne contamination from resuspension of surface contamination will not be significant and is at levels that can be managed by negative ventilation when accessing the TC attachments.

Khater, H; Epperson, P; Thacker, R; Beale, R; Kohut, T; Brereton, S

2009-06-30T23:59:59.000Z

134

Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte  

Science Journals Connector (OSTI)

Abstract Carbon aerogel (CA) was prepared by a carbonization of resorcinol–formaldehyde (RF) polymer gels, and it was chemically activated with KOH to obtain activated carbon aerogel (ACA) for electrode material for EDLC in organic electrolyte. Coin-type EDLC cells with two symmetrical carbon electrode were assembled using the prepared carbon materials. Electrochemical performance of the carbon electrodes was measured by galvanostatic charge/discharge and cyclic voltammetry methods. Activated carbon aerogel (20.9 F/g) showed much higher specific capacitance than carbon aerogel (7.9 F/g) and commercial activated carbon (8.5 F/g) at a scan rate of 100 mV/s. This indicates that chemical activation with KOH served as an efficient method to improve electrochemical performance of carbon aerogel for EDLC electrode in organic electrolyte. The enhanced electrochemical performance of activated carbon aerogel was attributed to the high effective surface area and the well-developed pore structure with appropriate pore size obtained from activation with KOH.

Soon Hyung Kwon; Eunji Lee; Bum-Soo Kim; Sang-Gil Kim; Byung-Jun Lee; Myung-Soo Kim; Ji Chul Jung

2014-01-01T23:59:59.000Z

135

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

136

DOE Nuclear Criticality Safety Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Criticality Safety Program DOE Nuclear Criticality Safety Program Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr The DOE Nuclear Criticality Safety Program Bookmark and Share J. Morman and R. Bucher load J. Morman and R. Bucher load samples into the ZPR-6 critical assembly for material worth measurements. Click on image to view larger image. The DOE Nuclear Criticality Safety Program (NCSP) is focused on maintaining fundamental infrastructure that enables retention of DOE capabilities and expertise in nuclear criticality safety necessary to support line

137

Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material  

DOE Patents (OSTI)

An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

Doeff, Marca M. (Hayward, CA); Peng, Marcus Y. (Cupertino, CA); Ma, Yanping (Albany, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

1996-01-01T23:59:59.000Z

138

Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material  

DOE Patents (OSTI)

An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

1996-09-24T23:59:59.000Z

139

Effect of packing material on methane activation in a dielectric barrier discharge reactor  

SciTech Connect

The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using ?-Al{sub 2}O{sub 3} (sphere), ?-Al{sub 2}O{sub 3} (sphere), and ?-Al{sub 2}O{sub 3} (16–20 mesh). Investigations on the surface properties and shape of the three packing materials clearly indicate that methane activation is considerably affected by the material used. Capacitances inside the discharge gap are estimated from charge–voltage plots, and a comparison of the generated and transferred charges for different packing conditions show that the difference in surface properties between ?- and ?-phase Al{sub 2}O{sub 3} affects the discharge characteristics. Moreover, all packing conditions show different charge characteristics that are related to the electron density. Finally, the packing material's shape affects the local electron temperature, which is strongly related to methane conversion. The combined results indicate that both microscale and macroscale variations in a packing material affect the discharge characteristics, and a packing material should be considered carefully for effective methane activation.

Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon [Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)] [Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2013-12-15T23:59:59.000Z

140

Aliphatic thioether polymers as novel cathode active materials for rechargeable lithium battery  

Science Journals Connector (OSTI)

Two aliphatic thioether polymers, poly[methanetetryl-tetra(thiomethylene)] (PMTTM) and poly(2,4-dithiopentanylene) (PDTP) were designed, synthesized, characterized and tested as cathode active materials. The chemical structure of polymers was confirmed by FT-IR, FT-Raman, and XPS spectral analysis. Both polymers were found to have electrochemical activity as cathode materials for rechargeable lithium battery by the electrochemical tests. The specific capacity of PMTTM was 504 mA h g?1 at the third cycle and faded to 200 mA h g?1 after 10 cycles; PDTP showed low and stable specific capacity around 100 mA h g?1 even after 50 cycles. The specific capacity of fully saturated aliphatic thioether polymers demonstrated that thioether bonds offered energy storage. It was proposed that thioether bond was oxidized to form thioether cations with the help of ether solvents.

Jingyu Zhang; Lingbo Kong; Lizhi Zhan; Jing Tang; Hui Zhan; Yunhong Zhou; Caimao Zhan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrodes and electrochemical storage cells utilizing tin-modified active materials  

DOE Patents (OSTI)

An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

Anani, Anaba (Lauderhill, FL); Johnson, John (Calverton, NY); Lim, Hong S. (Agoura Hills, CA); Reilly, James (Bellport, NY); Schwarz, Ricardo (Los Alamos, NM); Srinivasan, Supramaniam (College Station, TX)

1995-01-01T23:59:59.000Z

142

Using Photon Activation Analysis To Determine Concentrations Of Unknown Components In Reference Materials  

SciTech Connect

Using certified multi-element reference materials for instrumental analyses one frequently is confronted with the embarrassing fact that the concentration of some desired elements are not given in the respective certificate, nonetheless are detectable, e.g. by photon activation analysis (PAA). However, these elements might be determinable with sufficient quality of the results using scaling parameters and the well-known quantities of a reference element within the reference material itself. Scaling parameters include: activation threshold energy, Giant Dipole Resonance (GDR) peak and endpoint energy of the bremsstrahlung continuum; integrated photo-nuclear cross sections for the isotopes of the reference element; bremsstrahlung continuum integral; target thickness; photon flux density. Photo-nuclear cross sections from the unreferenced elements must be known, too. With these quantities, the integral was obtained for both the known and unknown elements resulting in an inference of the concentration of the unreported element based upon the reported value, thus also the concentration of the unreferenced element in the reference material. A similar method to determine elements using the basic nuclear and experimental data has been developed for thermal neutron activation analysis some time ago (k{sub 0} Method).

Green, Jaromy; Sun, Zaijing [Idaho State University, Physics Department, 921 S. 8th Avenue, Stop 8106, Pocatello, ID 83209 (United States); Wells, Doug [Idaho State University, Physics Department, 921 S. 8th Avenue, Stop 8106, Pocatello, ID 83209 (United States); Idaho Accelerator Center, 1500 Ricken Drive, Pocatello, ID 83201 (United States); Maschner, Herb [Idaho State University, Anthropology Department, 921 S. 8th Avenue, Stop 8005, Pocatello, ID 83209 (United States)

2011-06-01T23:59:59.000Z

143

Assessment of cathode active materials from the perspective of integrating environmental impact with electrochemical performance  

Science Journals Connector (OSTI)

Abstract A method was brought forward for assessing cathode active materials from a perspective that accounts for the environmental impact and the electrochemical performance. Then the integrated performance, referred to as the “final environmental impact”, was quantified into a dimensionless score, \\{EIc\\} (see Eq. (2)). Subsequently, four types of cathode active materials– LiFePO4/C, LiFe0.98Mn0.02PO4/C, LiFe0.98Ti0.02PO4/C, and FeF3(H2O)3/C– were assessed. The results were: (1) the \\{EIc\\} sequence was LiFePO4/C (1.76E-02Pt) > LiFe0.98Ti0.02PO4/C (1.74E-02 Pt) > LiFe0.98Ti0.02PO4/C (1.66E-02Pt) >FeF3(H2O)3/C (4.98E-03 Pt), which meant FeF3(H2O)3/C was the optimal material and had the minimal final environmental impact. (2) With regard to the eleven impact categories, the category respiratory effects exerted by inorganics made up the largest percentage of the \\{EIc\\} for the four materials. (3) In the aspects of \\{EIm\\} (EI (Eco-indicator) value of a 1 kg cathode active material), average specific discharge capacity, and cycle life, the sub-optimal materials' sequence of theoretical potential for optimization was as follows: LiFe0.98Ti0.02PO4/C > LiFe0.98Mn0.02PO4/C > LiFePO4/C. This meant that the final environmental impact of LiFePO4/C was the most difficult to reduce, and the impact of LiFe0.98Ti0.02PO4/C could not be reduced very easily. (4) To reduce the final environmental impact, the following concrete measures were recommended: (a) the optimization of the synthesis processes for smaller particle diameters; (b) the adoption of other surface-coating agents, utilizing (other) dopants; (c) the substitution of the energy-efficient instruments for the energy-intensive instruments; (d) the optimization of the synthesis processes to contain fewer electricity-intensive steps.

Yajuan Yu; Dong Wang; Kai Huang; Xiang Wang; Yuhan Liang; Weijun Sun; Bo Chen; Shi Chen

2014-01-01T23:59:59.000Z

144

Focus Areas | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research...

145

What is a Critical Material??  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

outreach Achievements * Ten invention disclosures, to date - Extraction of rare earth elements from phosphoric acid streams - Recovery of neodymium from neodymium iron...

146

Critical technologies research: Opportunities for DOE  

SciTech Connect

Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

147

Critical technologies research: Opportunities for DOE  

SciTech Connect

Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

148

E-Print Network 3.0 - activity source material Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and gain-material for new lasers. The talk... Nano-Materials and Ultrafast Optoelectronic Devices" Abstract: Today's progress in the materials... sciences and nano-technologies...

149

Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)  

SciTech Connect

This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans.

Skripka, G.; Vatulin, V.; Yuferev, V. [VNIIEF, Sarov (Russian Federation)] [and others

1997-11-01T23:59:59.000Z

150

Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer  

Science Journals Connector (OSTI)

In the typical electrode configuration, the active material layer is directly supported on a metallic ... collector. The interface between current collector and active material layer imposes additional charge tra...

Zhian Zhang; Zhiyong Zhang; Xiwen Wang; Jie Li…

2014-05-01T23:59:59.000Z

151

Sulfides organic polymer: Novel cathode active material for rechargeable lithium batteries  

Science Journals Connector (OSTI)

Two novel sulfide polymers, poly(2-phenyl-1,3-dithiolane) and poly[1,4-di(1,3-dithiolan-2-yl)benzene], were prepared via facile oxidative-coupling polymerization under ambient conditions, characterized by FT-IR, XRD, TGA and elemental analysis, and were tested as cathode materials in rechargeable lithium battery. The charge–discharge tests showed that the specific capacity of poly[1,4-di(1,3-dithiolan-2-yl)benzene)] was 378 mAh g?1 at the third cycle, and retained at 300 mAh g?1 after 20 cycles. The specific capacity of poly(2-phenyl-1,3-dithiolane) was 117 mAh g?1 at the second cycle, and retained at 100 mAh g?1 after 20 cycles. The results indicated that thiolane group could be used as cathode active function group for lithium secondary batteries and the novel electrode reaction is proposed tentatively.

Jing Yu Zhang; Ling Bo Kong; Li Zhi Zhan; Jing Tang; Hui Zhan; Yun Hong Zhou; Cai Mao Zhan

2007-01-01T23:59:59.000Z

152

Processes for making dense, spherical active materials for lithium-ion cells  

DOE Patents (OSTI)

Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2011-11-22T23:59:59.000Z

153

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

154

IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report  

SciTech Connect

This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

Rennich, M.J. [comp.

1996-12-01T23:59:59.000Z

155

Nuclear Criticality Safety | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

156

Three-Dimensional Flower-Shaped Activated Porous Carbon/Sulfur Composites as Cathode Materials for Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

After the active sulfur impregnation, both the FESEM images (Figure 1e,f) and TEM images (Figure 2c) of the FA-PC/S composite demonstrate a flower-shaped 3D superstructure similar to the original FA-PC material. ... Early on, carbonaceous materials dominated the anode and hence most of the possible improvements in the cell were anticipated at the cathode terminal; on the other hand, major developments in anode materials made in the last portion of the decade with the introduction of nanocomposite Sn/C/Co alloys and Si-C composites have demanded higher capacity cathodes to be developed. ... The photodecompn. of methyl orange indicates that such ZnO superstructures possess excellent photocatalytic activity. ...

Lan Zhou; Tao Huang; Aishui Yu

2014-09-19T23:59:59.000Z

157

Critical Subcriticals  

NLE Websites -- All DOE Office Websites (Extended Search)

technology magazine Latest Issue:August 2014 All Issues submit Critical Subcriticals Nuclear weapons testing with real plutonium and real experiments-but no yield April 1,...

158

Recyclable synthesis, characterization, and antimicrobial activity of chitosan-based polysaccharide composite materials  

E-Print Network (OSTI)

composite materials Chieu D. Tran, Simon Duri, April L. Harkins Department of Chemistry, Marquette to synthesize novel, biocompatible, and biodegradable composite materials from cellulose (CEL) and chitosan (CS the [CELþCS] composites. Since, the IL can be removed from the composites by washing them with water

Reid, Scott A.

159

Computational modeling and design of actively-cooled microvascular materials Soheil Soghrati a,b  

E-Print Network (OSTI)

to the optimization study, the IGFEM solver is validated through comparison with infrared measurements of the thermal of such systems to a broad field including autonomic materials [6], biotechnology [7,8], chemical reactors [9 in two specific ways: (i) by direct extraction of heat from the thermally loaded material, and (ii

Sottos, Nancy R.

160

Criticality safety assessment of tank 241-C-106 remediation  

SciTech Connect

A criticality safety assessment was performed in support of Project 320 for the retrieval of waste from tank 241-C-106 to tank 241-AY-102. The assessment was performed by a multi-disciplined team consisting of expertise covering the range of nuclear engineering, plutonium and nuclear waste chemistry,and physical mixing hydraulics. Technical analysis was performed to evaluate the physical and chemical behavior of fissile material in neutralized Hanford waste as well as modeling of the fluid dynamics for the retrieval activity. The team has not found evidence of any credible mechanism to attain neutronic criticality in either tank and has concluded that a criticality accident is incredible.

Waltar, A.E., Westinghouse Hanford

1996-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology.

162

Vehicle Technologies Office Merit Review 2014: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Michigan State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Active, tailorable...

163

Obtaining field pricing and audit cognizance has been identified as a critical path activity for our contract and financial assistance awards and modifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROCUREMENT AND ASSISTANCE MANAGEMENT PROCUREMENT AND ASSISTANCE MANAGEMENT OFFICE OF PROCUREMENT AND ASSISTANCE POLICY (MA-61) MANAGEMENT OF CONTRACT/FINANCIAL ASSISTANCE AUDIT SUPPORT FOR AMERICAN RECOVERY AND REINVESTMENT ACT ACTIONS (JULY 23, 2009) Obtaining field pricing and audit support has been identified as a critical path activity for our Recovery Act contract and financial assistance awards and modifications. In order to meet the aggressive schedule commitments for placing contracts and financial assistance awards, we need to manage the audit process more effectively through increased management attention both at the field contracting office and Headquarters level. The guidance and direction provided herein is written primarily to cover audit support from the Defense Contract Audit Agency (DCAA). It

164

Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys  

DOE Patents (OSTI)

An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

Pecharsky, Alexandra O. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

2006-10-03T23:59:59.000Z

165

An active system for the detection of special fissile material in small watercraft  

E-Print Network (OSTI)

technique. The MCNP Monte Carlo transport code was used to simulate the use of a pulsed neutron generator to induce fission in the fissile material and then estimate the detector response. The detector modeled was based on elastic scattering-induced recoil...

Johansen, Norman Alfan, III

2006-10-30T23:59:59.000Z

166

Thermal performance of phase change material energy storage floor for active solar water-heating system  

Science Journals Connector (OSTI)

The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the w...

Ruolang Zeng; Xin Wang; Wei Xiao…

2010-06-01T23:59:59.000Z

167

Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D  

Energy.gov (U.S. Department of Energy (DOE))

Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

168

Critical State of Superconducting Solenoids  

Science Journals Connector (OSTI)

The critical state is a term introduced by Bean [1] to describe the magnetic properties of a bulk type II superconductor. In this state every region of the superconducting material carries the maximum induced cri...

M. S. Lubell

1966-01-01T23:59:59.000Z

169

National Academies Criticality Methodology and Assessment Video (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This is a text version of the "National Academies Criticality Methodology and Assessment" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

170

NiFe2O4/activated carbon nanocomposite as magnetic material from petcoke  

Science Journals Connector (OSTI)

Abstract Nickel ferrite (NiFe2O4) was supported on activated carbon (AC) from petroleum coke (petcoke). Potassium hydroxide (KOH) was employed with petcoke to produce activated carbon. NiFe2O4 were synthesized using PEG-Oleic acid assisted hydrothermal method. The structural and magnetic properties were determined using thermogravimetric and differential thermal analysis (TGA–DTA), X-ray diffraction (XRD), Fourier Transform Infrared (IR-FT), surface area (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD analysis revealed the cubic spinel structure and ferrite phase with high crystallinity. IR-FT studies showed that chemical modification promoted the formation of surface oxygen functionalities. Morphological investigation by SEM showed conglomerates of spherical nanoparticles with an average particle size of 72 nm and TEM showed the formation of NiFe2O4/carbon nanofibers. Chemical modification and activation temperature of 800 °C prior to activation dramatically increased the BET surface area of the resulting activated carbon to 842.4 m2/g while the sulfur content was reduced from 6 to 1%. Magnetic properties of nanoparticles show strong dependence on the particle size.

Sarah Briceño; W. Brämer-Escamilla; P. Silva; J. García; H. Del Castillo; M. Villarroel; J.P. Rodriguez; M.A. Ramos; R. Morales; Y. Diaz

2014-01-01T23:59:59.000Z

171

Role of Cs on Hydrodesulfurization Activity of RuS2 Catalysts Supported on a Mesoporous SBA-15 Type Material  

Science Journals Connector (OSTI)

Role of Cs on Hydrodesulfurization Activity of RuS2 Catalysts Supported on a Mesoporous SBA-15 Type Material ... Ruthenium(III) chloride, RuCl3·nH2O (? 41 wt % Ru, from Fluka); cesium hydroxide, CsOH (50 wt % solution, from Aldrich); and cesium chloride, CsCl (99.9% from Aldrich) were employed as ruthenium and cesium precursor salts, respectively. ... These liquid samples were kept in sealed vials and subsequently analyzed by gas chromatography (Shimadzu GC-14B, equipped with a flame ionization detector and a capillary column, TBR-14, coupled to an automatic Shimadzu AOC-20i injector). ...

A. Infantes-Molina; A. Romero-Pe?rez; V. Sa?nchez-Gonza?lez; B. Pawelec; J. L.G. Fierro; A. Jime?nez-Lo?pez; E. Rodri?guez-Castello?n

2011-02-03T23:59:59.000Z

172

Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell  

Science Journals Connector (OSTI)

Palladium selenides, PdSe, Pd3Se and PdSe2 have been prepared by the hydrothermal method and investigated for their structural and electrocatalytic properties toward the oxygen reduction reaction (ORR) using SEM/TEM, XRD, cyclic and linear sweep voltammetries. The crystallites of PdSe and PdSe2 are found to follow tetragonal and orthorhombic crystal structures, respectively. The PdSe electrode in 0.5 M H2SO4 exhibits significantly higher electrocatalytic activity than the Pd3Se or PdSe2 electrode under similar experimental conditions. Further, a change in the palladium/selenium ratio from unity in the catalyst results in low ORR activity.

Madhu; R.N. Singh

2011-01-01T23:59:59.000Z

173

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents (OSTI)

Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

1998-04-28T23:59:59.000Z

174

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents (OSTI)

Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

Gschneidner, K.A. Jr.; Pecharsky, V.K.

1998-04-28T23:59:59.000Z

175

The structure of Ni(OH){sub 2}: From the ideal material to the electrochemically active one  

SciTech Connect

A structural model is proposed to explain the abnormal broadening of the (10{ell}) and (20{ell}) lines in the X-ray diffraction pattern of nickel hydroxide. This model, based on a hypothesis of the presence of stacking faults, allows one to rationalize the empirically established relationship between the presence of such peculiarities in X-ray diffraction patterns and the good electrochemical behavior of the material. Two types of stacking faults, i.e., growth and deformation faults, corresponding to the existence within the hexagonal oxygen packing of one or two face-centered cubic oxygen sequences, respectively, have been identified. The simulation, with the DIFFaX program, of the X-ray diffraction patterns of nickel hydroxide samples has allowed the authors to determine in a general way the nature and the amount of stacking faults. It is shown that the stability of protons in tetrahedral sites depends on whether they are in the vicinity of a stacking fault or not, and this explains the improvement of both the chargeability of the material and its electronic conductivity in the presence of defects. It is shown as well that stacking faults in the electrochemically active material lead to a more facile transition to the {gamma} phase during overcharge in concentrated electrolyte.

Tessier, C. [Inst. de Chimie de la Matiere Condensee de Bordeaux-CNRS, Pessac (France)] [Inst. de Chimie de la Matiere Condensee de Bordeaux-CNRS, Pessac (France); [Ecole Nationale Superieure de Chimie et Physique de Bordeaux, Pessac (France); [SAFT-Direction de la Recherche, Marcoussis (France); Haumesser, P.H.; Delmas, C. [Inst. de Chimie de la Matiere Condensee de Bordeaux-CNRS, Pessac (France)] [Inst. de Chimie de la Matiere Condensee de Bordeaux-CNRS, Pessac (France); [Ecole Nationale Superieure de Chimie et Physique de Bordeaux, Pessac (France); Bernard, P. [SAFT-Direction de la Recherche, Marcoussis (France)] [SAFT-Direction de la Recherche, Marcoussis (France)

1999-06-01T23:59:59.000Z

176

High temperature properties of Ce1-xPrxO2-? as an active layer material for SOFC cathodes  

Science Journals Connector (OSTI)

We prepared Ce1-xPrxO2-? and investigated its high temperature properties as a material for the composite active layer of a solid oxide fuel cell (SOFC) cathode. We found that increasing the Pr concentration increases the total conductivity and oxygen vacancy concentration at high temperature, and this may lead to improvement of the cathodic reaction. When Ce1-xPrxO2-? is heated, it expands significantly at a certain temperature (Tinf), and this expansion depends on the Ce1-xPrxO2-? composition. The expansion is associated with an abrupt increase in the unit cell volume of the cubic structure. Abrupt increases in the total conductivity and oxygen vacancy concentration were also observed at Tinf. These results can be explained by oxygen vacancy and electron formation (n-type electronic conductivity increase) at Tinf and above Tinf. A sample with a Ce1-xPrxO2-? composition where x = 1.0 has no such Tinf. A composition near x = 1.0 for Ce1-xPrxO2-? is favorable for the active layer material of an SOFC cathode, because of the high conductivity and high concentration of oxygen vacancies.

Reiichi Chiba; Hiroaki Taguchi; Takeshi Komatsu; Himeko Orui; Kazuhiko Nozawa; Hajime Arai

2011-01-01T23:59:59.000Z

177

A data base and a standard material for use in acceptance testing of low-activity waste products  

SciTech Connect

The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material.

Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

1998-04-01T23:59:59.000Z

178

Upper critical fields and thermally-activated transport of Nd(0.7Fe0.3) FeAs single crystal  

SciTech Connect

We present measurements of the resistivity and the upper critical field H{sub c2} of Nd(O{sub 0.7}F{sub 0.3})FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H{sub c2} is comparable to {approx}100 T of high T{sub c} cuprates. H{sub c2}(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H{sub c2} shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T{sub c} but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4--5 decades. The activation energy has very different field dependencies for H{parallel}ab and H{perpendicular}ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H{sub c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H{sub c2}(T), which may significantly reduce H{sub c2}(0) as compared to H{sub c2}(0) {approx}200--300 T based on extrapolations of H{sub c2}(T) near T{sub c} down to low temperatures.

Balakirev, Fedor F [Los Alamos National Laboratory; Jaroszynski, J [NHMFL, FSU; Hunte, F [NHMFL, FSU; Balicas, L [NHMFL, FSU; Jo, Youn - Jung [NHMFL, FSU; Raicevic, I [NHMFL, FSU; Gurevich, A [NHMFL, FSU; Larbalestier, D C [NHMFL, FSU; Fang, L [CHINA; Cheng, P [CHINA; Jia, Y [CHINA; Wen, H H [CHINA

2008-01-01T23:59:59.000Z

179

Approval of the Critical Decision 4.  

Office of Legacy Management (LM)

SUBJECT: ACTION: Approval of the Critical Decision 4 for the Closeout SUBJECT: ACTION: Approval of the Critical Decision 4 for the Closeout of the General Atomics (GA) Hot Cell Facility (HCF) Decontamination and Decommissioning (D&D) Project, Project Baseline Summary VL-GA-0012, and the Transfer for the GA Project Files to the Office of Legacy Management (LM) ISSUE: None BACKGROUND: Activities associated with the cleanup of the GA HCF and surrounding site were completed on September 28,2003. The GA site has been remediated to negotiated cleanup standards and released by the U. S. Nuclear Regulatory Commission (NRC) and the State of California Department of Health Services Radiological Health Branch (CAL-RHB) to unrestricted use. All project generated waste and legacy spent fuel materials have been dispositioned. GAts Special Nuclear

180

Nuclear criticality safety: 300 Area  

SciTech Connect

This Standard applies to the receipt, processing, storage, and shipment of fissionable material in the 300 Area and in any other facility under the control of the Reactor Materials Project Management Team (PMT). The objective is to establish practices and process conditions for the storage and handling of fissionable material that prevent the accidental assembly of a critical mass and that comply with DOE Orders as well as accepted industry practice.

Not Available

1991-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries  

Science Journals Connector (OSTI)

Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries ... Three types of FeF3 nanocrystals were synthesized by different chemical routes and investigated as a cathode-active material for rechargeable lithium batteries. ... (1-3) Though many types of metal oxides and phosphates have been tested as alternative cathode materials,(4, 5) no real breakthrough has been achieved in capacity, especially for intercalation cathodes, the capacity-determining electrode in the present LIBs systems. ...

Ting Li; Lei Li; Yu L. Cao; Xin P. Ai; Han X. Yang

2010-01-28T23:59:59.000Z

182

GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012  

SciTech Connect

The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed training needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.

Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr; Gavrilyuk-Burakova, Anna; Diakov, Oleksii; Drapey, Sergiy; Proskurin, Dmitry; Dickman, Deborah A.; Ferguson, Ken

2011-10-01T23:59:59.000Z

183

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

184

Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys  

DOE Patents (OSTI)

Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Alexandra O. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

2003-07-08T23:59:59.000Z

185

Poly[3,4-(ethylenedithio)thiophene]: High specific capacity cathode active material for lithium rechargeable batteries  

Science Journals Connector (OSTI)

Poly[3,4-(ethylenedithio)thiophene] (PEDTT) has been synthesized by oxidative-coupling polymerization of 3,4-(ethylenedithio)thiophene (EDTT) in the absence of solvent at ambient conditions. The resulting polymer has been characterized by FT-IR, XRD, TGA, UV–vis and solution NMR analyses. In addition, PEDTT has been evaluated as the cathode active material for rechargeable lithium batteries. The charge–discharge tests are carried out at room temperature. PEDTT shows discharge specific capacity above 425 mAh g?1. It is tentatively proposed that electrode reaction involves the formation of thioether cation, which imparts multi-electron redox reaction, high discharge specific capacity, high charge voltage and low discharge voltage.

Jing Tang; Zhi-Ping Song; Ning Shan; Li-Zhi Zhan; Jing-Yu Zhang; Hui Zhan; Yun-Hong Zhou; Cai-Mao Zhan

2008-01-01T23:59:59.000Z

186

CMI in Research Publications | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

works on magnets for CMI, and leads the Reduced Rare Earth Content High Performance Magnet project. Canfield and CMI scientist Sergey Bud'ko are co-authors on several...

187

Critical Materials Institute Affiliates Program MEMBER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

affiliate funds. Foreign Entities may or may not be eligible for the DOE Patent Class Waiver dependent on DOE approval. 7. Publishing The Parties acknowledge and agree that the...

188

CMI Membership Benefits | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Required Optional 1Members from foreign entitites must receive DOE approval for the class waiver. For the definition of "foreign entity" please e-mail CMIaffiliates@ameslab.gov....

189

Material efficiency: rare and critical metals  

Science Journals Connector (OSTI)

...obvious in the case of hydrocarbons. But we do not contemplate the recycling of hydrocarbons except perhaps in terms...destructive uses, such as combustion of hydrocarbons, the service is usually...chemical potential, heat (or light) that is...

2013-01-01T23:59:59.000Z

190

CMI Recent Presentations | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

and outreach: CMI Education and Outreach Programs CMI Director Alex King describes rare earth elements for the Iowa State University Osborn Club, March 2014 Link to some older...

191

Iowa lab gets critical materials research center  

Energy.gov (U.S. Department of Energy (DOE))

The DOE hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals.

192

Older Public Presentations | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

and Recycling Tom Lograsso, leader for Crosscutting Research Alex King Describing rare earth elements in a TEDx talk (video link, 18:20), September 2013 Kiwanis Club, June 21,...

193

Material efficiency: rare and critical metals  

Science Journals Connector (OSTI)

...PhD thesis, Fakulteit Scheikunde, University of Utrecht, Utrecht, The Netherlands. 12 Karlsson, S , C Azar, G Bernedes...gas emissions. PhD thesis, Fakultgeit Scheikunde, Utrecht University, Utrecht, The Netherlands. 18 Matthews...

2013-01-01T23:59:59.000Z

194

Tank farm nuclear criticality review  

SciTech Connect

The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site.

Bratzel, D.R., Westinghouse Hanford

1996-09-11T23:59:59.000Z

195

Gamma/neutron time-correlation for special nuclear material characterization %3CU%2B2013%3E active stimulation of highly enriched uranium.  

SciTech Connect

A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highly Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.

Marleau, Peter; Nowack, Aaron B.; Clarke, Shaun D. [University of Michigan; Monterial, Mateusz [University of Michigan; Paff, Marc [University of Michigan; Pozzi, Sara A. [University of Michigan

2013-09-01T23:59:59.000Z

196

Structural Biological Materials: Critical Mechanics-Materials Connections  

Science Journals Connector (OSTI)

...Bending, Torsion, and Buckling—Shells and Foams Resistance...referred to as Euler's buckling equation, calculates...compressive load at which global buckling of a column takes place...applied to reduce drag in pipelines (49) and aircraft...

Marc André Meyers; Joanna McKittrick; Po-Yu Chen

2013-02-15T23:59:59.000Z

197

A new class of amorphous cathode active material LixMyPOz (M = Ni, Cu, Co, Mn, Au, Ag, Pd)  

Science Journals Connector (OSTI)

Abstract A new class of amorphous cathode active material LixMyPOz (LiMPO) is proposed. The materials are sputter deposited to thin film form by Li3PO4 together with metal or metal oxide targets. Among several materials tested as thin-film battery, working material found are M = Ni, Cu, Co, Mn, Au, Ag, Pd. The property is intensively studied for LixCuyPOz (LiCuPO) and LixNiyPOz (LiNiPO). Those materials shows wide composition margin such as composition y between 1 and 3, and high capacity for LiNiPO with maximum value of 330 mAh g?1. The capability to charge and discharge at high rate is shown up to 30 C. This preliminary report reveals its high potentiality for further optimization.

Yuichi Sabi; Susumu Sato; Saori Hayashi; Tatsuya Furuya; Susumu Kusanagi

2014-01-01T23:59:59.000Z

198

Solvent-free, oxidatively prepared polythiophene: High specific capacity as a cathode active material for lithium batteries  

Science Journals Connector (OSTI)

Polythiophene (PTH) was prepared by the chemical polymerization of thiophene under ambient, solvent-free conditions in the presence of FeCl3. This PTH was characterized by FTIR, UV–vis, NMR, and XRD. The NMR spectrum showed a PTH oligomer consisting of both aromatic thiophene and hydrogen-saturated tetrahydrothiophene moieties. The insoluble PTH was studied as a cathode active material for rechargeable lithium batteries with LiN(CF3SO2)2 (LiTFSI), 1,2-dimethoxyethane (DME), and 1,3-dioxolane (DOL) as electrolytes. Charge–discharge tests were conducted at room temperature. The discharge specific capacity, for levels above 400 mA h g?1, was obtained. The detected stable specific capacity and isolated, conjugated structure indicate that the charge–discharge mechanism was different from a classical ‘doping–dedoping’ process. We tentatively propose that the high specific capacity of PTH results from multi-electron electrode reactions on S atoms.

Jing Tang; Lingbo Kong; Jingyu Zhang; Lizhi Zhan; Hui Zhan; Yunhong Zhou; Caimao Zhan

2008-01-01T23:59:59.000Z

199

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

200

Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature  

Science Journals Connector (OSTI)

Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance o...

Soon Hyung Kwon; Eunji Lee; Bum-Soo Kim…

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material!  

E-Print Network (OSTI)

gas leak gas leak if it is a gas leak, do not activate building alarms, use mobile phones, hand held radios, electronic equipment or light flammable material! 1. If you discover a Gas Leak, shout and check that the nearest gas isolator switch is off. 4. Evacuate the building immediately, avoiding

Hickman, Mark

202

Nuclear criticality safety guide  

SciTech Connect

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

203

Structure determination of human Fas apoptosis inhibitory molecule and identification of the critical residues linking the interdomain interaction to the anti-apoptotic activity  

Science Journals Connector (OSTI)

The structures of N-terminal and C-terminal domains of the human Fas apoptosis inhibitory molecule were determined. Structural and biochemical analyses of the two domains linked the interdomain interaction to the anti-apoptotic activity.

Li, G.

2014-06-29T23:59:59.000Z

204

Adsorption and decomposition of triclosan by activated carbons, manganese oxides, and their composite materials from aqueous solution.  

E-Print Network (OSTI)

??This research investigates the use of activated carbon (AC) and manganese oxides as adsorbents and oxidizing agents to adsorb and oxidize triclosan, a compound which… (more)

Fang, Sheng

2010-01-01T23:59:59.000Z

205

EV Everywhere Grand Challenge - Electric Motors and Critical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge...

206

Rational Material Architecture Design for Better Energy Storage  

E-Print Network (OSTI)

weight of cathode and anode active materials). This devicetotal mass of cathode and anode active materials), giving antotal mass of cathode and anode active materials. power for

Chen, Zheng

2012-01-01T23:59:59.000Z

207

Surveillance Guide - NSS 18.1 Criticality Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRITICALITY SAFETY CRITICALITY SAFETY 1.0 Objective The objective of this surveillance is to ensure that effective programs have been developed and implemented to protect the public and DOE's workers from unplanned criticality. The programs should minimize the potential for inadvertent criticality, provide appropriate training for personnel on criticality hazards and procedures for preventing inadvertent criticality, and provide appropriate systems to detect such criticalities and warn workers. The surveillance activities provide a basis for evaluating the effectiveness of policies, programs, and procedures and for reviewing compliance with specific DOE requirements. 2.0 References 2.1 DOE 5480.24, Nuclear Criticality Safety

208

Architecture for high critical current superconducting tapes  

DOE Patents (OSTI)

Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

209

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

210

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

211

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

212

PRECLOSURE CRITICALITY ANALYSIS PROCESS REPORT  

SciTech Connect

This report describes a process for performing preclosure criticality analyses for a repository at Yucca Mountain, Nevada. These analyses will be performed from the time of receipt of fissile material until permanent closure of the repository (preclosure period). The process describes how criticality safety analyses will be performed for various configurations of waste in or out of waste packages that could occur during preclosure as a result of normal operations or event sequences. The criticality safety analysis considers those event sequences resulting in unanticipated moderation, loss of neutron absorber, geometric changes, or administrative errors in waste form placement (loading) of the waste package. The report proposes a criticality analyses process for preclosure to allow a consistent transition from preclosure to postclosure, thereby possibly reducing potential cost increases and delays in licensing of Yucca Mountain. The proposed approach provides the advantage of using a parallel regulatory framework for evaluation of preclosure and postclosure performance and is consistent with the U.S. Nuclear Regulatory Commission's approach of supporting risk-informed, performance-based regulation for fuel cycle facilities, ''Yucca Mountain Review Plan, Final Report'', and 10 CFR Part 63. The criticality-related criteria for ensuring subcriticality are also described as well as which guidance documents will be utilized. Preclosure operations and facilities have significant similarities to existing facilities and operations currently regulated by the U.S. Nuclear Regulatory Commission; therefore, the design approach for preclosure criticality safety will be dictated by existing regulatory requirements while using a risk-informed approach with burnup credit for in-package operations.

A.E. Danise

2004-10-25T23:59:59.000Z

213

CRITICALITY SAFETY (CS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Objective CS.1 - A criticality safety program is established, sufficient numbers of qualified personnel are provided, and adequate facilities and equipment are available to ensure criticality safety support services are adequate for safe operations. (Core Requirements 1, 2, and 6) Criteria * Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented. * Operations support personnel for the criticality safety area are adequately staffed and trained. Approach Record Review: Review the documentation that establishes the Criticality Safety Requirements (CSRs) for appropriateness and completeness. Review for adequacy and completion the criticality safety personnel training records that indicate training on facility procedures and systems under

214

Activities  

Energy.gov (U.S. Department of Energy (DOE))

Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

215

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

216

Visible-Light Photochemical Activity of Heterostructured Core-Shell Materials Composed of Selected Ternary Titanates and Ferrites  

E-Print Network (OSTI)

-24 For example, CdS,25 Cu2O,26 BiOI,22 ZnFe2O4,27 and CuInS2,28 were combined with TiO2 for visible °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced active under visible light, such as metal and nonmetal doping,3,8-12 dye sensitization,13

Rohrer, Gregory S.

217

In-field analysis and assessment of nuclear material  

SciTech Connect

Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials.

Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.

1996-05-01T23:59:59.000Z

218

Energy Department Announces Launch of Energy Innovation Hub for Critical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launch of Energy Innovation Hub for Launch of Energy Innovation Hub for Critical Materials Research Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research May 31, 2012 - 5:56pm Addthis WASHINGTON - U.S. Secretary of Energy Steven Chu today announced plans to invest up to $120 million over five years to launch a new Energy Innovation Hub, establishing a multidisciplinary and sustained effort to identify problems and develop solutions across the lifecycle of critical materials. Rare earth elements and other critical materials have unique chemical and physical characteristics, including magnetic, catalytic and luminescent properties, that are important for a growing number of energy technologies. These critical materials are also at risk for supply disruptions. The

219

Energy Department Announces Launch of Energy Innovation Hub for Critical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces Launch of Energy Innovation Hub for Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research May 31, 2012 - 5:56pm Addthis WASHINGTON - U.S. Secretary of Energy Steven Chu today announced plans to invest up to $120 million over five years to launch a new Energy Innovation Hub, establishing a multidisciplinary and sustained effort to identify problems and develop solutions across the lifecycle of critical materials. Rare earth elements and other critical materials have unique chemical and physical characteristics, including magnetic, catalytic and luminescent properties, that are important for a growing number of energy technologies. These critical materials are also at risk for supply disruptions. The

220

Radiation Safety Training Materials  

Energy.gov (U.S. Department of Energy (DOE))

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Novel Anode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with a variety of loadings, morphologies, and thicknesses. - Develop synchrotron tomography tools to better understand how the active materials interact with their surroundings...

222

Critical insulation thickness for maximum entropy generation  

Science Journals Connector (OSTI)

Critical insulation thickness is known to refer to the insulation thickness that maximises the rate of heat transfer in cylindrical and spherical systems. The same analogy is extended to the rate of entropy generation in the present study. The possible critical insulation thickness that yields a maximum rate of entropy generation is investigated. Entropy generation is related to heat transfer through and temperature distribution within the insulation material. It is found that there exists a critical insulation thickness for maximising the rate of entropy generation that is a function of the Bi number and the surface to ambient temperature ratio. The solution of such critical thickness is formulated analytically for both cylindrical and spherical geometries. It is also found that the critical insulation thickness for the rate of entropy generation does not coincide with that for the rate of heat transfer.

Ahmet Z. Sahin

2012-01-01T23:59:59.000Z

223

SILENE Benchmark Critical Experiments for Criticality Accident Alarm Systems  

SciTech Connect

In October 2010 a series of benchmark experiments was conducted at the Commissariat a Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE [1] facility. These experiments were a joint effort between the US Department of Energy (DOE) and the French CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems (CAASs). This presentation will discuss the geometric configuration of these experiments and the quantities that were measured and will present some preliminary comparisons between the measured data and calculations. This series consisted of three single-pulsed experiments with the SILENE reactor. During the first experiment the reactor was bare (unshielded), but during the second and third experiments it was shielded by lead and polyethylene, respectively. During each experiment several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor, and some of these detectors were themselves shielded from the reactor by high-density magnetite and barite concrete, standard concrete, and/or BoroBond. All the concrete was provided by CEA Saclay, and the BoroBond was provided by Y-12 National Security Complex. Figure 1 is a picture of the SILENE reactor cell configured for pulse 1. Also included in these experiments were measurements of the neutron and photon spectra with two BICRON BC-501A liquid scintillators. These two detectors were provided and operated by CEA Valduc. They were set up just outside the SILENE reactor cell with additional lead shielding to prevent the detectors from being saturated. The final detectors involved in the experiments were two different types of CAAS detectors. The Babcock International Group provided three CIDAS CAAS detectors, which measured photon dose and dose rate with a Geiger-Mueller tube. CIDAS detectors are currently in use at Y-12 in the newly constructed Highly Enriched Uranium Materials Facility. The second CAAS detector used a {sup 6}LiF TLD to absorb neutrons and a silicon detector to count the charge particles released by these absorption events. Lawrence Livermore National Laboratory provided four of these detectors, which had formerly been used at the Rocky Flats facility in the United States.

Miller, Thomas Martin [ORNL] [ORNL; Reynolds, Kevin H. [Y-12 National Security Complex] [Y-12 National Security Complex

2011-01-01T23:59:59.000Z

224

Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual...  

Energy Savers (EERE)

materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics...

225

The radioactive materials packaging handbook: Design, operations, and maintenance  

SciTech Connect

As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

1998-08-01T23:59:59.000Z

226

Review of Nevada Site Office Criticality Safety Assessments at the Criticality Experiments Facility and Training Assembly for Criticality Safety and Appraisal of the Criticality Experiments Facility Startup Plan, October 2011  

Energy.gov (U.S. Department of Energy (DOE))

This report provides the results of an independent oversight review of criticality safety assessment activities conducted by the Department of Energy's (DOE) Nevada Site Office

227

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

228

Volume II, Environment, Safety, and Health Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories, August 2008  

Energy.gov (U.S. Department of Energy (DOE))

At the request of the Secretary of Energy, the U.S. Department of Energy (DOE) Office of Independent Oversight, within the office of Health, Safety and Security (HSS), performed a Special Review of Work Practices for Nanoscale Material Activities at Department of Energy Laboratories. The Special Review included onsite field reviews of work practices at the 8 of the 16 laboratories currently performing nanoscale activities. The eight selected DOE sites, which were reviewed during May-July 2008. This volume is a compilation of field reports of the eight selected DOE sites, which were reviewed during May-July 2008. The field reviews focused on collecting data by reviewing nanomaterial program documents, observing activities involving nanomaterials, conducting facility walkthroughs, and interviewing personnel. The data for each site was analyzed and subject to an internal HSS quality review board. Reports were validated with site representatives and revised as appropriate to ensure factual accuracy. Closeout meetings were conducted with DOE site managers and laboratory management to discuss results. The individual sites are responsible for evaluating and addressing weaknesses identified on the field reviews.

229

Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration  

SciTech Connect

The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

NONE

1995-08-01T23:59:59.000Z

230

Why engineer porous materials?  

Science Journals Connector (OSTI)

...thermal conductivity materials (Maex et al. 2003...Hrubesh et al. 1993); materials remarkably similar to...reduce the oxygen at the cathode and oxidize the fuel...electrochemically active, have large surface...volume fraction of porous materials about 0.3 (Brandon...

2006-01-01T23:59:59.000Z

231

Tank farms criticality safety manual  

SciTech Connect

This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

FORT, L.A.

2003-03-27T23:59:59.000Z

232

Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control  

SciTech Connect

The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storage of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.

Forsberg, C.W.; Storch, S.N. [Oak Ridge National Lab., TN (United States); Lewis, L.C. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-07-07T23:59:59.000Z

233

Improvement of the Cycling Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Active Materials by a Dual-Conductive Polymer Coating  

Science Journals Connector (OSTI)

The presence of a protective conducting polymer layer formed on the cathode also suppressed the growth of a resistive layer and inhibited the dissolution of transition metals from the active cathode materials, which resulted in more stable cycling characteristics than the pristine LiNi0.6Co0.2Mn0.2O2 cathode material at 55 oC. ... It is well known that the gradual capacity fading of layered LiNixCoyMn1-x-yO2 materials at high temperatures is due to structural and interfacial instabilities as well as dissolution of transition metals from the active cathode material by HF attack. ... (40, 41) It is plausible that the protective PEDOT-co-PEG layer coated on the active LiNi0.6Co0.2Mn0.2O2 material renders the cathode material more resistive against HF attack in the electrolyte and thus inhibits the dissolution of metals from the active cathode materials into the electrolyte solution at elevated temperatures. ...

Seo Hee Ju; Ik-Su Kang; Yoon-Sung Lee; Won-Kyung Shin; Saheum Kim; Kyomin Shin; Dong-Won Kim

2014-01-24T23:59:59.000Z

234

G:\Corplan\!MbrMaterials\PROD-NM\CUSTOM\LANS\2012\bb_lans nm81154_ppo active and retirees 010112 final.wpd  

NLE Websites -- All DOE Office Websites (Extended Search)

4 (01/12) 4 (01/12) Benefit Program Material Los Alamos National Security, LLC A Guide to Your Preferred Provider Option (PPO) Medical Program for Active Employees and Their Covered Family Members and Retirees and Their Covered Family Members Administered by: Customer Assistance Customer Service and Claims: Medical/Surgical and Drug Plan Services - When you have questions or concerns, call the BCBSNM Customer Service department toll-free Monday through Friday from 6 A.M. - 8 P.M. Mountain Time or from 8 A.M. - 5 P.M. on Saturdays and most holi- days; or you may visit the BCBSNM office in Albuquerque. (If you need assistance outside nor- mal business hours, you may call the Customer Service telephone number and leave a message. A Customer Service Advocate will return your call by 5 P.M. the next business day.)

235

Evaluation of Zr(Ni, Mn){sub 2} Laves phase alloys as negative active material for Ni-MH electric vehicle batteries  

SciTech Connect

Laves phase alloys of compositions (Zr, Ti)(Ni, Mn, M){sub x} where M = Cr, V, Co, Al, and 1.9 < x < 2.1 with hexagonal C14 or cubic C15 structure have been studied in order to select the most suitable AB{sub 2} alloys as an active material for nickel-metal hydride (Ni-MH) batteries. With the selected alloy, feasibility of MH negative electrodes using industrial technology and containing more than 97% of the alloy powder has been demonstrated. 22 Ah Ni-MH batteries for electric vehicle application have been assembled, and 600 cycles have been achieved at steady C/3 charge and discharge rates and 80% depth of discharge.

Knosp, B. [Alcatel Alsthom Recherche, Marcoussis (France); Jordy, C.; Blanchard, P. [SAFT Research Dept., Marcoussis (France); Berlureau, T. [SAFT Advanced and Industrial Battery Div., Bordeaux (France)

1998-05-01T23:59:59.000Z

236

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

237

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

238

Carbon Materials Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

239

The International Criticality Safety Benchmark Evaluation Project  

SciTech Connect

The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the U.S. Department of Energy. The ICSBEP became an official activity of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Spain, and Israel are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled "International Handbook of Evaluated Criticality Safety Benchmark Experiments" (ICSBEP Handbook). The 2002 edition of the ICSBEP Handbook contains benchmark model specifications for 2881 critical or subcritical configurations that are intended for validating computer codes that calculate effective neutron multiplication and for testing basic nuclear data.

J. Blair Briggs

2003-09-01T23:59:59.000Z

240

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reference Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

242

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

243

Reduced Cortisol Metabolism during Critical Illness  

Science Journals Connector (OSTI)

...been observed in other stress conditions. In addition to alternative activators of cortisol production, such as proinflammatory cytokines,, another explanation for hypercortisolemia in the presence of suppressed corticotropin could be reduced cortisol removal. The principal routes of cortisol clearance... This study shows that during critical illness, reduced cortisol breakdown, related to suppressed activity of cortisol-metabolizing enzymes, contributes to hypercortisolemia and hence corticotropin suppression, which may have clinical implications.

Boonen E.; Vervenne H.; Meersseman P.

2013-04-18T23:59:59.000Z

244

Only critical information was scanned  

Office of Legacy Management (LM)

Only critical information was scanned. Entire document is available upon request - Click here to email a...

245

Criticality Calculations for Step?2 GPHS Modules  

Science Journals Connector (OSTI)

The Multi?Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version referred to as the Step?2 GPHS Module has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of 238 Pu in the oxide form as the primary source of heat and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step?2 version. The Monte Carlo N?Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand the configuration is extremely sub?critical; k eff is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close?spaced stack to approach criticality ( k eff ?=?1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Ronald J. Lipinski; Danielle L. Hensen

2008-01-01T23:59:59.000Z

246

Criticality Calculations for Step-2 GPHS Modules  

SciTech Connect

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

247

Criticality calculations for Step-2 GPHS modules.  

SciTech Connect

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Hensen, Danielle Lynn; Lipinski, Ronald J.

2007-08-01T23:59:59.000Z

248

Inhomogeneous critical Ising model  

Science Journals Connector (OSTI)

The spectrum of the transfer matrix of a semi-infinite two-dimensional Isin model with marginally inhomogeneous couplings has been determined exactly in the finite-size-scaling limit at the bulk critical point. Depending on the local temperature at the boundary the surface phase transition of this system is either of first order or of second order with nonuniversal critical exponents. For a second-order transition, the excitation energies of the transfer matrix are inversely proportional to the linear size (N) of the system, but the levels are not equidistantly spaced. On the other hand, for a first-order transition the lowest gap vanishes algegraically, but faster than 1/N.

Ferenc Iglói

1990-06-18T23:59:59.000Z

249

Applicability of ZPR critical experiment data to criticality safety  

SciTech Connect

More than a hundred zero power reactor (ZPR) critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9 and ZPPR fast critical assembly facilities. To be sure, the original reason for performing these critical experiments was to support fast reactor development. Nevertheless, data from some of the assemblies are well suited to form the basis for valuable, new criticality safety benchmarks. The purpose of this paper is to describe the ZPR data that would be of benefit to the criticality safety community and to explain how these data could be developed into practical criticality safety benchmarks.

Schaefer, R.W.; Aumeier, S.E.; McFarlane, H.F.

1995-12-31T23:59:59.000Z

250

Analysis of Lateritic Material from Cerro Impacto by Instrumental Neutron Activation Employing a Low-Energy Photon Semiconductor and a High-Energy Ge(Li) Detector  

Science Journals Connector (OSTI)

Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration...

Labrecque, J J; Beusen, J M; Van Grieken, R E

1986-01-01T23:59:59.000Z

251

Criticality Safety Basics for INL FMHs and CSOs  

SciTech Connect

Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.

V. L. Putman

2012-04-01T23:59:59.000Z

252

Human Resources at Colorado School of Mines | Critical Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado School of Mines Employment at Colorado School of Mines Office of Human Resources: 1500 Illinois St., Suite 110 Golden, CO 80401 (303) 273-3250 (303) 384-2025 FAX Mike...

253

Meet CMI Researcher Joni Barnes | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

the investigation of microbial reduction of selenate, biodegradation of chlorinated solvents, bioconversion of nitrogen oxides, microbially catalyzed metal reduction,...

254

Critical Materials and Rare Futures: Ames Laboratory Signs a...  

Energy Savers (EERE)

and lasers, as well as clean-energy technologies such as electric vehicles and wind turbines. For example, the best magnets for efficient electric motors - which can be found...

255

What would we do without rare earths? | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

are a big part of our modern world. They are in clean energy technologies like wind turbines and solar cells and in many things we use every day -- cars, cell phones,...

256

Meet CMI Researcher Tim McIntyre | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Tim McIntyre leads the design and development of a low-cost, high-throughput magnet recycling system in focus area 3, improving reuse and recycling. Tim has 25 years experience...

257

CMI Education and Outreach in 2014 | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado School of Mines, including the geology museum. Mines experts described rare earth elements as they relate to the middle school world and renewable energy. Colorado...

258

Colorado School of Mines Researchers Win Patent | Critical Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

oxine functionalized groups. The original work was focused on separating iron and gallium, but the technology may have future applicability to the separation of rare earth elements...

259

CMI Unique Facility: Filtration Test Facility | Critical Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

and it addresses the grand challenge of developing technologies for separating the rare earth elements. For more information, and to explore using the filtration test facility,...

260

News about Rare Earths, New or Critical Materials, and Their...  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2014 Could magnets in helmets reduce football concussions?, November 2014 The Rare-Earth Elements -- Vital to Modern Technologies and Lifestyles, November 2014 Energy Report:...

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

U.S. Department of Energy - Critical Materials Strategy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rare Earth Surcharge for FCC Catalysts and Additives." August 25. http:www.grace.comMediaNewsItem.aspx?id1463179. China Daily. 2009. "China Mulls Plans to Curb Rare Earth...

262

Post-Doc Researchers Needed | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Iowa State University, is anticipating a number of Postdoctoral Research Associate vacancies within 2014. Vacancies are anticipated in the following areas: Large scale density...

263

Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lightweight Materials R&D Annual Progress Report The Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing...

264

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

265

Critical Skills Master's Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Skills Master's Program Skills Master's Program (CSMP): The Critical Skills Master's Program (CSMP) provides exceptional bachelor's-level candidates with the opportunity to pursue a fully funded Master's of Science degree. Successful applicants will become regular full-time Sandia employees and join multidisciplinary teams that are advancing the frontiers of science and technology to solve the world's greatest challenges. Program Requirements: * Apply to a minimum of 3 nationally accredited universities. * Successfully complete the GRE as required by the universities of interest. * Complete a master's degree within:

266

Critical exponent for viscosity  

Science Journals Connector (OSTI)

We have measured the critical exponent y characterizing the divergence of the viscosity ???T-Tc?-y for carbon dioxide and xenon. The values of y for both fluids fall within the range y=0.041±0.001 and are consistent with the range y=0.042±0.002 spanned by our earlier data for four binary liquid mixtures. This agreement is the strongest evidence that pure fluids and binary liquids are in the same dynamic universality class; however, the results for y are inconsistent with the recent theoretical value of 0.032.

Robert F. Berg and Michael R. Moldover

1990-12-15T23:59:59.000Z

267

Innovative Materials, Processes, and Tools Improve Performance, Quality of White LEDs  

Energy.gov (U.S. Department of Energy (DOE))

Lumileds Lighting joined forces with Sandia National Laboratories to investigate critical materials issues related to solid-state lighting technology.

268

Materializing energy  

Science Journals Connector (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

269

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network (OSTI)

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

270

Criticality Safety Basics for INL Emergency Responders  

SciTech Connect

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

271

Commercialization of Bulk Thermoelectric Materials for Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

272

Materials Science & Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

273

Characterization of Li-rich xLi2MnO3·(1?x)Li[MnyNizCo1?y?z]O2 as cathode active materials for Li-ion batteries  

Science Journals Connector (OSTI)

Abstract We have investigated the crystallographical, morphological, and electrochemical behaviors of synthesized four different compositions of xLi2MnO3·(1?x)Li[MnyNizCo1?y?z]O2 cathode active materials using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), and galvanostatic cycler. The four different compositions of cathode active materials demonstratea commonly angular shape of primary particles, but agglomerated spherical shape in appearance. All the attempted compositions of xLi2MnO3·(1?x)Li[MnyNizCo1?y?z]O2 cathodes deliver a specific discharge capacity of between 220 and 242 mAh/g at room temperature when cycled between 2.5 and 4.6 V versus Li/Li+ at C/10 rate.

Yong Nam Jo; K. Prasanna; Suk Joon Park; Chang Woo Lee

2013-01-01T23:59:59.000Z

274

Engineering porous materials for fuel cell applications  

Science Journals Connector (OSTI)

...conducting material that is situated...anode and cathode in a PEMFC...delivery to the active catalyst...upon the material choice...1000-1200C for cathode sintering...fine grained active composite...showing the cathode, electrolyte...composed of an active catalyst...layers. material SIGRACET...

2006-01-01T23:59:59.000Z

275

Ultra Thin Quantum Well Materials  

SciTech Connect

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

276

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

277

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

278

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

279

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

280

Criticality prevention during postaccident decontamination of TMI-2 (Three Mile Island Unit 2) plant systems  

SciTech Connect

Following the accident at Three Mile Island Unit 2 (TMI-2), the likelihood of a criticality outside of the reactor coolant system (RCS) during the plant cleanup was very small. Given the consequence of any possible critical event in the TMI-2 systems, However, it was always necessary to ensure that all steps were taken to prevent criticality. Therefore, engineered controls were developed to ensure that decontamination of plant systems containing fuel material could be conducted in a manner that precluded criticality.

Palau, G. L.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, Lawrence J; Taylor, Joseph Todd

2000-08-01T23:59:59.000Z

282

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, L.J.; Taylor, J.T.

2000-08-31T23:59:59.000Z

283

RADIOACTIVE MATERIALS SENSORS  

SciTech Connect

Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

Mayo, Robert M.; Stephens, Daniel L.

2009-09-15T23:59:59.000Z

284

Experimental Study of Plasma Materials' Interaction in Plasma Focus “Dena”  

Science Journals Connector (OSTI)

It is widely recognized that plasma material interaction in fusion devices is a critical issue that affects the overall machine performance. The process of material selection with a low degradation effect on the ...

M. V. Roshan; M. Mahmoodi Darian

2003-03-01T23:59:59.000Z

285

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

286

ENHANCEMENT OF ADSORPTION CAPACITY BY USE OF PHASE CHANGE MATERIAL (PCM) AS ADDITIVE IN AN ACTIVATED CARBON (AC) FIXED BED ADSORBER  

Science Journals Connector (OSTI)

To avoid emission of volatile hydrocarbons from automotive tank systems, canisters filled with activated carbon (AC) are placed as a buffer to the environment. During the loading of the filter the heat of adsorpt...

W. ZIMMERMANN; J.U. KELLER

2006-01-01T23:59:59.000Z

287

Room temperature discharge characteristics of Li/NH4NO3?LiNO3-amide cells using silver salts as active cathode materials  

Science Journals Connector (OSTI)

The discharge characteristics of cells using lithium anodes in conjunction with nitrate-amide melt electrolytes and silver salt cathodes are presented. The use of insoluble or sparingly soluble silver salts as active

G. E. McManis; A. N. Fletcher; D. E. Bliss…

1986-11-01T23:59:59.000Z

288

FAQS Reference Guide – Criticality Safety  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the April 2009 edition of DOE-STD-1173-2009, Criticality Safety Functional Area Qualification Standard.

289

Future Applications Monitor Critical Structures  

E-Print Network (OSTI)

Future Applications · Monitor Critical Structures ­ Bridges, dams, pipelines, power integrity for rescue efforts ­ Expendable for unstable conditions ­ Power system repair ­ Firefighting

Huston, Dryver R.

290

Criticality Safety | Department of Energy  

Office of Environmental Management (EM)

at Department of Energy Non Reactor Nuclear Facilities DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification Contact Garrett Smith...

291

An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989  

SciTech Connect

This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

Not Available

1989-09-01T23:59:59.000Z

292

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

293

Critical Infrastructure and Internal Controls  

Science Journals Connector (OSTI)

Critical refers to infrastructure that provides an essential support for economic and social well-being, for public safety and for the functioning of key government responsibilities. According to Resolution of the National Security Strategy of the Republic ... Keywords: Risk management,Process control,Government,Standards,Security,Uncertainty,internal controls,critical infrastructure,risk,risk management

Iztok Podbregar; Mojca Ferjancic Podbregar

2012-08-01T23:59:59.000Z

294

Complex Materials  

SciTech Connect

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

295

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

296

Irreversible Thermodynamics and Smart Materials Systems Modelling. Example of  

E-Print Network (OSTI)

Irreversible Thermodynamics and Smart Materials Systems Modelling. Example of Magnetic Shape Memory mechanisms in smart materials. This procedure is applied to Magnetic Shape Memory Alloys actuators of complex active materials for smart systems. Keywords: Smart material systems, Actuator design

Paris-Sud XI, Université de

297

Electrode material comprising graphene-composite materials in a graphite network  

DOE Patents (OSTI)

A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

Kung, Harold H.; Lee, Jung K.

2014-07-15T23:59:59.000Z

298

Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials  

Science Journals Connector (OSTI)

......phantom surrounded by water-filled containers extending...depth of maximum dose in water for a 10 cm 10 cm square...all irradiations. The atmospheric pressure and internal...acetone and distilled water. They were then transferred...neutrons from a D-T generator. Table 1. Activation......

Robert A. Price

2005-12-20T23:59:59.000Z

299

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

300

Public Scoping Meeting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Scoping Meeting Materials Public Scoping Meeting Materials Public Scoping Meeting Materials Fact sheets, presentations, and other information from the Conversion EIS Public Scoping Meetings. The following materials were made available during the DUF6 Conversion EIS public scoping meetings held near Portsmouth, Ohio, Oak Ridge, Tennessee, and Paducah, Kentucky, November - December, 2001. Notice of Intent PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details Presentation PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program 5.97 MB details DUF6 Fact Sheets PDF Icon Overview of Depleted Uranium Hexafluoride Management Program 174 KB details PDF Icon NEPA Activities for the Depleted Uranium Hexafluoride Management Program

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Department of Materials Science and Engineering  

E-Print Network (OSTI)

The Department of Materials Science and Engineering 325 Woolf Hall · Box 19031 · 817-272-2398 www.uta.edu/mse Overview The interdisciplinary field of materials science and engineering has become critical to many emerging areas of science and advanced technology. As a result, there is a growing demand for engineers

Texas at Arlington, University of

302

Critical behaviour in the elastic response of hydrogels  

E-Print Network (OSTI)

Highly responsive, or 'smart' materials are abundant in Nature; individual cells, for instance, can adapt their mechanical properties to the local surroundings through small changes in their internal structure. An effective method to enhance the responsiveness of synthetic materials is to operate near a critical point, where small variations lead to large changes in material properties. Recent theories have suggested that fibre/polymer networks can show critical behaviour near and below the point of marginal connectivity that separates rigid and floppy states [1-4]. To date, however, experimental evidence for criticality in such networks has been lacking. Here, we demonstrate critical behaviour in the stress response of synthetic hydrogels at low concentrations of order 0.1% volume fraction. We show, using computer simulations, that the observed response to stress can be understood by considering the influence of a zero-temperature critical point, i.e. the Maxwell isostatic point [5], together with the intrinsically nonlinear stretch response of semi-flexible polymer strands in the gel.

M. Dennison; M. Jaspers; P. H. J. Kouwer; C. Storm; A. E. Rowan; F. C. MacKintosh

2014-07-01T23:59:59.000Z

303

Modeling and Design of Material Separation Systems with Applications to Recycling  

E-Print Network (OSTI)

Material separation technology is critical to the success of the material recycling industry. End-of-life products, post-consumer waste, industrial excess, or otherwise collected materials for reuse are typically mixed ...

Wolf, Malima Isabelle, 1981-

2011-01-01T23:59:59.000Z

304

G:\Corplan\!MbrMaterials\PROD-NM\CUSTOM\LANS\2013\plan compare_ACTIVE EE_ppo epo cdhp_2013_DRAFT.wpd  

NLE Websites -- All DOE Office Websites (Extended Search)

3 BCBSNM-Administered Medical Programs: ACTIVE EMPLOYEES ONLY 3 BCBSNM-Administered Medical Programs: ACTIVE EMPLOYEES ONLY At-A-Glance Comparison of 2013 Non-Medicare Medical Program Benefits At-A-Glance: Comparing the 2013 PPO, EPO, and CDHP Medical Programs  Medical Program Benefit Comparison PPO Benefits & Cost-Sharing CDHP + HRA Benefits & Cost-Sharing EPO Benefits & Cost-Sharing Preferred Provider (In-Network) Nonpreferred Provider (Out-of-Network) Preferred Provider (In-Network) Nonpreferred Provider (Out-of-Network) Preferred Provider (Only limited coverage for out-of-network care) Calendar Year Deductible - All services are subject to deductible unless otherwise indicated below. $250 Individual $750 Family $500 Individual $1500 Family $1500/Individual $2250/Employee + Adult OR $2250/Employee + Child(ren)

305

Magnetic Critical Solutions in Holography  

E-Print Network (OSTI)

The AdS/CFT correspondence is a realization of the holographic principle in the context of string theory. It is a map between a quantum field theory and a string theory living in one or more extra dimensions. Holography provides new tools to the study of strongly coupled systems. It has important applications in quantum chromodynamics (QCD) and condensed matter (CM) systems, which are usually complicated and strongly coupled. Quantum critical CM theories have scaling symmetries and can be connected to higher-dimensional scale invariant space-times. The Effective Holographic Theory paradigm may be used to describe the low-energy (IR) holographic dynamics of quantum critical systems at the two-derivative level by the Einstein-Maxwell-Dilaton (EMD) theory. We find the magnetic critical scaling solutions of an EMD theory containing an extra parity-odd term $F\\wedge F$. Previous studies in the absence of magnetic fields have shown the existence of quantum critical lines separated by quantum critical points. We find this is also true in the presence of a magnetic field. The critical solutions are characterized by the triplet of critical exponents ($\\theta,z,\\zeta$), the first two describing the geometry, while the latter describes the charge density.

N. Angelinos

2014-11-03T23:59:59.000Z

306

Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores  

SciTech Connect

This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. The material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.

Krass, A.W.

2005-12-19T23:59:59.000Z

307

EMSL: Science: Energy Materials and Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

308

Bible Criticism and Social Science  

Science Journals Connector (OSTI)

In this paper I will deal with the crucial role played by the Bible critics of the 17th century in providing some of the framework in which modern social science developed. Besides providing some of the method...

Richard Popkin

1974-01-01T23:59:59.000Z

309

Autoclave nuclear criticality safety analysis  

SciTech Connect

Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

1991-12-31T23:59:59.000Z

310

Materials Handbook  

Science Journals Connector (OSTI)

... THE sub title of this handbook gives the clue to the mode of treatment of the subject matter, and so ... seventeen to 'alkalis'; in fact, a better title for the book would be "Handbook of Engineering Materials". British trade names are conspicuously few, but no doubt a ...

E. H. TRIPP

1942-08-15T23:59:59.000Z

311

Materials for geothermal production  

SciTech Connect

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

312

Deconfined criticality in bilayer graphene  

Science Journals Connector (OSTI)

We propose that bilayer graphene can provide an experimental realization of deconfined criticality. Current experiments indicate the presence of Néel order in the presence of a moderate magnetic field. The Néel order can be destabilized by application of a transverse electric field. The resulting electric field induced state is likely to have valence bond solid order, and the transition can acquire the emergent fractionalized and gauge excitations of deconfined criticality.

Junhyun Lee and Subir Sachdev

2014-11-19T23:59:59.000Z

313

A Novel Method to Improve the Electrochemical Performance of LiMn2O4 Cathode Active Material by CaCO3 Surface Coating  

Science Journals Connector (OSTI)

Spinel LiMn2O4 was synthesized by glycine-nitrate method and coated with CaCO3 in order to enhance the electrochemical performance at room temperature (25°C) and 55°C. The uncoated and CaCO3-coated LiMn2O4 materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. XRD and SEM results indicated that CaCO3 particles encapsulated the surface of the LiMn2O4 without causing any structural change. The charge-discharge tests showed that the specific discharge capacity fade of pristine electrode at 25 and 55°C were 25.5% and 52%, respectively. However, surface modified cathode shows 7.4% and 29.5% loss compared to initial specific discharge capacity at 70th cycle for 25 and 55°C, respectively. The improvement of electrochemical performance is attributed to suppression of Mn2+ dissolution into electrolyte via CaCO3 layer.

Halil ?ahan; Hüseyin Göktepe; ?aban Patat

2011-01-01T23:59:59.000Z

314

Secondary Energy Infobook Activities (19 Activities)'  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Infobook Activities (19 Activities) Grades: 9-12 Topics: Energy Basics Owner: NEED This educational material is brought to you by the U.S. Department of Energy's Office of Energy...

315

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specific Activity Specific Activity Low Specific Activity (LSA) material means Class 7 (radioactive) material with limited specific activity which satisfies the descriptions and limits set forth below. Shielding materials surrounding the LSA material may not be considered in determining the estimated average specific activity of the package contents. LSA material must be in one of three groups: LSA-I (i) Ores containing only naturally occurring radionuclides (e.g., uranium, thorium) and uranium or thorium concentrates of such ores; or (ii) Solid unirradiated natural uranium or depleted uranium or natural thorium or their solid or liquid compounds or mixtures; or (iii) Class 7 (radioactive) material, other than fissile material, for which the A2 value is unlimited; or

316

The Suzaku Observation of the Nucleus of theRadio-Loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material  

SciTech Connect

A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The net exposure times after screening were: 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD-GSO. The hard X-rays are fit by two power-laws of the same slope, absorbed by columns of 1.5 and 7 x 10{sup 23} cm{sup -2} respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, but it is also consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature vapec model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The Fe K{alpha} line width yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

Markowitz, A.; Takahashi, T.; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky,; Okajima, T.; Ptak, A.; Reeves, J.N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

2007-06-27T23:59:59.000Z

317

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from...

318

Microsoft PowerPoint - Siemens_materials workshop MIT EI_120310.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Critical Materials and Substitutes Critical Materials and Substitutes Siemens Corporation Dr Madhav D Manjrekar Dr. Madhav D. Manjrekar Green Energy & Power Systems Dr. Thomas Scheiter & Dr. Gotthard Rieger Materials Substitution and Recycling Materials Substitution and Recycling Dr. Martin Zachau & Pamela Horner OSRAM Sylvania y Dr. Henrik Stiesdal Siemens Wind Power ©Siemens Corporation, Corporate Research, 2010. All rights reserved. ©Siemens Corporation, Corporate Research, 2010. All rights reserved. Agenda * Introduction Introduction * Application Requirements * Renewable Generation & Power Electronics * Lighting * Lighting * Discussion Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative

319

The Los Alamos Critical Experiments Facility Program  

SciTech Connect

Critical assemblies of precisely known materials and reproducible and easily calculated geometries have been constructed at the Los Alamos National Laboratory since the 1940s. Initially, these assemblies were built to provide information necessary for the nuclear weapons development effort. Subsequently, intensive studies of the assemblies themselves were undertaken to provide a better understanding of the physics of the fission process and other nuclear reactions in the nuclear materials from which these machine were constructed and in other materials irradiated in these assemblies. Some of these assemblies (notably Jezebel, Flattop, Big Ten, and Godiva) have been used as benchmark assemblies to compare the results of experimental measurements and computations of certain nuclear reaction parameters. These comparisons are used to validate both the input nuclear data and the computational methods. In addition to these normally fueled benchmark assemblies, other assembly machines are fueled periodically to provide specific and detailed results for parameter sensitivity studies for a large number of applications. Some of these machines and their applications are described.

Dowdy, E.J.

1987-01-01T23:59:59.000Z

320

Derivation of criticality safety benchmarks from ZPR fast critical assemblies  

SciTech Connect

Scores of critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9, and ZPPR fast critical assembly facilities. Most of the assemblies were mockups of various liquid-metal fast breeder reactor designs. These tended to be complex, containing, for example, mockups of control rods and control rod positions. Some assemblies, however, were `physics benchmarks`. These relatively `clean` assemblies had uniform compositions and simple geometry and were designed to test fast reactor physics data and methods. Assemblies in this last category are well suited to form the basis for new criticality safety benchmarks. The purpose of this paper is to present an overview of some of these benchmark candidates and to describe the strategy being used to create the benchmarks.

Schaefer, R.W.; McKnight, R.D.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2014 Annual Merit review Results Report - Materials Technologies...  

Energy Savers (EERE)

review Results Report - Materials Technologies 2014 Annual Merit review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities...

322

2011 Annual Progress Report for Lightweighting Materials | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energys (DOEs) Vehicle Technologies Program (VTP), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and...

323

Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual...  

Energy Savers (EERE)

of Energy's (DOE's) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and...

324

Development of sulfur cathode material for Li-S batteries.  

E-Print Network (OSTI)

??M.S. Efforts were taken to fabricate a cathode material having Sulfur as the active material. First step is composed of identifying potential ways of fabricating… (more)

Dharmasena, Ruchira Ravinath, 1984-

2014-01-01T23:59:59.000Z

325

Geothermal materials development  

SciTech Connect

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

326

Integrating agile practices into critical software development  

E-Print Network (OSTI)

Integrating agile practices into critical software development Katarzyna Lukasiewicz, Janusz Górski. In this text we describe our research towards introducing agile practices into critical software development processes Keywords-- safety-critical software; agile practices; software development; process improvement

Boyer, Edmond

327

Magnetic Critical Solutions in Holography  

E-Print Network (OSTI)

The AdS/CFT correspondence is a realization of the holographic principle in the context of string theory. It is a map between a quantum field theory and a string theory living in one or more extra dimensions. Holography provides new tools to the study of strongly coupled systems. It has important applications in quantum chromodynamics (QCD) and condensed matter (CM) systems, which are usually complicated and strongly coupled. Quantum critical CM theories have scaling symmetries and can be connected to higher-dimensional scale invariant space-times. The Effective Holographic Theory paradigm may be used to describe the low-energy (IR) holographic dynamics of quantum critical systems at the two-derivative level by the Einstein-Maxwell-Dilaton (EMD) theory. We find the magnetic critical scaling solutions of an EMD theory containing an extra parity-odd term $F\\wedge F$. Previous studies in the absence of magnetic fields have shown the existence of quantum critical lines separated by quantum critical points. We fin...

Angelinos, N

2014-01-01T23:59:59.000Z

328

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

329

Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research  

SciTech Connect

The Nation’s health, wealth, and security rely on the production and distribution of certain goods and services. The array of physical assets, processes, and organizations across which these goods and services move are called "critical infrastructures".1 This statement is as true in the U.S. as in any country in the world. Recent world events such as the 9-11 terrorist attacks, London bombings, and gulf coast hurricanes have highlighted the importance of stable electric, gas and oil, water, transportation, banking and finance, and control and communication infrastructure systems. Be it through direct connectivity, policies and procedures, or geospatial proximity, most critical infrastructure systems interact. These interactions often create complex relationships, dependencies, and interdependencies that cross infrastructure boundaries. The modeling and analysis of interdependencies between critical infrastructure elements is a relatively new and very important field of study. The U.S. Technical Support Working Group (TSWG) has sponsored this survey to identify and describe this current area of research including the current activities in this field being conducted both in the U.S. and internationally. The main objective of this study is to develop a single source reference of critical infrastructure interdependency modeling tools (CIIMT) that could be applied to allow users to objectively assess the capabilities of CIIMT. This information will provide guidance for directing research and development to address the gaps in development. The results will inform researchers of the TSWG Infrastructure Protection Subgroup of research and development efforts and allow a more focused approach to addressing the needs of CIIMT end-user needs. This report first presents the field of infrastructure interdependency analysis, describes the survey methodology, and presents the leading research efforts in both a cumulative table and through individual datasheets. Data was collected from open source material and when possible through direct contact with the individuals leading the research.

Not Available

2006-08-01T23:59:59.000Z

330

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

331

CRITICALITY SAFETY QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Criticality Safety Qualification Standard Reference Guide APRIL 2011 This page is intentionally blank. Table of Contents i FIGURES ...................................................................................................................................... iii PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1 PREFACE ...................................................................................................................................... 1 ACKNOWLEDGEMENTS ......................................................................................................... 2

332

Criticality Safety Controls Implementation Inspection Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0 ) Criticality Safety Controls...

333

A Review of Criticality Accidents 2000 Revision  

SciTech Connect

Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

2000-05-01T23:59:59.000Z

334

CRAD, Criticality Safety Controls Implementation - May 31, 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation - May 31, 2013 Criticality Safety Controls Implementation - May 31, 2013 CRAD, Criticality Safety Controls Implementation - May 31, 2013 May 31, 2013 Criticality Safety Controls Implementation with DOE activities and sites (HSS CRAD 45-18) Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations' (HS-45) mission is to assess the effectiveness of the environment, safety, health and emergency management systems and practices used by line and contractor organ izations in implementing Integrated Safety Management; and to provide clear, concise,and independent evaluations of performance in protecting our workers, the public, and the environment from the hazards associated with Department of Energy (DOE)

335

Electrochemistry Diagnostics of Baseline and New Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of high- voltage cathode materials * The HT CO 2 activation of commercial carbon black additives process effectively suppresses unwanted side reactions in organic carbonate...

336

Materials Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials 200501559 A flow cell for electron microscopy imaging of specimen in liquid or gas. 200501575 Production of Activated Carbon Fibers and Engineered Forms from Renewable...

337

Critical length limiting super-low friction  

E-Print Network (OSTI)

Since the demonstration of super-low friction (superlubricity) in graphite at nanoscale, one of the main challenges in the field of nano- and micro-mechanics was to scale this phenomenon up. A key question to be addressed is to what extent superlubricity could persist, and what mechanisms could lead to its failure. Here, using an edge-driven Frenkel-Kontorova model, we establish a connection between the critical length above which superlubricity disappears and both intrinsic material properties and experimental parameters. A striking boost in dissipated energy with chain length emerges abruptly due to a high-friction stick-slip mechanism caused by deformation of the slider leading to a local commensuration with the substrate lattice. We derived a parameter-free analytical model for the critical length that is in excellent agreement with our numerical simulations. Our results provide a new perspective on friction and nano-manipulation and can serve as a theoretical basis for designing nano-devices with super-low friction, such as carbon nanotubes.

Ming Ma; Andrea Benassi; Andrea Vanossi; Michael Urbakh

2015-01-02T23:59:59.000Z

338

Materials Under Extremes | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

339

Grid-Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Materials Development Across the NETL-RUA: Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative Office of Research & Development Activities Relevant Centers and Expertise Within the Regional University Alliance Needs for Advanced Materials in Grid Applications Forward Looking Vision: Integrated Development Initiative Active / Passive Components in Power Electronics Sensors for Power Flow Control and Condition Monitoring Grid-Scale Energy Storage Enduring Expertise in Electrochemical Materials Emerging Expertise in Magnetic and Optical Materials EPRI Report 1016921 EPRI Report 1020619 Energy Storage Energy Storage Grid of The Future 1) High Renewable Penetration 2) Active Power Flow Control 3) High Electric Vehicle Deployment 4)

340

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photovoltaic Materials  

SciTech Connect

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

342

Conditioning of carbonaceous material prior to physical beneficiation  

DOE Patents (OSTI)

A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

Warzinski, Robert P. (Venetia, PA); Ruether, John A. (McMurray, PA)

1987-01-01T23:59:59.000Z

343

Managing Critical Management Improvement Initiatives  

Directives, Delegations, and Requirements

Provides requirements and responsibilities for planning, executing and assessing critical management improvement initiatives within DOE. DOE N 251.59, dated 9/27/2004, extends this Notice until 10/01/2005. Archived 11-8-10. Does not cancel other directives.

2003-10-01T23:59:59.000Z

344

Critical Infrastructure and Cyber Security  

E-Print Network (OSTI)

indicators vis-a-vis one another, which is especially important in the midst of the current budgetary uncertainty in Washington. In this study, we present our definitions of the three indicators; an overview of the eighteen sectors of critical infrastructure...

Doll, Abby; Pirrong, Renee; Jennings, Matthew; Stasny, George; Giblin, Andy; Shaffer, Steph; Anderson, Aimee

2011-01-01T23:59:59.000Z

345

Surgical Critical Care Service Orientation  

E-Print Network (OSTI)

· Improved inter-service communication · Reduction in SCC practice variance · Reduction in resource · Amanda Martin, CRNP · Continuity · Clinical · Compliance · Communication #12;SCCS Surgical Critical Care Service: Rhoads 5 · Geographic Coverage · Green Team ­ Rooms 5001-5012 ­ Rapid Response · Gold Team

Bushman, Frederic

346

Near-critical Ising model Christophe Garban  

E-Print Network (OSTI)

Near-critical Ising model Christophe Garban ENS Lyon and CNRS 8th World Congress in Probability and Statistics Istanbul, July 2012 C. Garban (ENS Lyon and CNRS) Near-critical Ising model 1 / 19 #12;Plan 1 Near-critical Ising model 2 / 19 #12;Plan 1 Near-critical behavior, case of percolation Notion of correlation length L

Garban, Christophe

347

Materials issues in high temperature ultrasonic transducers for under-sodium viewing  

SciTech Connect

Liquid sodium is used as the coolant in some fast spectrum nuclear reactors. This material is optically opaque. To facilitate operations and maintenance activities, an ultrasonic under-sodium viewing system has been developed. In the USA, the technology was successfully demonstrated in the 1970s and, over the intervening 30+ years, the capability was lost. This paper reports materials challenges encountered in developing both single-element and linear phased-array 2-MHz transducers that must operate at temperatures up to 260 deg. C. The critical issues are fundamentally material selection: the ability of a transducer to be immersed into liquid sodium and function at 260 deg. C, to achieve wetting and transmission of ultrasound into the sodium, and to be able to be removed and re-used.

Bond, L. J.; Griffin, J. W.; Posakony, G. J.; Harris, R. V.; Baldwin, D. L. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

2012-05-17T23:59:59.000Z

348

Electrochemical Modeling of LMR-NMC Materials and Electrodes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

unit cell kinetic mean field model) that specifically accounts for the movement of ions within the crystal lattice. 5 View of Activated LMR-NMC Material The activated...

349

Material Control and Accountability Experience at the Fuel Conditioning Facility  

SciTech Connect

The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electrometallurgical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials. Material accountancy is necessary at FCF for two reasons: 1) it provides a mechanism for detecting a potential loss of nuclear material for safeguards and security, and 2) it provides a periodic check of inventories to ensure that processes and materials are within control limits. Material Control and Accountability is also a Department of Energy (DOE) requirement (DOE Order 474.1). The FCF employs a computer based Mass Tracking (MTG) System to collect, store, retrieve, and process data on all operations that directly affect the flow of materials through the FCF. The MTG System is important for the operations of the FCF because it supports activities such as material control and accountability, criticality safety, and process modeling. To conduct material control and accountability checks and to monitor process performance, mass balances are routinely performed around the process equipment. The equipment used in FCF for pyro-processing consists of two mechanical choppers and two electro-refiners (the Mark-IV with the accompanying element chopper and Mark-V with the accompanying blanket chopper for processing driver fuel and blanket, respectively), and a cathode processor (used for processing both driver fuel and blanket) and casting furnace (mostly used for processing driver fuel). Performing mass balances requires the measurement of the masses and compositions of several process streams and equipment inventories. The masses of process streams are obtained via in-cell balances (i.e., load cells) that weigh containers entering and leaving the process equipment. Samples taken at key locations are analyzed to determine the composition of process streams and equipment inventories. In cases where equipment or containers cannot be placed on a balance, others methods (e.g., level measurements, volume calibration equations, calculated density via additive volumes) are utilized to measure the inventory mass. This paper will discuss the material control and accountability experience at the FCF after ten-plus years of processing spent nuclear fuel. A particular area of discussion is the calculated electrolyte density via additive volumes and its importance in determining the mass and composition in the FCF electro-refiners for material control and accountability of special nuclear material. (authors)

Vaden, D.; Fredrickson, G.L. [Idaho National Laboratory, Idaho Falls ID 83415 (United States)

2007-07-01T23:59:59.000Z

350

Educational Material  

NLE Websites -- All DOE Office Websites (Extended Search)

You can order a chart of the Fundamental Particles and Interactions that summarizes the current status of the Standard Model (view chart.) You can order a chart of the Fundamental Particles and Interactions that summarizes the current status of the Standard Model (view chart.) Adventures in Particle Physics is a CD-ROM that contains the complete Particle Adventure as well as the Quark Adventure, a version appropriate for exhibition settings. There are English, Spanish, French, and German versions of both adventures on the CD-ROM. It is both PC and Mac compatible. Student and teacher worksheets for classroom activities. Teachers are encouraged to print out and reproduce these pages for classroom activities (en Español). The Charm of Strange Quarks: Mysteries and Revolutions of Particle Physics can be ordered now. This book brings the excitement and a basic understanding of this fundamental topic to the public and especially to students. It includes very recent developments in particle physics and cosmology. More details

351

Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials  

Fuel Cell Technologies Publication and Product Library (EERE)

This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevan

352

Criticality safety management during the new mission at Rocky Flats  

SciTech Connect

Under the cleanup and waste management missions at the former United States Department of Energy (DOE) production sites, a redirection of nuclear criticality safety programs has to take place to accommodate new objectives and reduced resources. The Rocky Flats Environmental Technology Site (RFETS) provides innovative approaches to respond to the needs of its new mission. The paper provides some background on the changes in the DOE complex and expands on the steps undertaken at RFETS with the hope that some of the novel approaches could be of use at other facilities. With the demise of the Cold War, the United States Department of Energy weapons complex has transitioned from the production of nuclear material to the disposition of weapons and cleanup of former production sites. Fissionable material in stored waste, contaminated facilities and equipment, and left over inventories presents nuclear criticality safety challenges that requires careful management.

Toffer, H.; Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States)

1996-12-31T23:59:59.000Z

353

US/Russian program in materials protection, control and accounting at the RRC Kurchatov Institute: 1997--1998  

SciTech Connect

Six US Department of Energy Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute to improve nuclear material protection, control and accounting (MPC and A) at Kurchatov. In 1997--1998 the primary thrust of this program has been directed to Building 106, which houses a number of test reactors and critical facilities. Substantial improvements in physical protection, upgrades in the physical inventory taking procedures, installation of equipment for the computerized materials accounting system, and installation of nuclear material portal monitors and neutron-based measurement equipment are being carried out at this facility. Software for the computerized accounting system, named KI-MACS, has been developed at Kurchatov and the system has been fully integrated with the bar code printing and reading equipment, electronic scales, and nondestructive assay equipment provided under this program. Additional 1997--1998 activities at Kurchatov include continuation of a tamper indicating device program, vulnerability assessments of several facilities, hosting of a Russian-American Workshop on Fissile Material Control and Accountability at Critical Facilities, and the development of accounting procedures for transfers of nuclear materials between material balance areas.

Sukhoruchkin, V.; Rumyantsev, A.; Shmelev, V. [RRC Kurchatov Inst., Moscow (Russian Federation)] [and others

1998-12-31T23:59:59.000Z

354

Old Electrochromic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

355

Multimodal options for materials research to advance the basis for fusion energy in the ITER era  

Science Journals Connector (OSTI)

Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

S.J. Zinkle; A. Möslang; T. Muroga; H. Tanigawa

2013-01-01T23:59:59.000Z

356

Quantum Critical Scaling in Graphene  

Science Journals Connector (OSTI)

We show that the emergent relativistic symmetry of electrons in graphene near its quantum critical point (QCP) implies a crucial importance of the Coulomb interaction. We derive scaling laws, valid near the QCP, that dictate the nontrivial magnetic and charge response of interacting graphene. Our analysis yields numerous predictions for how the Coulomb interaction will be manifested in experimental observables such as the diamagnetic response and electronic compressibility.

Daniel E. Sheehy and Jörg Schmalian

2007-11-30T23:59:59.000Z

357

Atomization of metal (Materials Preparation Center)  

SciTech Connect

Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a color video of a liquid metal stream being atomized by high pressure gas. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov WARNING - AUDIO IS LOUD.

None

2010-01-01T23:59:59.000Z

358

Overview of Joining Activities in Lightweighting Materials |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm13feng.pdf More Documents & Publications Dynamic Characterization of Spot Welds for...

359

CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-07T23:59:59.000Z

360

Nano Structured Activated Carbon for Hydrogen Storge  

SciTech Connect

Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

Israel Cabasso; Youxin Yuan

2013-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

362

Material control and accountability alternatives  

SciTech Connect

Department of Energy and Nuclear Regulatory Commission regulations governing material control and accountability in nuclear facilities have become more restrictive in the past decade, especially in areas that address the insider threat. As the insider threat receives greater credibility, regulations have been strengthened to increase the probability of detecting insider activity and to prevent removal of a significant quantity of Special Nuclear Material (SNM) from areas under control of the protective force.

NONE

1991-08-12T23:59:59.000Z

363

A Critical Review on Studies of Volatile Organic Compound (VOC) Sorption by  

E-Print Network (OSTI)

A Critical Review on Studies of Volatile Organic Compound (VOC) Sorption by Building Materials (RP the pros and cons of existing sorption models, as well as experimental methods. In addition, it summarizes existing sorption data in order to understand the phenomenon of VOC sorption on building materials better

Chen, Qingyan "Yan"

364

Energy Critical Infrastructure and Key Resources Sector-Specific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR) protection efforts into a single national program. The NIPP includes an overall framework integrating federal programs and activities that are currently underway in the various sectors, as well as new and developing CI/KR protection efforts. The Energy

365

Final Demolition and Disposition of 209-E Critical Mass Laboratory - 12267  

SciTech Connect

The 209-E Critical Mass Laboratory was constructed in 1960 to provide a heavy shielded reactor room where quantities of plutonium or uranium in solution could be brought to near-critical configurations under carefully controlled and monitored conditions. In the late 1980's, the responsible contractor, Pacific Northwest National Laboratory (PNNL), was directed by the Department of Energy (DOE) to prepare the facility for unoccupied status. The facility was demolished under a Removal Action Work Plan pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The funding for this project was provided by the American Recovery and Reinvestment Act (ARRA). The primary rooms of concern with regards to contamination in 209-E facility, which is over 9,000 square feet, are the criticality assembly room (CAR), the mix room, and the change room. The CAR contained two reactor hoods (HO-140 and HO-170), which each had a high efficiency particulate air (HEPA) filter system. The CAR contained 13 tanks ranging from 38 L (10 gal) to 401 L (106 gal). Tanks TK-109 and TK-110 are below grade, and were removed as part of this demolition and disposition remedy. Nonradiological and radiological hazardous substances were removed, decontaminated, or fixed in place, prior to demolition. Except for the removal of below grade tanks TK-109 and TK-110, the facility was demolished to slab-on-grade. PNNL performed stabilization and deactivation activities that included removal of bulk fissile material and chemicals, flushing tanks, stabilizing contamination within gloveboxes and hoods, and packaging and removing waste. The removal of the contaminated plutonium equipment and materials from the 209E facility presented a number of challenges similar in nature to those associated with the inventory reduction and cleanup activities at the Plutonium Finishing Plant. Although there were no bulk fissile materials or chemicals within the facility, there were residual radiological materials (isotopes of plutonium and americium) in the tanks and hoods. The complexity of the remedy was present because of the various configurations of the tanks and hoods, combined with the residual contaminants. Because of the weight and dimensional configuration, size reduction of the slab tanks, as well as removal and disposal of the different material used for moderation and absorption, were two examples of challenges that were resolved to complete the remedy. One of the key methods developed and implemented at the facility was the design and construction of a shroud to allow the cutting of the Pu contaminated tanks. The shroud design, development and implementation at the 209E Project was an example of enhanced work planning and task hazards analysis with worker involvement. This paper will present the lessons learned from the 209E facility inventory reduction activities including the shroud and other methodologies used. The initial Lessons Learned discussion for this project was scheduled for late January 2012. This facility is the first open-air demolition of a highly contaminated plutonium-contaminated facility accomplished by CH2M Hill under the Plateau Remediation Contract. The demolition was completed without spread of contamination to the workers and the surrounding area. As with any project of this complexity, there are significant accomplishments, as well as experience that can be applied to future demolition of plutonium-contaminated facilities on the Hanford Site. These experiences will be documented at a later date. (authors)

Woolery, Wade [US Department of Energy, Richland WA (United States); Dodd, Edwin III [CH2M Hill Plateau Remediation Company, Richland WA (United States)

2012-07-01T23:59:59.000Z

366

FY 2009 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development  

Energy.gov (U.S. Department of Energy (DOE))

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

367

Thermal criticality in a repository environment  

SciTech Connect

This report explores a scenario in which burial containers fail and fissile material is transported through the tuff by water to some location, away from the burial site, where an over-moderated critical mass gradually accumulates. Because of the low solubilities of plutonium and uranium, and the low ground water velocities, the analysis shows that such a scenario with {sup 239}Pu is probably impossible because the time required to accumulate a critical mass is large compared with the half-life of the {sup 239}Pu. In the case of {sup 235}U, the analysis indicates that the accumulation rates are so low that relatively small fission power levels would consume the {sup 235}U as fast as it accumulates, and that the thermal conductivity of the tuff is large enough to prevent a significant increase in temperature. Thus, the conditions for the removal of water by boiling and the associated autocatalytic increase in reactivity are not met in the case of {sup 235}U. An explosive release of energy does not appear to be possible. A simple water voiding model, which allows water removal at about the fastest possible rate, was used to explore a scenario in which the fuel accumulation rate was arbitrarily increased enough to cause water boiling and the associated dryout of the tuff. Calculations for this case indicate that disruption of the tuff, leading to a neutronic shutdown, would probably occur before an explosive energy release could be generated. Additional scenarios, which should be investigated in future work are identified.

Morris, E.E.

1995-11-01T23:59:59.000Z

368

Critical Analysis of Active Shielding Methods for Space Radiation Protection  

E-Print Network (OSTI)

are reviewed and critiqued. Advantages and disadvantages of the proposed methods will be presented harmful space radiations. Designs affording protection from either solar energetic particle event protons for deep space missions are sporadic solar energetic particle events (SPEs) and the ever-present Galactic

Shepherd, Simon

369

Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2008 Annual Progress Report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

370

Nanoscale gap filling for phase change material by pulsed deposition and inductively coupled plasma etching  

Science Journals Connector (OSTI)

The gap filling of phase change material has become a critical module in the fabrication process of phase change random access memory (PCRAM) as the ... . We achieved void free gap filling of phase change material

W. C. Ren; B. Liu; Z. T. Song; X. Z. Jing; B. C. Zhang; Y. H. Xiang…

2013-09-01T23:59:59.000Z

371

U.S. Department of Energy Theorty Focus Session on Hydrogen Storage Materials  

Energy.gov (U.S. Department of Energy (DOE))

An agenda for a four-part, theory-focus session on hydrogen storage materials to identify critical areas, key barriers, and gaps in current theory/modeling approaches for hydrogen storage materials and technologies.

372

Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2010 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

373

Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2009 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

374

Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2011 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

375

Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2012 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

376

Durability of Acrylic: Stress and Response Characterization of Materials for Photovoltaics  

E-Print Network (OSTI)

Durability of Acrylic: Stress and Response Characterization of Materials for Photovoltaics Myles P of materials for enhanced photovoltaic (PV) performance, it is critical to have quantitative knowledge of acrylic PMMA are reported. Keywords-Acrylic, Degradation, Photovoltaics, Photodegradation I. INTRODUCTION

Rollins, Andrew M.

377

MATERIAL PROCESSING FOR SELF-ASSEMBLING MACHINE SYSTEMS  

SciTech Connect

We are developing an important aspect of a new technology based on self-reproducing machine systems. Such systems could overcome resource limitations and control the deleterious side effects of human activities on the environment. Machine systems capable of building themselves promise an increase in industrial productivity as dramatic as that of the industrial revolution. To operate successfully, such systems must procure necessary raw materials from their surroundings. Therefore, next to automation, most critical for this new technology is the ability to extract important chemicals from readily available soils. In contrast to conventional metallurgical practice, these extraction processes cannot make substantial use of rare elements. We have designed a thermodynamically viable process and experimentally demonstrated most steps that differ from common practice. To this end we had to develop a small, disposable vacuum furnace system. Our work points to a viable extraction process.

K. LACKNER; D. BUTT; C. WENDT

1999-06-01T23:59:59.000Z

378

Multi Material Paradigm  

Energy Savers (EERE)

Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept...

379

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1995-01-01T23:59:59.000Z

380

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Critical wavelength for river meandering  

Science Journals Connector (OSTI)

A fully nonlinear modal analysis identifies a critical centerline wave number qc for river meandering that separates long-wavelength bends, which grow to cutoff, from short-wavelength bends, which decay. Exact, numerical, and approximate analytical results for qc rely on the Ikeda, Parker, and Sawai [J. Fluid Mech. 112, 363 (1981)] model, supplemented by dynamical equations that govern the river migration and length. Predictions also include upvalley bend migration at long times and a peak in lateral migration rates at intermediate times. Experimental tests are suggested.

Boyd F. Edwards and Duane H. Smith

2001-03-28T23:59:59.000Z

382

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

383

Graphene: from materials science to particle physics  

E-Print Network (OSTI)

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaquín E. Drut; Timo A. Lähde; Eero Tölö

2010-11-02T23:59:59.000Z

384

Shipping container for fissile material  

DOE Patents (OSTI)

The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

Crowder, H.E.

1984-12-17T23:59:59.000Z

385

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

386

Thermal neutron flux contours from criticality event  

SciTech Connect

The generation of thermal neutron flux contours from a criticality event is demonstrated for an idealized building with a criticality event in one of the rooms. The MCNP Monte Carlo computer code is used to calculate the thermal neutron flux.

Carter, L.L., Westinghouse Hanford

1996-08-01T23:59:59.000Z

387

Computing Criticality of Lines in Power Systems  

E-Print Network (OSTI)

Computing Criticality of Lines in Power Systems Ali P?narto identify critical lines, failure of which can causecriticality measure for all lines at a time, as opposed to

Pinar, Ali; Reichert, Adam; Lesieutre, Bernard

2006-01-01T23:59:59.000Z

388

Relation between crystal structures, electronic structures, and electrode performances of LiMn2?xMxO4 (M = Ni, Zn) as a cathode active material for 4V secondary Li batteries  

Science Journals Connector (OSTI)

We investigated the relation between the electrode performance and electronic states of LiMn2?xMxO4 (M=Ni, Zn) as cathode active materials for the 4V class of lithium secondary batteries. The cycle performance is improved by substitution of Mn with Ni or Zn. We obtained the electron density distribution by XRD using the MEM/Rietveld method. Moreover, we investigated the electronic states of LiMn1.75M0.25O4 (M=Mn, Ni, Zn) using first-principles calculation by the DV-X? method. The net charges of each atom, and the bond overlap populations of Li?O, Mn?O, Ni?O and Zn?O were calculated. From the results, Li has a high ionicity and the covalent bonding of the Mn?O of LiMn1.75M0.25O4 (M=Ni, Zn) is stronger than that of LiMn2O4. As a result of the DOS, the oxygen 2p orbital and Mn 3d orbital provides the overlap and the overlap of LiMn1.75M0.25O4 is greater than that of LiMn2O4.

Yuka Ito; Yasushi Idemoto; Yuka Tsunoda; Nobuyuki Koura

2003-01-01T23:59:59.000Z

389

Fusion algebra of critical percolation  

E-Print Network (OSTI)

We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.

Jorgen Rasmussen; Paul A. Pearce

2007-06-19T23:59:59.000Z

390

CRITICALITY SAFETY QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 Page 1 of 47 9, 2010 Page 1 of 47 Criticality Safety Qualification Standard Reference Guide 2010 For use with DOE-STD 1173-2009, CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD September 9, 2010 Page 2 of 47 PURPOSE....................................................................................................................... 5 SCOPE............................................................................................................................ 5 1. Criticality safety personnel must demonstrate a working-level knowledge of the fission process. .......................................................................................................... 6 2. Criticality safety personnel must demonstrate a working-level knowledge of the

391

AUTOMATED CRITICAL PEAK PRICING FIELD TESTS  

E-Print Network (OSTI)

AUTOMATED CRITICAL PEAK PRICING FIELD TESTS: 2006 PROGRAM DESCRIPTION AND RESULTS APPENDICES.................................................................................... 5 B.2. DR Automation Server User Guide

392

Anomalies of Nuclear Criticality, Revision 6  

SciTech Connect

This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

2010-02-19T23:59:59.000Z

393

Critical Feature Analysis of a Radiotherapy Machine  

E-Print Network (OSTI)

@iba.be Abstract The software implementation of the emergency shutdown feature in a major radiotherapy system. Introduction A key difficulty in the analysis of large software systems is the isolation and evalu- ation of critical source code. Ideally, safety critical requirements would be imple- mented by safety critical

Jackson, Daniel

394

Criticality Safety Information Meeting for the Hanford Plutonium Finihsing Plant, May 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-05-14 2-05-14 Site: DOE-Richland Operations Office Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Criticality Safety Information Meeting for the Plutonium Finishing Plant Dates of Activity : May 14, 2012 Report Preparer: Ivon Fergus Activity Description/Purpose: The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety issues and experiences principally with respect to the Decontamination and Decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP). These discussions also included aspects of Non-

395

Criticality Safety Information Meeting for the Hanford Plutonium Finihsing Plant, May 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2-05-14 2-05-14 Site: DOE-Richland Operations Office Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Criticality Safety Information Meeting for the Plutonium Finishing Plant Dates of Activity : May 14, 2012 Report Preparer: Ivon Fergus Activity Description/Purpose: The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety issues and experiences principally with respect to the Decontamination and Decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP). These discussions also included aspects of Non-

396

X-ray backscatter imaging of nuclear materials  

DOE Patents (OSTI)

The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

2014-09-30T23:59:59.000Z

397

13:00-13:10 Opening: "Bridging the gap between discrete and continuum models", S. Luding, UT, The Netherlands Session 1 Physics in Critical State  

E-Print Network (OSTI)

, UT, The Netherlands Session 1 ­ Physics in Critical State 13:10-13:40 "Micromechanical characteristics of the critical state of granular materials", N. Kruyt, UT, The Netherlands 13:40-14:10 "Critical, The Netherlands 14:25-14:40 Coffee break Session 2 ­ Hydrodynamics and Granular Flows 14:40-15:10 "Coarsening

Al Hanbali, Ahmad

398

Method for forming materials  

DOE Patents (OSTI)

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

399

Wireless System Considerations When Implementing NERC Critical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wireless System Considerations When Implementing NERC Critical Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Energy asset owners are facing a monumental challenge as they address compliance with the North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) Standards (CIP-002 through CIP-009). The increased use of wireless technologies and their introduction into control center networks and field devices compound this challenge, as ambiguity exists regarding the applicability of the CIP requirements to wireless networking technologies. Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards More Documents & Publications

400

CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)  

SciTech Connect

The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

TOFFER, H.

2005-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Critical heat flux test apparatus  

DOE Patents (OSTI)

An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

1992-01-01T23:59:59.000Z

402

Criticality safety of an annular tank for fissile solution  

SciTech Connect

Experiments performed to determine the criticality safety of annular tanks for storing fissile solutions are described. Six annular tanks were built in four nesting sizes to obtain experimental criticality data which could be used to validate computer codes employed in the design of such a safe storage system for an industrial plant. Each tank had an annular solution region thickness of 38 mm. The height of this region was 2.13 m, held 0.3 m off the floor by a stainless steel skirting. Walls were 6.4 mm-thick type 304L stainless steel. The uranyl nitrate solution contained 357 g U/l and had a density of 1.5 kg/m/sup 3/. The uranium was enriched to 93.2% /sup 235/U with other isotopes: 5.4% /sup 238/U, 1.0% /sup 234/U, and 0.4% /sup 236/U. The solution contained 0.5 molar nitric acid and a total impurity content of less than 1500 ppM. Important neutron absorbers, boron and cadmium, averaged 10 ppM and 30 ppM, respectively. Boron-loaded concrete and boron-loaded plaster were selected for the neutron moderator/absorber interior to the annular tank. Three configurations of tanks and reflector were taken to criticality and are reported. The critical uranium solution height in all tanks containing solution as a function of boron content in earthen interior material, tank array configuration, and other variables. (LCL)

Rothe, R.E.

1981-01-01T23:59:59.000Z

403

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

404

Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables  

SciTech Connect

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

405

Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1) Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1) The Department of Energy (DOE) has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (see HSS CRAD 64-32). The following provides a set of criteria and typical activities with representative lines of inquiry to assess criticality control implementation as an integral part of the review of the core functions and implementation of integrated safety management.

406

Pushing the boundaries of the thermal conductivity of materials  

E-Print Network (OSTI)

Pushing the boundaries of the thermal conductivity of materials David G. Cahill, C. Chiritescu, Y. · Advances in time-domain thermoreflectance. · Amorphous limit to the thermal conductivity of materials. #12;50 nm Interfaces are critical at the nanoscale · Low thermal conductivity in nanostructured

Braun, Paul

407

Probabilistic assessment of critically flawed LMFBR PHTS piping elbows  

SciTech Connect

One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results.

Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

1982-01-01T23:59:59.000Z

408

Evaluation and validation of criticality codes for fuel dissolver calculations  

SciTech Connect

During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. The spread of the results in the international calculation amounted to {plus minus} 12,000 pcm in the realistic fuel dissolver exercise n{degrees} 19 proposed by BNFL, and to {plus minus} 25,000 pcm in the benchmark n{degrees} 20 in which fissile material in solid form is surrounded by fissile material in solution. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P{sub IC} method developed to treat latter effect, permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates solicited from the participants. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism (NITAWL in the international SCALE package) to account for {sup 238}U resonance mutual self-shielding in the pellet-fissile liquor interaction. Improvements in the up-dated 1990 contributions, as do recent complementary reference calculations (MCNP, VIM, ultrafine slowing-down CGM calculation), confirm the need to use rigorous self-shielding methods in criticality design-oriented codes. 6 refs., 11 figs., 3 tabs.

Santamarina, A.; Smith, H.J. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France)); Whitesides, G.E. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

409

Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials  

E-Print Network (OSTI)

Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials Jia Liua incorporation of active nanoelec- tronic networks within 3D materials reveals a powerful approach to smart for creating "very smart" systems, because this would transform conventional inactive materials into active

Heller, Eric

410

Quality Assurance for Critical Decision Reviews RM | Department...  

Office of Environmental Management (EM)

Quality Assurance for Critical Decision Reviews RM Quality Assurance for Critical Decision Reviews RM The purpose of this Quality Assurance for Capital Project Critical Decision...

411

CRAD, Criticality Safety Controls Implementation - May 31, 2013...  

Office of Environmental Management (EM)

Criticality Safety Controls Implementation - May 31, 2013 CRAD, Criticality Safety Controls Implementation - May 31, 2013 May 31, 2013 Criticality Safety Controls Implementation...

412

High Throughput Materials Characterization John M. Gregoire  

NLE Websites -- All DOE Office Websites (Extended Search)

and groups where these activities take place are listed in the red boxes in the diagram above. A truly productive HiTp materials discovery pipeline, not unlike a structural...

413

ANL Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities of the DOD Activities of the DOD Project Office focus today on the Navy's Free Electron Laser Program Argonne Accelerator Institute Meeting June 16, 2009 2 Several Beam Activities and Interests Ongoing  Terahertz sources and applications  Navy Free Electron Laser (Focus area today)  Free Electron Laser Applications  Electromagnetic Interference Technology Review Committees  Novel Fiber Optic Materials with Army Research Lab  Optical Diagnostics for next-generation light sources  Neutron detection schemes  NATO Sensors and Electronics Panel, international field tests of directed energy source applications  Controls  Radiation Oncology 3 Background, Naval Directed Energy History The U.S Navy has been investigating utility of lasers since the 1960's and the

414

Oak Ridge Critical Experiment Facility (Building 9213)  

NLE Websites -- All DOE Office Websites (Extended Search)

9213) Joe Lenhard, retired Department of Energy official, had responsibility for the Oak Ridge Critical Experi- ment Facility. Joe has continued to hold up this facility as...

415

Wireless System Considerations When Implementing NERC Critical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) Standards (CIP-002 through CIP-009). The increased use of wireless technologies and...

416

Critical function and success path summary display  

DOE Patents (OSTI)

The content of and hierarchical access to three levels of display pages containing information on critical function monitoring and success path monitoring.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1995-01-01T23:59:59.000Z

417

Sandia National Laboratories: provide critical performance data...  

NLE Websites -- All DOE Office Websites (Extended Search)

provide critical performance data on photovoltaic systems Launch of Solar Testing Site in Vermont On November 27, 2013, in Energy, Facilities, News, News & Events, Partnership,...

418

209-E Critical Mass Laboratory - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

and controlled. Criticality experiments, where a nuclear chain reaction becomes self-sustaining, were also conducted. In addition, 209-E was a research facility where methods of...

419

Critical Mission Support Through Energy Security  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the critical mission support through energy security and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

420

MECHATRONICS ASPECTS OF SMART MATERIALS INDUCED STRAIN ACTUATION Victor Giurgiutiu  

E-Print Network (OSTI)

1 MECHATRONICS ASPECTS OF SMART MATERIALS INDUCED STRAIN ACTUATION Victor Giurgiutiu University-777-0106, email victorg@sc.edu Abstract: The mechatronics aspects of smart materials induced-strain actuation are investigated. Smart materials, a.k.a. active materials, are able to transform electric, magnetic, thermal

Giurgiutiu, Victor

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

422

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

423

Material Point Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Point Methods and Multiphysics for Fracture and Multiphase Problems Joseph Teran, UCLA and Alice Koniges, LBL Contact: jteran@math.ucla.edu Material point methods (MPM)...

424

Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary...

425

Energy Materials & Processes | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

426

EMSL - Energy Materials & Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

427

2011 Annual Progress Report for Lightweighting Materials  

Energy.gov (U.S. Department of Energy (DOE))

As part of the U.S. Department of Energys (DOEs) Vehicle Technologies Program (VTP), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

428

Chemomechanics of calcium leaching of cement-based materials at different scales : the role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures  

E-Print Network (OSTI)

Calcium leaching is a durability threat for cement-based materials employed in critical infrastructures, such as Nuclear Waste Storage Systems. This thesis presents a comprehensive study of the material and structural ...

Heukamp, Franz H. (Franz Hoyte), 1973-

2003-01-01T23:59:59.000Z

429

Chapter 6: Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Materials : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from pollutant releases, habitat destruc- tion, and depletion of natural resources. This can occur during extraction and acquisition of raw materials, pro- "Then I say the Earth belongs to duction and manufacturing processes, and transporta- tion. In addition, some construction materials can harm

430

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

431

Energetic Materials Center Energetic Materials Center  

NLE Websites -- All DOE Office Websites (Extended Search)

experimental characterization of energetic material properties and reactions; and high-speed diagnostic instruments for measuring the chemical and physical processes that occur...

432

Exciton transport and coherence in molecular and nanostructured materials  

E-Print Network (OSTI)

Over the past 20 years a new classes of optically active materials have been developed that are composites of nano-engineered constituents such as molecules, polymers, and nanocrystals. These disordered materials have ...

Akselrod, Gleb M. (Gleb Markovitch)

2013-01-01T23:59:59.000Z

433

Department of Chemical Engineering & Materials Science College of Engineering  

E-Print Network (OSTI)

Department of Chemical Engineering & Materials Science College of Engineering Michigan State................................................................................. 19 7. Integrity and Safety in Research and Creative Activities of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

434

Physical Hydrogen Storage on Nanotubes and Nanocarbon Materials  

Science Journals Connector (OSTI)

The recent developments of carbonaceous material synthesis have resulted in several new forms of carbon such as carbon nanotubes and carbon nanofibers, and super-high surface area activated carbons nano-materials...

Raouf O. Loutfy; A. Moravsky; A. Franco…

2002-01-01T23:59:59.000Z

435

Analysis of a hypothetical criticality accident in a waste supercompactor  

SciTech Connect

A hypothetical nuclear criticality accident in a waste supercompactor is examined. The material being compressed in the compactor is a homogeneous mixture of beryllium and {sup 239}Pu. The point-kinetics equations with simple thermal-hydraulic feedback are used to model the transient behavior of the system. A computer code has been developed to solve the model equations. The computer code calculates the fission power history, fission yield, bulk temperature of the system, and several other thermal-hydraulic parameters of interest. Calculations have been performed for the waste supercompactor for various material misloading configurations. The peak power for the various accident scenarios varies from 1.04 {times} 10{sup 17} to 4.85 {times} 10{sup 20} fissions per second (fps). The total yield varies from 8.21 {times} 10{sup 17} to 7.73 {times} 10{sup 18} fissions, and the bulk temperature of the system varies from 412 to >912 K.

Plaster, M.J.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.; Ruggles, A.E.; Wilkinson, A.D.; Yamamoto, T.; Dodds, H.L. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.

1995-08-01T23:59:59.000Z

436

LANL | Physics | Hydrodynamic Material Instabilities at extremes  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding hydrodynamic material instabilities at extremes Understanding hydrodynamic material instabilities at extremes The National Nuclear Security Administration science-based stockpile stewardship program funds research that will improve critical physics-based dynamic materials models. Los Alamos National Laboratory and Lawrence Livermore National Laboratory, as nuclear weapon design laboratories, are mandated to predict the reliability and durability of the nuclear weapons stockpile. This is done using state-of-the-art supercomputers and computer codes. It is also important to have state-of-the-art physics models in these codes. Los Alamos has theory experts in dynamic materials, thus creating powerful working groups when combined with experimental experts in Physics Division and elsewhere. Key to the science-based stockpile stewardship program is making

437

Apparatus for characterizing conductivity of superconducting materials  

DOE Patents (OSTI)

Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

Doss, J.D.

1993-12-07T23:59:59.000Z

438

Southeastern Colorado Survey of Critical Biological Resources  

E-Print Network (OSTI)

Southeastern Colorado Survey of Critical Biological Resources 2007 #12;ii #12;Southeastern Colorado Survey of Critical Biological Resources Prepared for: Colorado Cattleman's Agricultural Land Trust 8833 Ralston Road Arvada, CO 80002 Great Outdoors Colorado 1600 Broadway, Suite 1650 Denver, CO 80202 Colorado

439

Critical aspects of hierarchical protein folding  

E-Print Network (OSTI)

We argue that the first order folding transitions of proteins observed at physiological chemical conditions end in a critical point for a given temperature and chemical potential of the surrounding water. We investigate this critical point using a hierarchical Hamiltonian and determine its universality class. This class differs qualitatively from those of other known models.

Alex Hansen; Mogens H. Jensen; Kim Sneppen; Giovanni Zocchi

1998-01-13T23:59:59.000Z

440

Nuclear waste plans enter critical phase  

Science Journals Connector (OSTI)

... London. Britain's newly privatized nuclear power industry is facing a critical few months as it contemplates how to dispose of ... as it contemplates how to dispose of up to 300,000 cubic metres of radioactive waste by early next century á" and answer critics who claim that its plans are ...

Ehsan Masood

1996-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Samurai: protecting critical data in unsafe languages  

Science Journals Connector (OSTI)

Programs written in type-unsafe languages such as C and C++ incur costly memory errors that result in corrupted data structures, program crashes, and incorrect results. We present a data-centric solution to memory corruption called critical memory, a ... Keywords: critical memory, error recovery, memory safety

Karthik Pattabiraman; Vinod Grover; Benjamin G. Zorn

2008-04-01T23:59:59.000Z

442

Coated ceramic breeder materials  

DOE Patents (OSTI)

A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

1987-01-01T23:59:59.000Z

443

Dental Materials BIOMATERIALS  

E-Print Network (OSTI)

focus is on the development of two standard methods: one for a material's resistance to microleakage will quantify a significant portion of a material's ability to resist secondary caries. The methodsDental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant

444

Hydrogen Compatibility of Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

445

Computational Chemical Materials Engineering  

E-Print Network (OSTI)

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

446

Machine Ethics and Human Ethics: A Critical View Francesco Amigoni and Viola Schiaffonati  

E-Print Network (OSTI)

Machine Ethics and Human Ethics: A Critical View Francesco Amigoni and Viola Schiaffonati@elet.polimi.it Abstract The rapid changes in the relationship between humans and machines evidence a progressive delegation of some human activities to machines. Among those, there are not only physical activities but also

Amigoni, Francesco

447

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

448

Criticality Safety Controls Implementation Inspection Criteria, Approach,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety Controls Implementation Inspection Criteria, Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0 ) Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0 ) DOE has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (SACs) (see HSS CRAD 64-32). Also, in instances when the review addresses functionality and operability of structures, systems, and components (SSCs) of nuclear facilities specifically required

449

Taxonomy of handover activities  

Science Journals Connector (OSTI)

Handover of software systems is a critical stage in the system lifecycle. Despite this, it is still an under researched area. In this paper, we have developed an initial taxonomy of activities for software handover. Our taxonomy consists of seven process ... Keywords: deployment, documentation, testing, training, transition

Ahmad Salman Khan; Mira Kajko-Mattsson

2010-06-01T23:59:59.000Z

450

Empirical scaling formulas for critical current and critical field for commercial NbTi  

SciTech Connect

This paper presents the results of an analysis of both published and unpublished critical current data given as a function of both field and temperature. Simple formulas have been obtained for (1) the critical temperature as a function of field that is needed to obtain an estimate of the current sharing temperature and hence temperature margin, (2) the critical current density for constant temperature as a function of field, and (3) the critical current density for constant field as a function of temperature.

Lubell, M.S.

1982-01-01T23:59:59.000Z

451

Nuclear criticality safety program development using necessary and sufficient standards  

SciTech Connect

The U.S. Department of Energy`s (DOE`s) Necessary and Sufficient Standards Closure Process has been used to develop a new criticality, safety program manual for the Rocky Flats Environmental Technology Site (RFETS). Standards define and communicate the expectations for performance of work. The purpose of the necessary and sufficient standards closure process is to apply standards determined to be necessary and sufficient for protecting the workers, the public, and the environment. This ensures that the applied standards add value to the performance of the activity; work effectiveness is increased. The purpose of this paper is to briefly describe the process and the results for the selection of national criticality safety standards for use at the Rocky Flats facilities.

Croucher, D.W.; Stachowiak, R.V. [Kaiser-Hill Co., LLC, Golden, CO (United States); Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States)

1996-12-31T23:59:59.000Z

452

New enhancements to SCALE for criticality safety analysis  

SciTech Connect

As the speed, available memory, and reliability of computer hardware increases and the cost decreases, the complexity and usability of computer software will increase, taking advantage of the new hardware capabilities. Computer programs today must be more flexible and user friendly than those of the past. Within available resources, the SCALE staff at Oak Ridge National Laboratory (ORNL) is committed to upgrading its computer codes to keep pace with the current level of technology. This paper examines recent additions and enhancements to the criticality safety analysis sections of the SCALE code package. These recent additions and enhancements made to SCALE can be divided into nine categories: (1) new analytical computer codes, (2) new cross-section libraries, (3) new criticality search sequences, (4) enhanced graphical capabilities, (5) additional KENO enhancements, (6) enhanced resonance processing capabilities, (7) enhanced material information processing capabilities, (8) portability of the SCALE code package, and (9) other minor enhancements, modifications, and corrections to SCALE. Each of these additions and enhancements to the criticality safety analysis capabilities of the SCALE code system are discussed below.

Hollenbach, D.F.; Bowman, S.M.; Petrie, L.M.; Parks, C.V. [Oak Ridge National Lab., TN (United States). Computational Physics and Engineering Div.

1995-09-01T23:59:59.000Z

453

Puncture detecting barrier materials  

DOE Patents (OSTI)

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

454

A Summary of the Fatigue Properties of Wind Turbine Materials  

SciTech Connect

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

SUTHERLAND, HERBERT J.

1999-10-07T23:59:59.000Z

455

1 - Gas turbines: operating conditions, components and material requirements  

Science Journals Connector (OSTI)

Abstract: This chapter provides a summary of the operating cycle of an industrial gas turbine and associated plant. The characteristics of the materials and integrated materials systems used in a gas turbine are considered. The conditions under which industrial gas turbines operate, and the impact these operating conditions have on materials behavior, are described. The materials selection criteria for individual components and component sections are discussed. The key material properties for designing critical components and the approach for conducting a life assessment are considered. The major limitations to the performance of current superalloys, coatings and steels and the challenges facing the introduction of new materials are discussed. An overview is given of current trends in materials development and future materials technologies.

A.W. James; S. Rajagopalan

2014-01-01T23:59:59.000Z

456

ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE  

SciTech Connect

In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.

Margaret A. Marshall

2013-09-01T23:59:59.000Z

457

Polyanthra[1,9,8-b,c,d,e][4,10,5-b,c,d,e]bis-[1,6,6a(6a-S) trithia]pentalene-active material for cathode of lithium secondary battery with unusually high specific capacity  

Science Journals Connector (OSTI)

Polyanthra[1,9,8-b,c,d,e][4,10,5-b,c,d,e]bis-[1,6,6a(6a-S)trithia]pentalene (PABTP) was prepared and investigated as cathode active material for lithium secondary batteries. The organic disulfide polymer was prepared by the direct sulfurization of anthracene and the oxidative coupling polymerization of the sulfide anthracene, characterized by FT-IR, Raman, elemental analysis, XPS and XRD. The polymer was used as cathode active material and the lithium secondary batteries were assembled and tested. The polymer had high specific capacity up to 1500 mAh g?1, which remained the value of 800 mAh g?1 at the 77th cycle, and kept high charge–discharge efficiency of 85% in the whole test.

Z.J. Liu; L.B. Kong; Y.H. Zhou; C.M. Zhan

2006-01-01T23:59:59.000Z

458

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficiency * Optimize the electrode structure to achieve homogeneous mixing of active materials with electronic conductors - Reduce cell resistance * Evaluate the full cell...

459

FY 2009 Progress Report for Lightweighting Materials- 11. Recycling  

Energy.gov (U.S. Department of Energy (DOE))

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

460

FY 2009 Progress Report for Lightweighting Materials- 9. Joining  

Energy.gov (U.S. Department of Energy (DOE))

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FY 2009 Progress Report for Lightweighting Materials- 10. Nondestructive Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

462

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

types of systems could be of central importance to develop future electronic and optoelectronic devices with high-quality active materials. Significance One of the great...

463

FY 2009 Progress Report for Lightweighting Materials- Cover and Contents  

Energy.gov (U.S. Department of Energy (DOE))

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

464

Joining of dissimilar materials  

DOE Patents (OSTI)

A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

2012-10-16T23:59:59.000Z

465

Sensors & Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

466

Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (see HSS CRAD 64-32). The following provides a set of criteria and typical activities with representative lines of inquiry to assess criticality control implementation as an integral part of the review of the core functions and implementation of integrated safety management.

467

Critical Mission Support Through Energy Secuirty  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Mission Support Critical Mission Support Through Energy Security Development of an Army Energy Security Assessment Model FUPWG Mr. Chuck Tremel, CTC 21 October 2010 2 2 Purpose * Provide an overview of the Army Energy Security Assessment (ESA) methodology - Being developed by Concurrent Technologies Corporation - Monitored by the US Army Corps of Engineers (USACE), Engineering Research and Development-Construction Engineering Research Laboratory (ERDC-CERL) * Engage Utility and Government Stakeholders 3 3 Overall Program Objectives * Develop/enhance the draft ESA methodology demonstrated under the Army Power and Energy Initiative (APEI) - Leverage existing processes (e.g., Anti-terrorism/Force Protection) - Critical Mission focused * Validate the methodology at an Army installation

468

Critical configurations of planar robot arms  

E-Print Network (OSTI)

It is known that a closed polygon P is a critical point of the oriented area function if and only if P is a cyclic polygon, that is, $P$ can be inscribed in a circle. Moreover, there is a short formula for the Morse index. Going further in this direction, we extend these results to the case of open polygonal chains, or robot arms. We introduce the notion of the oriented area for an open polygonal chain, prove that critical points are exactly the cyclic configurations with antipodal endpoints and derive a formula for the Morse index of a critical configuration.

Khimshiashvili, G; Siersma, D; Zhukova, A

2012-01-01T23:59:59.000Z

469

Comprehensive Nuclear Materials  

SciTech Connect

This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

Konings, Dr. Rudy J. M. [European Commission Joint Research Centre; Allen, Todd R. [University of Wisconsin, Madison; Stoller, Roger E [ORNL; Yamanaka, Prof. Shinsuke [Osaka University

2012-01-01T23:59:59.000Z

470

JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 9 (1998) 309 --311 Critical oxygen content in porous anodes of solid  

E-Print Network (OSTI)

in porous anodes of solid tantalum capacitors YU. POZDEEV-FREEMAN Vishay Israel Electronics Company anodes of solid tantalum capacitors and the current-voltage (I9V) characteristics of Ta2O5 amorphous layers formed on the anode surface have been performed. A strong correlation between a sharp increase

Palevski, Alexander

471

National and international nuclear material monitoring  

SciTech Connect

The status of nuclear materials in both the U.S. and Former Soviet Union is changing based upon the execution of agreements relative to weapons materials production and weapon dismantlement. The result of these activities is that a considerably different emphasis is being placed on how nuclear materials are viewed and utilized. Even though much effort is being expended on the final disposition of these materials, the interim need for storage and security of the material is increasing. Both safety and security requirements exist to govern activities when these materials are placed in storage. These requirements are intended to provide confidence that the material is not being misused and that the storage operations are conducted safely. Both of these goals can be significantly enhanced if technological monitoring of the material is performed. This paper will briefly discuss the traditional manual methods of U.S. and international material monitoring and then present approaches and technology that are available to achieve the same goals under the evolving environment.

Waddoups, I.G.

1996-07-01T23:59:59.000Z

472

New functional polymers for sensors, smart materials and solar cells  

E-Print Network (OSTI)

Organic polymers can be used as the active component of sensors, smart materials, chemical-delivery systems and the active layer of solar cells. The rational design and modification of the chemical structure of polymers ...

Lobez Comeras, Jose Miguel

2012-01-01T23:59:59.000Z

473

Critical behavior of hierarchical Ising models  

Science Journals Connector (OSTI)

We consider the critical behavior of two-dimensional layered Ising models where the exchange couplings between neighboring layers follow hierarchical sequences. The perturbation caused by the nonperiodicity could be irrelevant, relevant, or marginal. For marginal sequences we have performed a detailed study, which involved analytical and numerical calculations of different surface and bulk critical quantities in the two-dimensional classical as well as in the one-dimensional quantum version of the model. The critical exponents are found to vary continuously with the strength of the modulation, while close to the critical point the system is essentially anisotropic: the correlation length is diverging with different exponents along and perpendicular to the layers.

Ferenc Iglói; Péter Lajkó; Ferenc Szalma

1995-09-01T23:59:59.000Z

474

Southeastern Colorado Survey of Critical Biological Resources  

E-Print Network (OSTI)

Southeastern Colorado Survey of Critical Biological Resources: Landowner's Guide to Livestock and Biodiversity Prepared By: Paul Holsinger, Project Assistant and Chris West, Executive Director Colorado Colorado Landowner's Guide to Livestock and Biodiversity Introduction Southeastern Colorado Survey

475

Critical eigenvalue in LMFBRs: a physics assessment  

SciTech Connect

This paper summarizes recent work to put the analysis of past critical eigenvalue measurements from the US critical experiments program on a consistent basis. The integral data base includes 53 configurations built in 11 ZPPR assemblies which simulate mixed oxide LMFBRs. Both conventional and heterogeneous designs representing 350, 700, and 900 MWe sizes and with and without simulated control rods and/or control rod positions have been studied. The review of the integral data base includes quantitative assessment of experimental uncertainties in the measured excess reactivity. Analyses have been done with design level and higher-order methods using ENDF/B-IV data. Comparisons of these analyses with the experiments are used to generate recommended bias factors for criticality predictions. Recommended methods for analysis of LMFBR fast critical assemblies and LMFBR design calculations are presented. Unresolved issues and areas which require additional experimental or analytical study are identified.

McKnight, R.D.; Collins, P.J.; Olsen, D.N.

1984-01-01T23:59:59.000Z

476

Bed management in a Critical Care Unit  

Science Journals Connector (OSTI)

......can also be approach using a stochastic...150 BED MANAGEMENT IN A CRITICAL...of Decision Sciences and Information Management, Catholic University...bed-occupancy management and planning...Improving the Sipp approach for staffing......

J. D. Griffiths; V. Knight; I. Komenda

2013-04-01T23:59:59.000Z

477

Neutron absorbing coating for nuclear criticality control  

DOE Patents (OSTI)

A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

Mizia, Ronald E. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID); Lister, Tedd E. (Idaho Falls, ID); Pinhero, Patrick J. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

478

When agents communicate hypotheses in critical situations  

Science Journals Connector (OSTI)

This paper discusses the problem of efficient propagation of uncertain information in dynamic environments and critical situations. When a number of (distributed) agents have only partial access to information, the explanation(s) and conclusion(s) ...

Gauvain Bourgne; Nicolas Maudet; Suzanne Pinson

2006-05-01T23:59:59.000Z

479

A critical programmer searches for professionalism  

Science Journals Connector (OSTI)

The phrase "critical programmer" in this article's title is meant to be thought of as the programmer who carefully, respectfully, questions conventional wisdom. The particular conventional wisdom under consideration here (held mainly by those who do ...

Robert Schaefer

2006-07-01T23:59:59.000Z

480

ARM - Public Information Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

Note: This page contains sample records for the topic "activity critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

482

Nanostructured composite reinforced material  

DOE Patents (OSTI)

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

483

Earth-Abundant Materials  

Energy.gov (U.S. Department of Energy (DOE))

DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. Below are a list...

484

Geopolymer Sealing Materials  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

485

Applications of Ceramic Materials  

Science Journals Connector (OSTI)

The use of ceramic materials in science and industry is becoming increasingly widespread. As discussed in Chap. 4, ceramic materials have important advantages over metals and polymers in electronic devices at ...

Murat Bengisu

2001-01-01T23:59:59.000Z

486

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

487

Materials Science & Engineering  

E-Print Network (OSTI)

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

488

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

489

General trend for pressurized superconducting hydrogen-dense materials  

SciTech Connect

The long-standing prediction that hydrogen can assume a metallic state under high pressure, combined with arguments put forward more recently that this state might even be superconducting up to high temperatures, continues to spur tremendous research activities toward the experimental realization of metallic hydrogen. These efforts have however so far been impeded by the enormous challenges associated with the exceedingly large required pressure. Hydrogen-dense materials, of the MH{sub 4} form (where M can be, e.g., Si, Ge, or Sn) or of the MH{sub 3} form (with M being, e.g., Al, Sc, Y, or La), allow for the rather exciting opportunity to carry out a proxy study of metallic hydrogen and associated high-temperature superconductivity at pressures within the reach of current techniques. At least one experimental report indicates that a superconducting state might have been observed already in SiH{sub 4}, and several theoretical studies have predicted superconductivity in pressurized hydrogen-rich materials; however, no systematic dependence on the applied pressure has yet been identified so far. In the present work, we have used first-principles methods in an attempt to predict the superconducting critical temperature (T{sub c}) as a function of pressure (P) for three metal-hydride systems of the MH{sub 3} form, namely ScH{sub 3}, YH{sub 3}, and LaH{sub 3}. By comparing the obtained results, we are able to point out a general trend in the T{sub c}-dependence on P. These gained insights presented here are likely to stimulate further theoretical studies of metallic phases of hydrogen-dense materials and should lead to new experimental investigations of their superconducting properties.

Kim, D. Y.; Scheicher, R. H.; Mao, Ho-kwang; Kang, T. W.; Ahuja, R.

2010-01-01T23:59:59.000Z

490

Advancing Material Models for Automotive Forming Simulations  

SciTech Connect

Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior to larger scale industrial validation.

Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E. [Corus Research Development and Technology, PO Box 10000, 1970 CA IJmuiden (Netherlands)

2005-08-05T23:59:59.000Z

491

Quantum critical benchmark for density functional theory  

E-Print Network (OSTI)

Two electrons at the threshold of ionization represent a severe test case for electronic structure theory. A pseudospectral method yields a very accurate density of the two-electron ion with nuclear charge close to the critical value. Highly accurate energy components and potentials of Kohn-Sham density functional theory are given, as well as a useful parametrization of the critical density. The challenges for density functional approximations and the strength of correlation are also discussed.

Paul E. Grabowski; Kieron Burke

2014-08-09T23:59:59.000Z

492

Instructions and Materials  

Energy.gov (U.S. Department of Energy (DOE))

The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

493

Teacher Resource Center: Samplers of Educational Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Samplers of Educational Materials Samplers of Educational Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Teachers have developed classroom materials as part of a number of Fermilab education programs. The materials enable students to discover relationships for themselves through activity-based investigation. The primary purpose of these materials is to provide an experience of science to broaden and enrich attitudes and develop an appreciation for and understanding of

494

CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP  

SciTech Connect

With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified i

Kessler, S

2009-04-21T23:59:59.000Z

495

Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials  

SciTech Connect

The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

Ceder, Gerbrand; Marzari, Nicola

2011-08-31T23:59:59.000Z

496

Guisinger-081612 - Argonne National Laboratories, Materials Sicence  

NLE Websites -- All DOE Office Websites (Extended Search)

Guisinger-081612 Guisinger-081612 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Nathan Guisinger Center for Nanoscale Materials, Argonne National Laboratory TITLE: "Current Trends in Scanning Tunneling Microscopy at Argonne National Laboratory"" DATE: Thursday,August 16, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 ABSTRACT:Low-dimensional materials functioning at the nanoscale are a critical component for a variety of current and future technologies. From the optimization of light harvesting solar technologies to large-scale catalytic processes, key physical phenomena are occurring at the nanometer and atomic length-scales and predominately at interfaces. For instance, graphene is a nearly ideal two-dimensional conductor that is comprised of a single sheet of hexagonally packed carbon atoms. In order fully realize the

497

Uncovering Secrets of the Strength of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Uncovering Secrets of the Strength of Materials Uncovering Secrets of the Strength of Materials The application of intense submicron-sized x-ray beams at the XOR/UNI beamlines 33-BM and 34-ID at the Advanced Photon Source (APS) has made possible the discovery that deformed metals have large, variable internal stresses in opposing directions on very short (submicron or nanoscale) length scales. This result has profound implications for understanding the mechanical strength and behavior of metals. The presence of such counterbalanced stresses within microscopic volumes (or cells) in deformed materials was predicted more than two decades ago and has been inferred from numerous indirect experiments. Yet, direct proof of their existence has been elusive, as spatially-resolved measurements of the stress magnitudes and distributions critical for testing theories and

498

A material's multiple personalities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship The brightness and energy of X-ray beams are critical properties for research. The APS Upgrade will make our X-ray beams brighter, meaning more X-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. A material's multiple personalities By Jared Sagoff * September 11, 2013 Tweet EmailPrint ARGONNE, Ill. - Just like people, materials can sometimes exhibit "multiple personalities." This kind of unusual behavior in a certain class of materials has compelled researchers at the U.S. Department of Energy's Argonne National Laboratory to take a closer look at the precise

499

2004 research briefs :Materials and Process Sciences Center.  

SciTech Connect

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

500

TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS  

SciTech Connect

The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-26T23:59:59.000Z