Sample records for activities technology solutions

  1. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

  2. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 CUNYfirst Faculty Center Navigation;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology

  3. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 DegreeWorks 4.09 Student Manual Degree is the same account you used when applying to Queens College. #12;Training & Technology Solutions Queens

  4. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 How To Navigate the Finance Section the payment history) · Pending Financial Aid #12;Training & Technology Solutions Queens College ~ Office

  5. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 How to Pay Your Tuition Using E be navigated to your Student Center page. John Smith 23145678 John's Student Center #12;Training & Technology

  6. PRESSURE ACTIVATED SEALANT TECHNOLOGY

    SciTech Connect (OSTI)

    Michael A. Romano

    2004-04-01T23:59:59.000Z

    The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

  7. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Technology Solutions for New Manufactured Homes - Washington, Oregon, and Idaho Building America Technology Solutions for New and Existing Homes: Technology Solutions for New...

  8. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings,...

  9. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Building America Technology Solutions for New and Existing Homes: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes Building America Technology Solutions...

  10. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Technology Solutions for New and Existing Homes: Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes:...

  11. Cost Effectiveness of Technology Solutions for Future Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Effectiveness of Technology Solutions for Future Vehicle Systems Cost Effectiveness of Technology Solutions for Future Vehicle Systems Explores the economics of CO2 emission...

  12. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet) Building America Technology Solutions for New...

  13. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge,...

  14. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Insulation Retrofits for Cold Climates, Cloquet, Minnesota Building America Technology Solutions for New and Existing Homes: Durable Interior Foundation Insulation...

  15. Energy Technology Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 at Iowa WindUnion7 PeerTechnology Solutions

  16. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate Building America Technology Solutions for New and Existing...

  17. Building America Technology Solutions for New and Existing Homes...

    Office of Environmental Management (EM)

    Existing Homes: Raised Ceiling Interior Duct System, New Smyrna, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Raised Ceiling Interior Duct...

  18. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Excavationless: Exterior-Side Foundation Insulation for Existing Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Excavationless: Exterior-Side...

  19. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Moisture Durability of Vapor Permeable...

  20. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Balancing Hydronic Systems in...

  1. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Stand-off Furring in Deep Energy Retrofits Building America Technology Solutions for New and Existing Homes: Stand-off Furring in Deep Energy Retrofits This research project,...

  2. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes: Field Testing of Compartmentalization Methods for Multifamily Construction Building America Technology Solutions for New and Existing Homes: Field Testing of...

  3. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for New and Existing Homes: Selecting Ventilation Systems for Existing Homes Building America Technology Solutions for New and Existing Homes: Selecting Ventilation...

  4. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Duct in Conditioned Space in...

  5. Energy Technology Solutions: Public-Private Partnerships Transforming...

    Broader source: Energy.gov (indexed) [DOE]

    itpsuccesses.pdf More Documents & Publications Energy Technology Solutions ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

  6. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts Building America Technology Solutions for New and Existing Homes: Boiler Control...

  7. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In...

  8. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump...

  9. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building...

  10. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana Building America Technology Solutions for New and Existing...

  11. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Mineral Fiber Insulation Board - Ontario, Canada Building America Technology Solutions for New and Existing Homes: Cladding Attachment Over Mineral Fiber...

  12. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications, Ithaca, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications,...

  13. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Insulated Siding Retrofit in a Cold Climate, New Paltz, New York Building America Technology Solutions for New and Existing Homes: Insulated Siding Retrofit in a Cold Climate, New...

  14. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    New and Existing Homes: Replacement, Variable-Speed Motors for Furnaces, Syracuse, New York, (Fact Sheet) Building America Technology Solutions for New and Existing Homes:...

  15. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes:...

  16. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) In this...

  17. Vehicle Technologies Office Merit Review 2014: Synthetic Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Cathode Synthesis and Voltage Fade: Designed Solutions Based on Theory Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of LMR-NMC...

  18. Integrating Mobile Agent Technology into an e-Marketplace Solution

    E-Print Network [OSTI]

    Integrating Mobile Agent Technology into an e-Marketplace Solution - The InterMarket Marketplace. The mobile agent technology might take e-commerce trading to the next phase. Mobile agents are intelligent technology. A feasibility study, made for two existing software applications, the mobile-agent system Tracy

  19. active waste solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solutions Computer Technologies and Information Sciences Websites Summary: -mining or radioactive waste storage. Despite the constraints imposed by geological considerations,...

  20. Active, Non-Intrusive Inspection Technologies for Homeland Defense

    SciTech Connect (OSTI)

    James L. Jones

    2003-06-01T23:59:59.000Z

    Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more "out-of-the-box" solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed "out-of-the-box" solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense.

  1. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    and Insulation Strategies on 1-12 Story Homes in Cold Climates, Minneapolis, MN Building America Technology Solutions for New and Existing Homes: Cost Analysis of Roof-Only...

  2. Technology Market Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchie ValleyInnovation &Technology

  3. Siemens AG, Corporate Technology Innovations in Urban Solutions

    E-Print Network [OSTI]

    Ge, Zigang

    and photovoltaic Building technologies 30% less energy used through building energy management Smart Grid Smart Top Down Challenges of Smart Sustainable Cities Efficiency and transparency is needed · heterogeneity and smart grid solutions · energy scarcity/energy cost · CO2 emissions · energy efficiency/ load management

  4. CoalWater Slurry technology: problems and modeling solutions

    E-Print Network [OSTI]

    Rosso, Fabio

    ·· Coal­Water Slurry technology: problems and modeling solutions A. Fasano, E. De Angelis, A viscosity reaches extremely high values and the product becomes useless. Sedimentation Firenze - 29 october viscosity reaches extremely high values and the product becomes useless. Sedimentation: it's also a long

  5. Independent Activity Report, Washington River Protection Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene...

  6. Building Science and Technology Solutions for National Problems

    SciTech Connect (OSTI)

    Bishop, Alan R. [Los Alamos National Laboratory

    2012-06-05T23:59:59.000Z

    The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

  7. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    SciTech Connect (OSTI)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02T23:59:59.000Z

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  8. Guidance manual for conducting technology demonstration activities

    SciTech Connect (OSTI)

    Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

    1991-12-01T23:59:59.000Z

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  9. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

  10. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  11. Vehicle Technologies Office: Financial Opportunities - Active...

    Office of Environmental Management (EM)

    in the table below. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations...

  12. Development Of Active Seismic Vector-Wavefield Imaging Technology...

    Open Energy Info (EERE)

    LibraryAdd to library Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Abstract This report describes the development and...

  13. active media technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fitness, physical activity, pedometer, Sunny Consolvo; Katherine Everitt; Ian Smith; James A. L 2006-01-01 56 Accessible Technology Initiative (ATI) Awareness Jenna...

  14. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    High-R Walls Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet) DOE Zero Energy Ready Home Case Study:...

  15. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    NorthernSTAR Building America Partnership team studied the effectiveness of the External Thermal Moisture Management System (ETMMS) as a solution for improving airtightness in a...

  16. R&K Cyber Solutions licenses ORNL malware detection technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Richard Willems and former ORNL employee Stephen Lindberg of the Electrical and Electronics Systems Research Division. Others contributing to the technology were David...

  17. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to...

  18. Workgroup #2 Emerging Solutions and Technologies How can we keep the pipeline full of

    E-Print Network [OSTI]

    Workgroup #2 Emerging Solutions and Technologies ­ How can we keep the pipeline full of energy to keep the pipeline full of energy efficiency innovations for use in the Pacific Northwest." Our Phase 1

  19. Parallel Computer Technology -A Solution for Automobiles? How car engineers can learn from parallel computing

    E-Print Network [OSTI]

    Zachmann, Gabriel

    Parallel Computer Technology - A Solution for Automobiles? How car engineers can learn from be improved by the adoption of well known parallel computing technologies. II. HISTORY OF CAR ELECTRONICS electronics in the past. The following Table I shows the history of the car- electronics since 1950 in note

  20. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on

    E-Print Network [OSTI]

    LBNL-45272 Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on The Federal Role in Electric System R&D During a Time of Industry Transition: An Application of Scenario Berkeley National Laboratory CERTS Grid of the Future Project Team Carlos Martinez, Edison Technology

  1. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission...

  2. Technology Innovation & Solutions | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchie ValleyInnovation & Solutions

  3. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    SciTech Connect (OSTI)

    Eto, Joseph

    2003-07-30T23:59:59.000Z

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  4. Energy Technology Solutions: Public-Private Partnerships Transforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 at Iowa WindUnion7 PeerTechnology

  5. activities developing technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities developing technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Active Pixel Xray...

  6. Research Activities Web Technologies Web Technologies include procedures that are used in order

    E-Print Network [OSTI]

    Bouras, Christos

    Research Activities ­ Web Technologies Web Technologies include procedures that are used in order to enhance the services that are offered by the World Wide Web. They include both services that can be presented directly to the users of the World Wide Web and services that are transparent to the end user

  7. The MTBE solution: Octanes, technology, and refinery profitability

    SciTech Connect (OSTI)

    Lander, E.P.; Hubbard, J.N.; Smith, L.A.

    1983-03-01T23:59:59.000Z

    This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

  8. Models and Technologies Activation of Peroxisome Proliferator-Activated Receptor-

    E-Print Network [OSTI]

    Omiecinski, Curtis

    of PPAR-b/d caused a decrease in cell proliferation in MCF7 and MDA-MB-231 cells compared with controls, whereas ligand activation of PPAR-b/d further inhibited proliferation of MCF7 but not MDA-MB-231 cells. Overexpression and/or ligand activation of PPAR-b/d in MDA-MB-231 or MCF7 cells had no effect on experimental

  9. SOLUTIONS

    E-Print Network [OSTI]

    2012-07-04T23:59:59.000Z

    MA 162 - Quiz 5 (20 minutes). SOLUTIONS. The solutions I present are not necessarily the only solutions. As long as you give a correct method of solving a ...

  10. SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX

    SciTech Connect (OSTI)

    Crolley, R.; Thompson, M.

    2011-01-31T23:59:59.000Z

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

  11. Democratizing Mobile Technology in Support of Volunteer Activities in Data Collection

    E-Print Network [OSTI]

    Democratizing Mobile Technology in Support of Volunteer Activities in Data Collection Sun Young Kim-computer interaction, mobile technology, technology adoption, volunteer, data collection, citizen science, participatory sensing, sustainability #12;III ABSTRACT Mobile technology is advancing our ability to connect

  12. Abstract--Smart Grid technology appears necessary to succeed in activating the demand through demand side management

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Abstract--Smart Grid technology appears necessary to succeed in activating the demand through recommendations regarding the instruments that should be implemented to maximize the benefits of smart grids by the European Union. The development of smart grids (SG) is a possible solution for achieving these goals [1

  13. Overview of Recent Japanese Activities in Fusion Technology

    SciTech Connect (OSTI)

    Seki, Masahiro [Japan Atomic Energy Research Institute (Japan); Yamamoto, I. [Nagoya University (Japan); Sagara, A. [NIFS (Japan)

    2005-04-15T23:59:59.000Z

    After the ITER/EDA study, Japanese activities in fusion technology have been mainly devoted to DEMO reactors. The paper intends to overview these activities.With respect to the test blanket modules, solid breeder blankets with ferritic steel structure cooled by helium and water are being developed by JAERI in cooperation with universities and NIFS. Advanced blankets are being developed by universities and NIFS. In the area of tritium processing technology, R and D has been focused on the blanket tritium recovery technology. In terms of the superconducting magnet, JAERI has performed basic research for the Fusion Power Demonstration Plant, aiming at realization of toroidal filed higher than 13 T using innovative superconductors, such as Nb{sub 3}Al and High Temperature Superconductors (HTS). In the R and D of negative ion based NBI technologies, a H{sup -} beam of 110 mA has been stably accelerated up to 0.9 MeV, which corresponds to the current density of 80 A/m{sup 2}. A beam power of 13.1 MW at 180 keV has been injected from three injectors in the LHD N-NBI. With respect to the radio-frequency heating technology, development of 170GHz ITER gyrotron has been progressed to achieve a 500kW for 100 sec operation in JAERI. Long pulse injection for 766 sec with 72 kW at 84 GHz was achieved in a LHD ECH experiment.

  14. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect (OSTI)

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01T23:59:59.000Z

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  15. Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media

    SciTech Connect (OSTI)

    Gerlach, Robin [Montana State University

    2014-10-31T23:59:59.000Z

    Background. The use of biological and chemical processes that degrade or immobilize contaminants in subsurface environments is a cornerstone of remediation technology. The enhancement of biological and chemical processes in situ, involves the transport, displacement, distribution and mixing of one or more reactive agents. Biological and chemical reactions all require diffusive transport of solutes to reaction sites at the molecular scale and accordingly, the success of processes at the meter-scale and larger is dictated by the success of phenomena that occur at the micron-scale. However, current understanding of scaling effects on the mixing and delivery of nutrients in biogeochemically dynamic porous media systems is limited, despite the limitations this imposes on the efficiency and effectiveness of the remediation challenges at hand. Objectives. We therefore proposed to experimentally characterize and computationally describe the growth, evolution, and distribution of microbial activity and mineral formation as well as changes in transport processes in porous media that receive two or more reactive amendments. The model system chosen for this project was based on a method for immobilizing 90Sr, which involves stimulating microbial urea hydrolysis with ensuing mineral precipitation (CaCO3), and co-precipitation of Sr. Studies at different laboratory scales were used to visualize and quantitatively describe the spatial relationships between amendment transport and consumption that stimulate the production of biomass and mineral phases that subsequently modify the permeability and heterogeneity of porous media. Biomass growth, activity, and mass deposition in mixing zones was investigated using two-dimensional micro-model flow cells as well as flow cells that could be analyzed using synchrotron-based x-ray tomography. Larger-scale flow-cell experiments were conducted where the spatial distribution of media properties, flow, segregation of biological activity and impact on ancillary constituents (i.e., Sr) was determined. Model simulations accompanied the experimental efforts. Benefits and Outcomes of the Project. The research contributed towards defining the key physical, chemical, and biological processes influencing the form and mobility of DOE priority contaminants (e.g., 60Co, 90Sr, U) in the subsurface. The work conducted and reported herein, will in the future (i) contribute to controlling the juxtaposition of microbial activity, contaminants and amendments, (ii) promote new strategies for delivering amendments, and (iii) allow new approaches for modifying permeability and flow in porous media. We feel that the work has already translated directly to improving the efficiency of amendment based remediation strategies. Products. The results of the project have been published in a number of peer reviewed journal articles. The abstracts and citations to those articles, given in section 2.0 below, make up the bulk of this final report.

  16. Independent Activity Report, Washington River Protection Solutions, LLC- October 2011

    Broader source: Energy.gov [DOE]

    Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations [HIAR-ORP-2011-10-26

  17. active solute transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model for overland solute transport Texas A&M University - TxSpace Summary: Using the kinematic-wave overland flow equation and a fractional dispersion-advection equation, a...

  18. Abstract--This paper reports on work the Consortium for Electric Reliability Technology Solutions (CERTS) has been

    E-Print Network [OSTI]

    of the New York Public Servic Reliability Technology Solutions on behalf of the U.S. Department of Energy's Transmission Reliability program. The work was funded by the Assistant Secretary of Energy Efficiency and Renewable Energy, Office of Power

  19. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30T23:59:59.000Z

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  20. Thermally Activated Desiccant Technology for Heat Recovery and Comfort

    SciTech Connect (OSTI)

    Jalalzadeh, A. A.

    2005-11-01T23:59:59.000Z

    Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

  1. Activity Stream - Energy Generation by State and Technology ...

    Open Energy Info (EERE)

    Energy Generation by State and Technology (2009) 22 days ago harvest created the dataset Energy Generation by State and Technology (2009) 1 month ago harvest created the dataset...

  2. Solution

    E-Print Network [OSTI]

    2011-09-09T23:59:59.000Z

    Solution: We're looking for the presale cost of the shirt, so let x be the price of ... The sale price is $10 and we've called the presale price x, so we need to solve.

  3. TREATMENT OF CYANIDE SOLUTIONS AND SLURRIES USING AIR-SPARGED HYDROCYCLONE (ASH) TECHNOLOGY

    SciTech Connect (OSTI)

    Jan D. Miller; Terrence Chatwin; Jan Hupka; Doug Halbe; Tao Jiang; Bartosz Dabrowski; Lukasz Hupka

    2003-03-31T23:59:59.000Z

    The two-year Department of Energy (DOE) project ''Treatment of Cyanide Solutions and Slurries Using Air-Sparged Hydrocyclone (ASH) Technology'' (ASH/CN) has been completed. This project was also sponsored by industrial partners, ZPM Inc., Elbow Creek Engineering, Solvay Minerals, EIMCO-Baker Process, Newmont Mining Corporation, Cherokee Chemical Co., Placer Dome Inc., Earthworks Technology, Dawson Laboratories and Kennecott Minerals. Development of a new technology using the air-sparged hydrocyclone (ASH) as a reactor for either cyanide recovery or destruction was the research objective. It was expected that the ASH could potentially replace the conventional stripping tower presently used for HCN stripping and absorption with reduced power costs. The project was carried out in two phases. The first phase included calculation of basic processing parameters for ASH technology, development of the flowsheet, and design/adaptation of the ASH mobile system for hydrogen cyanide (HCN) recovery from cyanide solutions. This was necessary because the ASH was previously used for volatile organics removal from contaminated water. The design and modification of the ASH were performed with the help from ZPM Inc. personnel. Among the modifications, the system was adapted for operation under negative pressure to assure safe operating conditions. The research staff was trained in the safe use of cyanide and in hazardous material regulations. Cyanide chemistry was reviewed resulting in identification of proper chemical dosages for cyanide destruction, after completion of each pilot plant run. The second phase of the research consisted of three field tests that were performed at the Newmont Mining Corporation gold cyanidation plant near Midas, Nevada. The first field test was run between July 26 and August 2, 2002, and the objective was to demonstrate continuous operation of the modified ASH mobile system. ASH units were applied for both stripping and absorption, to recover cyanide, using the acidification-volatilization-reabsorption chemistry. Plant barren cyanide solution was used during the field tests. The original ASH system used for the field tests had been designed and fabricated by ZPM Inc. to remove volatile organic compounds from ground water. The system, even with a number of modifications, could not operate at optimum conditions for cyanide recovery. Reactors and pumps installed in the mobile system only allowed for the treatment of clear solutions, not slurries. Also the original mobile system was limited with respect to Q, the relative air flow rate, and the extent of recovery in a single stage. Due to the lack of automatic controls, the system required constant supervision of the University of Utah (U/U) team. In spite of these difficulties, application of the ASH mobile system was particularly attractive due to compactness of the apparatus and less than 1 second residence time of the aqueous phase in the cyclones. The performance of the ASH system was evaluated by comparison with theoretical predictions.

  4. Vehicle Technologies Office Merit Review 2015: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about active, tailorable...

  5. Vehicle Technologies Office Merit Review 2014: Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

    Broader source: Energy.gov [DOE]

    Presentation given by Michigan State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Active, tailorable...

  6. Measurement of the thorium-228 activity in solutions cavitated by ultrasonic sound

    E-Print Network [OSTI]

    R. Ford; M. Gerbier-Violleau; E. Vazquez-Jauregui

    2009-11-10T23:59:59.000Z

    We show that cavitation of a solution of thorium-228 in water does not induce its transformation at a faster rate than the natural radioactive decay. We measured the activity of a thorium-228 solution in water before, and after, it was subjected to a cavitation at 44 kHz and $250 $W for 90 minutes in order to observe any change in the thorium half-life. The results were compared to the original activity of the sample and we observed no change. Our results and conclusions conflict with those in a recent paper by F. Cardone et. al. [Phys. Lett. A 373 (2009) 1956-1958].

  7. Method and device for electroextraction of heavy metals from technological solutions and wastewater

    DOE Patents [OSTI]

    Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae

    2005-05-03T23:59:59.000Z

    The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.

  8. Bass Hepcidin Synthesis, Solution Structure, Antimicrobial Activities and Synergism, and in Vivo Hepatic Response to

    E-Print Network [OSTI]

    Nizet, Victor

    in the antimicrobial defenses of bass and that its functions are potentially conserved between fish and humanBass Hepcidin Synthesis, Solution Structure, Antimicrobial Activities and Synergism, and in Vivo, Pennsylvania 19406 Bass hepcidin was purified from the gill of hybrid striped bass (Morone chrysops Morone

  9. Silvicultural Activities in Relation to Water Quality in Texas: An Assesment of Potential Problems and Solutions

    E-Print Network [OSTI]

    Blackburn, W. H.; Hickman, C. A.; deSteiguer, J. E.; Jackson, B. D.; Blume, T. A.; DeHaven, M. G.

    1978-02-01T23:59:59.000Z

    TR- 97 1978 Silvicultural Activities in Relation to Water Quality in Texas: An Assessment of Potential Problems and Solutions W.H. Blackburn C.A. Hickman J.E. deSteiguer B.D. Jackson T.A. Blume M.G. De...Haven Texas Water Resources Institute Texas A&M University ...

  10. innovati nInnovative Evaporative and Thermally Activated Technologies

    E-Print Network [OSTI]

    Unit DEVap Cooling Core Cool, Dry Supply Air Return Air Outdoor Air NREL is a national laboratory moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses in TATs and evaporative technologies, which work well together to cool buildings. They have also created

  11. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01T23:59:59.000Z

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  12. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  13. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  14. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  15. Analysis Activities at Fossil Energy/ National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  16. RESEARCH ACTIVITIES Division of Heat and Power Technology

    E-Print Network [OSTI]

    Kazachkov, Ivan

    Euro Necessary space Rig in use: 45m2 (9mx5m), storage: ca 14 m2 (7mx2m) General application Experimental to high subsonic operation Application for industry Testing of aerodynamic damping of blade rows Turbine - Division of Heat and Power Technology Object Cold Flow Test Turbine Brand name ABB STAL design

  17. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    MINWALL HJ

    2011-04-08T23:59:59.000Z

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  18. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  19. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  20. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect (OSTI)

    Bromberg, S.E.

    1998-05-01T23:59:59.000Z

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  1. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    SciTech Connect (OSTI)

    Sheng, F.; Wang, K.; Zhang, R.; Liu, H.H.

    2009-03-15T23:59:59.000Z

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.

  2. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    KELLY SE

    2011-04-07T23:59:59.000Z

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  3. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    ARD KE

    2011-04-11T23:59:59.000Z

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  4. Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofing surfacesTechnology Solutions

  5. Virtual active filters for HVDC networks using V2G technology F.R. Islam

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Virtual active filters for HVDC networks using V2G technology F.R. Islam , H.R. Pota School 23 July 2013 Keywords: Power system HVDC Active filter PHEV V2G a b s t r a c t Active and passive filters are essential to maintain the power quality of a HVDC link. In this paper the Vehicle to Grid (V2G

  6. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  7. solutions that count The Australian Technology Network of Universities (ATN) is a group

    E-Print Network [OSTI]

    Curtin CASE STUdy Effective Tinnitus Treatment Improves Health Outcomes dISCIPlINE Clinical Health CREd examples of research outcomes generated by ATN member universities. They demonstrate the diversity. solutions that count 5050 #12;2 Effective Tinnitus Treatment Improves Health Outcomes 0101 ATN UNIVERSITy

  8. ATRS -A Technology-based Solution to Automobility for Wheelchair Users

    E-Print Network [OSTI]

    Spletzer, John R.

    the Automated Transport and Retrieval System (ATRS). ATRS represents an alternative to van conversions for automobile drivers with lower body dis- abilities. It employs robotics and automation technologies that integrate into a standard mini- van or sport utility vehicle (SUV). At the core of ATRS is a "smart

  9. Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energyof 2005 at Iowa WindUnion7 PeerTechnologyIndustrIal

  10. Extraction chromatographic separation of promethium from high active waste solutions of Purex origin

    SciTech Connect (OSTI)

    Ramanujam, A.; Achuthan, P.V.; Dhami, P.S.; Gopalakrishnan, V.; Kannan, R.; Mathur, J.N. [Bhabha Atomic Research Centre, Bombay (India)

    1995-03-01T23:59:59.000Z

    An extraction chromatographic procedure for the separation of {sup 147}Pm from High Active Waste solutions of Purex process has been developed. Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO) and 2-ethylhexyl-2-ethylhexylphosphonic acid (KSM-17), both sorbed separately on an inert support(chromosorb-102) have been sequentially employed for this purpose. In the CMPO column, the rare earths and the trivalent actinides are sorbed together with uranium, plutonium and traces of few other fission products. The elution of this column with 0.04 M HNO{sub 3} gives an eluate containing trivalent actinides and lanthanides. This solution, after adjusting the pH to 2.0, is used as feed for the second extraction chromatographic column based on KSM-17. All the trivalent metal ions are sorbed on the column leaving the trace impurities in the effluent. Fractional elution of the metal ions from this column is carried out with nitric acid of varying concentrations. At 0.09 M HNO{sub 3}, the pure beta emitting fraction of {sup 147}Pm has been obtained. 16 refs., 3 figs., 2 tabs.

  11. Information Technology Solutions In the event of an emergency, are you standing, ready, and prepared?

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Playbook such as what to do during acts of violence, medical emergencies, fires & hazardous materials, hazardous material release, medical, active shooter, or bomb threat Identify emergency preparedness resources DATES AND LOCATIONS: This session will be offered twice during Campus Safety Awareness Week

  12. Accurate Positioning Using Long Range Active RFID Technology to Assist Visually Impaired People

    E-Print Network [OSTI]

    van Schyndel, Ron

    Accurate Positioning Using Long Range Active RFID Technology to Assist Visually Impaired People.vanschyndel@rmit.edu.au,ibrahimk@cs.rmit.edu.au Abstract The aim of this paper is to describe a new positioning technique to assist the blind and people environments. The proposed technique is based on a combination of power attenuation and a signal strength

  13. International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION

    E-Print Network [OSTI]

    California at Los Angeles, University of

    International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION PRODUCTS IN SELECTED APEX DESIGNS K. A. McCarthy, D. A. Petti, R. L. Moore, and B. J. In this paper we concentrate on mobilization of first wall materials during ingress events, and provide guidance

  14. Greenhouse gas (GHG) mitigation and monitoring technology performance: Activities of the GHG Technology Verification Center. Report for January 1998--January 1999

    SciTech Connect (OSTI)

    Masemore, S.; Kirchgessner, D.A.

    1999-05-01T23:59:59.000Z

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the US EPA`s Office of Research and Development. The Center is part of EPA`s Environmental Technology Verification (ETV) Program, which has established 12 verification centers to evaluate a wide range of technologies in various environmental media and technology areas. The Center has published the results of its first verification: use of a phosphoric acid fuel cell to produce electricity from landfill gas. It has also initiated three new field verifications, two on technologies that reduce methane emissions from natural gas transmissions compressors, and one on a new microturbine electricity production technology.

  15. Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,,

  16. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29T23:59:59.000Z

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

  17. A self-consistent nonlinear force-free solution for a solar active region magnetic M.S. Wheatland

    E-Print Network [OSTI]

    Régnier, Stéphane

    fields 1. Introduction Solar coronal magnetic fields provide the source of energy for solar flaresA self-consistent nonlinear force-free solution for a solar active region magnetic field M.S. Wheatland Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia m

  18. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

    2010-06-15T23:59:59.000Z

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  19. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  20. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  1. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  2. IEEE TRANSACTIONS ON EDUCATION, VOL. 44, NO. 2, MAY 2001 203 Technology Education Challenges and Solutions in Latin America

    E-Print Network [OSTI]

    IEEE TRANSACTIONS ON EDUCATION, VOL. 44, NO. 2, MAY 2001 203 Technology Education Challenges--Information technology education, Latin America, technology education I. SUMMARY The world has become dependent (IT&T), a term that encompasses the fields of Electrical and Computer Engineering, and Computer

  3. University of Washington Focus the Nation Title: Where will we find the energy? Technological Solutions to Global Warming

    E-Print Network [OSTI]

    Rigor, Ignatius G.

    generation of clean energy technology" and making "the breakthroughs of tomorrow". While technological innovation is vital for developing clean energy, two Princeton researchers contend that current technologyUniversity of Washington Focus the Nation 1/31/2008 Title: Where will we find the energy

  4. Reflecting the Current Practices of Technology Use in Volunteer Data Collection Activities on

    E-Print Network [OSTI]

    on the Opportunities of Mobile Technology Sunyoung Kim1 , Jennifer Mankoff1 , Eric Paulos2 August 2014 CMU-HCII-14, Mobile Technology, Technology Adoption #12;3 ABSTRACT Mobile technology is advancing our ability mobile technologies. In order to understand how mobile technology might support volunteer data collection

  5. Advanced and developmental technologies for treatment and volume reduction of dry active wastes

    SciTech Connect (OSTI)

    Kohout, R. [R. Kohout & Associates, Ltd., Toronto (Canada)

    1994-12-31T23:59:59.000Z

    The nuclear power industry processes Dry Active Wastes (DAW) to achieve cost-effective volume reduction and/or to produce a residue that is more compatible with final disposal criteria. The two principal processes currently used by the industry are compaction and incineration. Although incineration is often considered the process of choice, capital and operating cost are often high, and in some countries, public opposition and lengthy permitting processes result in expensive delays to bringing the process to operation. Therefore, alternative treatment options (mechanical, thermal, chemical, and biological) are being investigated to provide timely, cost-effective options for industry use. An overview of those developmental processes considered applicable to processing DAW is presented. In each category, {open_quotes}established{close_quotes} processes are mentioned and/or referenced, but the focus is on {open_quotes}potential{close_quotes} technologies and the status of their development. The emphasis is on processing DAW, and therefore, those developmental processes that primarily treat solids in aqueous streams and melting/sintering technologies, both of lesser applicability to nuclear utility wastes, have been omitted. Included are those developmental technologies that appear to have a potential for radioactive waste application based on development on demonstration programs.

  6. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01T23:59:59.000Z

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  7. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    2004.   “China  to  train  developing  nations  in  solar China  where  quality  is  already  equivalent  to  the  highest  technological  level  of  the  global  industry,  including  solar 

  8. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  9. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles

    E-Print Network [OSTI]

    Shin, J; Kim, W K; Metzler, R

    2015-01-01T23:59:59.000Z

    We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two dimensional system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that larger activities of SPPs yield a higher effective temperature of the bath and thus facilitate looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer's centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our...

  10. Development of a National Center for Hydrogen Technology: A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    SciTech Connect (OSTI)

    Holmes, Michael

    2012-05-31T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology? (NCHT?) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT?s inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program?s nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  11. Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    E-Print Network [OSTI]

    Fan, Zhong; Gormus, Sedat; Efthymiou, Costas; Kalogridis, Georgios; Sooriyabandara, Mahesh; Zhu, Ziming; Lambotharan, Sangarapillai; Chin, Woon Hau

    2011-01-01T23:59:59.000Z

    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.

  12. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    was  directly  tied  to  wind  turbine  cost.  Goldwind’s countries where  the cost of wind power technology had bringing  down  the  cost  of  wind?powered  electricity.  

  13. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that is examining new battery materials and addressing fundamental chemical and mechanical instability issues in batteries.

  14. DEVELOPMENT OF A NATIONAL CENTER FOR HYDROGEN TECHNOLOGY: A SUMMARY REPORT OF ACTIVITIES COMPLETED AT THE NATIONAL CENTER FOR HYDROGEN TECHNOLOGY FROM 2005 TO 2010

    SciTech Connect (OSTI)

    Michael Holmes

    2011-05-31T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energyâ??s (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHTâ??s inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT projectâ??s 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  15. Northwest Regional Technology Center

    E-Print Network [OSTI]

    Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

  16. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. One of the first activities of the High Value Manufacturing technology and innovation

    E-Print Network [OSTI]

    Mottram, Nigel

    Results of "Future Trends" Study HVM Technology and Innovation Centre news Investing in the future W announced that over £200m will be invested in a network of elite technology and innovation centres in Coventry. Newsletter of the High Value Manufacturing Technology and Innovation Centre related

  18. Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance Exchange(tm) (TPEx(tm)) is

  19. Integrated Technology Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

  20. Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate, Southwestern Pennsylvania (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary 29CNGCAMPAIGNING ACTIVITIES BY POLITICAL

  1. Vehicle Technologies Office Merit Review 2015: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cell Analysis,...

  2. Vehicle Technologies Office Merit Review 2015: Process Development and Scale up of Advanced Active Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Process...

  3. DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-05-12T23:59:59.000Z

    Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

  4. Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

  5. Vehicle Technologies Office Merit Review 2015: Clean Cities Coordinator Resource Building and National Networking Activities

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Clean...

  6. Vehicle Technologies Office Merit Review 2015: Impact Analysis: VTO Baseline and Scenario (BaSce) Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impact analysis:...

  7. Vehicle Technologies Office Merit Review 2015: Materials Benchmarking Activities for CAMP Facility

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about materials...

  8. Vehicle Technologies Office Merit Review 2014: Impact Analysis: VTO Baseline and Scenario (BaSce) Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impact analysis...

  9. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV-smart grid...

  10. Synthesis of TiO2 photocatalyst and study on their improvement technology of photocatalytic activity

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    was evaluated by the measurements of the UV/vis. irradiation, infrared spectroscopy, XPS, and contact angleO2) plays an important role in a variety of technological applications ranging from sensors

  11. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  12. Solute retention in column liquid chromatography. X. Determination of solute infinite-dilution activity coefficients in methanol, water, and their mixtures, by combined gas-liquid and liquid-liquid chromatography

    SciTech Connect (OSTI)

    Djerki, R.A.; Laub, R.J.

    1988-01-01T23:59:59.000Z

    The Raoult's-law activity coefficients of 3- to 7-carbon aliphatic aldehyde, ketone, ester, and alcohol solutes at infinite dilution in methanol, water, and mixtures of the two and in polydimethysiloxane, all at 293-308 K, have been determined for the first time by appropriate combination of GLC and LLC retention data. The latter data are reported in terms of mole factions, while the former are given in concentration units of molality. However, interpretation of the data is difficult because of the multiplicity of the retention mechanisms. Nevertheless, the combined GLC/LLC technique, which had been applied previously only to pure solvents, is said to offer a number of advantages over static techniques for the determination of solute infinite-dilution activity coefficients with volatile solvents, especially with mixtures of solvents.

  13. Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications

    E-Print Network [OSTI]

    Chirala, Mohan Krishna

    2009-05-15T23:59:59.000Z

    being suitably tailored for CMOS technology. A number of novel passive structures - including a compact 10 GHz hairpin resonator, a broadband, low loss 25-35 GHz Lange coupler, a 25-35 GHz thin film microstrip (TFMS) ring hybrid, an array of 0.8 nH and 0...

  14. Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that addresses near term (less than 5 years) opportunities and barriers as battery materials move from R&D to cell construction and validation.

  15. Breakout Session: Bringing Solutions to the Solar Industry: Startups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bringing Solutions to the Solar Industry: Startups, Technology Development and Market Entry Breakout Session: Bringing Solutions to the Solar Industry: Startups, Technology...

  16. Perceptions of livestock producers, forage producers, wildlife managers, and forage-based service providers concerning extension and technology-transfer activities in south Texas and northeast Mexico 

    E-Print Network [OSTI]

    Folsom, Wendy Ann

    2001-01-01T23:59:59.000Z

    The purpose of this bi-national study was to determine the type, nature, and extent of existing extension and technology-transfer activities provided to livestock producers, forage producers, and wildlife managers in south ...

  17. Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution

    E-Print Network [OSTI]

    Auh, Jae Hyuck, 1969-

    2003-01-01T23:59:59.000Z

    The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

  18. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  19. ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS

    SciTech Connect (OSTI)

    Knox, A.; Paller, M.; Roberts, J.

    2012-02-13T23:59:59.000Z

    This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

  20. Chicago Operations Office: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation (RDDT and E) activities funded through the Chicago Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US Industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents which highlight technology development activities within each of the OTD program elements. OTD technologies addresses three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention. These problems are not unique to DOE, but are associated with other Federal agency and industry sites as well. Thus, technical solutions developed within OTD programs will benefit DOE, and should have direct applications in outside markets.

  1. Information Technology Solutions WILLIAM DEBUYS

    E-Print Network [OSTI]

    Huang, Haiying

    shaped the immigra on debate, and U.S.-Mexico rela ons in general? DeBuys explains how water--or the lack are the consequences of climate change on a region in which water has always been a scarce resource? How have water

  2. V2G Technology for Designing Active Filter System to Improve Wind Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    generation. A system model with wind generator and a dynamic model of PHEVs are introduced here based on the instantaneous power theory (p-q theory) to improve the wind generator performance through compensating have the potential to work as active filter with wind generator to improve power quality, dynamic power

  3. Technology Commercialization Showcase - EERE Commercialization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the business community. If no one learns of a technology's promise, then that technology will indefinitely sit on the lab shelf. The Solution: The Department Of Energy...

  4. Strategic Biomass Solutions (Mississippi)

    Broader source: Energy.gov [DOE]

    The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

  5. News from the Science and Technology

    E-Print Network [OSTI]

    range of modern challenges, such as advancing healthcare technologies, creating green energy solutions

  6. SOLUTION-PROCESSED INORGANIC ELECTRONICS

    E-Print Network [OSTI]

    Bakhishev, Teymur

    2011-01-01T23:59:59.000Z

    Solution-Processed Graphene Electronics,” Nano Letters, vol.applications,” Organic Electronics, vol. 12, no. 2, pp. 249-design in organic electronics by dual-gate technology,” in

  7. The mPED randomized controlled clinical trial: Applying mobile persuasive technologies to increase physical activity in sedentary women protocol

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    effectively apply these mobile technologies to increase andJS: Using internet and mobile phone technology to deliver anJS: Using internet and mobile phone technology to deliver an

  8. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  9. Background paper for "The 10-50 Solution: Technologies and Policies for a Low-Carbon Future" Pew Center & NCEP Conference, Washington, DC, March 25 26, 2004

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ­ 2% annual rate of decarbonization and efficiency improvements, our energy system could look very, and to international leadership in clean energy technology development and deployment. Technological and Market Outlook Center & NCEP Conference, Washington, DC, March 25 ­ 26, 2004 Renewable Energy Options for the Emerging

  10. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-01-31T23:59:59.000Z

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  11. Multimedia systems play a central part in many human activities. Due to the significant advances in the VLSI technology, there is an

    E-Print Network [OSTI]

    Pedram, Massoud

    Abstract Multimedia systems play a central part in many human activities. Due to the significant advances in the VLSI technology, there is an increasing demand for portable multimedia appliances capable a steady move from stand- alone (or desktop) multimedia to deeply distributed multimedia systems. Whereas

  12. Novel Non-Precious metals for PEMFC A major impediment to the commercialization of fuel cell technology is the low activity

    E-Print Network [OSTI]

    Popov, Branko N.

    water pass from the anode to the cathode in Direct Methanol Fuel Cells (DMFC). This reduces the cathode to the commercialization of fuel cell technology is the low activity of platinum electrocatalyst used for oxygen reduction efficiency. Alternate electrocatalysts that are not deactivated by the methanol transported from the anode

  13. Chattopadhyay, A.; Prabhu, B.S.; Gadh, R.; , "Web based RFID asset management solution established on cloud services," RFID-Technologies and Applications (RFID-

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Chattopadhyay, A.; Prabhu, B.S.; Gadh, R.; , "Web based RFID asset management solution established University of California Los Angeles, Los Angeles, California 90095 Rajit Gadh University of California Los

  14. Corrosion Mechanisms of Mild Steel in Aqueous CO2 SolutionsThu Tran Institute for Corrosion and Multiphase Technology, Ohio University

    E-Print Network [OSTI]

    Botte, Gerardine G.

    Corrosion Mechanisms of Mild Steel in Aqueous CO2 SolutionsThu Tran Institute for Corrosion," Corrosion Science 41, (1999): pp. 117-139. [2] E. Remita, B. Tribollet, E. Sutter, V. Vivier, F. Ropital contribution of the buffering effect," Corrosion Science 50, (2008): pp. 1433-1440. [3] C. DeWaard and D

  15. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01T23:59:59.000Z

    L ABORATORY Optimal Technology Selection and Operation ofEnvironmental Energy Technologies Division 15 January 2007for Electric Reliability Technology Solutions with funding

  16. 70 Art & Design Galleries slow art | erosion erosion | slow art Art & Design Galleries 71 Technology is often touted as the solution to a host of problems,

    E-Print Network [OSTI]

    Hunt, Galen

    and the spectre of global warming. But what will it be like to live with the emergent technologies that are being the production of electricity by incorporating the cells into a radio appliance (Fig. 2). Unlike the sugar, for example, some of the efforts to rethink the production and consumption of power. These proposals not only

  17. Technology Advertising Contact Information

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions

  18. Building America Whole-House Solutions for New Homes: Affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Building America Whole-House Solutions for New Homes: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York Building America Technology Solutions...

  19. A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Progress Report Cathode Synthesis and Voltage Fade: Designed Solutions Based on Theory Vehicle Technologies Office Merit Review 2014: Synthetic Solutions for Correcting...

  20. Building technologies program. 1995 annual report

    SciTech Connect (OSTI)

    Selkowitz, S.E.

    1996-05-01T23:59:59.000Z

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  1. Building America Whole-House Solutions for New Homes: Lancaster...

    Energy Savers [EERE]

    Lancaster County Career and Technology Center Green Home 3 - Mount Joy, Pennsylvania Building America Whole-House Solutions for New Homes: Lancaster County Career and Technology...

  2. Bridging the Technology Innovation

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Bridging the Technology Innovation Gap Dr Ceri Williams Director of Medical Technologies Innovation Technologies #12;Distinctive Approach to Translating ResearchWe support innovation to reach TRL 5 enable real and Knowledge Centre #12;What is the Medical Technologies IKC? · All activities centre on research translation

  3. Sandia National Laboratories: Transformational Solutions for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. water supply and demand and explored potential "transformational" solutions from the perspectives of technology and policy (or both) and discussed ... Last Updated: October...

  4. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Energy Savers [EERE]

    and Solutions (ACCESS) for High Efficiency Light Duty Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  5. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  6. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on Review of Recent Reliability Issues and Systems Events

    SciTech Connect (OSTI)

    Hauer, John F.; Dagle, Jeffery E.

    1999-12-01T23:59:59.000Z

    This report is one of six reports developed under the U.S. Department of Energy (DOE) program in Power System Integration and Reliability (PSIR). The objective of this report is to review, analyze, and evaluate critical reliability issues demonstrated by recent disturbance events in the North America power system. Eleven major disturbances are examined, most occurring in this decade. The strategic challenge is that the pattern of technical need has persisted for a long period of time. For more than a decade, anticipation of market deregulation has been a major disincentive to new investments in system capacity. It has also inspired reduced maintenance of existing assets. A massive infusion of better technology is emerging as the final option to continue reliable electrical services. If an investment in better technology will not be made in a timely manner, then North America should plan its adjustments to a very different level of electrical service. It is apparent that technical operations staff among the utilities can be very effective at marshaling their forces in the immediate aftermath of a system emergency, and that serious disturbances often lead to improved mechanisms for coordinated operation. It is not at all apparent that such efforts can be sustained through voluntary reliability organizations in which utility personnel external to those organizations do most of the technical work. The eastern interconnection shows several situations in which much of the technical support has migrated from the utilities to the Independent System Operator (ISO), and the ISO staffs or shares staff with the regional reliability council. This process may be a natural and very positive consequence of utility restructuring. If so, the process should be expedited in regions where it is less advanced.

  7. International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report

    SciTech Connect (OSTI)

    Lakey, L.T.; Harmon, K.M.

    1983-02-01T23:59:59.000Z

    In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

  8. Information Technologies Activity Report J U N E AU G U S T 2 0 1 1

    E-Print Network [OSTI]

    Firestone, Jeremy

    the 309 Gore Hall Web page. High Performance Computing Cluster As announced in the June 2011 IT Activity Report, IT is in the process of building the UD Community Cluster, a high performance computing (HPC

  9. This article describes recent activities in the area of RF integrated circuits First, transceiver architectures developed for cellular and cordless telephone standards are presented. Next, the choice of device technology is discussed, and the design of bu

    E-Print Network [OSTI]

    Razavi, Behzad

    , the choice of device technology is discussed, and the design of building blocks such as low-noise amplifiers (formerly AT&T Microelectron- ics) offers a single-chip solution that, along with a low-noise amplifier (LNA and mixers, oscillators, and power amplifiers is described. Last, some of the emerging applications of RF

  10. Federal Activities in the Bioeconomy

    Broader source: Energy.gov [DOE]

    Plenary V: Federal Activities in the Bioeconomy Federal Activities in the Bioeconomy Zia Haq, Senior Analyst, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  11. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  12. A View to the FutureBERKELEY LAB 2005/2006 REPORT A Note from the Director / 2 Energy Technologies and Environmental Solutions / 4 Living Systems and Quantitative Biology / 8 Frontiers in Nanoscience / 12 Exploring Matter and Energy in the Universe / 16

    E-Print Network [OSTI]

    Knowles, David William

    A View to the FutureBERKELEY LAB 2005/2006 REPORT #12;A Note from the Director / 2 Energy Technologies and Environmental Solutions / 4 Living Systems and Quantitative Biology / 8 Frontiers in Nanoscience / 12 Exploring Matter and Energy in the Universe / 16 X-Ray and Ultrafast Science / 20 Advanced

  13. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  14. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05T23:59:59.000Z

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

  15. Funding Opportunity Announcement: SunShot Technology to Market...

    Office of Environmental Management (EM)

    program will enable the widespread market penetration of highly impactful solar energy technologies and solutions through technology research, development, and demonstration...

  16. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01T23:59:59.000Z

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  17. Packaging Waste and Hitting Home Runs: How Education and Lightning Strike Detection Technology Supports Company and Community Activities

    SciTech Connect (OSTI)

    Deecke, T.A. [Weston Solutions, Inc., 297 Kentucky Avenue, Kevil, KY 42053 (United States); Hyde, J.V.; Hylko, J.M. [WESKEM, LLC, 297 Kentucky Avenue, Kevil, KY 42053 (United States)

    2006-07-01T23:59:59.000Z

    The weather is the most significant and unmanageable variable when performing environmental remediation activities. This variable can contribute to the failure of a project in two ways: 1) severe injury to an employee or employees following a cloud-to-ground lightning strike without prior visual or audible warnings; and 2) excessive 'down time' associated with mobilization and demobilization activities after a false alarm (e.g., lightning was seen in the distance but was actually moving away from the site). Therefore, in order for a project to be successful from both safety and financial viewpoints, the uncertainties associated with inclement weather, specifically lightning, need to be understood to eliminate the element of surprise. This paper discusses educational information related to the history and research of lightning, how lightning storms develop, types of lightning, the mechanisms of lightning injuries and fatalities, and follow-up medical treatment. Fortunately, lightning storm monitoring does not have to be either costly or elaborate. WESKEM, LLC selected the Boltek StormTracker Lightning Detection System with the Aninoquisi Lightning 2000{sup TM} software. This fixed system, used in combination with online weather web pages, monitors and alarms WESKEM, LLC field personnel in the event of an approaching lightning storm. This application was expanded to justify the purchase of the hand-held Sky Scan Lightning/Storm Detector Model P5 used by the Heath Youth Athletic Association (HYAA) which is a non-profit, charitable organization offering sports programs for the youth and young adults in the local community. Fortunately, a lightning injury or fatality has never occurred on a WESKEM Paducah project or an HYAA-sponsored event. Using these fixed and hand-held systems will continue to prevent such injuries from occurring in the foreseeable future. (authors)

  18. Energy Technology Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC |Department of Energy 3at

  19. Pollution Prevention Program: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Department of Energy (DOE) has established a national Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program for pollution prevention and waste minimization at its production plants During FY89/90 the Office of Environmental Restoration and Waste Management (EM), through the Office of Technology Development (OTD), established comprehensive, pollution prevention technical support programs to demonstrate new, environmentally-conscious technology for production processes. The RDDT&E program now entails collaborative efforts across DOE. The Pollution Prevention Program is currently supporting three major activities: The DOE/US Air Force Memorandum of Understanding Program is a collaborative effort to utilize the combined resources of DOE and the Department of Defense, eliminate duplication of effort in developing technologies, and to facilitate technology solutions aimed at reducing waste through process modification, material substitution or recycling. The Waste Component Recycle, Treatment and Disposal Integrated Demonstration (WeDID) will develop recycle, treatment, and disposal processes and associated technologies for use in the dismantlement of non-nuclear weapons components, to support US arms treaties and policies. This program will focus on meeting all security and regulatory requirements (with additional benefit to the commercial electronics industry). The Environmentally Conscious Manufacturing Integrated Demonstration (ECMID) will effectively implement ECM technologies that address both the needs of the DOE Complex and US electronics industry, and encourage strong interaction between DOE and US industry. The ECMID will also develop life cycle analysis tools that will aid decisionmakers in selecting the optimum process based on the tradeoffs between cost an environmental impact.

  20. Science and Engineering Alliance, Inc. (SEA) Activities to Increase Participation of Students from Underrepresented Groups in Science, Technology, Engineering and Mathematics (STEM) Programs

    SciTech Connect (OSTI)

    Robert L. Shepard, PhD.

    2012-04-30T23:59:59.000Z

    To Increase Participation of Students from Underrepresented Groups in Science, Technology, Engineering and Mathematics (STEM) Programs.

  1. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  2. College of Information Technology 151 INFORMATION TECHNOLOGY

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    the computer industry either as a computer hardware design engineer or as a computer scientist with a heavy, industry professionals, and students. The College of IT was formed in 2000, with the mission of educating industry to develop information technology solutions. Computer Science Program. The Computer Science

  3. 2012 Annual Merit Review Results Report - Energy Storage Technologies...

    Energy Savers [EERE]

    Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2012amr02.pdf More...

  4. 2011 Annual Merit Review Results Report - Energy Storage Technologies...

    Energy Savers [EERE]

    Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011amr02.pdf More...

  5. 2014 Annual Merit Review Results Report - Energy Storage Technologies...

    Energy Savers [EERE]

    Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf More...

  6. Green Technology Foresight as Instrument in Governance for Sustainability

    E-Print Network [OSTI]

    activities. Also people in the fields of technology studies and technology assessment are discussing foresight, has occurred as part of this renewed and extended focus on technology foresight

  7. 2012 Annual Merit Review Results Report - Technology Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2012 Annual Merit Review Results Report - Technology Integration Merit review of DOE Vehicle Technologies research activities 2012amr08.pdf More Documents...

  8. 2013 Annual Merit Review Results Report - Technology Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2013 Annual Merit Review Results Report - Technology Integration Merit review of DOE Vehicle Technologies research activities 2013amr08.pdf More Documents...

  9. 2011 Annual Merit Review Results Report - Materials Technologies...

    Energy Savers [EERE]

    Technologies 2011 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2011amr06.pdf More Documents &...

  10. 2012 Annual Merit Review Results Report - Materials Technologies...

    Energy Savers [EERE]

    Technologies 2012 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2012amr06.pdf More Documents &...

  11. 2014 Annual Merit review Results Report - Materials Technologies...

    Energy Savers [EERE]

    review Results Report - Materials Technologies 2014 Annual Merit review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities...

  12. 2013 Annual Merit Review Results Report - Materials Technologies...

    Energy Savers [EERE]

    Technologies 2013 Annual Merit Review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities 2013amr06.pdf More Documents &...

  13. NASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments

    E-Print Network [OSTI]

    Christian, Eric

    investments · Risks are retired before major dollars are invested: a cost-effective approach to technologyNASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments January 7, 2009 #12;Overview: Earth Science Technology Office Science Driven, Competed, Actively Managed

  14. Slow technology for well-being Steffi Beckhaus

    E-Print Network [OSTI]

    Beckhaus, Steffi

    Slow technology for well-being Steffi Beckhaus IAD - Technical University of Darmstadt interactiondesign@steffi.beckhaus.de ABSTRACT Slow technology is technology that actively influences our well): Miscellaneous General Terms Slow Technology SLOW TECHNOLOGY IS... Slow technology is technology that actively

  15. Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of...

  16. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  17. Joint Capability Technology Demonstration (JCTD) Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

  18. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

  19. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

  20. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

  1. Fuel Cell Technologies Office Launches National Laboratory Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 -...

  2. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01T23:59:59.000Z

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  3. Effect of Ni and Co additives on phase decomposition in TiB2-WB2 solid solutions formed by induction field activated combustion synthesis

    E-Print Network [OSTI]

    Shibuya, M; Yoneda, T; Yamamoto, Y; Ohyanagi, M; Munir, Zuhair A

    2003-01-01T23:59:59.000Z

    Activated Self- Propagating High- Temperature Synthesis ofG. Merzhanov, “Self-Propagating High-Temperature Synthesis:Self-Propagating Exothermic Reac- tions: The Synthesis of High-Temperature

  4. An overview of in situ waste treatment technologies

    SciTech Connect (OSTI)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-08-01T23:59:59.000Z

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  5. An overview of in situ waste treatment technologies

    SciTech Connect (OSTI)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01T23:59:59.000Z

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified.

  6. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  7. LED Essentials- Technology, Applications, Advantages, Disadvantages

    Broader source: Energy.gov [DOE]

    On October 11, 2007, Kevin Dowling, VP of Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages...

  8. CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION...

    Open Energy Info (EERE)

    CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION & SOLUTIONS | GREENER VEHICLES Home There are currently no posts in this category. Syndicate content...

  9. Robotic Efficiency Solutions for Ductwork

    E-Print Network [OSTI]

    Forrest, F.

    2012-01-01T23:59:59.000Z

    New Technologies That Work Robotic Efficiency Solutions for ductwork Frank Forrest Electrical Energy Consumption in Office Buildings Building Energy Upgrades ? Lighting upgrade ? Supplemental load reduction ? Air distribution system... based or ? Solvent based and ? Brushed or ? Sprayed ? Rolled Sealant Sprayable ? Lower viscosity than other methods ? Substantially better elasticity ? Sprays at a continuous pressure Robotic Spray Application Process ? Duct interior...

  10. Clean Energy Solutions Center Services (Chinese Translation) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    This is the Chinese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  11. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  12. Clean Energy Solutions Center Services (Vietnamese Translation) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This is the Vietnamese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  13. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida...

    Energy Savers [EERE]

    Innovation. See another example of technology solutions for manufactured homes. Find more case studies of Building America projects across the country that demonstrate high...

  14. Dual Integrated Appliances as an Energy and Safety Solution for...

    Energy Savers [EERE]

    Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Space...

  15. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01T23:59:59.000Z

    in the field. The International Thermal Storage Advisory Council was formed to help meet this perceived need. This paper will review activities of EPRI and ITSAC to achieve widespread acceptance of the technology....

  16. Chemical Technology Division annual technical report, 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  17. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  18. Modeling the technology mix

    SciTech Connect (OSTI)

    Douglas, J. [EPRI (United States)

    2007-09-30T23:59:59.000Z

    The electricity industry is now actively considering which combination of advanced technologies can best meet CO{sub 2} emissions reduction targets. The fundamental challenge is to develop a portfolio of options that is technically feasible and can provide affordable electricity to customers. As the US industry considers its investments in research, development and demonstration projects, EPRI's PRISM and MERGE analyses address this challenge and point toward a solution that EPRI describes as 'The Full Portfolio'. The PRISM results show much greater use of nuclear power, renewable energy and coal with carbon capture and storage (CCS) towards 2030, and a sharply lower contribution from natural gas and coal without CCS. The MERGE analysis shows that, assuming CCS would not be available, the use of coal would fall off sharply in favour of natural gas and there would be a fall in electricity demand driven by very high prices. With the Full Portfolio, nuclear power and advanced coal generation with CCS reduce emissions to a point where a much lower demand reduction is needed. By 2050 the Full Portfolio will have decarbonized the electricity sector and reduced the impact on electricity prices to below a fifth that of the limited portfolio. 2 figs.

  19. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  20. June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing

    E-Print Network [OSTI]

    Engelmann, Christian

    June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak Solutions for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities

  1. Technology reviews: Glazing systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01T23:59:59.000Z

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

  2. Technology reviews: Shading systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01T23:59:59.000Z

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  3. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    SciTech Connect (OSTI)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30T23:59:59.000Z

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private sector, universities or other agencies are expected to have greater expertise will be accomplished through an open, competitive solicitation process. Several areas will require joint efforts from the two classes of resources.

  4. Introduction to Fujitsu's Technical Computing and Activities for Space

    E-Print Network [OSTI]

    information system operation and management) ·others 2 #12;Ubiquitous Product Solutions PCs and mobile phones range of servers (mainframe, UNIX, mission-critical IA, PC) Our 3 Business Segments Technology Solutions Ubiquitous Product Solutions Device Solutions Technology Solutions System Platforms 2. Corporate Profile(2

  5. 2010 Water & Aqueous Solutions

    SciTech Connect (OSTI)

    Dor Ben-Amotz

    2010-08-13T23:59:59.000Z

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  6. Active Learning via Transductive Experimental Design Kai Yu kai.yu@siemens.com

    E-Print Network [OSTI]

    Tresp, Volker

    Active Learning via Transductive Experimental Design Kai Yu kai.yu@siemens.com Siemens, Corporate Technology, Otto-Hahn-Ring 6, Munich 81739, Germany Jinbo Bi jinbo.bi@siemens.com Siemens, Medical Solutions, 51 Valley Stream Parkway, Malvern PA 19355, USA Volker Tresp volker.tresp@siemens.com Siemens

  7. Technology Transfer award funding data* Figure 1. Current Technology Transfer awards

    E-Print Network [OSTI]

    Rambaut, Andrew

    6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award expenditure 2012/13 by value On 1 October 2013 we were funding 125 active awards through our Technology

  8. Hanford technology integration: A success story

    SciTech Connect (OSTI)

    Stenehjem, E.J.; Pond, D.J.; Widrig, J.E.; Deonigi, D.E.

    1994-10-01T23:59:59.000Z

    This paper describes recent activities of the Richland Northwest Laboratory in the area of technology transfer. A major thrust within major DOE laboratories has been the implementation of technology transfer activities which transfer scientific knowledge, transfer technologies developed to deal with the production or conservation of energy, and transfer spinoff technologies into the private sector. Several activities which are in process or have been implemented are described in this paper.

  9. Medical Technologies Innovation Training 2014 BIOINNOVATE FELLOWSHIP

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Medical Technologies Innovation Training 2014 BIOINNOVATE FELLOWSHIP BioInnovate Ireland is now medical technology companies and for the development of innovative medical device products. Ireland solutions to meet those needs and implement a strategy to commercialise the technology. BioInnovate

  10. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    SciTech Connect (OSTI)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  11. Day, night and all-weather security surveillance automation synergy from combining two powerful technologies

    SciTech Connect (OSTI)

    Morellas, Vassilios; Johnson, Andrew [Honeywell Labs, 3660, Technology Drive, Minneapolis MN 5518 (United States); Johnston, Chris [Honeywell ACS, 1985 Douglas Drive North, Golden Valley MN 55422 (United States); Roberts, Sharon D.; Francisco, Glen L. [L-3 Communications Infrared Products, 13532 N. Central Expressway, Dallas TX 75243 (United States)

    2006-07-01T23:59:59.000Z

    Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff and landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)

  12. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  13. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  14. Wireless technology for integrated manufacturing

    SciTech Connect (OSTI)

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01T23:59:59.000Z

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  15. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  16. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01T23:59:59.000Z

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  17. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  18. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a...

  19. air conditioning technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology moisture from the...

  20. air conditioning technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology moisture from the...

  1. Overview and Progress of the Exploratory Technology Research...

    Office of Environmental Management (EM)

    Activity: Batteries for Advanced Transportation Technologies (BATT) 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  2. Clean Coal Technology Demonstration Program. Program update 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

  3. Vehicle Technologies Office Merit Review 2014: Overview and Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for...

  4. Kinetic isotope and trace element partitioning during calcite precipitation from aqueous solution

    E-Print Network [OSTI]

    Nielsen, Laura Christina

    2012-01-01T23:59:59.000Z

    that ensure constant calcium and carbonate ion activity byfilled with calcium and carbonate solutions. These syringessyringes containing calcium and carbonate solutions are

  5. Department of Engineering Technology Technology Education

    E-Print Network [OSTI]

    Bieber, Michael

    Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

  6. Technology's Impact on Production

    SciTech Connect (OSTI)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30T23:59:59.000Z

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  7. Implementing Solar Technologies at Airports

    SciTech Connect (OSTI)

    Kandt, A.; Romero, R.

    2014-07-01T23:59:59.000Z

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  8. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect (OSTI)

    Chelsea Hubbard

    2001-05-01T23:59:59.000Z

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating out radioactive contamination, the copper cable was coated with a surrogate contaminant. The demonstration took place at the Bonneville County Technology Center in Idaho Falls, Idaho.

  9. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

  10. Electrodialysis operation with buffer solution

    DOE Patents [OSTI]

    Hryn, John N. (Naperville, IL); Daniels, Edward J. (Orland Park, IL); Krumdick, Greg K. (Crete, IL)

    2009-12-15T23:59:59.000Z

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  11. Ion exchange technology assessment report

    SciTech Connect (OSTI)

    Duhn, E.F.

    1992-01-01T23:59:59.000Z

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  12. Ion exchange technology assessment report

    SciTech Connect (OSTI)

    Duhn, E.F.

    1992-12-31T23:59:59.000Z

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  13. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  14. Technology-to-Market Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology-to-Market Initiative Technology-to-Market Initiative Sensor Suitcase Sensor Suitcase The Sensor Suitcase is a turn-key hardware and software solution that non-experts...

  15. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01T23:59:59.000Z

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  16. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty vehicles....

  17. ST ATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES RESEARCH...

    Broader source: Energy.gov (indexed) [DOE]

    conditioning (Carrier) and power generation (UTC Power). UTRC works directly with the UTC business units and outside partners to develop technology solutions that transition into...

  18. Technology and Organizational Factors in the Notebook Industry Supply Chain

    E-Print Network [OSTI]

    Foster, William; Cheng, Zhang; Dedrick, Jason; Kraemer, Kenneth L

    2006-01-01T23:59:59.000Z

    Technical and Organizational Solutions to Supply Chain18 III. Organizational Factors and the Notebook Industry4: Technology and Organizational Factors in the Notebook

  19. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Broader source: Energy.gov (indexed) [DOE]

    in each of the volumes. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems More Documents & Publications Building America Whole-House Solutions for...

  20. 1 September 2012 Siemens Building Technologies Copyright Siemens

    E-Print Network [OSTI]

    Fischlin, Andreas

    ! Mobility and Logistics ! Low and Medium Voltage ! Smart Grid ! Building Technologies ! OSRAM* Industry ! Clinical Products ! Diagnostics ! Customer Solutions Infrastructure & Cities Divisionen ! Rail Systems

  1. Supertruck technologies for 55% thermal efficiency and 68% freight...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Partners Cummins Inc. - Cummins Fuel Systems - Cummins Electronics - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Filtration - Modine - VanDyne...

  2. Chemical Technology Division annual technical report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  3. Environmental Technology Verification Program

    E-Print Network [OSTI]

    Activities.................4 Table 2.0 Records Management Responsibilities for the MMR CenterEnvironmental Technology Verification Program Quality Management Plan (QMP) for the ETV Materials Management and Remediation Center Version 1.0 #12;QUALITY MANAGEMENT PLAN (QMP) for the ETV MATERIALS

  4. Power conversion technologies

    SciTech Connect (OSTI)

    Newton, M. A.

    1997-02-01T23:59:59.000Z

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  5. Global Electricity Technology Substitution Model with Induced Technological Change

    E-Print Network [OSTI]

    Watson, Andrew

    of E3MG. As opposed to traditional energy models based on cost optimisation procedures, it focuses, and it is difficult to model the energy sector without including its interactions with global economic activity. E3MGGlobal Electricity Technology Substitution Model with Induced Technological Change Jean

  6. Project Management Plan Solution Stabilization

    SciTech Connect (OSTI)

    SATO, P.K.

    1999-08-31T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process.

  7. Identifying Activity

    E-Print Network [OSTI]

    Lewis, Adrian S

    2009-01-01T23:59:59.000Z

    Identification of active constraints in constrained optimization is of interest from both practical and theoretical viewpoints, as it holds the promise of reducing an inequality-constrained problem to an equality-constrained problem, in a neighborhood of a solution. We study this issue in the more general setting of composite nonsmooth minimization, in which the objective is a composition of a smooth vector function c with a lower semicontinuous function h, typically nonsmooth but structured. In this setting, the graph of the generalized gradient of h can often be decomposed into a union (nondisjoint) of simpler subsets. "Identification" amounts to deciding which subsets of the graph are "active" in the criticality conditions at a given solution. We give conditions under which any convergent sequence of approximate critical points finitely identifies the activity. Prominent among these properties is a condition akin to the Mangasarian-Fromovitz constraint qualification, which ensures boundedness of the set of...

  8. Design with Uncertain Technology Evolution 

    E-Print Network [OSTI]

    Arendt, Jonathan Lee

    2012-10-19T23:59:59.000Z

    Design is an uncertain human activity involving decisions with uncertain outcomes. Sources of uncertainty in product design include uncertainty in modeling methods, market preferences, and performance levels of subsystem technologies, among many...

  9. Hydrogen Technology Education Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new educat

  10. Novel technologies and materials for thermal management

    E-Print Network [OSTI]

    Verlaat, B; The ATLAS collaboration

    2013-01-01T23:59:59.000Z

    Efficient thermal engineering solutions for the entire heat load path from source to sink (sensor to cooling plant) are crucial for the future silicon detectors, more than even before. The particularly demanding cooling requirements are coming from the extreme radiation environment, causing high leakage current in the silicon sensors, as well as from the high power dissipated in the front-end electronics, featuring enhanced functionality and high channel count. The need to carry out dedicated R&D has encouraged increased cooperation among the HEP experiments, to identify state-of-the-art materials and construction principles that can help fulfilling the requirements, and to develop more efficient active cooling systems like CO2 cooling, which is now widely accepted as an excellent detector cooling technology.

  11. Richland Operations Office technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

  12. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  13. Science and Technology Challenges for International Safeguards

    SciTech Connect (OSTI)

    Mark Schanfein

    2009-07-01T23:59:59.000Z

    The science and technology challenges for international safeguards range from cutting edge physics needs to practical technology solutions for high volume data handling and analysis issues. This paper will take a narrow look at some of the predominant challenges, which include those at high throughput commercial facilities and those in the detection of undeclared facilities. It is hoped that by highlighting these areas it can encourage a concerted effort by scientific institutions and industry to provide robust cost-effective solutions.

  14. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-10-31T23:59:59.000Z

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  15. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04T23:59:59.000Z

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  16. Fuel Cell Backup Power Technology Validation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

    2012-10-01T23:59:59.000Z

    Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

  17. Space Science Technology Health General Sci-fi & Gaming Oddities International Business Politics Education Entertainment Sports Implant Maps Heart Electrical Activity In

    E-Print Network [OSTI]

    Rogers, John A.

    Education Entertainment Sports Implant Maps Heart Electrical Activity In Unprecedented Detail Posted on of implantable device for measuring the heart's electrical output that they say is a vast improvement over to the design of devices for localizing and treating abnormal heart rhythms. We believe these new devices

  18. Characterizing Water Risks and Solutions Cross-Culturally: Results from the Global Ethnohydrology Study

    E-Print Network [OSTI]

    Hall, Sharon J.

    ) & quantity (lack of water ) · Solutions: individual behaviors, collective technologies & policies How doCharacterizing Water Risks and Solutions Cross-Culturally: Results from the Global Ethnohydrology State University Four Study Sites Classified by Water Scarcity & Development Levels Background

  19. June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing

    E-Print Network [OSTI]

    Engelmann, Christian

    June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities in High

  20. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

  1. Geothermal: Sponsored by OSTI -- A closed-form analytical solution...

    Office of Scientific and Technical Information (OSTI)

    A closed-form analytical solution for thermal single-well injection withdrawal tests Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  2. Services du Centre de Solutions Pour Les Energies Propres (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    This is the French translation of the Clean Energy Solutions Center services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  3. Institute for Software Technology Wissensverarbeitung

    E-Print Network [OSTI]

    Motivation Example correct behavior battery(c)(ab(c)voltage(c))battery(c)(ab(c)voltage(c)) bulb for Software Technology Motivation Example cont. t t tsystem structure battery(B). bulb(L1). bulb(L2). bulb(L3 the fact that a bulb does not lit if it is broken · solution: model faulty behavior battery

  4. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities Presentation given by...

  5. Vehicle Technologies Office Merit Review 2015: Alternative Fuel...

    Energy Savers [EERE]

    Alternative Fuel Tools and Technical Assistance Activities Vehicle Technologies Office Merit Review 2015: Alternative Fuel Tools and Technical Assistance Activities Presentation...

  6. Vehicle Technologies Office Merit Review 2014: Impact Analysis...

    Energy Savers [EERE]

    Impact Analysis: VTO Baseline and Scenario (BaSce) Activities Vehicle Technologies Office Merit Review 2014: Impact Analysis: VTO Baseline and Scenario (BaSce) Activities...

  7. Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

  8. Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  9. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  10. FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Drake, John L.; Gramling, James M.; Houston, Helene M.

    2003-02-27T23:59:59.000Z

    The United States Department of Energy Office of Environmental Management (DOE-EM) faces a number of sizeable challenges as it begins to transform its mission from managing risk to reducing and eliminating risk throughout the DOE Complex. One of the greatest challenges being addressed by DOE-EM as this transformation takes place is accelerating the deactivation and decommissioning of thousands of facilities within the DOE Complex that were once used to support nuclear-related programs and projects. These facilities are now unused and aging. Finding solutions to complete the cleanup of these aging facilities more safely, efficiently, and effectively while reducing costs is critical to successfully meeting DOE-EM's cleanup challenge. The Large-Scale Demonstration and Deployment Project (LSDDP) of Hot Cells at the West Valley Demonstration Project (WVDP) is a near-term project funded through the DOE's National Energy Technology Laboratory (DOE-NETL) for the specific purpose of identifying, evaluating, demonstrating, and deploying commercially available technologies that are capable of streamlining the cleanup of hot cells in unused facilities while improving worker safety. Two DOE project sites are participating in this LSDDP: the WVDP site in West Valley, New York and the Hanford River Corridor Project (RCP) site in Richland, Washington. The WVDP site serves as the host site for the project. Technologies considered for demonstration and potential deployment at both LSDDP sites are targeted for application in hot cells that require the use of remote and semi-remote techniques to conduct various cleanup-related activities because of high radiation or high contamination levels. These hot cells, the type of cleanup activities being conducted, and technologies selected for demonstration are the main topics discussed in this paper. The range of cleanup-related activities addressed include in-situ characterization, size-reduction, contamination control, decontamination, in-c ell viewing, and various types of handling, retrieval, and dismantlement tasks. The primary focus of the LSDDP of Hot Cells is on demonstrating technologies capable of reducing cost and schedule baselines for work scopes involving in-situ characterization (including nondestructive examination to access in-cell areas), size-reducing equipment and piping, contamination control, and decontaminating surfaces (including equipment surfaces). Demonstrations of technologies that can streamline these tasks are scheduled for the WVDP site. Demonstrations scheduled for the Hanford RCP site focus on work scope activities involving remote-inspection and viewing. Each demonstration conducted will be assessed using evaluation criteria established by the participating sites to determine if selected technologies represent a significant improvement over current baseline technologies being used to perform work. If proven to be effective, each of the commercially available technologies demonstrated has th e potential to be quickly deployed at other sites, resulting in improved worker safety, reduced cleanup costs, and accelerated schedule completion for many of the most challenging cleanup efforts now underway throughout the DOE Complex.

  11. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20T23:59:59.000Z

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  12. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

  13. Office of Technology Transitions

    Broader source: Energy.gov [DOE]

    DOE's Technology Commercialization activities in 2009-13 have involved three broad areas of focus. The primary focus of technology commercialization has continued to be through new technologies developed at the National Laboratories and Facilities. As a second focus, to support and streamline commercialization of these DOE technologies, DOE has carried out a number of new initiatives and pilot projects. Finally, DOE's Department-wide commitment to using commercialization as one mechanism to support U.S. economic growth has led to new cross-cutting programs. U.S. Department of Energy researchers won 31 of the 100 awards in 2014, 36 awards in each of 2013, 2012 and 2011, and 46 in 2010, for a total of 185 over the period of 2009-13. A subset of these awards and other DOE developed technologies are described in Appendix E. These represent a spectrum of commercial areas including DOE mission areas of energy, efficiency, environment and security, as well as spin-off applications in the agricultural, aeronautical, medical, semiconductor and information technology industries, and broad applications in cyber security and sensing/control systems.

  14. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  15. EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    6th EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW FORMING FOR AUTOMOTIVE CLOSURE PANEL Replacement by aluminum for the closure panels is one of the common methods for lightening car body. However. As a solution to cover the low stamping formability of aluminum, Blow forming technology of aluminum which

  16. Technology reviews: Daylighting optical systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01T23:59:59.000Z

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends.Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  17. Chemical Technology Division annual technical report, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  18. Resource Management and Containment for Active Services

    E-Print Network [OSTI]

    Mills Advanced Networking Technologies Division National Inst. Of Standards and Technology Gaithersburg of activity in standards groups (IETF, JAVA community). ­ Same resource problems as traditional Active Nets APIs JAIN Service APIs Session Initiation Protocol (SIP) ··· Event / Service Manager Interface Soft

  19. Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Dunham, Grant

    2012-03-15T23:59:59.000Z

    Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%–15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals from carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.

  20. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive Environments—Significant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Suter, Jonathan D.

    2012-09-01T23:59:59.000Z

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  1. Oakland Operations Office, Oakland, California: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  2. AGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE

    E-Print Network [OSTI]

    National Laboratory, agrees to provide the Technology services described below at no cost to the REQUESTERAGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE Date: Agreement: TO: FROM: Battelle Memorial Title: Field of Use: The activities to be performed under this Technology assistance will be: BATTELLE

  3. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  4. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    SciTech Connect (OSTI)

    Kopotic, James D. [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States)] [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States); Ferri, Mark S.; Buttram, Claude [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)] [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)

    2013-07-01T23:59:59.000Z

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good, up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)

  5. Energy and technology review

    SciTech Connect (OSTI)

    Brown, P.S. (ed.)

    1983-06-01T23:59:59.000Z

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  6. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

    1994-01-01T23:59:59.000Z

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  7. Technology Application Centers: Facilitating Technology Transfer

    E-Print Network [OSTI]

    Kuhel, G. J.

    's approach to technology deployment seeks to blend an industrial customer's priorities with the utility's marketing and customer service objectives. A&C Enercom sees technology deployment as the sum of an equation: technology deployment equals technology...

  8. Switch on Clean Energy Activity Book | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Switch on Clean Energy Activity Book Switch on Clean Energy Activity Book Games and activity book about energy efficiency and renewable energy technologies for kids....

  9. Technology development needs summary, FY 1995

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  10. Chemical Technology Division annual technical report, 1992

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01T23:59:59.000Z

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  11. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21T23:59:59.000Z

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  12. FEMP/NTDP Technology Focus New Technology

    E-Print Network [OSTI]

    FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

  13. Technical solutions to nonproliferation challenges

    SciTech Connect (OSTI)

    Satkowiak, Lawrence [Director, Nonproliferation, Safeguards and Security Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2014-05-09T23:59:59.000Z

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  14. Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2012-04-15T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  15. In situ derivation of sulfur activated TiO{sub 2} nano porous layers through pulse-micro arc oxidation technology

    SciTech Connect (OSTI)

    Bayati, M.R., E-mail: mbayati@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of) [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box 16845-195, Tehran (Iran, Islamic Republic of); Moshfegh, A.Z. [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of) [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Molaei, Roya [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of)

    2011-10-15T23:59:59.000Z

    Highlights: {yields} S-TiO{sub 2} layers were grown by MAO technique under pulse current for the first time. {yields} Effect of growth parameters on chemical composition, topography, and morphology of the layers was studied. {yields} A correlation between photocatalytic performance and growth conditions was proposed. -- Abstract: Micro arc oxidation technique, as a facile and efficient process, was employed to grow sulfur doped titania porous layers. This research sheds light on the photocatalytic performance of the micro arc oxidized S-TiO{sub 2} nano-porous layers fabricated under pulse current. Morphological and topographical studies, performed by SEM and AFM techniques, revealed that increasing the frequency and/or decreasing the duty cycle resulted in formation of finer pores and smoother surfaces. XRD and XPS results showed that the layers consisted of anatase and rutile phases whose fraction was observed to change depending on the synthesis conditions. The highest anatase relative content was obtained at the frequency of 500 Hz and the duty cycle of 5%. Furthermore, photocatalytic activity of the layers was examined by measuring the decomposition rate of methylene blue under both ultraviolet and visible photo irradiations. Maximum photodegradation reaction rate constants over the pulse-grown S-TiO{sub 2} layers were respectively measured as 0.0202 and 0.0110 min{sup -1} for ultraviolet and visible irradiations.

  16. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01T23:59:59.000Z

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  17. Hydrogen and Fuel Cell Activities

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National...

  18. Plutonium recovery from carbonate wash solutions

    SciTech Connect (OSTI)

    Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

    1991-12-31T23:59:59.000Z

    Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig.

  19. The Office of Technology Development technical reports. A bibliography

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.

  20. Solution to Quiz 5

    E-Print Network [OSTI]

    jeffb_000

    2013-12-02T23:59:59.000Z

    Nov 19, 2013 ... Calculate the total transaction costs incurred by Patrick and Eric combined. Solution: Ask Price = 30. Bid Ask Spread = 0.50 = Ask Price - Bid ...

  1. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01T23:59:59.000Z

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  2. Chemical/Bio Engineering Computer Engineering Computer Science/IT Mechanical Engineering Aspen Technology abi HUB abi HUB Adecco

    E-Print Network [OSTI]

    New Hampshire, University of

    Chemical/Bio Engineering Computer Engineering Computer Science/IT Mechanical Engineering Aspen Continental Biomass Industries Navy Recruiting District New England Aspen Technology ARC Technology Solutions Electric Boat Triumvirate Environmental Fidelity Investments Aspen Technology GOSS International America

  3. Singlet exciton fission in solution

    E-Print Network [OSTI]

    Walker, Brian J.; Musser, Andrew J.; Beljonne, David; Friend, Richard H.

    2013-11-17T23:59:59.000Z

    Physics 135, 214508 (2011). 25. Sheraw, C. D., Jackson, T. N., Eaton, D. L. & Anthony, J. E. Functionalized Pentacene Active Layer Organic Thin-Film Transistors. Advanced Materials 15, 2009–2011 (2003). 26. Giri, G. et al. Tuning charge transport... in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–8 (2011). 27. Gundlach, D. J. et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nature Materials 7, 216–21 (2008). 28...

  4. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12T23:59:59.000Z

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  5. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1997-01-01T23:59:59.000Z

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  6. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, R.L.

    1997-03-11T23:59:59.000Z

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  7. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  8. Thermally Activated Technologies Technology Roadmap, May 2003 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of Energy (DOE)Department ofMachinesof

  9. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01T23:59:59.000Z

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  10. Solvent wash solution

    DOE Patents [OSTI]

    Neace, J.C.

    1984-03-13T23:59:59.000Z

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  11. Solvent wash solution

    DOE Patents [OSTI]

    Neace, James C. (Blackville, SC)

    1986-01-01T23:59:59.000Z

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  12. Chemical Technology Division annual technical report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  13. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y. [CH2M Hill (United States)

    2007-02-15T23:59:59.000Z

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  14. Emerging technologies

    SciTech Connect (OSTI)

    Lu, Shin-yee

    1993-03-01T23:59:59.000Z

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  15. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  16. active filter employing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    type). Traditional design Wilamowski, Bogdan Maciej 25 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  17. active v2 receptor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure without human intervention. Key Luhua, Lai 3 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  18. active power filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Varying Network Frequency Ramon Costa Hammerton, James 31 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  19. active power filtering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Varying Network Frequency Ramon Costa Hammerton, James 31 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  20. active power filter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Varying Network Frequency Ramon Costa Hammerton, James 31 Virtual active filters for HVDC networks using V2G technology F.R. Islam Engineering Websites Summary: ) technology is...

  1. Fuel Cell Technologies Office Science and Technology Policy Fellowship...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities...

  2. Performance Engineering Technology for Scientific Component Software

    SciTech Connect (OSTI)

    Malony, Allen D.

    2007-05-08T23:59:59.000Z

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress reports for the first two years describe those year's achievements in detail. We discuss progress in the last project period in this document. Deployment of our work in CCA components, frameworks, and applications is an important metric of success. We also summarize the project's accomplishments in this regard at the end of the report. A list of project publications is also given.

  3. Building America Technology Solutions for Existing Homes: Initial...

    Broader source: Energy.gov (indexed) [DOE]

    and long-term performance of the use of wood furring strips attached through the insulation back to the structure to provide a convenient cladding attachment location for...

  4. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    and field evaluations of in-service residential roofs. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing More Documents & Publications Exterior Rigid...

  5. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    investigated issues to better understand the mechanics behind the addition of insulation to the exterior of buildings to increase the thermal resistance of wood-framed walls...

  6. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Homes: Duct Sealing Using Injected Spray Sealant In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated...

  7. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    focuses on how eight high-R walls handle the three main sources of moisture-construction moisture, air leakage condensation, and bulk water leaks. Moisture Management of...

  8. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Retrofit team provides guidance on how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for...

  9. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    physical configurations of flexible duct junction boxes by using computational fluid dynamics simulations to predict individual box parameters and total system pressure, thereby...

  10. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    seasonal energy savings and peak demand reduction that can result from repairing these wind washing problems. Based on this research, the team developed recommendations for...

  11. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Systems, at two Chicago area multifamily buildings with existing OTR control. Advanced Boiler Load Monitoring Controllers More Documents & Publications Building America...

  12. Aligning Technology Solutions to Address Over-the-Horizon Threats

    E-Print Network [OSTI]

    Tracy Wilson PNNL's Center for Global Security Deputy Director Deputy Director (206) 528-3264 (509) 375-6744 (703) 298-9646 jana.fankhauser@pnnl.gov keith.freier@pnnl.gov tracy.wilson@pnnl.gov http://cgs.pnnl.gov PNNL-SA-78154September 2011 PNNL'S Center for Global Security Answering the questions: What current

  13. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America...

  14. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    systems through increased main line air venting, radiator vent replacement, and boiler control system upgrades. Steam System Balancing and Tuning for Multifamily Residential...

  15. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating. Foundation Heat...

  16. Technology Solutions Case Study: Overcoming Comfort Issues Due...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues Due to Reduced Flow Room Air Mixing Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the heating, ventilating, and...

  17. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    This profile describes the Advanced Envelope Research project, managed by ARIES Collaborative, which will provide factory homebuilders with high performance, cost-effective...

  18. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, U.S. Department of Energy, Sandia National Laboratories, National Renewable Energy Laboratory and Pacific Northwest National Laboratories. BPA uses a two-phase...

  19. 24 SOLUTIONS! for People, Processes and Paper COATING TECHNOLOGY

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    of thickness L is described by the Darcy's (9) equation, 1 Here Q is the mass of permeate trans- ferred of the layer, and t is time (see Figure 1). In use of equation 1 in the barrier appli- cation, (Q/t) can

  20. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    climate over the cooling season. Impact of Infiltration and Ventilation on Measure Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate More Documents &...

  1. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    the garage-to-house air leakage. Air Leakage and Air Transfer Between Garage and Living Space More Documents & Publications DOE ZERH Webinar: Ventilation and Filtration Strategies...

  2. Building America Technology Solutions for Existing Homes: Initial and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372 RoomforinDepartmentFoundation

  3. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372 RoomforinDepartmentFoundationAir-to-Water

  4. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372

  5. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion Safety Using Appliances for

  6. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion Safety Using Appliances

  7. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion Safety Using

  8. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion Safety UsingExcavationless:

  9. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion Safety

  10. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion SafetyHigh-Performance Walls in

  11. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion SafetyHigh-Performance Walls

  12. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion SafetyHigh-Performance

  13. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion SafetyHigh-PerformanceMonitoring

  14. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372Combustion

  15. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance of a Heat Pump Water

  16. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance of a Heat Pump

  17. Building America Technology Solutions for New and Existing Homes:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance of a Heat

  18. Building America Technology Solutions for New and Existing Homes: A

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance of a HeatHomeowner's

  19. Building America Technology Solutions for New and Existing Homes: Advanced

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance of a

  20. Building America Technology Solutions for New and Existing Homes: Air

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance of aControls

  1. Building America Technology Solutions for New and Existing Homes: Apartment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance of

  2. Building America Technology Solutions for New and Existing Homes: Balancing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance ofHydronic Systems in

  3. Building America Technology Solutions for New and Existing Homes: Boiler

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance ofHydronic Systems

  4. Building America Technology Solutions for New and Existing Homes: Buried

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance ofHydronic Systemsand

  5. Building America Technology Solutions for New and Existing Homes: Capillary

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance ofHydronic

  6. Building America Technology Solutions for New and Existing Homes: Cladding

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance ofHydronicAttachment

  7. Building America Technology Solutions for New and Existing Homes: Cold

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformance

  8. Building America Technology Solutions for New and Existing Homes: Cost

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformanceAnalysis of Roof-Only

  9. Building America Technology Solutions for New and Existing Homes: Duct

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformanceAnalysis of

  10. Building America Technology Solutions for New and Existing Homes: Durable

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformanceAnalysis ofInterior

  11. Building America Technology Solutions for New and Existing Homes: Ground

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green372CombustionPerformanceAnalysis

  12. Building America Technology Solutions for New and Existing Homes: Improving

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big

  13. Building America Technology Solutions for New and Existing Homes: Insulated

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate, New Paltz, New

  14. Building America Technology Solutions for New and Existing Homes: Measure

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate, New Paltz,

  15. Building America Technology Solutions for New and Existing Homes: Moisture

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate, New

  16. Building America Technology Solutions for New and Existing Homes: Moisture

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate, NewManagement of

  17. Building America Technology Solutions for New and Existing Homes: New

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate, NewManagement

  18. Building America Technology Solutions for New and Existing Homes: Project

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate,

  19. Building America Technology Solutions for New and Existing Homes: Raised

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate,Ceiling Interior

  20. Building America Technology Solutions for New and Existing Homes: Replacing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate,Ceiling

  1. Building America Technology Solutions for New and Existing Homes: Selecting

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a Cold Climate,CeilingVentilation

  2. Building America Technology Solutions for New and Existing Homes: Steam

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a ColdSystem Balancing and Tuning

  3. Building America Technology Solutions for New and Existing Homes: Stud

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding Retrofit in a ColdSystem Balancing and

  4. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011Building America

  5. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011Building

  6. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011BuildingEvaluation of the

  7. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011BuildingEvaluation of

  8. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober 2011BuildingEvaluation

  9. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctober

  10. Building America Technology Solutions for New and Existing Homes: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctoberControls Improve Performance

  11. Building America Technology Solutions for New and Existing Homes: Buried

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctoberControls Improve

  12. Building America Technology Solutions for New and Existing Homes: Cladding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctoberControls ImproveAttachment

  13. Building America Technology Solutions for New and Existing Homes: Cladding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctoberControls

  14. Building America Technology Solutions for New and Existing Homes: Durable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctoberControlsInterior Foundation

  15. Building America Technology Solutions for New and Existing Homes: Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctoberControlsInterior

  16. Building America Technology Solutions for New and Existing Homes: Ground

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating inOctoberControlsInteriorSource Heat

  17. Building America Technology Solutions for New and Existing Homes: Moisture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating

  18. Building America Technology Solutions for New and Existing Homes: Moisture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagement of High-R Walls | Department

  19. Building America Technology Solutions for New and Existing Homes: Replacing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagement of High-R Walls |

  20. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Assessment In this project, the NorthernSTAR team analyzed combined (combi) condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot...

  1. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    efficiency, save money, and improve comfort for homeowners. A Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort More Documents & Publications...

  2. Building America Technology Solutions for New and Existing Homes: Retrofit

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovember 13,National Renewable EnergyInfiltration andIntegrated

  3. Energy Technology Solutions: Public-Private Partnerships Transforming

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession 3 |Department ofVehicularToo! |ENERGY

  4. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary 29 - March 2, 2012 |

  5. Cost Effectiveness of Technology Solutions for Future Vehicle Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013Department of EnergyCoreHydrogenof

  6. OpenEI Community - Technology Innovation & Solutions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff thedriving dataHighlights/0 en/0 en

  7. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success Stories SystemsTaraServices » Waste ManagementFlow

  8. Project Profile: CSP Energy Storage Solutions - Multiple Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department ofPlantLongThermochemicalCompared |

  9. Demonstrating & Deploying Integrated Retrofit Technologies & Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:|Electricity

  10. Vehicle Technologies Office Merit Review 2014: Synthetic Solutions for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidationAdvanced Vehicle Electrification

  11. NREL: Technology Deployment - Biopower and Waste-to-Energy Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost

  12. Demonstrating and Deploying Integrated Retrofit Technologies and Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatement Delphi Statement From October, 2008, a statement onAct-

  13. Technology Solutions and Programmatic Approaches: Driving Innovation in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTank 48H TreatmentPublications

  14. Anatomy of bubbling solutions

    E-Print Network [OSTI]

    Kostas Skenderis; Marika Taylor

    2008-05-23T23:59:59.000Z

    We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.

  15. Quiz 5 Solutions

    E-Print Network [OSTI]

    Apr 25, 2015 ... Math 373. Spring 2015. Quiz 5. April 16, 2015. 1. In a short sale of a stock, there is credit risk. Define credit risk. Solution: Credit risk is the risk ...

  16. Solution to Quiz 1

    E-Print Network [OSTI]

    jeffb_000

    2014-01-14T23:59:59.000Z

    Sep 5, 2013 ... over the next four years: Cash Flow at End of Year Amount of Cash Flow. 1. 1 Million. 2 ... project is 8%. Calculate X . Solution: By definition, the ...

  17. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01T23:59:59.000Z

    its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of “Technology and the Box” emerged

  18. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  19. Innovation and Transportation's Technologies

    E-Print Network [OSTI]

    Garrison, William L.

    2001-01-01T23:59:59.000Z

    decision making. Innovation and technology lock-in hasStage 1 imagine the innovation and technology developmentof emphasizing innovation and technology development. Pull

  20. Solutions of Penrose's Equation

    E-Print Network [OSTI]

    E. N. Glass; Jonathan Kress

    1998-09-27T23:59:59.000Z

    The computational use of Killing potentials which satisfy Penrose's equation is discussed. Penrose's equation is presented as a conformal Killing-Yano equation and the class of possible solutions is analyzed. It is shown that solutions exist in spacetimes of Petrov type O, D or N. In the particular case of the Kerr background, it is shown that there can be no Killing potential for the axial Killing vector.

  1. TECHNOLOGY FORUM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of Energy 51:Cross-Site66 -Topic Groups TECHNOLOGY

  2. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  3. Information Technologies July/August 2008 Activity

    E-Print Network [OSTI]

    Firestone, Jeremy

    Hall, replacing older PCs. They use less energy and produce less heat, making them a greener computing site will be replacing older Macs and PCs with iMacs with dual-boot iMacs allowing students

  4. Information technology for active perception: Itap

    E-Print Network [OSTI]

    Auslösung von Airbags · Fahreridentifikation SMI VI bvisual ISIP LAPI Itap INB Messung des Lidschlages SMI

  5. Bioenergy Technologies Office Coloring and Activity Book

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    flow through the Earth system. Biological processes depend on energy flow through the Earth system. Energy decisions...

  6. Vehicle Technologies Office: Financial Opportunities - Active Solicitations

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment

  7. Marketing Cool Storage Technology

    E-Print Network [OSTI]

    McCannon, L.

    ~nized for a means to provide for technology transfer and dissemination of current information in the field. The International Thermal Stora~e Advisorv Council was formed to help meet this perceived need. This paper will review activities of EPRI... of cool stora~e. At the same time, +n educational effort was needed to infotm en~ineers and end-users on the use of t~e technol02V. and of the ener~v cost savin~s th t could result. The EPRI "Commercialization of Cool Stora e Technolo~v" project (RP...

  8. Dezincing Technology

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Service Div.; Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

    1997-08-01T23:59:59.000Z

    Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

  9. Technology and policy options for reducing industrial air pollutants in the Mexico City Metropolitan Area

    E-Print Network [OSTI]

    Vijay, Samudra, 1968-

    2005-01-01T23:59:59.000Z

    Technology plays an important role in dealing with air pollution and other environmental problems faced by developing and developed societies. This research examines if technological solutions alone, such as end-of-pipe ...

  10. Award Recipient National Institute of Standards and Technology U.S. Department of Commerce

    E-Print Network [OSTI]

    Magee, Joseph W.

    , such as Honeywell Hometown Solutions, the FM&T Employees Club, and the Christmas in October and Harvesters food. Honeywell Federal Manufacturing & Technologies Honeywell Federal Manufacturing & Technologies (FM&T), LLC

  11. activity transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and social welfare, equity, human health and ecological integrity. A narrow definition of sustainable transport tends to favour individual technological solutions, while a broader...

  12. The 1986-93 Clean Coal Technology Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant...

  13. Report on Activities And Usage Statistics of

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    of the Mobile Learning Portal, at mobilelearningportal.org. This Web site is a #12;Learning Technology CenterReport on Activities And Usage Statistics of Learning Technology Center Services and Facilities 2009-2010 #12;Learning Technology Center Review 2009-2010 December 2010 2 Report on Activities

  14. General com Technology community

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Campus IT General com m unity Technology community ITsystem owners Campus Council for Information Technology (CCFIT) · ~30 members · Advisory evaluation and review role · Input from faculty, staff, students formal representation on steering team and subcommittees Technology Support Program · Technology support

  15. CSIR TECHNOLOGY AWARDS -2013

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

  16. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  17. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  18. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; R. Bratton

    2007-09-01T23:59:59.000Z

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  19. Fissile solution measurement apparatus

    DOE Patents [OSTI]

    Crane, T.W.; Collinsworth, P.R.

    1984-06-11T23:59:59.000Z

    An apparatus for determining the content of a fissile material within a solution by detecting delayed fission neutrons emitted by the fissile material after it is temporarily irradiated by a neutron source. The apparatus comprises a container holding the solution and having a portion defining a neutron source cavity centrally disposed within the container. The neutron source cavity temporarily receives the neutron source. The container has portions defining a plurality of neutron detector ports that form an annular pattern and surround the neutron source cavity. A plurality of neutron detectors count delayed fission neutrons emitted by the fissile material. Each neutron detector is located in a separate one of the neutron detector ports.

  20. Late standardization and technological catch-up

    E-Print Network [OSTI]

    Ratanawaraha, Apiwat, 1972-

    2006-01-01T23:59:59.000Z

    In this study, we examine the process of "late standardization," in which latecomers engage in standards activities in order to move towards and beyond the technological frontier. Based on case studies of latecomers in the ...

  1. Energy Solutions for Sustainable Development

    E-Print Network [OSTI]

    energy technologies such as clean coal technologies · Providing renewable energy for the transport sector Session 2 - Scenarios and Policy Options 32 Session 3 ­ Clean Coal Technologies 55 Session 4 ­ Bioenergy

  2. 2004-05 Research Activities from the Office of the Vice President for Research

    E-Print Network [OSTI]

    Ginzel, Matthew

    are actively seeking answers to grid security and transmission control, researching clean coal technologies

  3. Integrating Human Performance and Technology

    SciTech Connect (OSTI)

    Ronald K. Farris; Heather Medema

    2012-05-01T23:59:59.000Z

    Human error is a significant factor in the cause and/or complication of events that occur in the commercial nuclear industry. In recent years, great gains have been made using Human Performance (HU) tools focused on targeting individual behaviors. However, the cost of improving HU is growing and resistance to add yet another HU tool certainly exists, particularly for those tools that increase the paperwork for operations. Improvements in HU that are the result of leveraging existing technology, such as hand-held mobile technologies, have the potential to reduce human error in controlling system configurations, safety tag-outs, and other verifications. Operator rounds, valve line-up verifications, containment closure verifications, safety & equipment protection, and system tagging can be supported by field-deployable wireless technologies. These devices can also support the availability of critical component data in the main control room and other locations. This research pilot project reviewing wireless hand-held technology is part of the Light Water Reactor Sustainability Program (LWRSP), a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE). The project is being performed in close collaboration with industry R&D programs to provide the technical foundations for licensing, and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRSP vision is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current nuclear reactor fleet.

  4. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  5. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  6. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  7. Benchmarking foreign electronics technologies

    SciTech Connect (OSTI)

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01T23:59:59.000Z

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Passive and active Reconfigurable antenna design

    E-Print Network [OSTI]

    Pfeifer, Holger

    and technology context - System integration - Semiconductor technologies and devices - MMIC design: MMICPassive and active Reconfigurable antenna design Doctoral course ­ Ulm, Germany - October 8-12 2012 - Introduction to components - Performance parameters for components - Microwave circuit and antenna analysis

  9. Offshore Renewable Energy Solutions

    E-Print Network [OSTI]

    and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidal power ­ to meet its target of achieving 15% of energy consumption from renewable sources by 2020. CefasOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre

  10. 1.2 Solutions

    E-Print Network [OSTI]

    In other words, the graph of the ... coef?cient p0 — (k/r) of the exponential term in Eq. (19). 1f p0 > Mr ..... be other solutions, then perhaps we should continue to search for them. .... Then the tensile force in the rod does not enter the equation.

  11. Joint Capability Technology Demonstration (JCTD) Industry Day Agenda

    Broader source: Energy.gov [DOE]

    Agenda outlines the activities of the 2014 Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Industry Day in Fort Carson, Colorado.

  12. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  13. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Energy Savers [EERE]

    for inclusion in future program roadmaps. Frontiers will support advancing program roadmap-driven R&D activities that contribute to core program technological areas. It is...

  14. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  15. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report The Lightweight Materials activity (LM)...

  16. automation related technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work environments as di- verse as aviation, maritime operations, process control, motor vehicle operation, and informa- tion retrieval. Automation is technology that actively...

  17. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    on Large Ultracapacitor (EDLC) Technology and Application,double-layer capacitors (EDLC). Energy storage in double-double-layer capacitor (EDLC), the active ions in the

  18. Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells...

    Broader source: Energy.gov (indexed) [DOE]

    Session VTO Analysis Activities: AMR Plenary Overview Ward Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

  19. 2011 Annual Merit Review Results Report - Technology Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities 2011amr08.pdf More Documents & Publications Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage...

  20. Building America Webinar: Building America Technology-to-Market...

    Broader source: Energy.gov (indexed) [DOE]

    introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's research, development, and demonstration activities over...